
DBX Database Manager

Notes

March 2004

1.
Introduction and Overview
This document describes the DBX Database Manager. DBX provides a major upgrade in functionality for databases stored in Microsoft and Pervasive SQL formats. DBX removes many of the limitations inherent in the "traditional" (pre-DBX) Speedbase Database Manager such as the number of records that may be stored in a database, and the number of indexes that may be defined.

1.1
Released Software

A number of components in both the GSM run-time and the Global Development System have been enhanced to recognise DBX format databases. In addition a number of new components have been released. The following software represents the "DBX release":

· V3.58 Speedbase Gateway (SPEEDBAS.EXE or SPEEDSQL.EXE) ;

· Speedbase DLM library;

· DBX Maintenance Utility $DXU;

· DBX compliant Debugger Components $DBUG and $DBUG1;

· V3.00 Speedbase Compiler $SDL32, P.$SDL32 and $SDLER32;

· DBX Dictionary Maintenance Program $DXM;

· DI$DXM Meta-Meta Dictionary

The "DBX aware" versions of the GSM run-time, Global Development System and Speedbase Gateway are all fully compatible with prior Speedbase releases, and the components are therefore able to compile and execute both DBX and pre-DBX database formats. It is permissible for any given site to operate with a mixture of formats, and a given program can simultaneously access both DBX and pre-DBX databases.

2.
Enhancements and New facilities

DBX provides the following enhancements and new facilities.

2.1
Dictionary Enhancements

Traditional Speedbase Database Manager limitations such as the number of record types that may be defined in a database, and the number of Master/servant and GVA relationships that may be defined have been significantly extended as described below.

2.1.2
Tables per database

The number of Tables (Record types) that can be defined for a given database was 36 and is now limited to 512.

2.1.3
Indexation

The number of indexes per database was 90, and is now unlimited. Each record may contain up to 64 indexes, and each index may be composed of up to 16 segments (up from 8 segments). The length of each index key may now be 123 bytes (up from 47).

Note: Pervasive SQL (Btrieve) does not permit more than 119 index segments for any one Table. If you define a table that requires more than 119 segments to define its indexes, then the dictionary may only be processed using Microsoft SQL.

2.1.4
Relations

The number of Master records that may be defined for any given servant record remains 16 (unchanged).

2.1.5
GVA Fields

There is no restriction to the number of GVA fields that may be declared for a record. The size of each Data Record's Systems Area (which contains GVA values) was restricted to 127 bytes and now has no specific limit.

2.1.6
GVF Fields

The number of GVF fields declarable for any record type now has no specific limit.

2.1.7
Key Extract Area Limitations

Whenever the Speedbase Database Manager retrieves a record, it copies significant fields from the target record into a special area known as the KE (Key Extract area. This area, which was previously limited to 256 bytes, has been extended by a factor of 16 to 4K. The maximum number of segments defined for each record type (i.e. fields references required to define Index, Master access Key and GVF relations) was previously 64 and is now set at 512. Given that Pervasive SQL files are limited to 119 segments, this unlikely to present a practical limitation.

Note that all GVF fields, Index Segments and Master Access key fields must still be declared within the 1st 127 field definitions of each record type.

2.1.8
Cascading GVF’s

Any GVA Field can now also be declared a GVF in the Dictionary by using $DXM. This provides the capability to have the value of a GVF cascade through a hierarchy of Master records.

2.2
Table Sizes

Each Table (record type) is now stored either as a separate file or as a table within the Database Manager. A Pervasive SQL (Btrieve) table is limited to 64Gb. An SQL table is (apparently) unlimited. To support this, DBX record numbers have been extended to a 4 byte integer. The absolute limit to the number of records present in a given table is therefore now 2G records, subject to underlying database restrictions.

3.
New Utilities

3.1
$DXU Utility

The $DXU Utility provides similar functionality to and replaces the $BADN, $BADS, $BN32 and $BS32 utilities used for pre-DBX databases.

3.2
Conversion Processing Enhancements

The DBX conversion process is, currently (March 2004), being altered to amend each database on a table-by-table basis, rather than the complete rebuild that has been done in the past.

This capability is provided in the v3.95 or later Speedbase Gateway. Database conversion from one dictionary to another will, depending on the changes being made, be much faster because only affected tables need to be processed. It is estimated that a typical conversion process will typically run at least an order of magnitude faster than the current Speedbase Database Manager. This capability is only available for Pervasive SQL databases at present.

The “IntelligentConversion” registry setting activates this new conversion processing. The use of this key is described in the Document IN274 – Speedbase Gateway Options.

3.3
Record Initialisation

DBX supports a new INITIALISE verb, which causes the data record area of the target record type to be initialised with appropriate field values. This facility replaces the existing middle-ware INITREC (B$INIR) routine, which simply writes low-values to the entire record area, thus corrupting any PIC X fields.

When a Start-of-file (SOF) or End-of-file handling (EOF) condition occurs, all variants of the Speedbase Database Manager currently fill the data record area with #FFs or #00s respectively. This convention may be removed in a future version (because it has caused a number of difficulties in the past).

Request For Comment: We are proposing that, on an SOF or EOF condition, the record area should be automatically (and properly) initialised using the new INITIALISE handling described above. If you think this change could cause you difficulties in your software please contact Alan Underwood (alan.underwood@kerridgecs.com).

3.4
Status Functions

The status functions BSTA, BST2, B$ST2N, B$STB, and B$FRER cannot be used with DBX due to restricted parameter field sizes. They have therefore been replaced with a single new status routine, B$ST. Note that B$ST degrades to B$STA if called on a pre-DBX database. Further documentation on B$ST is available (b$st.doc).

3.5
$SDE

The Source Editor $SDE has been modified to handle both pre-DBX and DBX dictionaries when performing the Screen Design function.

4.
Compatibility

DBX operates only with 32-bit GSM applications (i.e. applications developed using $SDL32). There is no provision for access to DBX databases from 16-bit Cobol or Speedbase programs, which must therefore be converted to 32-bit GSM in order to use DBX. Note that DBX is only available for Pervasive SQL (Btrieve) and Microsoft SQL database engines only. Native and Unix C-ISAM Speedbase databases are not supported by DBX.

Nearly all of the current statements continue to operate as at present, except as documented below.

4.1
The GET Statement

Only one change has been made to the language interface to accommodate DBX. The GET statement has been modified so that the logical record number passed may now be a 4-byte PIC 9(9) COMP integer as well as the existing 3-byte PIC 9(6) COMP integer. To make pre-DBX to DBX conversions easier, $SDL32 allows either 3 or 4 byte Record Numbers to be coded for both DBX and pre-DBX databases. This enhancement allows you to amend existing code in preparation for DBX, while maintaining only one source version.

This means that you do not absolutely need to alter GET statements to convert to DBX. However, you are strongly encouraged to replace all existing PIC 9(6) COMP Logical Record Numbers by PIC 9(9) COMP fields, otherwise your application will if you attempt to GET a record in a very large (>8M record) table.

4.2
Structural Changes

Most of the system fields currently present on pre-DBX Data Records have been dropped. These are both of the status fields ($rtST1 and $rtST2), and the Uplink Fields ($rtULK()). The Sub-Group Count field $rtSGC and all declared GVA fields continue to be provided by DBX. Programs making use of the Uplink Fields to achieve direct access to Master Records need to be re-coded to us an indexed Fetch operation. Note also that the SGC field has been expanded from PIC 9(6) COMP to PIC 9(9) COMP in DBX.

The logical record number for a particular record can now only be determined by use of the B$GTIO or B$DLRN system calls, which returns the logical record number contained within a given I/O channel. Important Note: Any existing programs that have used the dubious technique of redefining the I/O channel to gain access to the old 3-byte record number will need to be re-coded for DBX.

4.3
Status Functions

The status functions BSTA, BST2, B$ST2N, B$STB, and B$FRER cannot be used with DBX, and if called will result in STOP CODE 25074. These routines cannot be carried forward to DBX because the application parameter block's field sizes are too small. A new Status Function, B$ST, has been supplied to replace these calls (see b$st.doc).

4.4
Return I/O Channel Info Call B$GTIO

The B$GTIO function has been changed to allow a larger Record ID Number to be returned. When called for a pre-DBX database, the Parameter Block is unchanged. When called with a DBX database, field R1RCNO is set to -1, and the Record ID Number is instead passed in field R1XRCN (9(4) C). This field is located immediately after R1P-RA, leaving a 24 byte FILLER at the end of the R1 block.

4.5
Invalid Dates

DBX checks all dates for validity, and will generate a stop code if an attempt is made to write a record which contains an invalid date.

4.6
Pre-DBX Features Retained

The DBX Pre-Release Notes advised other incompatibilities such as the removal of the READ statement, lock handling, and changes to GVF/GVA processing. Note that these changes have been voided due to popular demand, and these features are now processed identically to prior versions.

5.
DBX Dictionary Definition $DXM

DBX dictionaries are produced using the DBX Dictionary Maintenance Utility $DXM. This utility, which is largely modelled on the Speedbase Dictionary Maintenance Program $SDM, allows you to produce the extended DBX dictionaries. DBX dictionaries follow the same naming conventions as their Speedbase variants, and can be distinguished from pre-DBX dictionaries by their file type (Type 89 indicates a DBX Dictionary).

$DXM allows you to specify record types (tables), fields, indexes and relationships in much the same way as $SDM, except that the various restrictions have been removed. $DXM also now allows you to specify the SQL name by which the records, fields and indexes will be known. This SQL name is the table or field-name shown when SQL queries are later performed on the database. Note that the external names chosen must comply with the naming conventions required by the database engine you choose when you create a DBX database.

The symbol name has been extended to 16 characters in $DXM. Note however, that for compatibility with the current $SDL32 compiler, all GSM symbol names are checked to ensure the first 6 characters are unique.

5.1
Creating a DBX Dictionary

To create a dictionary, you must first create an empty Meta-Dictionary. The creation procedure is identical to that used with $SDM, except that the input dictionary specified to $BADGN is now DI$DXM rather than DI$DICT. Alternately, from Global Development System Service Pack 15, and later, the empty Meta-Dictionary can be created with the $DXM option “Create Meta Dictionary”.

As with $SDM, you can then either enter the dictionary manually, or elect to load directly from an existing dictionary. In order to support the consolidation of databases under DBX, you can merge several existing dictionaries into a single DBX dictionary. As each dictionary load operation completes, you will be prompted to specify a further dictionary to load.

Note that it is a restriction that all of the loaded record IDs must be unique. If they are not, $DXM will terminate the load operation with a Stop code. If you need to consolidate dictionaries that currently have clashing record IDs, then you should first rename the offending records, before attempting to merge the resulting dictionaries.

6.
The DBX Utility Programs $DXU

All Utility functions such as Database Creation, Rebuild and Conversion are provided by the new $DBX Utility $DXU. The utility has the following functions:

1.
Create NEW Database

2.
Rebuild Database

3.
Load Old to New Database

4.
Convert Database

5.
Delete Database

6.
Change Path to Database

7.
Import Data from C-ISAM Dumpset

The dialogue and facilities provided are functionally equivalent to the existing $BADN utility.

Note that no facility is provided to convert a database from DBX format back to any pre-DBX format. This facility has not been provided because, in most cases, the new DBX databases will take advantage of facilities not available in earlier version (such as larger number of record types per database), and are hence in principle not backwards compatible.

6.1
Converting a database to DBX

 In order to convert a database to DBX, you must first create a DBX format dictionary using $DXM, and then use $DXU option (1) above to create an empty database. You may then load existing data into the new database using Option 3 (load Old to New Database).

We have anticipated that you may want to consolidate some existing databases. To make use of this capability: first use $DXM to produce a consolidated dictionary as previously described and then create a new DBX database using the utility. After you have created the new consolidated DBX database, you can then load the database by repeatedly using Option 3.

As the Database IDs and Generation Numbers of the old dictionaries cannot by definition match the newly consolidated DBX database, record types are loaded on the basis of a Record ID match. The utility checks that the fields on each incoming record are identical (and are in the same order) as the fields on matching record in the DBX database. If the record definitions fully match, then the table is loaded into the DBX database. If they do not, the load process will be terminated.

Note that the loading process checks that all incoming dates are valid, and the Load operation will abort if any are not. If there is any possibility that your database might contain invalid dates, it is a good idea to write a simple checking program. You should use this to scan the old (pre-DBx) database to ensure all bad dates have all been corrected before attempting a lengthy DBX load.

Alternatively the $DXU Utility “Load Old to New Database” option provides for converting all Invalid Dates to Null Dates. This may be useful in some circumstances.

7.
New Stop Codes

The following new stop codes have been introduced for DBX:

STOP 25072

DBX database expected. An attempt was made to access a pre-DBX database using a program compiled with a DBX dictionary.

STOP 25073

Pre-DBX database expected. An attempt was made to access a DBX database using a program compiled with a pre-DBX dictionary.

STOP 25074

Attempt to call status routines BSTA/ BST2/ B$ST2N/ B$STB or B$FRER for a DBX database. These routines do not support DBX.

DBX Notes
Issue 3
Page 2 of 7

