

Global Development Cobol Language Manual V8.1 Page 1 of 141

Global 16-bit Development System
 Global Cobol Language Manual
 Version 8.1

All rights reserved. No part of this publication may

Global Development Cobol Language Manual V8.1 Page 2 of 141

be reproduced, stored in a retrieval system or
 transmitted, in any form or by any means,

electrical, mechanical, photocopying,
recording or otherwise, without

the prior permission of
TIS Software Limited.

Copyright 1994 -2017 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development Cobol Language Manual V8.1 Page 3 of 141

TABLE OF CONTENTS

Section Description Page Number

1. Foreword ... 6
1.1 Bibliography ... 7
1.2 Notation used in describing Global Cobol 9

2. Fundamentals .. 11
2.1 Language Elements... 11
2.2 Code Layout ... 13
2.3 Compiler Directives .. 14
2.4 Language Skeleton... 16

3. The Data Division... 19
3.1 Structure ... 19
3.2 Data Definitions .. 20
3.3 Picture Clauses ... 22
3.4 Value Clauses ... 26
3.5 Redefinitions ... 29

4. The Procedure Division ... 31
4.1 Structure ... 31
4.2 Operands .. 32
4.3 Arithmetic Statements .. 34
4.4 The MOVE Statement ... 36
4.5 Transfer of Control Statements 38
4.6 Conditional and Iterative Statements 41
4.7 Table Handling .. 49
4.8 Program Management ... 54
4.9 The EDIT Statement ... 60
4.10 Statements for Multi-user Working 62
4.11 ... File Processing 64

5. Pointers, Based Areas and Global Symbols 65
5.1 Procedure Division Statements for Pointer Handling 65
5.2 Pointer Arithmetic ... 66
5.3 Based Areas ... 67
5.4 The BASE statement ... 68
5.5 The GLOBAL statement ... 70

6. Intermediate Code Support .. 73
6.1 Introduction .. 73
6.2 The Virtual Machine Concept 74
6.3 Character Processing Instructions 76
6.4 Transfer of Control Instructions 79
6.5 Computational Instructions 81
6.6 Numeric Conversion Instructions 83
6.7 Pointer Handling Instructions 85
6.8 Indexed Variable Management Instructions 88
6.9 Register Load Instructions 89
6.10 .. Other Instructions 90
6.11 The $CC Statement and SVC Statements 92

Global Development Cobol Language Manual V8.1 Page 4 of 141

APPENDICES

Appendix Description Page Number

A The ASCII Character Set .. 93

B Compiler and Cross-reference Options 95

C Summary of Restrictions ... 100

D Programming Notes.. 103

E Recommended Naming Conventions 111

F Copy Library Format ... 116

G Compiler Error and Warning Messages 119

Chapter 1 - Introduction

Global Development Cobol Language Manual V8.1 Page 5 of 141

1. Foreward

This reference manual describes the Global Cobol Language used to
develop programs to run under Global System Manager. There is a short
bibliography of other relevant Global Software documentation following
this introduction, then the Foreword concludes with a section
explaining the notation used in describing Global Cobol.

The remainder of this Language Manual is divided into chapters and
appendices, each of which focuses on a particular area. Their content
is described briefly below.

Chapter 2 introduces the fundamentals of the language – character set,
symbol construction, character and numeric strings and statement
format. It explains how the compiler's COPY, PAGE, OPT, PROGRAM and
ENDPROG directives are used and how a program is structured as a data
division and procedure division.

Chapter 3 describes all the statements of the data division with the
exception of those concerned with file and map definitions.

Chapter 4 defines the procedure division statements, apart from those
used in file processing, screen handling, map processing, and sorting.
As well as the conventional COBOL statements there are special
extensions for structured programming, the management of chained
programs and overlays, and multi-user working.

Chapter 5 describes the use of pointers, pointer arithmetic, based
areas and the GLOBAL statement.

Chapter 6 covers Intermediate Code, allowing you to interface with the
interpreter at a more basic level than Global Cobol itself.

Appendix A defines the standard ASCII character set used by Global
Cobol.

Appendix B describes the various compiler and cross-reference options
available through either a command keyed at run-time or an OPT
statement coded as part of your program. For example there are
compiler options to determine whether or not source lines are listed,
whether statements included from copy books are to be printed, and
whether a symbol table is to be produced at the end of the listing.

Appendix C summarises in one place the various restrictions that you
should bear in mind when producing Global Cobol programs to run on a
wide variety of configurations. It is recommended that you read this
carefully before starting program design.

Appendix D is a collection of Global Cobol programming hints derived
from practical experience.

Appendix E describes suggested symbol and file naming conventions for
Global Cobol which have been proved in practice on a number of
projects.

Appendix F describes the format of a Global Cobol copy library.

Chapter 1 - Introduction

Global Development Cobol Language Manual V8.1 Page 6 of 141

Appendix G contains a list, and full explanation, of all the error
messages that can be produced by the Global Cobol compiler.

1.1 Bibliography
The Global Cobol Language Manual is one of a set of inter-related
documents listed below:

Global System Manager Manual
Global Operating Manual
Global Utilities Manual
Global Cobol User Manual
Global Cobol Language Manual
Global Cobol Screen Presentation Manual
Global Cobol Screen Support Manual
Global Cobol Data Management Manual
Global Development File Management Manual
Global Development Toolkit Manual
Global Development System Subroutines Manual
Global Development Job Management Manual
Global Speedbase Development System User Manual
Global Speedbase Development System Language Manual
Global File Converters User Manual
Global Configurator User Manual
Global Assembler Interface Manual

The Global System Manager Manual contains descriptions of the most
commonly used Global System Manager commands. It is recommended
preliminary reading if you are new to Global System Manager since it
provides a short, end-user oriented description of the environment
established by Global System Manager. The manual also explains how to
customize your Global System Manager.

The Global Operating Manual (o/s) explains how to initiate Global
System Manager on a particular operating system. For example, the
"Global Operating Manual (Unix)" manual explains how to install, run
and configure Global System Manager under Unix. The various operating
manuals also describe any additional utilities, and additional
functionality in standard utilities, which are dependent on the host
operating system.

The Global Utilities Manual extends the Global System Manager Manual
with descriptions of the more sophisticated utilities and detailed
information required by system supervisors and computer specialists.
Programmers developing Global Cobol software will find the account of
program checks and the lists of STOP and EXIT codes invaluable.

The Global Cobol User Manual describes the commands used for program
preparation, debugging and maintenance. These include a text editor
and linkage editor as well as the Global Cobol compiler itself. There
is also a source program cross reference utility. A powerful symbolic
debugging system aids program testing: with it you are able to set
traps in programs and on variables and then examine, and optionally
modify, any named field before resuming execution.

The Global Cobol Language Manual describes the Global Cobol language
used to develop programs to run under Global System Manager.

Chapter 1 - Introduction

Global Development Cobol Language Manual V8.1 Page 7 of 141

The Global Cobol Screen Presentation Manual contains the Global Cobol
commands used for screen displays and accepts together with the
special Global Cobol verbs (MAPIN, MAPOUT and MAPCLEAR) that are used
with the $FORM screen formatting command. $FORM allows you to create a
display screen format table known as a map. Then, instead of having to
DISPLAY and ACCEPT individual fields you can simply code the MAPOUT
statement to output the entire map, and the MAPIN statement to obtain
all the input fields. Coding effort and program size is, as a result,
greatly reduced in certain applications. The map is declared in a map
definition (MD) coded in the data division. You will find that, in the
interest of accuracy, there are a number of references to map
definition and map processing statements in the language description
which follows, even though the statements involved are explained in
the Screen Presentation Manual. This manual also contains some
advanced screen handling techniques and describes the AutoGuide
facility.

The Global Cobol Screen Support Manual describes how to create a
Terminal Attribute Program (TAP) in order to support a new type of
screen under Global System Manager. This involves preparing a special
format source program containing details of the keyboard and sequences
used by the display. The $TAP command is used to create the TAP from
the source. This manual also describes the $T command in complete
detail.

The Global Cobol Data Management Manual is a complete guide to the
Global Data Management system, including the DMAM access method,
various associated system subroutines and the utility programs that
form the Data Management System.

The Global Development Cobol File Management Manual contains a
detailed description of the file organizations and access methods
available in Global System Manager, together with the associated
system subroutines.

The Global Development Toolkit Manual describes a collection of
command programs designed to aid the production of large systems
written in Global Cobol. Separate sections also deal with Product
Translator, Intermediate Code generated by $COBOL, the Metajob
Management and the Macro Preprocessor languages.

The Global Development System Subroutines Manual really forms a
logical extension of the Language Manual. It contains the system
subroutines used for Date and Time Conversion, Arithmetic and Data
Conversion, Program Management and System Management, together with
special coding techniques, storage management facilities and
scientific calculation facilities.

The Global Development Job Management Manual explains how you can
create catalogued procedures, known as job files, to run Global
command programs, or your own applications, in a non-interactive mode
in which, after initial parameterisation, operator input is supplied
from the job file rather than from the console. The system might
typically be used in conjunction with the $V command program to
initialize a series of diskettes or hard disk units. You can
optionally suppress console dialogue from programs run under job
management.

Chapter 1 - Introduction

Global Development Cobol Language Manual V8.1 Page 8 of 141

The Global Speedbase Development System User Manual describes the
commands used for the preparation of programs developed using the
Global Speedbase 4th Generation Language (4GL). These include a text
editor as well as the Speedbase compiler itself.

The Global Speedbase Development System Language Manual describes the
Global Speedbase language (4GL) used to develop programs to run under
Global Speedbase Presentation Manager.

The Global File Converters User Manual describes the Unix and MS-DOS
file converters. This manual also specifies how you can interface in a
low-level way to the host operating system and Global System Manager.

The Global Configurator User Manual explains how you can update the
configuration file distributed with your Global System Manager to
change parameters such as the maximum number of files that can be open
at any one time, the maximum number of users, buffer sizes, hardware
devices and addresses, and so on.

The Global Assembler Interface Manual explains how you can create and
run assembler code programs under Global System Manager. This manual
also describes the interface available to the Serial Port Driver (SPD)
software.

1.2 Notation Used in Describing Global Cobol
Global Cobol statements are described using a simple notation which
will already be familiar to most programmers.

All numbers and UPPER CASE words, with the exception of the single
letters A, B, C ..., are to be reproduced unchanged whenever a
statement containing them is coded. Lower case words in italics (such
as item, date, condition), together with the single letters A, B, C
..., are generic terms to be replaced by an actual value when the
statement is coded.

When a portion of a statement description is enclosed in square
brackets, [], that part is optional. You may choose whether or not
you include it when coding the statement.

A vertical bar, |, is used to separate alternative items. Only one of
the alternatives may appear in a given instance. For example the
OPTION statement may be coded as either OPTION ERROR or OPTION RESET.
We show this as:

OPTION ERROR|RESET

Sometimes a choice must be made from a number of independent Global
Cobol statements. In this case each option appears on a separate line,
enclosed by vertical bars:

| IF condition |
| ON EXCEPTION |
| ON OVERFLOW |
| ACCEPT...NULL|

Chapter 1 - Introduction

Global Development Cobol Language Manual V8.1 Page 9 of 141

The ellipsis (...) is used in a statement description to indicate that
a repetitive part has been omitted in the interests of clarity. The
context will always make the meaning of the ellipsis clear.

Consider, as an example, the CALL statement. It is used to pass
control to the entry name of a subroutine. The optional USING clause
can be employed to supply up to seven parameters. A possible statement
description for CALL would be:

CALL entry-name [USING A B ...]

Some valid CALL statements that you might code include:

CALL SUBRTN
CALL DELRT USING FILEA
CALL QUADR USING ALPHA BETA GAMMA

When it is necessary to refer to hexadecimal values in the text, we
prefix the hexadecimal digits (0-9, A-F, inclusive) with a #
character. Thus instead of having to write, for example, "the quantity
13 (hexadecimal)", we can simply refer to "the quantity #13".

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 10 of 141

2. Fundamentals

2.1 Language Elements

2.1.1 Character Set
The character set is an ASCII 8-bit code with the senior (parity) bit
set to zero, as defined in Appendix A:

 The digits are ASCII 0 to 9

 The letters are upper and lower-case ASCII A to Z and $.

 Alphanumerics are characters which are either digits or letters,
or the hyphen.

 Blank is represented by b in this document.

Other special characters will be introduced as the language
description unfolds.

2.1.2 Symbols
A symbol must start with a letter and be followed by any number of
alphanumeric characters. Normally the first six characters of each
symbol must be unique throughout the program, the compiler ignoring
the seventh and subsequent characters, apart from listing them.
However, if the "long names" option is in force, the compiler treats
the first 31 characters of each symbol as significant. (Compiler
options are explained in 2.3.1 and Appendix B.)

Symbols are used for data names, section names, paragraph names, entry
names, program names and file names. Entry names and program names are
global symbols which are processed by the linker as well as the
compiler. Because the linker only treats the first six characters of
each global as significant, the first six characters of each global
participating in a linkage edit must be unique irrespective of whether
the "long names" option is in force or not.

The letter $ should not be used in a symbol created by the application
program since it is employed in symbols used by Global software. In
addition there are twelve reserved words in Global Cobol and these
must not be used as symbols. They are:

DEPENDING FILLER HIGH-VALUES LOW-VALUES
NEXT SPACE SPACES USING
PRIOR FIRST LAST INTO

Other language words such as IF, PIC and NOT can be used as symbols,
although it is recommended that they be avoided in the interests of
clarity.

2.1.3 Character Strings
A character string may be made up of any combination of the graphic
ASCII characters (those with a numeric equivalent in the range decimal
32 to 126 - see Appendix A for details) with the exception of double

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 11 of 141

quotes (" decimal 34), which are used as string delimiters. When
coded, the string appears as:

"character string"

For example:

"HELLO WORLD"

is a character string contains the 11 characters:

H E L L O b W O R L D.

The compiler assumes that programs have been created on machines with
industry-standard tab settings at character positions 9, 17, 25... and
so on, and if it finds a tab character within the string replaces it
with the appropriate number of blanks.

2.1.4 Integers
Integers must be in the range -32768 to +32767. The plus sign is
optional when an integer is coded.

2.1.5 Numeric Strings
Numeric strings are character strings consisting of:

 optional leading blanks, followed by...

 an optional + or - sign, followed by...

 1 to 15 digits, which may be omitted if the decimal point is
present. These in turn are followed by...

 an optional decimal point which, if present, must be followed by

between 1 and 7 digits...

 and optional trailing blanks.

The total number of digits must not exceed 18. Examples of valid
numeric strings are:

-3 3.14159 +1246 -0.120 .7

The strings:

3. 3.1b4159 + -12 .7- +b9

are not valid numeric strings. Programmers familiar with COBOL should
note that in Global Cobol a string of ASCII blanks is not a numeric
string, and such a string cannot therefore be used as a display
numeric zero.

2.1.6 Standard Numeric Strings
When a number is converted to character form, either for output or for
storage in a display numeric variable, it assumes the format of a
standard numeric string. In such a string:

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 12 of 141

 leading zeros will always be replaced by blanks (except in the
units position);

 the sign will be omitted if positive;

 at least 1 digit will always precede the decimal point;

 there will be no trailing blanks;

 if the number is defined as fractional a decimal point and the

number of decimal places specified will be printed, even if the
value is a whole number.

Decimal point customisation can be applied using the $CUS command
program to cause the decimal point appearing in standard numeric
strings to be represented by a comma rather than a period (full stop).
This means that decimal fractions which are displayed, printed, or
keyed by the operator assume the format familiar in many European
countries. Programmers however must still continue to use the period
as a decimal point whenever they code a numeric string in Global
Cobol, i.e. in VALUE statements (3.4) and computational literals
(4.2.3).

Here are some typical conversions from numeric string to standard
format assuming the fields involved are signed with 2 digits before
the point and two after, and decimal point customization is not
applied:

3 becomes bb3.00

+02.13 becomes bb2.13

.1 becomes bb0.10

-.2 becomes b-0.20

-21.43 becomes -21.43

2.1.7 Hexadecimal Strings
A hexadecimal string is coded as a # sign followed by pairs of ASCII
"digits" in the ranges 0-9, A-F inclusive. The number of digits in the
string must be even, since each digit pair establishes a single byte.
For example:

#07

is a single byte string, representing the ASCII bell character, and:

#FFFF

is a two-byte string, with each bit set to 1.

2.2 Code Layout

2.2.1 Comments

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 13 of 141

Comments must be preceded by an asterisk. They may appear either on a
line on their own or following a statement and can appear anywhere in
a program.

2.2.2 Statement Format
A Global Cobol statement, including comments, consists of a single
line of up to 72 characters. Statements may not be continued onto the
next line, nor may more than one statement appear on a line. The
individual constituents of a statement (e.g. language words,
variables, strings and comments) must be separated from each other by
one or more blanks or tabs but, apart from this consideration, the
spacing within a line is unimportant. However, the following
conventions, if adopted, result in a tidy, readily readable listing:

 Paragraph names and the statements listed below should start in
column 1:

PROGRAM COMMON SECTION
DATA DIVISION EXTERNAL SECTION
01 LINKAGE SECTION
77 PROCEDURE DIVISION
FD ENTRY
MD SECTION

ENDPROG

 Generally, other statements should begin in column 9. The
exceptions are:

o The level numbers (02 to 49) used in group data definitions.

These should be suitably indented to make the data structure
clear. There is an example in the section of Chapter 3 which
deals with data definitions;

o The VALUE statement, which should be coded underneath the

preceding PIC statement. The PIC statement itself should
begin in column 9;

o Each TO statement of a GO TO DEPENDING ON construct, which

should be coded so that it is aligned with the TO of GO TO
DEPENDING ON;

o Statements within a conditional or iterative structure.

These should be indented an additional four spaces for each
level of nesting, to highlight the program structure.

 Comments should start in column 41 in the procedure division, and

49 in the data division, except for 'across the page' comments
which should start in column 1.

2.3 Compiler Directives

2.3.1 The OPT Statement
The OPT statement is used to select certain compilation or cross-
reference options to apply to the program in which it appears. One or
more OPT statements may be coded at the very beginning of the

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 14 of 141

compilation, and may be preceded only by comments or the PAGE
instruction.

The statement is coded:

OPT compiler-option

where compiler-option is a sequence of non-blank characters. For
example, the statement:

OPT NCX

(no copy book expansion) stops the compiler from listing any statement
included in the program from a COPY book, unless that statement is
flagged in error. Those options which control the listing, such as
NCX, may appear anywhere within the program, and not just at the
start. They remain in force until a contradictory option is found.

Each option has a standard default associated with it, which applies
when no details concerning the option are supplied. For example,
unless NCX is specified, the default is to list all statements
included by a COPY, unless COPY...SUPPRESS was coded.

If a number of OPT statements supply conflicting compiler options then
the option in force will be the one coded last. You may also key
options at the console when you run the compiler, and these run-time
options override those supplied in OPT statements. The various
compiler options which are available are described in detail in
Appendix B.

2.3.2 The PAGE Statement
A new page in the program listing is generated by the statement:

PAGE ["character string"]

The optional character string may be supplied to provide a title up to
30 characters in length, to be printed on the listing. This will
appear in all subsequent page headings until a PAGE statement is coded
which specifies a new title. If the table of contents compilation
option is in force, an extra page will be produced at the start of the
listing containing the character strings specified in page statements
within the program, together with their line numbers.

The initial 30 characters of the first title found in a program are
used to provide a title for the resulting compilation file. This title
will be used to identify the module when it is linkage-edited or
stored on a library.

2.3.3 The COPY Statement
The COPY statement is used to include a group of one or more Global
Cobol statements from a copy library. It is coded:

COPY cc [SUBSTITUTING "character string"][SUPPRESS]

where cc is a one or two character book name which serves to
distinguish different groups of statements (books) within the library.
(Appendix F defines the format of a copy library.)

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 15 of 141

The COPY statement may be coded anywhere within the Global Cobol
source providing that it does not appear before the last OPT statement
or after the ENDPROG statement that terminates the source. The copied
statements may themselves contain COPY statements, and the books thus
retrieved may contain further COPY statements, but that is as far as
the nesting may go. Thus just two levels of internal nesting are
supported.

The optional SUBSTITUTING clause allows a parameter string coded in
the copy book to be replaced by the specified character string. A
parameter within a copy book is a string of one or more & characters.
Although it may appear anywhere within a statement or label, a
parameter should not be coded within a comment, since the copy process
does not change comments. If the SUBSTITUTING clause is omitted, but
the copy book contains parameter strings, substitution will take place
as though the copy book name itself had been specified. That is, the
following two statements are treated identically:

COPY cc [SUPPRESS]

COPY cc SUBSTITUTING "cc" [SUPPRESS]

If, however, the COPY statement is nested and the SUBSTITUTING clause
is omitted, the substitution string for the containing copy book is
used. During the copy process each & character from a parameter string
is replaced by the corresponding character from the substitution
string. If there are more &s than substitution characters, the
rightmost ones are replaced by hyphens. For example, if a copy book AB
contains the line:

77 &&area PIC X(20)

then substitutions can be made as shown below:

COPY AB SUBSTITUTING "XY" generates 77 XYAREA PIC
X(20)
COPY AB SUBSTITUTING "X" generates 77 X-AREA PIC X(20)
COPY AB SUBSTITUTING "XYZ" generates 77 XYAREA PIC
X(20)
COPY AB generates 77 ABAREA PIC X(20)

The optional SUPPRESS phrase, if present in a source program COPY
statement (rather than one which is itself embedded in a copy book),
prevents the compiler from listing the statements it copies apart from
those that are found to be in error. If the SUPPRESS phrase is omitted
from the source program COPY statement, then every statement it
introduces will be listed unless an overriding compiler option is in
force. A SUPPRESS phrase coded on an embedded COPY statement is
ignored: suppression is controlled at the source program COPY level.

When more than one copy library is specified a book is always copied
from the first copy library that contains that book.

2.4 Language Skeleton
Every Global Cobol program is constructed as follows:

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 16 of 141

[OPT statements]

PROGRAM program-name

DATA DIVISION

[file, map and data definitions]

[COMMON SECTION section-name |repeated for

|
file, map and data definition] |each section

[EXTERNAL SECTION section-name |repeated for

|
file, map and data definitions] |each section

[LINKAGE SECTION

file, map and data definitions]

[PROCEDURE DIVISION]

[ENTRY [entry-name] [USING A B ...]]

[SECTION section name] |repeated for

|
other language statements |each section

ENDPROG

PAGE, COPY, and across-the-page comment statements can appear anywhere
before the ENDPROG statement which terminates the source.

2.4.1 The PROGRAM Statement
The PROGRAM statement is coded, following any OPT statements, at the
start of the compilation. The format is:

PROGRAM program-name

The program-name is a global symbol used to identify the Global Cobol
compilation. This is the name which the linkage editor uses to refer
to the compilation when creating a program file. It is not used as the
identifier of the resulting program file since a number of
compilations may be combined to produce the file.

The program name is printed on the map listing output by the linkage
editor together with the starting location and length of the storage
area that the associated compilation will occupy when the program file
containing it is run. The program name must be a symbol unique within
its own compilation. In addition, since it is a global symbol, its
first six characters must not be the same as any other global symbol
participating in linkage edits involving the compilation.

Chapter 2 - Fundamentals

Global Development Cobol Language Manual V8.1 Page 17 of 141

2.4.2 The Data Division
The data division begins with the header DATA DIVISION and is
delimited by the header PROCEDURE DIVISION. It is discussed in Chapter
3.

2.4.3 The Procedure Division
The procedure division begins with the header PROCEDURE DIVISION and
is delimited by the trailer ENDPROG. The language statements it
contains are discussed in Chapter 4.

2.4.4 The ENDPROG Statement
The ENDPROG statement must be the very last statement of the program.
Any statements following it will be flagged in error.

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 18 of 141

3. The Data Division

3.1 Structure
The data division describes the data used by a Global Cobol program.
It begins with the header:

DATA DIVISION

which must be coded on a new line. It is terminated by the header:

PROCEDURE DIVISION

also on a new line.

The data division may contain local data, for use by the current
compilation only, then zero or more common sections, zero or more
external sections, and finally an optional linkage section. When these
extra sections are present they are introduced by the headers:

COMMON SECTION section-name
EXTERNAL SECTION section-name
LINKAGE SECTION

The name used to identify a common or external section is a global
symbol and must be unique within the compilation. In addition, since
it is a global symbol, its first six characters must not be the same
as any other global symbol participating in linkage edits involving
the program.

The part of the data division consisting of local data and common
sections is known as working storage. There is an important difference
between working storage data definitions and those appearing in
external sections or the linkage section because the former occupy
space in the program itself whereas the latter simply describe data
located elsewhere. Sometimes this difference is reflected in the
Global Cobol language, but in most cases data division statements
appearing in working storage, external sections, or the linkage
section are treated identically.

Data division statements (apart from the headers) are used to set up
file definitions, map definitions and data definitions. Except when
OPT ED (even data) is specified, each file, map and data definition is
aligned to begin on an 8-bit byte boundary, and occupy an integral
number of bytes. However, if OPT ED is in force, binary zero padding
bytes are inserted as necessary between file definitions, map
definitions, and level 01 data definitions, so that they begin on a
16-bit, even-byte boundary, and occupy an integral number of 16-bit
"words". (This option can improve performance on certain machines, as
explained in Appendix D.)

3.1.1 Common and External Sections
Common and external sections provide Global Cobol with a facility
equivalent to FORTRAN labelled COMMON, or PL/1 external static
storage. Data defined within a common section can be referenced
directly by other programs using an external section of the same name.
The defining program containing the common section and the referencing
programs accessing it through external sections must be linkage edited

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 19 of 141

together, so the referencing programs would typically be subroutines
or overlays used by the definer. The linker changes statements
referencing external sections so that they access the corresponding
common sections. No storage is reserved for external sections in the
resulting program file.

Common and external sections enable large quantities of data to be
passed between different programs in an efficient manner. Typically a
common section can be used for the single occurrence data of a system
that virtually every program requires, for example master file
definitions. Alternatively a common section can provide a work area
for use by a set of related subroutines.

Obviously the data division statements within an external section must
correspond exactly to the definitions used within the matching common
section since both define the same storage area. The simplest way to
achieve this is to include the statements in a copy book. For example,
suppose book MF contains master file definitions used throughout a
Sales Ledger system. The definitions could be included in a main
program by the statements:

COMMON SECTION SAMF
COPY MF

and referenced from a subroutine by:

EXTERNAL SECTION SAMF
COPY MF

3.1.2 The Linkage Section
The linkage section must be used to define data whose address is not
known until run-time. The most obvious example is parameters supplied
by a calling program by means of the CALL... USING statement (4.5.4).
A subroutine invoked by such a statement must define the parameters it
receives in the linkage section. In addition, based areas (see chapter
7), whose run-time address can be varied by means of the BASE
statement or pointer manipulation, must be defined in the linkage
section.

It is important to appreciate the difference between parameters passed
via the common/external section mechanism and via the linkage section.
The former can be used when only one copy of the information exists at
a location which, although unknown when the program is compiled, is
fixed by the time it is linked. Thus common/external parameter passing
is employed to pass information, such as a set of master file
definitions. It would not, for example, be used by a subroutine whose
function was to convert a date from one form to another. Clearly such
a routine might be called to process any number of dates scattered
throughout different data divisions of different callers. The correct
strategy is of course to pass the date to be converted as a parameter
of the CALL...USING statement.

3.2 Data Definitions
Global Cobol provides the usual COBOL data definition facilities,
extended with enhancements for systems programming. The language
supports level 77 elementary items, as well as level 01 group items

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 20 of 141

which can themselves be subdivided into elementary items, or as many
as 19 levels of subgroup.

3.2.1 Defining Level 77 Elementary Items
Level 77 elementary items, which are not subdivided, may be defined in
the data division by coding:

77 data-name [REDEFINES name-1] [OCCURS n] picture clause
[BASED name-2]

The data-name must be a symbol (you cannot use the reserved word
FILLER in its place). If an OCCURS clause is present the quantity n
must be an unsigned positive integer.

The optional REDEFINES clause allows you to redefine a previously
declared item whose data-name you specify as name-1. An item with a
REDEFINES clause is known as a redefinition. The particular rules that
apply when coding a redefinition are summarised in section 3.5.

The optional BASED clause enables you to declare a special type of
item known as a based area whose location is determined from the
contents of the pointer whose data-name is name-2. It can only be used
in the linkage section. Based area working is described in section 5
of this manual.

The statement establishes one or more elementary items whose
attributes are determined by the picture clause (explained later).
When the OCCURS clause is omitted just a single item is set up: when
the clause is present space is allocated for a table of n such items.

3.2.2 Defining Group Items
Group items, which are subdivided, are introduced by a level 01 data
item, followed by any number of subordinate (level 02 - level 49)
items. Groups may be defined anywhere within the data division.

The level 01 item is defined by coding:

01 data-name [REDEFINES name-1] [OCCURS n]
[BASED name-2]

The quantities data-name, name-1 and name-2 should be supplied as
symbols, as necessary. If it is not required to refer to the group
explicitly the reserved word FILLER can be coded for the data-name. If
an OCCURS clause is present the quantity n must be an unsigned
positive integer.

The optional OCCURS clause allows you to set up a table, each of whose
entries has the format of the data area described by the group. If the
clause is omitted just a single occurrence of the group will be
established. When the clause is present space is allocated for a table
of n such groups.

Following the level 01 definition, the remaining subordinate items are
declared by statements of the form:

level-number data-name [OCCURS n] [picture clause]

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 21 of 141

The level-number must be two digits in the range 02 to 49 inclusive.
The data-name should normally be a symbol, although if it is not
required to refer to the item explicitly you may supply the reserved
word FILLER instead. If the OCCURS clause is present n must be an
unsigned positive integer.

If the picture clause is omitted then the item forms a subgroup,
containing all the following items up to, but not including, the next
item with an equal or lower level number. If the definition does not
contain an OCCURS clause just a single occurrence of the subgroup will
be established: where the clause is present space is allocated for a
table of n such subgroups.

If the picture clause is coded then the item is an elementary item,
treated in exactly the same way as a level 77 elementary item.

If the definition of a group or subgroup contains an OCCURS clause
then it is termed a repeating group. It is a Global Cobol restriction
that no subordinate definition within a repeating group can itself
contain an OCCURS clause. This means that any tables defined by
repeating groups are one-dimensional only.

3.2.3 Example
Figure 3.2.3 shows a level 01 group named AREA, with the level numbers
of subordinate data items suitably indented so that the structure of
the data is readily apparent. Data names such as C-2-1 have been
chosen to highlight structural characteristics for the purposes of
this example, and do not conform to recommended coding practice.

The lines with a picture clause (PIC X, explained later) all define
elementary items, or in the case of B and C-2-2, a single entry of a
table of such items. Note how a table, C-2-2, can itself be part of a
subgroup. It could not of course be part of a repeating group, because
no item within such a group can itself contain an OCCURS clause.

The example shows how subgroups and repeating groups can themselves
contain subgroups. Subgroup C contains subgroup C-2, and repeating
group D contains subgroup D-2. A subgroup can contain repeating groups
(e.g. E contains E-2). The only combination which is not possible is
for a repeating group to contain another repeating group, because of
the OCCURS clause limitation.

01 AREA
 03 A PIC X * ELEMENTARY ITEM
 03 B OCCURS 20 PIC X * TABLE OF 20

* ELEMENTARY ITEMS

 03 C * SUBGROUP OF AREA
 05 C-1 PIC X * ELEMENTARY ITEM IN C
 05 C-2 * SUBGROUP IN C
 07 C-2-1 PIC X * ELEMENTARY ITEM IN C-2
 07 C-2-2 OCCURS 5 PIC X * TABLE OF 5

* ELEMENTARY ITEMS IN C-2
 03 D OCCURS 10 * REPEATING GROUP OF AREA
 05 D-1 PIC X * ELEMENTARY ITEM IN D
 05 D-2 * SUBGROUP IN D
 07 D-2-1 PIC X * ELEMENTARY ITEM IN D-2
 07 D-2-2 PIC X * ELEMENTARY ITEM IN D-2
 03 E * SUBGROUP OF AREA

 05 E-1 PIC X * ELEMENTARY ITEM IN E
 05 E-2 OCCURS 8 * REPEATING GROUP IN E
 07 E-2-1 PIC X * ELEMENTARY ITEM IN E-2

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 22 of 141

 07 E-2-2 PIC X * ELEMENTARY ITEM IN E-2

Figure 3.2.3 - Group Data Definition Example

3.3 Picture Clauses
The Global Cobol picture clause has the general format:

PIC type[(qualifier)] [COMP]

where type indicates the type of item being declared, qualifier its
precision or length and the COMP phrase applies to computational items
only.

Programmers familiar with COBOL should note that the type
[(qualifier)] construct can appear only once in each Global Cobol
picture clause, and picture clauses such as PIC S9999 are not allowed.

3.3.1 Character Pictures
The picture clause for a character item is written:

PIC X(length)

where length is the number of characters required and bytes occupied.
If the length is 1, (1) may be omitted.

You can also use the special form:

PIC X(?)

in which case the item must be initialised by subsequent VALUE
statements so that the compiler can count the characters involved to
determine the length to use. (See also 3.4.1.)

3.3.2 Display Numeric Pictures
For both computational and display numeric items the number of digits
before the decimal point (p) and the number of digits after the
decimal point (q) may be specified: p must be in the range 1 to 15
inclusive and q must be in the range 1 to 7 inclusive, and the sum of
p and q must be no greater than 18.

A display numeric variable picture clause is written in one of the
following formats:

(a) unsigned integer, p digits (size p bytes):

PIC 9(p)

If p is 1, (1) may be omitted

(b) signed integer, p digits (size p + 1 bytes):

PIC S9(p)

If p is 1, (1) may be omitted

(c) unsigned decimal, p digits before the point and q following
the point (size p + q + 1 bytes):

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 23 of 141

PIC 9(p,q)

(d) as (c), but signed (size p + q + 2 bytes):

PIC S9(p,q)

Number of digits (p +
q)

Size in bytes Approximate capacity

1 1 ±1.27 x 102-q
2 1 ±1.27 x 102-q
3 2 ±3.277 x 104-q
4 2 ±3.277 x 104-q
5 3 ±8.389 x 106-q
6 3 ±8.389 x 106-q
7 4 ±2.147 x 109-q
8 4 ±2.147 x 109-q
9 4 ±2.147 x 109-q
10 5 ±5.497 x 1011-q
11 5 ±5.497 x 1011-q
12 6 ±1.407 x 1014-q
13 6 ±1.407 x 1014-q
14 6 ±1.407 x 1014-q
15 7 ±3.602 x 1016-q
16 7 ±3.602 x 1016-q
17 8 ±9.223 x 1018-q
18 8 ±9.223 x 1018-q

Table 3.3.3 - Byte Length and Capacity of Computational Variables

3.3.3 Computational Pictures
The picture clause for a computational item is coded in the same way
as that for a display numeric except that it is terminated by the
phrase COMP. (As before, p must be in the range 1 to 15 inclusive, and
q must be in the range 1 to 7 inclusive, and the sum of p and q must
be no greater than 18):

(a) unsigned integer, p digits:

PIC 9(p) COMP

If p is 1, (1) may be omitted;

(b) signed integer, p digits:

PIC S9(p) COMP

If p is 1, (1) may be omitted;

(c) unsigned decimal, p digits before the point and q following:

PIC 9(p,q) COMP

(d) as (c), but signed:

PIC S9(p,q) COMP

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 24 of 141

A computational item is between 1 and 8 bytes in size; the number of
bytes allocated depends on the number of digits it contains (p + q)
and is given by column two of Table 3.3.3. Positive numbers are
represented in true binary notation with the low address byte the most
significant. The senior bit of this byte is interpreted as a sign bit:
it is zero for positive numbers and one for negative numbers, which
are held in two's-complement form.

Because arithmetic working is in binary, computational items are
themselves binary and are capable of containing numbers greater than
the size implied by p. Also, they can always hold negative numbers
even if their picture clause states that they are unsigned. The actual
range of values that a computational variable can assume is termed its
capacity. It is capacity, rather than the format specified in the
picture clause, which determines when overflow occurs during
arithmetic operations and moves to computational fields.

Note, however, that if you attempt to DISPLAY a computational item
containing a value which does not agree with its picture clause,
overflow will occur. Similarly the picture information is used in
validating computational input obtained using ACCEPT so it is
impossible to input a computational value which does not agree with
the receiving field's picture clause.

3.3.4 Pointer Pictures
A pointer is a data item, two bytes long, in which the location of a
data item or program statement can be stored. The value of a pointer
must be between 0 and 65535 (64K-1). It is represented by true binary
notation. The low address byte of a pointer is the most significant
and its senior bit is not interpreted as a sign bit but is considered
to represent the 32K unit position.

To indicate that a data item is a pointer you code the picture clause:

PIC PTR

A full description of how pointers are used appears in chapter 6.

3.3.5 Date Pictures
The picture clause for an item which will contain a date is coded as
follows:

PIC DATE

This causes the compiler to generate a PIC 9(6) COMP item whose value
may be set up as specified in section 3.4.5.

3.3.6 Floating Point Pictures
The picture clause for a floating point variable (used with the
scientific calculation routines covered in chapter 9 of the Global
Development System Subroutines manual) is written:

PIC FLT

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 25 of 141

This causes the compiler to generate a PIC X(6) variable to hold the
floating point number, whose value may be set up as specified in
section 3.4.6.

3.4 VALUE Clauses
A VALUE clause can be used to initialise an elementary item defined in
working storage, providing that item is not part of a repeating group.
Table 3.4 shows the 8 different formats that the VALUE clause can
assume.

FORMAT VALUE CLAUSE SYNTAX
(a) VALUE "character string"
(b) VALUE #hexadecimal string
(c) VALUE numeric string
(d) VALUE ZERO
(e) VALUE LOW-VALUES
(f) VALUE HIGH-VALUES
(g) VALUE SPACE or VALUE SPACES
(h) VALUE symbol

Table 3.4 - Value Clause Formats

Format (a) is used to set up character and display numeric items.
Character strings are described in 2.1.3.

Format (b) can be used to set up any type of item. Hexadecimal strings
are described in 2.1.7.

Format (c) is used to set up computational items. The numeric string
must obey the conventions described in 2.1.5.

In format (e) LOW-VALUES always sets each byte of the item to binary
zeros. HIGH-VALUES in format (f) sets each bit of each byte to 1. The
interpretation of the ZERO phrase in format (d) depends on the type of
item being initialised.

Format (h) is used to set up pointer items.

3.4.1 VALUE Clauses for Character Items
Elementary character items may be initialised using formats (a), (b)
and (d) to (g). Formats (a) and (b) only initialise the number of
bytes specified by the string, whereas formats (d) to (g) initialise
the whole of the item to ASCII zeros, low values, high values, or
ASCII blanks respectively. Several VALUE clauses may be specified
following a data definition, in which case the values are concatenated
together. For example:

77 A PIC X(10)
VALUE "ABC"
VALUE "XYZ"
VALUE SPACES

causes the first 6 bytes of A to be set to ABCXYZ and the remaining 4
bytes to be set to blanks.

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 26 of 141

Note that VALUE SPACES is not necessary in this example since
uninitialised rightmost bytes of character items are set to blanks by
default as explained in 3.4.5.

If the character variable being initialised contains an OCCURS clause
it is treated as a single long character string during VALUE clause
processing.

If you wish to set up a constant text string as a character item then
you may code the picture clause as:

PIC X(?)

This means that the length of the item is to be the sum of the lengths
of the VALUE clauses which follow it, and eliminates the necessity to
count up the length of such strings. For example:

77 A PIC X(?)

VALUE "INSUFFICIENT STOCK REMAINING"
VALUE " - CANNOT PROCESS ORDER"

means that A will be 51 bytes long.

3.4.2 VALUE Clauses for Display Numeric Items
For elementary display numeric items formats (a), (b) and (d) to (f)
are valid.

Format (a) will convert the string specified to a standard numeric
string, as described in 2.1.6, and initialise the item to this value.

Format (b) initialises the item to the value specified, left justified
and padded with LOW-VALUES if necessary.

Formats (d) to (f) initialise every byte of the item to ASCII zero,
LOW-VALUES, or HIGH-VALUES respectively.

Note that if the data definition contains an OCCURS clause a separate
VALUE clause must be coded to initialise each occurrence: the first
VALUE clause sets up occurrence 1, the second occurrence 2, and so on.

3.4.3 VALUE Clauses for Computational Items
For elementary computational items formats (b) to (f) are valid.

If format (b) is used the hexadecimal string specified must establish
every byte of the item and no more.

Format (d) initialises every byte of the item to binary zeros. The
other formats are described in the introduction to this section.

Note that if the data definition contains an OCCURS clause a separate
VALUE clause must be coded to initialise each occurrence: the first
VALUE clause sets up occurrence 1, the second occurrence 2, and so on.

3.4.4 VALUE Clauses for Pointer Items
A format (b) VALUE clause can be used to give a pointer an absolute
value, and format (h) to initialise a pointer to address a specified
symbol. When a pointer is declared in working storage, and does not

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 27 of 141

belong to a repeating group, you may initialise it by coding a value
clause of the form:

VALUE symbol
or:

VALUE #hexadecimal string

The symbol may be a data name, filename, mapname, paragraph name,
section name or entry name appearing in the current compilation. It
may also be a symbol defined in another compilation which appears as
the operand of a GLOBAL statement within the current compilation.

Data names, filenames and mapnames used in a pointer value clause must
be defined in working storage, not the linkage section.

If the symbol is a data name the pointer is initialised to address the
first byte that the associated data item occupies. For a filename or
mapname the pointer is set up to address the first byte of the
corresponding file or map definition.

If the symbol is a paragraph name, section or entry name, the pointer
is initialised to address the first executable instruction within the
paragraph, section or entry point it identifies.

When a VALUE clause is not coded for a pointer declaration appearing
in the initialised part of working storage (following the first value
clause, MD or FD), the pointer is set to #FFFF.

3.4.5 VALUE Clauses for Date Items
A format (b) or (c) VALUE clause can be used to give a date field a
specified numeric or hexadecimal value. A format (a) VALUE clause,
where the character string is a valid long or short date in dd/mm/yyyy
format, will cause the date field to be initialized to the internal
format representation of the date specified.

3.4.6 VALUE Clauses for Floating Point Items
A format (b) VALUE clause can be used to set a floating point field to
a particular hexadecimal value. A format (a) VALUE clause, where the
character string is a valid floating point number (as defined in
chapter 9 of the Global Development System Subroutines manual) will
cause the floating point field to be initialised to the internal
format representation of the number specified.

3.4.7 Bytes Not Initialised by Value Clauses
Bytes of working storage which are not initialised by VALUE clauses
are treated as follows:

Any even number of bytes preceding the first location initialised,
either by a VALUE clause, or by the first map definition or file
definition, remain uninitialised and are left undisturbed by the
loader when the Global Cobol program is brought into memory prior to
execution. If the first initialized byte is at an odd address, the
preceding byte will be initialized to binary zero.

All bytes following the first VALUE clause, map, or file definition,
which are not themselves set up by VALUE clauses, are initialised to
binary zeros if the elementary item containing the bytes belongs to a

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 28 of 141

repeating group. If the item does not, then the bytes are set up
according to the data type established by its picture clause:

 Uninitialised bytes within character items are set to ASCII
blanks;

 Uninitialised display numeric items are set to ASCII zeros. (Note

that this is an invalid value unless the item is an unsigned
integer);

 Uninitialised computational items are set to binary zeros;

 Uninitialised pointer items are set to HIGH-VALUES;

 Uninitialised date items are set to zero, which is not a valid

internal format date;

 Uninitialised floating point items are set to SPACES. Note that
this is a completely illegal floating point value, so you should
either always initialise such items explicitly or ensure that a
sensible value is placed in them before they are used.

Data items appearing within a redefinition do not cause any
initialisation to take place.

3.4.8 VALUE Clause Restrictions
A VALUE clause is ignored if it is coded by mistake in an attempt to
initialise an elementary item appearing in the linkage section, an
external section, a repeating group, or a redefinition. The compiler
will output a warning message except for items which are within copy
books, when no warning is generated. (This allows copy books to
contain VALUE statements yet still be used, if required, in the
linkage section, an external section, or a redefinition.)

3.5 Redefinitions
A redefinition is a level 01 group or level 77 elementary item (A,
say) which redefines the storage occupied by another data item (B,
say). A redefinition is introduced using the REDEFINES clause in the
data definition:

01 A REDEFINES B [OCCURS n]
 03 etc.
 03 etc.

or:
77 A REDEFINES B [OCCURS n] PIC etc

3.5.1 Redefinition Rules
B, the data item being redefined, may itself have been declared as
level 77, level 01, or indeed as any of the subordinate levels from 02
to 49. It may also be the filename or mapname labelling a file or map
definition. However, it must have been defined previously in the data
division, or be one of the in-built system variables described in the
Global Development System Subroutines manual.

Chapter 3 – The Data Division

Global Development Cobol Language Manual V8.1 Page 29 of 141

A and B must either both be in working storage, or belong to the same
external section, or both be defined in the linkage section. The
redefinition of a system variable must reside in the linkage section.

The size of A in bytes should be no greater than that of B. If this
rule is broken, the compiler will flag the first subordinate item of A
occupying storage outside that allocated B with a warning message. If
either A or B is a data definition with an OCCURS clause, then the
size of the item for the purpose of this comparison is considered to
be the length in bytes of the total table defined by the OCCURS
clause.

3.5.2 Redefinition Implications
VALUE clauses belonging to subordinate items within a redefinition
will be ignored. A warning message will be output during compilation
unless the item is within a copy book.

If a redefinition in the linkage section redefines a subordinate item
(i.e. one with a level number between 02 and 49 inclusive), or a
system variable, then the data name of the redefinition may not appear
in the USING clause of an ENTRY statement.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 30 of 141

4. The Procedure Division

4.1 Structure
The procedure division contains the executable statements of a Global
Cobol program. It begins with the header:

PROCEDURE DIVISION

which must be coded on a new line. It is terminated by the trailer:

ENDPROG

also on a new line.

When a main program is executed control initially passes to its entry
point, the first statement of the procedure division. When a
subroutine is invoked, linkage edited with the main program, control
is passed via the CALL statement to an entry point defined by an ENTRY
statement.

The procedure division is made up of sections and paragraphs. The
first statement following the PROCEDURE DIVISION statement should be a
SECTION statement or an ENTRY statement.

4.1.1 Sections and Paragraphs
A section is introduced by the statement:

SECTION section-name

where section-name is a symbol as defined in 2.1.2.

A paragraph name is written as:

symbol.

It may either appear on a line by itself or begin the statement it
labels.

4.1.2 Sections Entered by a CALL Statement
If a section is to be entered by a CALL statement an ENTRY statement
must be coded as the first statement of the section, immediately
preceding the SECTION statement if present. The format of the ENTRY
statement is:

ENTRY entry-name [USING A B ...]

Where entry-name is a global symbol as defined in 2.1.2. As well as
being unique within the containing program, it must also be different
from any other global symbols participating in the same linkage edits.
Note that the entry name cannot be the same as the name of the section
which it precedes. When an ENTRY statement is used the SECTION
statement is optional is usually omitted.

Each operand A, B, etc. in the USING clause, if it appears, must be a
filename, mapname, level 01 group item, level 77 elementary item, or a
redefinition of one of these, coded in the linkage section. It may not

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 31 of 141

be a subordinate (level 02-49) item, nor the redefinition of such an
item.

Up to 7 operands may appear in the USING clause. The details of
parameter passing are explained as part of the description of the CALL
statement, which is used to transfer control to an entry point defined
by an ENTRY statement.

4.1.3 Entry and Section Identifiers
Normally the first five characters of each entry name or section name
are generated as part of the code expanded by the ENTRY or SECTION
statement involved. These section and entry identifiers are available
to Global at run-time and are output if the program is terminated in
error, to identify the routines and sections in the control path at
the time of failure.

To ensure that the diagnostics provided by Global are not ambiguous it
is good practice to make the first five characters of each entry name
and section name unique within a program.

4.2 Operands
Operands in procedure division statements are usually represented by
the capital letters A, B, C ... in the language description. In
general, an operand can be a simple variable, an indexed variable, or
a literal, although there may be restrictions in particular cases.
Sometimes an operand must be the symbol used to label a file
definition or map definition. This type of operand is normally
represented by the word filename or mapname rather than a capital
letter. You should only code a filename or mapname where the language
description explicitly states it to be allowed or required.

A picture clause is associated with each operand (apart from a
filename or mapname) so that the compiler can determine its data type,
ie whether it is character, display numeric, computational or pointer.
The picture clause also contributes additional, type-dependent,
information such as the length of a character operand or the number of
decimal places in a computational operand.

An "understood" picture clause can be considered to be associated with
groups, subgroups, literals and figurative constants, as explained
below.

4.2.1 Simple Variables
A simple variable is the data-name of a non-repeating group or
subgroup, or an elementary item without an OCCURS clause. A group or
subgroup is treated as though it had a picture clause:

PIC X(n)

where n is its length in bytes.

If the data definition possesses an OCCURS clause, or belongs to a
repeating group, you can only reference individual entries from the
table thus defined. This is achieved by the use of indexed variables.

4.2.2 Indexed Variables

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 32 of 141

Indexed variables are coded:

A(B)

A must be the data name of a repeating group, a subordinate item
within such a group, or an elementary item with an OCCURS clause. If A
is an elementary item the picture clause associated with A(B) is
simply the picture clause of A itself. If A is a group or subgroup the
picture clause is taken as:

PIC X(n)

where n is the length in bytes of a single occurrence of A.

B must be a computational simple variable or a positive integer
literal. At run-time if B contains a value whose integral part, i, is
in the range 1 to 32,767 then A(B) references the i'th occurrence of A
within a table established by an OCCURS clause.

If (B) is omitted then a reference to A will be treated by the
compiler as though A(1) had been coded. However, a warning message
will be output whenever such a reference occurs.

Note that Global Cobol performs lower bound checking, inasmuch as it
checks that i is in the range l to 32,767 and terminates the job with
an error if this is not the case. Upper bound checking does not take
place. If i is greater than the value specified in the OCCURS clause
the result will be unpredictable.

4.2.3 Computational Literals
A computational literal can be supplied in the place of a read-only
computational variable. It is coded like a numeric string, as defined
in 2.1.5. Therefore valid computational literals are:

-3 3.14159 +1246 -0.120 .7

A special type of computational literal is the integer literal which
is coded as an integer in the range -32768 to +32767, the plus sign
being optional. It is treated as though it had a picture clause:

PIC S9(4) COMP

irrespective of its actual size. The picture clause associated with
non-integer computational literals is determined from the presence or
absence of a minus sign, and the number of digits before and after the
decimal point, if any. Leading zeros are ignored, except in the units
position, as are trailing zeros to the right of the decimal point,
except when such a zero appears in the tenths position. For example:

32768 PIC 9(5) COMP
3.14159 PIC 9(1,5) COMP
-0.120 PIC S9(1,2) COMP
3.0 PIC 9(1,1) COMP

4.2.4 Character Literals

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 33 of 141

A character literal can be supplied in the place of a read-only
character variable. It may be coded as either a character string or a
hexadecimal string:

"character string"
or:

#hexadecimal string

It is treated as though it had a picture clause:

PIC X(n)

where n is its length in bytes. For example:

"ABC"
and:

 #414243

are 3-byte character literals with identical values.

4.2.5 Figurative Constants
The reserved words:

HIGH-VALUES SPACE
LOW-VALUES SPACES

are figurative constants, and can be used in MOVE statements and
conditions wherever a character literal would be valid. They represent
character strings containing bytes which are:

 all #FF, i.e. with every bit set to 1 (HIGH-VALUES)

 all #00, i.e. with every bit set to 0 (LOW-VALUES)

 all #20, i.e. with every byte an ASCII blank (SPACE or SPACES)

The length of a figurative constant is set up to match that of the
corresponding variable in the MOVE statement or condition in which it
appears. Thus it can be considered to possess a picture clause of the
form:

PIC X(n)

where n is that length, in bytes.

4.2.6 Variables
In the descriptions which follow, the term "variable" is used as a
shorthand for "simple or indexed variable".

4.3 Arithmetic Statements
The permissible arithmetic statements are summarised in Table 4.3:

STATEMENT ACTION
ADD A TO B [ROUNDED] B + A ---> B
ADD A TO B GIVING C [ROUNDED] B + A ---> C
SUBTRACT A FROM B [ROUNDED] B - A ---> B

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 34 of 141

SUBTRACT A FROM B GIVING C
[ROUNDED]

B - A ---> C

MULTIPLY A BY B [ROUNDED] B x A ---> B
MULTIPLY A BY B GIVING C [ROUNDED] B x A ---> C
DIVIDE A INTO B [ROUNDED] B / A ---> B
DIVIDE A INTO B GIVING C [ROUNDED] B / A ---> C

Table 4.3 - Arithmetic Statements

In arithmetic statements A, B and C may be computational variables.
Alternatively A may be a computational literal. B may be a
computational literal only if the GIVING clause is present. C may be a
display numeric variable. No other combinations are valid.

4.3.1 Arithmetic Truncation and Rounding
If the result of an arithmetic operation contains more digits
following the decimal point than are contained in the receiving
variable then the extra digits will be truncated. However, if the
ROUNDED phrase was coded and the most significant digit thus truncated
was 5, 6, 7, 8 or 9 then the least significant digit of the receiving
variable will be augmented by one, otherwise it will remain unchanged.

4.3.2 Overflow
Any arithmetic statement will suffer overflow if the result exceeds
the capacity of a receiving computational variable, or does not
satisfy the picture of a receiving display numeric variable. Overflow
will also take place if the capacity of internal Global fields used to
hold intermediate results is exceeded. More specifically, let the
number of decimal places in the two operands A and B be a and b
respectively, and the number of places in the receiving field (B or C)
be r. Then overflow will occur in the following circumstances:

 if the magnitude of the result of an ADD or SUBTRACT statement
exceeds 9.2 x 1018-p approximately, where p is the greater of a and
b;

 if the magnitude of the result of a MULTIPLY statement exceeds

9.2 x 1018-a-b approximately;

 if the dividend (B) of a DIVIDE statement exceeds 9.2 x 1018-a-r

approximately, or if the magnitude of the divisor (A) is greater
than 2.1 x 109-a approximately, or if the magnitude of the quotient
is greater than 2.1 x 109-r or 2.1 x 109-b approximately.

You may check for overflow by coding the ON OVERFLOW statement (4.6)
as the statement immediately following the arithmetic statement. If no
such ON OVERFLOW statement is coded and overflow occurs the program
will be terminated with an error.

If an arithmetic statement suffers overflow it is suppressed and the
receiving variable remains unchanged.

4.3.3 Examples
Suppose A and B are declared as PIC 9(2,1) COMP and PIC 9(2,2) COMP
respectively. Then:

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 35 of 141

ADD 1 TO B GIVING A ROUNDED

has the effect, for B = 3.42, of:

1 + 3.42 (=4.42) yielding A = 4.4

Alternatively, for B = -4.75, we have:

1 + -4.75 (= -3.75) yielding A = -3.8

Finally, consider the division of B by A, where A = 1.1 and B = 0.28.
The Global Cobol:

DIVIDE A INTO B GIVING A ROUNDED

results in:

0.28/1.1 (=0.254545...) yielding A = 0.3.

To summarise, a useful rule to remember is that truncation is towards
zero and that rounding, when the digit involved is 5 or more, is away
from zero.

4.3.4 The COMPUTE Statement
The COMPUTE statement, which is used to perform floating point
calculations, is covered in detail in section 9 of the Global
Development System Subroutines Manual.

4.4 The MOVE Statement
The MOVE statement is coded:

MOVE A TO B [C D...]

where A is a literal, figurative constant or variable and B, C, D...,
etc are variables. A maximum of seven variables may follow the word
TO. Where more than one variable follows TO the content of A is moved,
in turn, to each of these variables. of simple moves had been coded.

In the simple move, MOVE A TO B, execution depends on the data type of
each operand. Table 4.4 shows that, of the 16 types of move
theoretically possible, 8 are supported in Global Cobol.

 TO B
MOVE A

CHARACTER COMPUTATIONAL DISPLAY
NUMERIC

POINTER

CHARACTER YES NO

YES

NO

COMPUTATIONAL NO

YES

YES

NO

DISPLAY
NUMERIC

YES

YES

YES

NO

POINTER NO

NO

NO

YES

Table 4.4 - Valid Data Types for MOVE A TO B

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 36 of 141

4.4.1 Character to Character Move
The contents of A are moved to B, byte by byte. The transfer takes
place one byte at a time, from left to right. The leftmost (low
location) byte of A is copied to the leftmost byte of B, then the next
byte of A is copied to the next byte of B, and so on. If A is shorter
than B the move operation pads B with rightmost blanks. If B is
shorter than A movement stops once B has been filled: in this case
character truncation (as distinct from the arithmetic truncation
described in 4.3.1) is said to have occurred.

In addition, A may be a figurative constant, and you may code:

MOVE HIGH-VALUES TO B * EACH BYTE SET TO #FF
MOVE LOW-VALUES TO B * EACH BYTE SET TO #00
MOVE SPACE TO B * EACH BYTE SET TO
MOVE SPACES TO B * ASCII BLANK (#20)

The A and B fields involved in a character to character move may
overlap. Indeed, the following example shows how overlapping fields
may be used to set every byte of a long field to a particular value,
in this case ASCII E:

01 A
 03 A1 PIC X
 03 B PIC X(999)
.
.
.

MOVE "E" TO A1
MOVE A TO B

This particular operation is called a ripple move and is useful for
initialising large data items.

4.4.2 Character to Display Numeric Move
This is treated like a character to character move as described in
4.4.1. You must be careful that the number of bytes in the B field is
sufficient since the move can result in the loss of digits if
character truncation takes place.

4.4.3 Computational to Computational Move
A is transferred to B taking account of the precision of the two
operands. If B is of lower precision than A the difference in
precisions will result in arithmetic truncation. If B is of
insufficient capacity to contain A, overflow will occur.

4.4.4 Computational to Display Numeric Move
A is converted to standard display numeric format according to the
picture of B. If A is too large, or is negative when B is unsigned,
overflow will occur.

4.4.5 Display Numeric to Character Move
This is treated like a character to character move as described in
4.4.1. You must be careful that the number of bytes in B is sufficient
or the move can result in the loss of digits if character truncation
takes place.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 37 of 141

4.4.6 Display Numeric to Display Numeric Move
The numeric string at A is converted to standard numeric string format
in B. If A is too large, or does not contain a valid numeric string
conforming to the picture clause of A, or is negative when B is
unsigned, overflow will occur.

4.4.7 Display Numeric to Computational Move
A is converted to binary according to its picture clause and the
result is stored in B. Arithmetic truncation will take place if the
precision of A is greater than that of B. If A is too large, or does
not contain a valid numeric string conforming to the picture clause of
A, overflow will occur. It will also take place if A is valid but B is
of insufficient capacity to contain the result.

4.4.8 Pointer to Pointer Move
The contents of the two-byte pointer at A are transferred, unchanged,
to the two-byte pointer at B.

4.4.9 Overflow
Overflow can occur, for the reasons described above, in the following
types of move operation:

 computational to computational;

 computational to display numeric;

 display numeric to display numeric;

 display numeric to computational

You may check for overflow during a simple move, or the last operation
of a compound move, by coding the ON OVERFLOW statement (4.6)
immediately following the MOVE statement. If no such ON OVERFLOW
statement is coded and overflow occurs the program will be terminated
in error. This will also occur if ON OVERFLOW follows a compound move
but the operation suffering overflow was not the last.

If a move operation suffers overflow it is suppressed and the
receiving variable remains unchanged.

4.5 Transfer of Control Statements

4.5.1 The GO TO Statement
GO TO unconditionally transfers control to a paragraph or section. It
is coded:

GO TO A

where A is the name of a paragraph or section, or the name or a
pointer set to address the first executable instruction of a paragraph
or section.

4.5.2 The GO TO DEPENDING ON Statement

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 38 of 141

GO TO DEPENDING ON provides a switch capability. It is coded:

GO TO DEPENDING ON data-name
TO label-1
TO label-2
" "
" "
TO label-n

where label-1, label-2, label-n are paragraph or section names.

The data-name must be the name of a computational variable whose
integral part, i, is in the range 1 to n when the statement is
executed. In this case control is passed to label-i as if a:

GO TO label-i

statement had been executed. If i is greater than n the results will
be unpredictable since there is no upper bound run-time range
checking.

4.5.3 The PERFORM Statement
The PERFORM statement passes control to a paragraph or section. It is
coded:

PERFORM A

where A is the name of a paragraph or section, or the name of a
pointer set to address the first executable instruction of a paragraph
or section.

The statements beginning at the indicated section or paragraph are
executed until control is returned to the statement following the
PERFORM by an EXIT statement (see 4.5.5).

4.5.4 The CALL Statement
The CALL statement passes control to an entry point identified by the
entry-name appearing in an ENTRY statement. The ENTRY statement may
reside either in the current compilation, or in a compilation to be
linkage edited with it. CALL is coded:

CALL A [USING B C ...]

where A is an entry name, or the name of a pointer set to address the
first executable instruction at the entry point. A maximum of 7
parameters may be passed in the optional USING clause. If the CALL
statement does not possess a USING clause then neither must the ENTRY
statement. Otherwise the parameters in the two USING clauses involved
must correspond one for one. (There is a special technique available
for creating subroutines which can accept a variable number of
parameters, but in the interests of simplicity its description is
contained in the Global Development System Subroutines Manual.)

Each operand of a CALL statement's USING clause may be a variable,
literal, filename, mapname, paragraph name, section name, or entry
name. However, the figurative constants HIGH-VALUES, LOW-VALUES, SPACE
and SPACES must never appear.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 39 of 141

Each operand in the target ENTRY statement must be of the same type as
the corresponding operand of the CALL statement, and must be defined
in the linkage section. An ENTRY operand may, as appropriate, be a
filename, mapname, or the redefinition of one of these. It may not be
a subordinate (level 02-49) item, nor the redefinition of such an
item.

When a variable is passed as a parameter the corresponding ENTRY
operand is a level 77 item or level 01 group describing the storage
area the variable occupies.

If an integer literal is passed the corresponding ENTRY operand should
be a level 77 item or level 01 group describing a single PIC S9(4)
COMP field. This will overlay the integer literal, and must therefore
be read-only.

If a character literal is passed the corresponding ENTRY operand is a
level 77 item or level 01 group describing the character string. This
will overlay the character literal and must therefore be read-only.

When a filename or mapname is passed as a parameter the corresponding
ENTRY operand is a file definition or map definition. The appropriate
file or map processing statements can then be used to manipulate the
passed file or map in the normal way within the called routine.

When a paragraph name, section name or entry name is passed, the
corresponding ENTRY operand should be a level 77 item or level 01
group describing a single PIC PTR field. This pointer will address the
paragraph, section or entry point in question, and must remain read-
only. The pointer form of the GO TO, PERFORM or CALL statement can
then be used to invoke the passed paragraph, section or entry point
from the called routine.

4.5.5 The EXIT Statement
The EXIT statement causes control to be returned to the statement
following the last outstanding PERFORM or CALL statement executed.

When a PERFORM or CALL is executed Global Cobol remembers the address
of the following statement in an internal stack. The previous contents
of the stack are "pushed down" so that a large number of outstanding
PERFORMs or CALLs can be nested.

When an EXIT is executed the top item in the stack is used to
determine the statement to which control is to be passed: this stack
item is then made available for re-use and the stack contents are
"popped up".

The EXIT statement is therefore the dynamic end of a sequence of code
entered by a PERFORM or CALL. This provides additional flexibility
compared with COBOL. In addition an explicit EXIT statement, rather
than an implied exit at the end of a paragraph, section or group of
sections, makes code easier to follow and facilitates structured
programming.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 40 of 141

Note that an EXIT statement issued from the highest level of a
program, when there is no outstanding PERFORM or CALL, is equivalent
to a STOP RUN.

4.5.6 The STOP RUN Statement
The STOP RUN statement can be coded anywhere within a main program or
subprogram. It returns control to Global System Manager indicating
that the program has completed normally.

4.5.7 The FINISH Statement
The FINISH statement can be coded anywhere within a DO loop (as
described in 4.6.2). It has the effect of transferring control to the
statement following the next ENDDO, thereby exiting from the loop in a
clear and structured manner.

4.5.8 Prefixed Transfer of Control Statements
The transfer of control statements:

GO TO label
PERFORM label
EXIT
FINISH
STOP RUN

may be prefixed by 'IF condition', 'ON OVERFLOW', 'ON EXCEPTION', and
by 'ACCEPT...NULL'. (These clauses are described in 4.6 and 4.7.) The
result is to make execution of the transfer of control statement
dependent on the condition defined by the prefixing clause. For
example:

IF A ZERO GO TO LAB2

MOVE A TO B
ON OVERFLOW PERFORM AA223

READ A INTO B
ON EXCEPTION EXIT

ACCEPT A NULL STOP RUN

4.6 Conditional and Iterative Statements

4.6.1 Format of Conditional Structures
There are two basic formats for conditionals. Format 1:

|IF condition |
|ON OVERFLOW |
|ON EXCEPTION |
|ACCEPT...NULL |
[OR statement(s) | AND statement(s)]
............ |statements to be executed if
............ |condition true
............ |(group A)
[ELSE
............
............ |statements to be executed if

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 41 of 141

............ |condition false

............] |(group B)
END

and format 2:

|IF condition |
|ON OVERFLOW | transfer of control statement
|ON EXCEPTION |
|ACCEPT...NULL|

The possible transfer of control statements in format 2 are defined in
4.5.8.

If, in format 1, the statements in group A are not terminated by a GO
TO, GO TO DEPENDING ON, EXIT or STOP RUN then, when the ELSE statement
is encountered control will be passed to the statement following END.
If the ELSE statement is missing there are no group B statements. In
this case if the group A statements are not terminated by an
unconditional transfer of control, when the END statement is met it
will be ignored and execution will continue with the next statement.

Similarly, if the group B statements are not terminated by a GO TO, GO
TO DEPENDING ON, EXIT or STOP RUN then, when their last statement has
executed, control will drop through the END statement and continue
with the next statement.

The statements ELSE and END must be coded on new lines and cannot be
combined with other statements.

Format 1 conditionals may be nested up to 32 times and may contain
iterative structures (explained below). An END statement terminates
the most recent conditional statement which has not yet been matched
by an END statement. An ELSE statement refers to the most recent
conditional statement which has not yet been matched by an END
statement.

Format 2 conditional statements may appear within format 1
conditionals. Format 2 statements always generate less code than the
equivalent logic coded using Format 1.

4.6.2 Format of Iterative Structures
There are four formats for iterative structures (or DO loops).

Format 1:

DO
........
........ |statements to be executed
........
ENDDO

Format 2:

DO WHILE condition
[OR statement(s) | AND statement(s)]
.........

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 42 of 141

......... |statements to be executed while

......... |the condition remains true
ENDDO

Format 3:

DO UNTIL condition
[OR statement(s) | AND statement(s)]
........
........ |statements to be executed until
........ |the condition becomes true
ENDDO

Format 4:

DO FOR X = A [TO B] [STEP C]
........ |statements to be executed while X
........ |stays in range and condition remain
true
........
ENDDO

In format 1 the enclosed statements are executed over and over until
some transfer of control (such as GO TO or FINISH) causes an exit from
the loop.

In format 2 the enclosed statements are executed zero or more times,
while the condition remains true. The condition is tested before the
first iteration, and then before each subsequent iteration. As soon as
it is not satisfied, the statement immediately following the ENDDO
receives control; therefore it is possible that the statements between
DO and ENDDO may not be executed at all.

Format 3 is similar to format 2 except that the enclosed statements
are executed only as long as the condition remains false.

In format 4 the processing is more complex. Here X (the loop count)
must be a computational variable, A (the initial value) must be a
computational variable or literal, B (the limit) must be a
computational variable or literal if the TO clause is coded and C (the
step length) must be a numeric literal if the STEP clause is coded.
The variable X is first set to the value in A. This is compared with
the limit B, if specified, and provided all is well the enclosed
statements are executed. When the ENDDO is encountered the value in X
is increased by the step length C, or 1 if no STEP clause was coded,
and then processing resumes with a comparison with the limit.

If the step length C is not negative, or is omitted, then execution
will continue provided that the value of X is not greater than the
value of the limit B. If the step length is negative then execution
will continue provided that the value of X is not less than the value
of the limit B.

If the STEP clause is omitted then a step length of 1 is assumed. If
the TO clause is omitted then no limit checking takes place, and
execution will continue until a transfer of control statement causes
execution to leave the DO loop, or the variable X overflows.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 43 of 141

DO loops may be nested up to 16 times and may contain conditional
structures. An ENDDO statement terminates the most recent DO statement
which has not yet been matched by an ENDDO statement.

CONDITION CLAUSE IDENTICAL

EQUIVALENT
RESTRICTIONS

A EQUAL B
A NOT EQUAL B
A LESS B
A NOT LESS B
A GREATER B
A NOT GREATER B

A = B
A NOT EQUAL B
A < B
A NOT < B
A > B
A NOT > B

A and B must both be either
computational, character, or
pointer items. Alternatively,
A may be display numeric if B
is computational. One, but
not both of the operands may
be a literal, or in the case
of a character comparison, a
figurative constant.

A SPACES
A NOT SPACES
A HIGH-VALUES
A NOT HIGH-VALUES
A LOW-VALUES
A NOT LOW-VALUES

A SPACE
A NOT SPACE

A must be a character
variable

A ZERO
A NOT ZERO
A POSITIVE
A NOT POSITIVE
A NEGATIVE
A NOT NEGATIVE

 A must be a computational or
display numeric variable

A NUMERIC
A NOT NUMERIC

 A must be a display numeric
variable

Table 4.6.3 - The Condition Clause

4.6.3 The Condition Clause
The condition clause that appears in the IF and DO statements may
assume any of the formats summarised in the left-hand column of Table
4.6.3. The mathematical symbols =, > and < can be coded in the place
of the words EQUAL, GREATER and LESS, respectively, and the figurative
constants SPACE and SPACES are synonymous. This is reflected in the
middle column of the table. The conditions are divided into four
groups, depending on the restrictions which apply to the operand or
operands.

Comparison of display numeric and computational items obeys the normal
rules of arithmetic. The comparison of character variables and
pointers takes place, byte by byte, from the leftmost byte at the low
address to the rightmost byte at the high address. The bytes being
compared are treated, for the purposes of the comparison, as 8-bit
unsigned numbers (See Appendix A for the numeric values corresponding
to ASCII characters.) If two strings of unequal length are compared,
the shorter will be considered to be extended to the right with ASCII
blanks. When a figurative constant is involved it is treated as a
character string of exactly the same length as the variable with which
it is being compared.

The condition:

A NUMERIC

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 44 of 141

is true only if the variable A contains a valid numeric string, as
defined in 2.1.5, which is compatible with the picture clause of A.

The following three examples show the use of condition clauses in a
format 1 conditional, format 2 conditional and iterative structure:

IF COUNT > 100 * FORMAT 1 CONDITIONAL
MOVE 0 TO COUNT

END

IF NAME SPACES GO TO ASKRTN * FORMAT 2 CONDITIONAL

DO WHILE COUNT POSITIVE * ITERATIVE STRUCTURE

ADD -1 TO COUNT
PERFORM CALC

ENDDO

4.6.4 Compound Conditions
Compound conditions may be established by coding groups of one or more
OR statements or AND statements immediately following one of these
nine initial conditional statements:

IF condition ACCEPT... NULL DO FOR condition
ON OVERFLOW ON EXCEPTION DO WHILE condition
ON NO OVERFLOW ON NO EXCEPTION DO UNTIL condition

The format of a compound condition is either:

initial conditional statement
OR condition-1
.
.
OR condition-n

or:

initial conditional statement
AND condition-1
.
.
AND condition-n

The first compound condition is true if any of the condition clauses
it contains is satisfied, but the second form is only true if all of
the constituent conditions hold. Once sufficient conditions have been
evaluated to establish the result of the compound condition, no
further conditions are evaluated. It is not allowable to mix AND and
OR statements in the group following the initial conditional
statement, and if you attempt to do so the compiler will flag any out-
of-place statement in error.

Here are two examples using compound conditions:

IF COUNT > 100
OR COUNT NEGATIVE * COUNT ZEROISED IF NOT

MOVE 0 TO COUNT * BETWEEN 0 AND 100

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 45 of 141

END

DO WHILE COUNT POSITIVE
AND NAME NOT SPACES
AND ERRFLAG ZERO

ADD -1 TO COUNT
PERFORM CALC

ENDDO

4.6.4 The ON OVERFLOW Statement
The ON OVERFLOW statement is used for checking for the overflow
condition which may result following an arithmetic statement, or a
MOVE, DISPLAY or EDIT statement.

ON OVERFLOW must be coded as the statement immediately following the
one generating the condition to be tested. If this is not done and an
overflow condition arises the program will be terminated in error.

Note that the second of the two examples which follow shows the coding
required to simply ignore an overflow condition:

ADD COUNT TO ACCUM * SET ACCUM NEGATIVE
ON OVERFLOW * IF ANY COUNT NOT
OR COUNT NEGATIVE * POSITIVE AND IN RANGE

MOVE -1 TO ACCUM
END
ADD COUNT TO ACCUM * IGNORE ANY
ON OVERFLOW * OVERFLOW CONDITION
END

4.6.5 The ON EXCEPTION Statement

STATEMENT EXCEPTION NUMBER

RETURNED IN $$COND
MEANING

LOAD

1
2
3

irrecoverable I/O
error
program file not found
program file too large

SCAN 1

high or equal key not
present

SEARCH 1 equal key not present

Table 4.6.5 - Statements Subject to Exceptions
(apart from CALL, PERFORM and file processing statements)

The ON EXCEPTION statement is used for checking for the exception
condition that can be signalled in response to one of the statements
listed in Table 4.6.5, as the result of CALLing or PERFORMing certain
types of routine, file processing or console I/O operations. ON
EXCEPTION must be coded as the statement immediately following the one
generating the condition to be tested. If this is not done and an
exception condition arises the program will be terminated in error.

A CALL or PERFORM statement may not necessarily be liable to an
exception condition. Whether this is the case or not depends on the
routine invoked by the statement. If it inevitably returns control by
means of an EXIT statement coded as described in 4.5.5, then it will

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 46 of 141

always signal normal completion, and the invoking CALL or PERFORM
statement will never suffer an exception. However, it is possible (and
often very useful) to write routines which generate exception
conditions to indicate when special circumstances have arisen. This is
explained in the Global Development System Subroutines Manual.

Global Cobol system routines nearly always signal exceptions in
special circumstances. The meaning of the different conditions
generated varies, of course, from routine to routine, and are defined
as part of each routine's description.

When an exception occurs the system variable $$COND, the condition
number, is set to a positive value. This is normally 1, except when
the same statement can generate an exception for a variety of
different reasons. In this case $$COND assumes values 1, 2... and so
on, each of which distinguishes a different condition. System variable
$$RES, the result code, may also be established when an exception
occurs, to give further information about the cause of the exception.

If you need to process the condition number or the result code, handle
$$COND and $$RES at the very beginning of the logic introduced by your
ON EXCEPTION statement. Normally you should immediately save their
values with MOVE statements, or branch on $$COND with a GO TO
DEPENDING ON, or code a sequence of IF statements. This is because the
majority of Global Cobol statements, summarised in the list below,
cause the values in $$COND and $$RES to be destroyed by the time they
return control:

ACCEPT (+ variants) FIRST READ NEXT
BELL LAST RELEASE
CALL LOAD REWRITE
CHAIN LOCK SCAN
CLEAR MAPIN SCROLL
CLOSE MAPOUT SEARCH
DELETE OPEN SORT
DISPLAY (+ variants) PERFORM SUSPEND
EDIT PRIOR UNLOCK
EXEC READ WRITE
EXIT RETURN WRITE NEXT

Note, in particular, that the statement:

DISPLAY $$COND

which you might be tempted to write for debugging purposes, should not
in fact be used. If you code it by mistake as part of your exception
handling logic it will not have the desired effect since $$COND will
be reset before it comes to be displayed and all that will appear at
the console will be zero. The correct technique is indicated by the
first example below. The second shows the coding required if you
simply wish to ignore an exception condition:

CALL EXRTN
ON EXCEPTION * IF EXCEPTION, AND
AND TESTFL POSITIVE * IF TEST FLAG ON,

MOVE $$COND TO Z-WORK * COMPUTATIONAL WORK FIELD
DISPLAY "EXCEPTION CODE " * DISPLAYED,
DISPLAY Z-WORK SAMELINE * NOT $$COND

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 47 of 141

ELSE
DISPLAY "NORMAL COMPLETION"

END

CLOSE PAYFILE * IGNORE IRRECOVERABLE
ON EXCEPTION * I/O ERROR ON CLOSE
END

4.6.6 The ON NO OVERFLOW and ON NO EXCEPTION Statements
These statements check for the reverse condition to those checked by
the ON OVERFLOW and ON EXCEPTION statements. They should be used in
preference to the construct:

ON OVERFLOW
ELSE

statements to be executed when no overflow has occurred
END

4.6.7 The ACCEPT...NULL Statement
The ACCEPT...NULL statement establishes a condition which is true only
when the operator has keyed the special null string (i.e. <CR>) rather
than a normal numeric or character input, in response to a prompt. The
ACCEPT statement and its variants are described in more detail in the
Global Screen Presentation Manual. The following example shows a
format 1 conditional introduced by ACCEPT...NULL:

ACCEPT NAME NULL
OR COUNT = 20 * INPUT ENDS WITH 20'th

GO TO ENDINP * ENTRY OR NULL KEYED
END

4.6.8 Statements for Console Input/Output
Global Cobol provides 7 statements to support elementary console
handling at the field level. The DISPLAY and DISPLAY...LINE
statements, the display operations, output a single field no more than
80 characters in length. ACCEPT and ACCEPT...LINE, the accept
operations, input a field of up to 80 characters. The BELL statement
sounds the console bell, clears the type-ahead buffer and terminates
job management if it is in control: the statement is used to signal
errors. CLEAR and SCROLL, respectively, erase the contents of a
display screen and re-establish teletype-compatible working. These
statements are described in full in chapter 2 of the Global Cobol
Screen Presentation Manual.

4.7 Table Handling
A Global Cobol table consists of a number, n, of fixed length entries
occupying contiguous storage. Each entry is identified by its index, a
number between 1 and n. The first entry has index 1, the second index
2 and so on. Tables are defined by repeating groups or elementary
items with OCCURS clauses.

The table handling operations cause a rapid examination of the table
to take place, a selected field from each entry being compared with a
key, whose length and value you specify. When comparison takes place
the key and the current entry are treated like character variables and
compared byte by byte from left to right.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 48 of 141

After the table handling operation completes you will either be
returned the index of the entry which satisfied your request or, if
the request was not satisfied, a table operation exception will take
place.

4.7.1 The SEARCH Statement
The SEARCH statement is used to identify the first entry of a table
equal in value to a supplied key. It is coded:

SEARCH tc table key [entry-length]

Here tc is the name of a table control area of the following format:

01 TC
 03 TCKEYL PIC 9(2) COMP * SUPPLIED KEY LENGTH
 03 TCTERM PIC X * SUPPLIED TERMINATOR
 03 TCINDEX PIC 9(4) COMP * RETURNED INDEX

You must set up the key length and terminator yourself, but will be
returned in the index field.

The table parameter is a variable identifying the location at which
the search is to begin, and key is a literal or variable containing
the supplied key.

The fourth parameter, the entry length, must be supplied if you are
searching a repeating group, when the key length and entry length will
be different. It must be an integer literal, a PIC 9(4) COMP variable,
or the special system variable $$ENTL.

System variable $$ENTL can only be coded as the fourth parameter of a
SEARCH (or SCAN) statement, and its value is the length of an entry in
the table supplied as the second parameter. It should be used in
preference to specifying the length as an integer literal, so it will
remain correct even if the definition of the table is changed. If the
parameter is omitted the entry length is assumed to be equal to the
key length, as will normally be the case if you search a table of
elementary items.

The key field is assumed to be located at the start of each table
entry, and the search operation proceeds as follows:

A. The first table entry is selected;

B. If its first byte contains (TCTERM), the terminator value,
exception condition 1 is signalled and processing terminates;

C. If the key field, the (TCKEYL) bytes at the start of the entry,

is equal to the key supplied as the third parameter of the SEARCH
statement, processing terminates normally;

D. Otherwise the next entry is selected, using the fourth parameter

or (TCKEYL) if it is omitted, and processing continues as at (b).

When the table operation terminates the search returns the index of
the entry it last processed in the TCINDEX field. This will either

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 49 of 141

identify the first entry satisfying your request or, if an exception
took place, it will identify a dummy entry starting with the
terminator value. You must ensure that such an entry is placed
immediately following the table if it is possible to search for a key
which is not present, otherwise the search operation will not be
properly delimited, and the search will continue examining the memory
following the table, with unpredictable results.

If there is a possibility that the key value is not present in the
table the SEARCH statement should be immediately followed by an ON
EXCEPTION statement to process this condition. If the ON EXCEPTION
statement is not coded and the key is not present the program will be
terminated in error.

4.7.2 The SCAN Statement
The SCAN statement is used to identify the first entry of a table
whose value is equal to, or greater than a supplied key. It is coded:

SCAN tc table key [entry-length]

where tc, table, key and the optional entry-length parameter are as
defined for the SEARCH statement.

SCAN functions identically to SEARCH, except that the criterion for
terminating the search normally is that the key field, the (TCKEYL)
bytes at the start of each entry, should be equal to or greater than
the key supplied by the third parameter. If the fields involved are
character data items then the ASCII collating sequence determines the
result of the comparison. If the fields are both non-negative
computational items of the same precision the result will be
determined by the numeric value as you would expect. However, table
scans involving negative or display numeric keys, or computational
keys of different precision, should be avoided since the outcome is
difficult to predict.

If it is possible that no key field in the table will satisfy the
scan, you must delimit the table with a dummy entry starting with a
byte containing the terminator value, and you should follow the SCAN
statements involved with ON EXCEPTION statements to trap possible
table operation exceptions.

PROGRAM EXAMP
DATA DIVISION
.
.
.
* TABLE CONTROL AREA

*
01 TC
 03 FILLER PIC 9(2) COMP

VALUE 8
 03 FILLER PIC X

VALUE LOW-VALUES
 03 INDEX PIC 9(4) COMP
*
* KEY OBTAINED FROM OPERATOR
*
77 KEY PIC X(8)

*
* TABLE WITH 16 ENTRIES PLUS END MARKER
*

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 50 of 141

01 TABLE
 03 ENTRY OCCURS l6
 05 KSTORE PIC X(8)
 05 COUNT PIC S9(2) COMP
 03 ENDMK PIC 9 COMP
*
PROCEDURE DIVISION
.
.
.

DISPLAY "PLEASE SUPPLY A KEY"

ACCEPT KEY
SEARCH TC TABLE KEY $$ENTL
ON EXCEPTION

IF INDEX GREATER 16
DISPLAY "TABLE EXHAUSTED"
STOP RUN

ELSE
MOVE KEY TO KSTORE(INDEX)

END
END
ADD 1 TO COUNT(INDEX)

DISPLAY "KEY STORED IN ENTRY "
DISPLAY INDEX SAMELINE
IF COUNT(INDEX)>1

DISPLAY COUNT(INDEX)
DISPLAY " TIMES"

END
.
.
.

Figure 4.7 - Table maintenance example

4.7.3 Example
Figure 4.7 shows a fragment of a program used to maintain a table,
TABLE, of sixteen 9-byte entries, ENTRY. Each entry contains space to
save an 8-byte key field, KSTORE, together with a 1-byte count field,
COUNT. The entries are automatically initialised to binary zeros since
they form a repeating group following the first VALUE clause of the
program. A dummy entry at the end of the table consists of the single
byte ENDMK, which is also automatically initialised to binary zeros.

The table control area to be used in the subsequent search operation
is set up to specify a key length of 8 bytes and a terminator value
which is binary zeros (to match ENDMK).

The procedure division begins by outputting the prompt:

PLEASE SUPPLY A KEY:

The operator replies with a key of between one and eight characters
and this is placed in the KEY field. Then the SEARCH statement is
executed. If the key value is contained in the table the message:

KEY STORED IN ENTRY nnnn mm TIMES

is output, where nnnn is the entry number, and mm is the value of the
COUNT field, which will be greater than 1 since it is always
incremented whenever an entry is selected. The program then continues
with other processing not shown in the figure.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 51 of 141

If the key value is not already in the table, by checking the value of
the index returned the program sees whether any free entries remain.
If not the message:

TABLE EXHAUSTED

is output and the program stops.

If the index is between 1 and 16 it identifies a free entry to which
the key is moved. (Since the key consists of ASCII characters entered
at the console it cannot start with a binary zero byte so this action
automatically extends the table.) The count is incremented for the
very first time and the message:

KEY STORED IN ENTRY nnnn

is then output and the program continues.

4.7.4 Programming Notes
Although the key field should normally be the first field of a table
entry, you may use a field from the middle of the entry providing you
pass the first occurrence of it as the table parameter of the SEARCH
or SCAN statement, and construct the appropriate dummy entry at the
end of the table. For example, if you required to find the first entry
in the table of Figure 4.7 possessing a COUNT field greater than 5,
you would need to specify a second table control area:

01 TC2
 03 FILLER PIC 9 COMP * KEY LENGTH 1

VALUE 1
 03 FILLER PIC 9 COMP * TERMINATOR 0

VALUE 0
 03 INDEX2 PIC 9(4) COMP * INDEX

You would also need to extend the ENDMK field so it overlaid the 17th
dummy occurrence of the COUNT field, by replacing its definition by:

 03 ENDMK PIC X(9)

VALUE LOW-VALUES

for example. The required table operation involves code of the form:

SCAN TC2 COUNT(1) SIX $$ENTL
ON EXCEPTION

processing when there is no entry with a COUNT field greater than 5
END

The quantity SIX is defined in working storage as a PIC 9 COMP field
whose value is 6. It would have been wrong to code an integer literal
instead. For example:

SCAN TC2 COUNT(1) 6 $$ENTL

because this would cause a two-byte PIC 9(4) COMP field to be set up
as the key. The scan would then use only the senior byte of this field
in comparisons (because the key length has been specified as 1 byte)
and this byte, of course, contains 0, not 6. The conclusion is that it
is wise to avoid using literal keys in table operations involving
computational quantities. It is better to employ a variable, which you
initialise explicitly so that you can ensure that the correct byte

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 52 of 141

length is set up. Table 3.3.3 can be used to determine how many bytes
are established by any particular computational picture clause.

Note that it is not necessary for the key length always to be less
than the entry length. You can, for example, search a string of
characters for the occurrence of a particular word by treating the
string as a table with entry length 1 and defining the key to have the
length and value of the word you are searching for. For example, to
scan STRING, an ASCII character string terminated by a null, binary
zero, byte, to see if it contains the characters "Global", define the
table control area as:

01 TC3
 03 FILLER PIC 9(2) COMP * KEY LENGTH 3

VALUE 6
 03 FILLER PIC 9 COMP * TERMINATOR 0

VALUE 0
 03 INDEX3 PIC 9(4) COMP * INDEX

The required table processing statements are:

SEARCH TC3 STRING "Global" 1
ON EXCEPTION GO TO NOTFOUND
processing when the string contains "Global"

You may search a string backwards by specifying a negative entry
length as the fourth parameter supplied to a SEARCH or SCAN statement.
You must supply a fourth parameter to perform backwards table
processing, since you are not allowed to specify a negative value in
the first byte of the table control area. Suppose you wish to display
the last non-blank character in the 80-byte table RECORD, which you
know always contains graphics characters. ASCII blank is the lowest
value graphic, with a decimal value of 32, so you need only scan
RECORD backwards to find the first character greater than or equal to
33. Lay out working storage as follows:

01 FILLER
 03 FILLER PIC X * TERMINATOR OF

VALUE LOW-VALUES * BACKWARD SCAN

 03 RECORD OCCURS 80 PIC X
*
01 TC4
 03 FILLER PIC 9(2) COMP

VALUE 1 * KEY LENGTH
 03 FILLER PIC X

VALUE LOW-VALUES * TERMINATOR VALUE
 03 INDEX4 PIC 9(4) COMP
*
77 NBLANK PIC 9(2) COMP

VALUE 33 * CHARACTER > BLANK

Then the following code displays either a message identifying the
character in question, or one indicating that the record consists only
of blanks:

SCAN TC4 RECORD(80) NBLANK -1
ON EXCEPTION

DISPLAY "RECORD CONSISTS ONLY OF BLANKS"
ELSE

SUBTRACT INDEX4 FROM 81 GIVING INDEX4

DISPLAY "LAST NON BLANK CHARACTER IS "
DISPLAY RECORD (INDEX4) SAMELINE

END

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 53 of 141

Note how, even when the table is searched backwards, the entries are
identified counting from 1. This is why it is necessary to subtract
the result returned by SCAN from 81 in this example in order to
generate the correct value with which to index RECORD.

Figure 4.8 - The Global System Manager run-time environment

4.8 Program Management

4.8.1 The Global System Manager Memory Region
All variants of Global System Manager execute programs from a
contiguous area of random access storage known as the Global System
Manager memory region (Figure 4.8). This region is itself subdivided
into three parts.

The beginning of the region is occupied by the permanently resident
components of Global System Manager: a nucleus of machine code which
interfaces Global System Manager with a particular target
configuration, and a small monitor written in Global Cobol itself. The
machine code nucleus references the Global Cobol interpreter, routines
for basic input/output, and assembler language services such as table
search and scan.

The monitor includes functions such as the loader, command handler,
open/close routines, console handler and I/O error retry routines. The
monitor contains a data area called the System Area, which serves as a
communication region for the Global System Manager software, the
interpreter, and user programs.

The remainder of the Global memory region is the user area in which
application programs and monitor command programs execute.
Irrespective of the actual memory address of the user area it begins

MACHINE CODE NUCLEUS

Interpreter
Basic I/O

MONITOR

Loader, etc.
System Area

USER AREA

Bootstrap

Run request

Run request
CHAIN
EXEC
LOAD
RUN

NUCLEUS

MONITOR

COMMANDS

SYSTEM
RESIDENCE
DEVICE

PROGRAM
ALPHA

PROGRAM
OMEGA

PROGRAM
RESIDENCE
DEVICE GLOBAL SYSTEM MANAGER MEMORY

REGION

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 54 of 141

at Global Cobol location zero, the interpreter being responsible for
the mapping of Global Cobol locations to machine addresses.

4.8.2 Program Preparation
User programs are held as files on a volume which resides on the
program residence device. Each file on this volume is identified by a
unique 8 character name which, for a program file, is termed the
program-id. Alternatively, up to 100 programs can be held in a single
library file, but even so each program is still identified by its
unique program-id.

The linkage editor is used to create program files by combining one or
more compilations together with access methods and system routines
from the system library. When the linkage edit takes place you can
specify:

 the user compilation(s) that are to be combined;

 the program-id to be used for the resulting file;

 the storage area the program is to occupy.

The first procedure division statement of the first compilation
submitted to the linkage editor becomes the program's entry point.

Note that the program-id bears no relation to the program name which
appears in the PROGRAM statement introducing each compilation. The
program name identifies an individual compilation; the program-id
identifies the program file that results from linking one or more
compilations.

The Global Cobol User Manual describes program preparation in more
detail.

4.8.3 Command Programs
The greater part of Global System Manager consists of command programs
which execute in the user area just like user application programs. In
this way the functions of a comprehensive Global System Manager are
provided without a consequent increase in main storage requirements.

Command programs reside on the system residence device in the command
library. The first character of the program-id of a command program is
always the $ character. This serves to distinguish command programs
from user programs: an application programmer must never create a
program whose program-id contains the $ character.

Global System Manager commands are described in the Global System
Manager and Global Utilities manuals.

4.8.4 Running a Program
To start a session the operator initiates Global System Manager using
the start-up procedure described in the Global Operating Manual. (This
will usually be little more complicated than loading a diskette and
pressing a button.) Once you have signed on, Global System Manager
responds with the ready prompt or main menu.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 55 of 141

The operator can either supply the name of a command program (on the
system residence device), the name of an application program (on the
program residence device) or type the appropriate option number in the
menu, if one is displayed. For example:

 Reply $COBOL to invoke the Global Cobol compiler;

 Reply SALES to run your sales ledger program;

 Type 1 to select option one from the menu, if a menu is
displayed.

In either case a program is loaded into the user area and control
passed to its entry point. (The characters keyed are padded with
rightmost blanks, if necessary, to make up the eight necessary for the
program-id.)

If the program terminates in error, executes a STOP RUN statement, or
EXITs from the highest level of control, the resident monitor is re-
entered. The monitor will display diagnostic information, if it is
required, and allow the debugging facility to be invoked, should this
prove necessary. Eventually, however, the ready or main menu prompt
will be redisplayed to allow the operator to execute a command or run
another application program.

4.8.5 The CHAIN and RUN Statements
Control can be passed from one program to another without operator
intervention by means of the CHAIN or RUN statement. RUN will in
addition:

 close any files that are currently open without completing any
outstanding write operations;

 release any regions locked by the LOCK statement;

 re-establish teletype mode;

 set system variable $$RUN to 1;

 set system variable $$ESC to 0;

 reset the library index pointer, $$INDE, to its initial value

addressing the top 1134 bytes of the user area;

 release any free memory acquired by the FREE$ routine;

 unload any temporary user stack items created by the LOAD$ system
routine.

Normally you use CHAIN to pass control between programs of the same
application, and RUN to invoke the first program of a separate system.
You code:

CHAIN A
or:

RUN A

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 56 of 141

where A is a character variable or literal containing the program-id
of the program to which you wish to pass control. If A is more than 8
bytes in length only the first 8 will be used for the program-id. If A
is less than 8 bytes long it will be extended with rightmost blanks to
make up the program-id.

Note that the RUN statement will cause a program check if used on a
pre-5.1 system.

The effect of the statement is to load and pass control to the program
it identifies. However, if any error arises during the loading process
(because the program is not present on the program residence device,
for example) the program that attempted the statement will simply be
terminated in error.

A program entered via a CHAIN or RUN statement can itself issue a
CHAIN or RUN statement. An EXIT statement issued at its highest level
of control, a STOP RUN, or an error will cause control to be returned
to the monitor as described in 4.8.4.

Chained programs are normally linkage edited to start at a common
location and therefore overlay each other. However, you can pass up to
16 bytes of parameters between the programs of a chain by using $$AREA
for this purpose. Alternatively, a larger parameter area may be
provided by defining the area, which can contain any number of
uninitialised data declarations, at the very beginning of the working
storage of the very first compilation of each program involved.

The safest technique is to use the COPY statement to include a common
copy book in each of the initial compilations. The parameter area thus
defined will begin at the common starting location of each program.
The uninitialised area should always be of even length; if not the
last byte will be initialised to binary zero.

Within the parameter area it is vital that none of the data
definitions contains a VALUE clause. Providing this is the case the
storage occupied by the parameter area remains unchanged when the
CHAIN statement is executed. This is because the bytes preceding the
first VALUE clause, map or file definition in a compilation are not
initialized (as explained in 3.4.5). The parameter area can therefore
be used to pass a data structure of any complexity between chained
programs.

4.8.6 The EXEC Statement
The EXEC statement provides the capability for conventional overlay
handling. You code:

EXEC A [USING B C ...]

where A is the character variable or literal used to construct the
program-id of the program to which you wish to pass control. The entry
point of that program must be an ENTRY statement whose USING clause
(if any) matches the USING clause (if any) of the EXEC statement. The
operands B, C.... within an EXEC statement's USING clause may assume
any of the formats valid in a CALL statement's USING clause, as
described in 4.5.4.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 57 of 141

The EXEC statement is very similar to CALL. The difference is that the
entry point address is determined at run-time, rather than by the
linkage editor. If any error arises during the loading process
(because the requested program is not present on the program residence
device, for example) the program that attempted the EXEC statement
will be terminated in error.

An EXIT statement issued from the highest control level of a program
entered via EXEC returns control to the instruction following the EXEC
statement. A STOP RUN statement, on the other hand, bypasses the
calling program and returns control to the monitor directly, as
described in 4.8.4.

When you linkage edit an overlay program to be entered via EXEC you
are responsible for making sure that the program does not overlay any
part of the calling program that will be needed later. For this reason
chaining is simpler to use than EXEC, and is to be preferred except
when the called program needs to make use of service routines within
the caller.

4.8.7 The LOAD Statement
The LOAD statement is coded:

LOAD A

where A is a character literal or variable to be used in constructing
the program-id, as described above.

The effect of the LOAD, if successful, is to fetch the program into
the user area without passing control to it. A pointer to the
program's entry point is remembered for you in the system variable
$$EPT so that it can subsequently be entered by a pointer-based CALL.
Indeed, the sequence:

LOAD A
CALL $$EPT USING B C ...

is identical in effect to:

EXEC A USING B C ...

LOAD differs from EXEC in the processing that takes place if it is
unsuccessful. Whereas EXEC terminates the calling user program in
error, LOAD generates a load exception which can be tested for by an
ON EXCEPTION statement immediately following the LOAD. If this
statement is not coded and a load error occurs the program is
terminated in error just as if EXEC had been used.

When a load exception takes place $$EPT remains unchanged but the
system variable $$COND is set to indicate the reason for the load
error:

 $$COND = 1 means that an irrecoverable I/O error occurred when
attempting to load the program;

 $$COND = 2 means that the program was not present on the program

residence device;

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 58 of 141

 $$COND = 3 means that the program file was too large to fit in

the available user area.

4.8.8 System Variables Used by the Loader
Whenever program loading takes place, either because the operator
supplied the name of the program to run in response to the ready
prompt, or because a CHAIN, EXEC, LOAD or RUN statement was executed,
the system variable $$PGM is set to the program-id involved. The
system variable $$RUN is set to 1 if the load operation was in
response to an operator request or RUN statement and to 0 if it was
due to a CHAIN, LOAD or EXEC.

$$RUN can be tested to prevent programs which should only be executed
by controlling programs from being run by mistake.

As explained in the File Management manual each direct access value
used by Global System Manager is identified by a unique volume-id, a
name of up to 6 characters. You may set the PIC X(6) system variable
$$PVOL to the volume-id of the disk or diskette containing your
program immediately before executing the CHAIN, RUN, LOAD or EXEC
statement responsible for loading it to cause Global to check that the
identified volume is online and prompt the operator to mount it if
necessary. $$PVOL is then reset to its normal state, LOW-VALUES, so
that no further checking takes place until you set up another volume-
id. Thus, for example, to ensure that volume PRGRES is online before
attempting to chain to program SALES:

MOVE "PRGRES" TO $$PVOL
CHAIN "SALES"

The volume-id checking causes an extra access to the program volume,
so it should be requested only if necessary.

Following any successful load operation $$EPT is set to point at the
entry point of the newly loaded program. However, if the operation
fails $$EPT remains undisturbed. If the statement affected is a LOAD
$$COND is set to 1, 2 or 3 to indicate the reason for the failure, as
described in 4.8.7.

4.8.9 The Loader's Use of High Memory
When a load operation involves a program library the top 1134 bytes of
the user area are temporarily acquired for the library index record, a
table containing the program-id and file address of each member of the
library. The high area is only used for part of the operation and can,
indeed, be overwritten by the incoming program.

Normally the temporary overwriting of the top 1134 bytes has no effect
on chained programs, or conventionally developed overlay systems in
which the deeper levels of overlay occupy the higher memory locations.
However, some special programs may require to load overlays, yet still
retain information at the top of the user area, for their own
purposes. Global Cobol therefore provides a PIC PTR system variable
named $$INDE which you can set to address an alternative area which
the loader can use for the index record when high memory is already
occupied. Use of $$INDE is explained in detail in the Global
Development System Subroutines Manual.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 59 of 141

4.9 The EDIT Statement
The EDIT statement allows a numeric value to be edited into special
formats. It is coded:

EDIT A INTO B FORMAT C

where A is a computational or display numeric variable, or a
computational literal. It can have a maximum of 12 digits preceding
the decimal point, and a maximum of 6 following the decimal point. B
must be a character variable with a maximum length of 30 characters. C
may be a character variable or literal.

The value given by A is edited according to the format specified by C
and the result is placed, right justified, in B. The number of decimal
places specified in the picture clause of A (or the number of digits
following the decimal point if a literal) determines the number of
decimal places that will appear in the result.

4.9.1 The Edit Format
The edit format is a character variable or literal of 1 to 4
characters specifying the editing to be performed. If it is shorter
than 4 characters the remaining positions are treated as spaces. The
format consists of 3 separate fields:

 character 1: the float or fill character;
 character 2: the comma insertion indicator;
 characters 3 & 4: the sign editing parameters.

Fill characters cannot be used with negative numbers, and the 0 fill
character should not be used in combination with comma insertion. The
use of each of these parameters is given in Table 4.9.1, and examples
of their use are shown below:

VALUE (A) FORMAT (C) RESULT (B)

xxxxxxxxxxx
1234.56 "$" $1234.56
1234.56 "$C" $1,234.56
1234.56 "*" ****1234.56
1234.56 "*C" ***1,234.56
1234 "0" 00000001234
1234.56 "NC" 1,234.56
123456 "NC" 123,456
1234567 "NC" 1,234,567
1234.56 "ND" 1.234,56
1234567 "ND" 1.234.567
1234.56 "BC" 1,234.56
0.00 "BC"
-1234.56 "NC" -1,234.56
-1234.56 "$C" -$1,234.56
-1234.56 "NC-" 1,234.56-
1234.56 "NC-" 1,234.56
-1234.56 "NC()" (1,234.56)
-1234.56 "$C()" ($1,234.56)
-1234.56 "NCDB" 1,234.56DB

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 60 of 141

1234.56 "NCDB" 1,234.56
-1234.56 "NCCR" 1,234.56CR
-1234.56 "NDCR" 1.234,56CR

FORMAT
CHARACTERS

VALUE MEANING

1

"*" Replace leading spaces by "*"s
(number must
be +ve).

"0" Replace leading spaces by "0"s
(number must
be +ve).

" " or "$" or "x" Prefix number with a " " "$", or
"x" symbol.

"B" Blank out number if zero.
"N" None of the above.

2

"C" Insert a comma between each group
of 3 digits to the left of the
decimal point, which appears as a
period (full stop).

"D" Insert a period between each
group of 3 digits to the left of
the decimal point, which appears
as a comma.

"N" or " " Do not insert commas or dots.
3 & 4 " " Prefix number with a "-" if

negative.
"()" Enclose number in parentheses if

negative.
"- " Suffix number with "-" if

negative.
"x " Suffix number with "x" if

negative.
"CR" or "DB" or "DR"
or "xx"

Suffix number with 2 characters
specified if
negative.

x represents any single character other than special characters,
described separately.

Table 4.9.1 - Edit Formats

4.9.2 Overflow
Overflow will take place if operand A is greater than or equal to 1013.
Overflow will also take place if B is not long enough to hold the
result of the edit operation. Table 4.9.2 gives the minimum number of
characters required for the various edit formats and values to be
edited.

Overflow will also occur if an attempt is made to edit a negative
value using a format which specifies a 0 or * fill character.

SIGN EDITING Leading –

sign and
value always

leading – or
single
character

() or
double
trailing

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 61 of 141

positive trailing
sign

sign, e.g.
CR, DR, DB

COMMA INSERTION? Y N Y N Y N
CURRENCY SYMBOL? Y N Y N Y N Y N Y N Y N
NUMBER OF DIGITS
(ignoring leading zeros)

1
2
3
4
5
6
7
8
9
10
11
12

2
3
4
6
7
8
10
11
12
14
15
16

1
2
3
5
6
7
9
10
11
13
14
15

2
3
4
5
6
7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
11
12

3
4
5
7
8
9
11
12
13
15
16
17

2
3
4
6
7
8
10
11
12
14
15
16

3
4
5
6
7
8
9
10
11
12
13
14

2
3
4
5
6
7
8
9
10
11
12
13

4
5
6
8
9
10
12
13
14
16
17
18

3
4
5
7
8
9
11
12
13
15
16
17

4
5
6
7
8
9
10
11
12
13
14
15

3
4
5
6
7
8
9
10
11
12
13
14

NOTE: For decimal numbers use the number of digits before the decimal
point, then add (1 + number of decimal places) to the size given.

Table 4.9.2 - Sizes of Edited Integer Values

4.10 Statements for Networking and Multi-user
Working
All variants of Global System Manager (except for a single user
system) are capable of running a number of co-operating programs at
the same time. The concurrent version of Global System Manager allows
up to 9 programs to time-share the processor on a single screen
computer, and each of them will continue running and writing to the
screen even when its partition is not actually being displayed. The
multi-user version of Global System Manager provides a conventional
multi-user environment in which several programs, each of them running
on a separate screen or partition, time-share a single processor.
Global System Manager running on a network allows a number of single
and multi-user computers to be linked together in a local area network
in order to share programs and data files.

Programs which time-share a processor are suspended at the end of a
time slice, or when waiting for a slow I/O operation to complete, for
example a print or accept. There is also a SUSPEND statement which
allows a program to explicitly request its own suspension for a period
of time.

Programs will often require to share data files. In order to ensure
consistency during the updating of shared files two special
statements, LOCK and UNLOCK, are provided. These statements are
described in the Global File Management Manual and Global Data
Management Manual.

Programs containing LOCK, UNLOCK and SUSPEND statements will run
unchanged under the single-user version of Global System Manager.

4.10.1 The SUSPEND Statement

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 62 of 141

SUSPEND causes the program to be suspended for a period of time. It is
coded:

SUSPEND [seconds]

The optional seconds parameter is the name of a PIC 9(4) COMP variable
or integer literal containing the number of seconds for which the
program is to be suspended. If the parameter is omitted, or the value
supplied is less than 1, then the program is simply suspended for a
brief period, as if it had reached the end of its time-slice, allowing
other users of the processor to execute.

If characters are keyed at the console when a program is suspended,
then the suspend will be cancelled so that the program can process the
input if necessary. (The CHECK$ routine described in the Global
Development System Subroutines Manual is used to determine whether
unsolicited console input, not requested by a prompt, is present.)

A SUSPEND seconds statement executed in a single-user environment will
operate as described above, providing that the system supports a
timer. If it does not, the SUSPEND request will simply be ignored.

SUSPEND is always effective under other variants of Global System
Manager, since timer support is a prerequisite for multi-user versions
of Global System Manager.

4.10.2 Programming Notes
The SUSPEND statement should be used when you know your program cannot
proceed until some other user completes an activity. Since the only
way of co-operating jobs communicating is by means of shared files, a
typical use of SUSPEND by, say, a special purpose spooling program,
might be as follows:

 read the shared communications file to see if a report requires
printing;

 if no report is available, execute a SUSPEND for 60 seconds, then

repeat the first step;

 otherwise, print the report then update the communications file
to indicate it has been printed (normally the file will have to
be locked, to prevent simultaneous updates by two users);

 repeat this process.

The $SP command employs a similar technique using:

SUSPEND scan-rate

which causes the program to wait for a user-definable number of
seconds when there are no files available to print. Little time is
wasted in practice since, in a highly active system, $SP will seldom
manage to clear the backlog of files awaiting its attention, and the
SUSPEND statement which causes it to wait will only be executed
infrequently.

Chapter 4 – The Procedure Division

Global Development Cobol Language Manual V8.1 Page 63 of 141

Note that it is not necessary to issue SUSPEND statements at frequent
intervals during batch processes to allow interactive programs the
chance to operate because the time slicing mechanism automatically
ensures that no processor-bound job can monopolise the system.

4.11 File Processing
The Global Cobol File Management Manual contains full information
regarding Relative Sequential Files, Indexed Sequential Files,
Variable Length Record Files, Text Files and Basic Direct Files,
together with Physical Sector Access, Native File access, Data
Security, advanced file handling and the Multi-key Sort command.

The Global Cobol Data Management Manual contains all the relevant
information concerning the Global Data Management System (DMAM).

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 64 of 141

5. Using Pointers, Based Areas and Global
Symbols

5.1 Procedure Division Statements for Pointer
Handling

5.1.1 The MOVE Statement
A MOVE statement of the form:

MOVE P TO Q [R S ...]

can be used to transfer the value within a pointer variable P to one
(or more) pointer variables Q (R S ...). A maximum of 7 variables may
follow the word TO. If there is more than one, the MOVE statement is
said to be multi-target and is equivalent to a number of simple MOVEs.
For example:

MOVE W TO X Y Z

has exactly the same effect as:

MOVE W TO X
MOVE W TO Y
MOVE W TO Z

The pointer variables appearing in the MOVE statement may be either
simple or indexed.

5.1.2 The POINT Statement
The POINT statement allows you to set a pointer to address a
particular location dynamically. You code:

POINT P AT A

where P is a simple or indexed pointer variable, and A is a paragraph
name, section name, entry name, variable name, literal, filename or
mapname.

If A is a paragraph or section name, P is set to address the first
executable instruction of the paragraph or section, which must appear
in the current compilation.

If A is an entry name, P is set to address the first executable
instruction at the entry point. The entry name must appear in an ENTRY
statement or CALL statement in the current compilation.

If A is a variable name or a literal, P is set to address the first
byte of the area occupied by that variable or literal. If A is a
filename or mapname, P will address the first byte of the
corresponding file or map definition. A variable name, filename or
mapname may appear in either working storage or the linkage section,
and a variable may be indexed.

5.1.3 Transfer of Control Statements

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 65 of 141

You may use a pointer as the first (or only) operand of a GO TO,
PERFORM or CALL statement. For example:

GO TO P
PERFORM P
CALL P [USING B C ...]

In the case of GO TO and PERFORM, the pointer should address the
paragraph or section to which control is to be passed. For a CALL the
pointer should address an entry statement whose USING clause, if any,
matches that of the CALL statement.

5.1.4 IF and DO Statements
Pointers can be compared using any of the following conditions in an
IF or DO statement, as described in section 4.6 (P and Q are both
simple or indexed pointer variables):

P EQUAL Q or P = Q
P NOT EQUAL Q or P NOT = Q
P LESS Q or P < Q
P NOT LESS Q or P NOT < Q
P GREATER Q or P > Q
P NOT GREATER Q or P NOT > Q

The comparison takes place treating the pointer's senior bit as a 32K
unit bit rather than a sign bit, so that the result of the compare is
as you would expect. For example, if P contains the value 33,502 and Q
the value 28,000 then the statement:

IF P GREATER Q GO TO AA090

will cause control to pass to AA090.

5.1.5 Intermediate Code Statements using Pointers
Two intermediate code statements, $PUSH and $POP, also manipulate
pointers. Their main use is in selecting a particular entry from a
table, when the length of each entry is only known at run-time. $PUSH
and $POP are explained in section 6.7.

5.2 Pointer Arithmetic
There are no special procedure division instructions to help you to
perform arithmetic on pointers. This is somewhat complex because a
pointer cannot be treated as a straightforward computational item
since its senior bit is interpreted as a 32K bit rather than a sign
bit. This makes arithmetic operations rather tortuous because it is
necessary to use three-byte computational quantities whose junior two
bytes hold the actual pointer values. This can be accomplished by the
careful use of redefinitions.

The examples which follow show the most straightforward, rather than
the most efficient, way of performing the common operations involving
two pointers, P and Q. It is assumed that the following data
declarations have been made in working storage:

77 QARITH PIC S9(6) COMP
77 PARITH PIC S9(6) COMP
01 FILLER REDEFINES PARITH

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 66 of 141

 03 FILLER PIC X
 03 POINTER PIC PTR

5.2.1 Adding an Offset to a Pointer
This example increments P by the computational value OFFSET giving the
result in Q, which now addresses an area (OFFSET) bytes from that
addressed by P:

MOVE 0 TO PARITH

MOVE P TO POINTER
ADD OFFSET TO PARITH
MOVE POINTER TO Q

5.2.2 Determining the Distance between Two Pointer Locations
In this example we calculate the number of bytes separating the
location addressed by pointer Q from the location addressed by pointer
P. The result is placed in the computational variable DISP:

MOVE 0 TO PARITH

MOVE Q TO POINTER
MOVE PARITH TO QARITH
MOVE P TO POINTER
SUBTRACT PARITH FROM QARITH GIVING DISP

5.3 Based Areas
A based area is defined by a level 01 group coded in the linkage
section. The level 01 data declaration itself must use the BASED
clause and appear as follows:

01 name BASED pointer

where pointer is the data name of a simple pointer variable defined in
working storage.

By assigning a value to the base pointer you effectively position the
fields of the level 01 group to overlay the area that the pointer
addresses. Once this is done other Global Cobol statements can be used
to manipulate the fields of the group, and thus the area, in the
normal way.

5.3.1 Example
Figure 5.3 shows the complete code of a simple subroutine making use
of a based area. The routine is invoked by a CALL statement of the
form:

CALL UPDATE USING element standard-area

where element is a 12-byte area containing an element type and, if the
type is "EX", a pointer to a 23-byte extension area. The second
parameter, standard-area, identifies the extension to be used if the
type is not "EX".

If the element type is "EX" the routine uses a MOVE statement to set
EXAREA's base pointer from EPTR to address the current element's
extension area. Otherwise a POINT statement is used to set EXAREA's
base pointer to address the standard extension area supplied as the
second parameter. The extension area flag, EXFLAG, is then tested and
if it is set to ASCII space no further processing is required and the

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 67 of 141

routine exits. If the flag is not space the extension area count
EXCOUNT is incremented and then the routine exits.

To keep this example simple it has had to be rather artificial.
However, it does serve to illustrate the power of Global Cobol based
area handling in system programming applications.

PROGRAM EXSUB
DATA DIVISION

*
77 P-EXAREA PIC PTR * POINTS AT CURRENT EXTENSION
*
LINKAGE SECTION
*
* GROUP DESCRIBING AN ELEMENT SUPPLIED BY CALLING PROGRAM
*
01 ELEMENT
 03 ETYPE PIC X(2) * ELEMENT TYPE
 03 ENAME PIC X(8) * ELEMENT NAME
 03 EPTR PIC PTR * POINTER TO EXTENSION AREA

*
* STANDARD EXTENSION AREA, SUPPLIED BY CALLING PROGRAM
*
01 SEXT
 03 FILLER PIC X(23)
*
* GROUP DESCRIBING AN EXTENSION AREA
*
01 EXAREA BASED P-EXAREA
 03 EXCOUNT PIC 9(4) COMP
 03 EXFLAG PIC X
 03 EXDATA PIC X(20)

*
PROCEDURE DIVISION
*
ENTRY UPDATE USING ELEMENT SEXT
*

IF ETYPE = "EX"
MOVE EPTR TO P-EXAREA * SELECT EXTENSION IF PRESENT

ELSE
POINT P-EXAREA AT SEXT * ELSE USE STANDARD EXTENSION

END
IF EXFLAG SPACE EXIT

ADD 1 TO EXCOUNT * INCREMENT
EXIT

ENDPROG

Figure 5.3 - Based area usage example

5.4 The BASE Statement
The BASE statement can be used to position any proper linkage section
group to overlay a given area, or to overlay an area addressed by a
pointer. A proper linkage section group is either a file or map
definition (identified by its filename or mapname), a based area, or a
level 01 or 77 item. As its name implies, it must be coded in the
linkage section. In addition, to qualify as a proper linkage section
group a level 01 or 77 item must not itself be a redefinition of a
subordinate data item (level 02 to level 49) or a system variable.

There are two forms of the BASE statement:

BASE group ON P
BASE group AT A

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 68 of 141

The BASE...ON form causes the proper linkage section group identified
by its first operand to overlay the area addressed by its second
operand, which must be a simple or indexed pointer variable.

The BASE...AT form causes the proper linkage section group identified
by its first operand to overlay the area starting at the first byte of
its second argument. The second argument may be either a simple or
indexed variable, a file or map definition (identified by its filename
or mapname) or a literal.

5.4.1 Example - Handling a 2-dimensional Array
Figure 5.4.1A is an example showing the use of the BASE statement to
process a 2-dimensional array. The technique can readily be extended
to multi-dimensional arrays.

The array to be processed is a 10 by 12 matrix of PIC 9(4) COMP
elements, each of which is therefore 2 bytes in length. The
arrangement of the elements in main storage is shown in Figure 5.4.1B,
and the actual storage area involved is reserved by the field MATRIX
of the example program of Figure 5.5.1A. The data declaration in fact
defines the matrix as 10 rows of 24 bytes, so that MATRIX(I), for
example, selects row I.

Within the linkage section a level 01 group ROW, corresponding to a
single row of the matrix, has been set up. The subordinate field ROW-
EL is defined as an indexed variable, in order that ROW-EL(J) will
select the J'th element of any row overlaid by ROW. The logic to
zeroise the I,J'th element is therefore simply:

 Base ROW at the I'th row of MATRIX (BASE ROW AT MATRIX(I))

 Zeroise the J'th element of that row (MOVE 0 TO ROW-EL(J)))

PROGRAM MAIN
DATA DIVISION
*
* MATRIX DEFINED AS 10 ROWS EACH 24 BYTES (12 ELEMENTS) LONG

*
77 MATRIX OCCURS 10 PIC X(24)
*
77 I PIC 9(4) COMP
77 J PIC 9(4) COMP
.
.
.
LINKAGE SECTION
01 ROW
 03 ROW-EL OCCURS 12 PIC 9(4) COMP

.

.

.
PROCEDURE DIVISION
.
.
.
*
* SET I,J'TH ELEMENT OF MATRIX TO ZERO
*
BASE ROW AT MATRIX(I)

MOVE 0 TO ROW-EL(J)

Figure 5.4.1A - Example of 2-D array access using base

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 69 of 141

 1 2 3 4 5 6 7
 8 9 10 11 12
 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
 (1,9) (1,10) (1,11) (1,12)

 13
 24
 (2,1)
 (2,12)
 . .

. .

 109
 210
 (10,1)
 (10,12)

 24-bytes

Figure 5.4.1B - Memory map of 2-D array

5.4.2 Programming Notes
If B is the name of a based area, with P as its base pointer, then the
statement:

BASE B ON Q

has as exactly the same effect as:

MOVE Q TO P

whilst:

BASE B AT A

is the same as:

POINT P AT A

The advantage of the BASE statement is that it is not necessary to
introduce a special additional pointer in order to use it: it can be
employed to position a linkage section group which is not defined as a
based area. However, the storage allocated by the compiler is the
same, since an internal pointer is set up in this case.

Note, however, that use of the BASE statement is mandatory when it is
necessary to position a file or map definition, since neither can be
defined as a based area. You must code either:

BASE filename ON P
BASE mapname ON P

or:
BASE filename AT A
BASE mapname AT A

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 70 of 141

where filename and mapname are, respectively, the first operands of an
FD or MD statement coded in the linkage section.

5.5 The GLOBAL Statement
The GLOBAL statement causes its operand to be defined as a global
symbol. You code:

GLOBAL symbol

It may appear anywhere within the data division. The statement, which
is simply a directive to the compiler, occupies no storage. Any number
of GLOBAL statements may be coded providing the number of global
symbols in use by a compilation does not exceed 127.

The symbol used in a GLOBAL statement can be a data name, filename,
mapname, paragraph name or section name, and need not necessarily be
defined in the current compilation. However, if the symbol is defined
then it must be part of either working storage or the procedure
division: during compilation any GLOBAL statement referring to a
symbol defined in the linkage section will be flagged with a warning
message.

Entry names appearing in CALL and ENTRY statements in the program are
automatically made global symbols, and there is therefore no need to
code GLOBAL statements for them. (If you do code a GLOBAL statement
with such an entry name as its operand the compiler will accept it,
but the statement will have no special effect and might as well be
omitted.) Names of common and external sections are also automatically
made globals.

Each global symbol should be defined in just one of the compilations
supplied to the linkage editor. If the linkage editor detects a global
symbol with two or more conflicting definitions this is treated as a
fatal error and no program file is produced.

Although a global symbol may only be defined once, it can of course be
referenced by as many compilations as require it. To refer to a global
symbol which is not defined in the current compilation you must
introduce it in a GLOBAL statement and then use the symbol in the
VALUE clause of a pointer data item. Alternatively, if the symbol is a
paragraph name, section name or entry name you can pass control to the
first instruction of the paragraph, section or subroutine by using the
global as the first operand of a GO TO, PERFORM or CALL statement.

If the symbol is a data name you must define the area it labels as a
based area using the pointer you have established.

If the symbol is a filename or mapname you must code an appropriate FD
or MD in the linkage section. Then, before using this FD or MD, you
must execute a BASE statement for it, to position it to overlay the
area addressed by the pointer.

In practice, the use of common and external sections provides easier
and more efficient access to externally defined data than the GLOBAL
statement, and should be used in preference. One remaining use of a
GLOBAL statement is to provide a dummy reference to the entry point of
a routine in a root segment, to force that routine to be included from

Chapter 5 – Using Pointers, Based Areas and Global Symbols

Global Development Cobol Language Manual V8.1 Page 71 of 141

a library during a linkage-edit. Thus, for example, if you want to
include the PASS$ routine in the root program, you simply code:

GLOBAL PASS$

at the start of the root program, and it will be included even though
it is not referenced by any CALL statement.

5.5.1 Programming Note - Undefined Global Symbols
A global symbol is said to be undefined when it does not appear within
the working storage or procedure division of any compilation processed
by the linkage editor during the construction of the program file. Any
pointer with a value clause referring to an undefined global will be
initialised to #0000.

When the linkage editor detects undefined globals it reports the
number found and the actual missing symbols both on screen and in the
map listing. A program file is produced since in some cases (typically
during testing) the globals may intentionally be undefined.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 72 of 141

6. Intermediate Code Support

6.1 Introduction
To achieve portability Global Cobol statements are compiled into an
intermediate code which is interpreted at run-time. Intermediate code
is a simple, one-address, order code. The statements described in this
section and summarised in Table 6.1 allow you to interface with the
interpreter at a more basic level than normal Global Cobol. By using
them you can perform efficiently certain operations which are either
very slow, or simply not available, in Global Cobol itself.

For example, you can move or compare character strings whose lengths
are not known until run-time with a short sequence of intermediate
code statements. The same processing in Global Cobol would involve
defining both strings as single-character arrays and using a DO loop
or equivalent to move or compare the strings character by character,
incrementing and testing an index. This might be several hundred times
slower than the intermediate code implementation.

Similarly, you can use intermediate code to perform conversions from
computational to display numeric, or vice versa, of quantities whose
format (i.e. size and number of decimal places) is only known at run-
time.

You may write intermediate code statements anywhere within the
procedure division of a Global Cobol program and mingle them freely
with other Global Cobol statements. An intermediate code statement is
readily identified because its verb begins with a $ character. The
verb may be preceded by a paragraph name, and the statement may be
commented, in the normal way.

For complete and detailed documentation of the intermediate code
instructions you should refer to Chapter 4 of the Global Development
Toolkit Manual.

INTERMEDIATE
CODE STATEMENT

REF DESCRIPTION

Character processing instructions

$SET X [L] 6.3.1 Set source string register
$MOVE X [L] 6.3.2 Move source string to destination

string
$COMP X [L] 6.3.3 Compare source string with destination

string
$EXCH X [L] 6.3.4 Exchange source string with destination

string

Transfer of Control Instructions

$JUMP cond label 6.4.1 Jump to label depending on cond
$CALL cond label 6.4.2 Call label depending on cond
$STOP cond code 6.4.3 Stop with code depending on cond
$EXIT cond code 6.4.4 Exit with code depending on cond

Computational Instructions

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 73 of 141

$LOAD C [F] 6.5.1 Load computational variable into

accumulator
$STORE C [F] 6.5.2 Store computational variable from

accumulator
$ADD C [F] 6.5.3 Add to accumulator
$ADDS C 6.5.4 Add to accumulator and store
$SUB C [F] 6.5.5 Subtract from accumulator
$SUBS C 6.5.6 Subtract from accumulator and store
$MUL C [F] 6.5.7 Multiply accumulator
$MULS C 6.5.8 Multiply accumulator and store
$DIV C [F] 6.5.9 Divide into accumulator
$DIVS C 6.5.10 Divide into accumulator and store
$AND C [F] 6.5.11 Perform logical AND
$ANDS C 6.5.12 Perform logical AND and store
$RND C [F] 6.5.13 Round accumulator
$RNDS C 6.5.14 Round accumulator and store
$STUS C [F] 6.5.15 Store unsigned from accumulator

Numeric Conversion Instructions

$BIN N [F] 6.6.1 Convert display numeric variable into

binary in accumulator
$DEC N [F] 6.6.2 Convert accumulator to decimal display

numeric

Pointer Handling Instructions

$PUSH A [L] 6.7.1 Push pointer onto parameter stack
$POP P 6.7.2 Pop pointer from parameter stack

Indexed Variable Management Instructions

$LOADI C 6.9.1 Load Index (I register)
$LOADQ C 6.9.2 Load Qualifier (Q register)
$LOADL C 6.9.3 Load Length (L register)

Other Instructions

$TRAP "trap-id" 6.10.1 Force trap program check
$RESUME 6.11.1 Resume failed program

Table 6.1 - Intermediate Code Statements

6.2 The Virtual Machine Concept
To understand how to use intermediate code you require an outline
appreciation of how the interpretive system works. This is best
approached by considering the interpreter to be a rather simple
"virtual computer". The instructions the virtual CPU obeys, and the
internal registers with which it works, are, naturally enough,
particularly suitable for implementing Global Cobol. This section
therefore provides an overview. Sections 6.3 onward describe the
individual intermediate code statements in detail, in terms of the
concepts introduced below, and give examples of their use.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 74 of 141

6.2.1 Instructions, Operands and Qualifiers
Each Global Cobol statement may expand into several instructions to be
executed by the virtual computer. Similarly this applies to
intermediate code statements, which generate multiple instructions
when they have indexed operands, for example. Nevertheless, in the
case of an intermediate code statement only one main instruction is
generated. In the subsequent description the Move instruction, for
example, is the main instruction associated with the $MOVE statement,
the Push instruction that associated with the $PUSH statement, and so
on.

The virtual machine is a simple one-address computer. Each main
instruction processed supplies the virtual CPU with an operand and a
qualifier. The qualifier indicates the length, in bytes, of a
character operand, or the format of a display numeric or computational
operand. When the qualifier represents a length in bytes then it is a
positive integer no greater than 65,535 (32,767 under V5.0 or
earlier).

A format qualifier is also an integer, encoded so as to contain the
sign option and number of decimal places before and after the point.
The value, v, of a format qualifier is given by the formula:

v = 128s + 16q + p

where:

s is 1 if the item is signed, 0 otherwise;

q is the number of places following the decimal point, between 0
and 7 inclusive;

p is the number of places before the decimal point, between 1 and
15 inclusive.

Further, to be valid, 0 < p + q < 19. For example, the format value
for a PIC S9 (4,2) item is 4 + 32 + 128 = 164.

The quantity s is not used in format values applying to computational
operands, which are always considered to be capable of holding
negative values.

The format value also implies the length in bytes of the display
numeric or computational operand to which it applies. This is a
function of the quantities s, p and q.

6.2.2 The Accumulator
Arithmetic and numeric conversion is performed using an internal
register of the virtual machine known as the accumulator. The
accumulator holds the binary value of a quantity in its mill, and the
format of this quantity in its scaling register. Whenever any
arithmetic or conversion instruction is executed its format qualifier
determines the scaling or conversion requirements of the operand, and
its size in bytes.

6.2.3 The Overflow Flag

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 75 of 141

The Store, Decimal and Binary instructions concerned with numeric
conversion can all fail to complete properly because the format of the
operand is incompatible with the value in the accumulator. For
example, the accumulator might contain a value that is too large to be
stored in a PIC 9(4) COMP field specified as the operand of a Store
instruction. In such a case the offending instruction is terminated
and the virtual machine's overflow flag is set on. The contents of the
accumulator, which may have been corrupted before the condition was
detected, are usually unpredictable.

The arithmetic instructions (ADD, SUB, MUL and DIV) can suffer
overflow for reasons described in Section 4.3.2.

The overflow flag is tested and cleared by the Global Cobol ON
OVERFLOW statement immediately following the intermediate code
statement which causes the condition. If such a statement is not
present the offending program will be terminated in error.

6.2.4 Conditional Transfer of Control
The transfer of control instructions conditionally operate according
to the magnitude of the accumulator.

6.2.5 Character String Handling
The character instructions process strings which are defined by the
starting location of their operand together with its length qualifier.
In character operations the virtual machine makes use of an internal
source string register which is able to hold the location and length
of a string. This register is initialised by the Set instruction.

The source string may be moved to, compared with or exchanged with a
destination string specified by the operand and qualifier of a Move,
Compare or Exchange instruction. The sign of the accumulator indicates
the result of a comparison, so that a conditional instruction can be
used following the compare instruction.

6.2.6 Pointer Handling
Pointer manipulation takes place using the parameter stack, an
internal work area within the virtual machine. The Push instruction
places a pointer to its operand on the stack, whereas the reverse
instruction, Pop, removes the top pointer from the stack and stores it
in the first two bytes of its operand.

The parameter stack is also employed to transfer parameters supplied
in the USING clause of a CALL statement to the USING clause of an
ENTRY statement.

6.2.7 The Trap Flag
Each instruction processed by the virtual machine contains a one-bit
trap flag. When this flag is on, the interpreter generates a trap
program check which is reported by Global System Manager. Ordinary
Global Cobol procedure division statements are compiled into
instructions in which the trap flag is off, and normally the
programmer employs the debugging system to manipulate trap flags.
However, using the intermediate code $TRAP instruction (see 6.9.1),
you can generate an instruction with its trap bit set so as to
establish an automatic, identified breakpoint.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 76 of 141

6.3 Character Processing Instructions
Four intermediate code statements are provided to allow you to move or
compare character strings whose lengths are not known until run-time.
The statements consist of a verb followed by one or two arguments and
are coded:

$SET X [L]

$MOVE X [L]
$COMP X [L]
$EXCH X [L]

The second argument of each, the length qualifier, L, is optional.
When present it must be the name of a computational literal or a
simple (i.e. non-indexed) computational variable containing the length
in bytes of the character string operand, which may be zero except
under Global 5.0 or earlier.

Important note: The first argument to $SET, $MOVE, $COMP or $EXCH
instructions is treated as a character variable. However, the compiler
does not check that it is a character variable and if it is not then
the compiler will accept it but will generate a qualifier equal to the
byte length of the variable concerned. For example, If $SET has a PIC
9(4) COMP computational variable as an argument then it will treat it
as if it were a PIC X(2) variable. This is permitted so as to
facilitate complex operations without proliferating the redefinition
of the fields concerned. You must be particularly careful when coding
literal arguments as $SET 1234 and $SET "1234" have very different
meanings; the first sets a PIC X(2) field with the decimal value of
1234 (i.e. #04D2) whereas the second sets a PIC X(4) of value 1234
(i.e. #31323334).

The first argument, X, is a character variable or, for $SET and $COMP
only, a literal. If a variable, it may be indexed. When the second
argument is not present the length of X is derived from its Global
Cobol picture clause. However, if the second argument is present its
value overrides the picture clause information, which is ignored. In
particular, if the second argument is present and X is indexed, then
the length used for indexing is derived from the second argument, not
the picture clause of X. As the length supplied overrides the
qualifier, supplying an L field if X is a literal will have
unpredictable results. A length field should therefore not be supplied
if X is a literal.

Note that X and L must be variables or literals. Figurative constants
are not allowed in intermediate code instructions.

6.3.1 $SET - Set Source String Register
The $SET statement initialises the source string register to identify
its character string operand, X, as the current source string. The
length qualifier, from L or the picture clause of X, determines the
length in bytes of the source string.

The source string itself is not modified by the $SET statement.

6.3.2 $MOVE - Move Source String to Destination String

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 77 of 141

The $MOVE statement transfers the source string to the destination
string beginning at the first byte of its character string operand, X.
The length qualifier, from L or the picture clause of X, determines
the length in bytes of the destination string.

The move takes place one byte at a time from the leftmost (low
location) byte to the rightmost (high location) byte. If the source
string is longer than the destination string character truncation
takes place, the extra rightmost bytes of the source string being
ignored.

If the source string is shorter than the destination string the extra
rightmost bytes of the destination string are padded with ASCII
blanks. The source string register and the source string itself are
not modified by the $MOVE statement.

6.3.3 $COMP - Compare Source String with Destination String
The $COMP statement compares the source string with the destination
string beginning at the first byte of its character string operand, X.
The length qualifier, from L or the picture clause of X, determines
the length in bytes of the destination string.

The comparison takes place one byte at a time, from the leftmost byte
to the rightmost. The bytes being compared are treated, for the
purposes of the comparison, as 8-bit unsigned numbers. If the source
and destination strings are of unequal length then the shorter will be
considered to be extended to the right with ASCII blanks for the
comparison.

The result of the comparison is returned in the accumulator, which
will be set to either -1, 0 or +1:

-1 means the source string is less than the destination string;

0 means the source string is equal to the destination string;

+1 means the source string is greater than the destination
string;

The source string register, source string and destination string are
not modified by the $COMP statement.

6.3.4 $EXCH - Exchange Source String with Destination String
The $EXCH statement exchanges the source string for the destination
string and vice versa. It does this one byte at a time, starting from
the left.

6.3.5 Character String Examples
In the examples below SOURCE and DEST are the data names of character
strings whose lengths are held in the computational variables SL and
DL respectively.

6.3.5.1 Variable Length Move

$SET SOURCE SL * ESTABLISH SOURCE STRING
$MOVE DEST DL * MOVE TO DESTINATION

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 78 of 141

SOURCE is moved to DEST and is itself unaffected by the operation.
Character truncation will take place if SOURCE is longer than DEST.
However, if DEST is longer than SOURCE the extra rightmost bytes are
padded with ASCII blanks.

6.3.5.2 Setting a Variable Length String to Blanks

$SET "" * SOURCE STRING IS BLANKS
$MOVE DEST DL * MOVE TO DESTINATION

This is really just a special case of a variable length move. We may
not use the figurative constant SPACES in an intermediate code
instruction, so we code the literal "", representing a zero-length
character string, instead. This has the desired effect because the
Move instruction sets all characters not supplied by the source string
to blanks in the destination string.

6.3.5.3 Variable Length Compare

$SET SOURCE SL * ESTABLISH SOURCE STRING
$COMP DEST DL * COMPARE WITH DESTINATION
$JUMP LT SRLOW * GO IF SOURCE LESS DEST
$JUMP GT SRHIGH * GO IF SOURCE GREATER DEST

* PROCESSING WHEN STRINGS ARE EQUAL

SOURCE is compared with DEST and the accumulator is set up to indicate
the result. Two $JUMP statements are used to route control to the
appropriate processing logic when the source string is less than or
greater than the destination string. However, control "drops through"
the $JUMP statements when the two strings are equal.

6.3.5.4 Checking for a Blank Variable Length String

$SET "" * SOURCE STRING IS BLANKS
$COMP DEST DL * COMPARE WITH DESTINATION
$JUMP EQ BLANK * GO IF DEST IS BLANK

This is really just a special case of a variable length compare. We
may not use the figurative constant SPACES in an intermediate code
instruction, so we code the literal "", representing a zero-length
character string, instead. This has the desired effect because the
Compare instruction considers all characters not supplied by the
source string to be blank for the purpose of the comparison with the
destination string.

6.4 Transfer of Control Instructions
These instructions allow you to transfer control depending upon the
condition of the accumulator. The following conditions are used:

EQ perform the instruction if accumulator equals zero;

NE perform the instruction if accumulator not equal to zero;

GT perform the instruction if accumulator greater than zero;

LT perform the instruction if accumulator less than zero;

GE perform the instruction if accumulator greater than or equal
to zero;

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 79 of 141

LE perform the instruction if accumulator less than or equal to
zero.

These statements do not themselves modify the accumulator. However,
most Global Cobol statements do corrupt it and hence a Transfer of
Control statement should normally be coded immediately following the
intermediate code statement responsible for establishing the
accumulator value to be tested.

There is one exception to this rule: if the statement originally
responsible for establishing the accumulator value to be tested can
cause the overflow flag to be set, then an ON OVERFLOW conditional
should be coded immediately following this statement. The Transfer of
Control statement should then be the next statement to be executed
when overflow does not occur.

Providing the overflow flag is not set, ON OVERFLOW leaves the value
in the accumulator unchanged. Thus, in the case when there is no
overflow, the Transfer of Control statement still obtains the
accumulator value established by the original statement, even though
overflow handling logic has been inserted between the Transfer of
Control statement and the accumulator setting statement.

6.4.1 The $JUMP Statement
The $JUMP statement allows you to pass control to a section or
paragraph conditionally, according to the value of the quantity in the
accumulator. You code:

$JUMP cond label

where label is a section or paragraph name and cond indicates the
condition under which the transfer of control takes place. For
example:

$JUMP EQ AA090

will transfer control to AA090 if the accumulator is equal to zero,
just as if you had coded GO TO AA090. However, if the accumulator is
non-zero, the $JUMP statement will not transfer control and the
statement immediately following it will be executed next.

6.4.2 The $CALL Statement
The $CALL statement allows you to perform a subroutine conditionally.
You code:

$CALL condition label

Where condition is one of the six conditions described above and label
is the section or paragraph name of the subroutine you wish to be
performed if the condition is valid. For example:

$CALL NE BB080

will perform the section of the program starting at BB080 if the
accumulator is not equal to zero. If the accumulator is equal to zero
then the next instruction will be executed instead.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 80 of 141

6.4.3 The $EXIT Statement
The $EXIT statement conditionally causes control of the program to be
returned to the statement following the last outstanding CALL,
PERFORM, EXEC or $CALL statement executed. You code:

$EXIT condition code

Where condition is one of the six conditions listed above and code is
the exit code to be displayed in the EXIT WITH... message.

6.4.4 The $STOP statement
The $STOP statement causes the program to terminate with the specified
code if the condition stated is met. You code:

$STOP condition code

Where condition is one of the six conditions listed above and code is
the code to be displayed in the STOP message. (0 = STOP RUN)

6.4.5 Examples
In the following example control is passed to AA090 if the display
numeric variable NUMST is not a positive numeric string compatible
with the format specified in the format qualifier NF.

$BIN NUMST NF * CONVERT TO BINARY
ON OVERFLOW GO TO AA090 * INCOMPATIBLE FORMAT
$JUMP LE AA090 * JUMP IF NOT POSITIVE

The $JUMP statement is most frequently used following a character
string compare, as shown in the examples of 6.7.3 and 6.6.4 below.

6.5 Computational Instructions

6.5.1 $LOAD - Load Computational Variable to Accumulator
The $LOAD statement places the value of its computational operand, C,
in the accumulator. The format qualifier, from F or the picture clause
of C, determines the scaling assumed as well as the number of bytes of
C actually transferred. C itself is not changed by the operation.

6.5.2 $STORE - Store Computational Variable from Accumulator
The $STORE statement transfers the value in the accumulator to its
computational operand, C. The format qualifier, from F or the picture
clause of C, determines the scaling assumed as well as the number of
bytes at C actually affected. The accumulator itself is corrupted by
the operation.

Note that if the format qualifier indicates that the number in the
accumulator exceeds the capacity of C, then the overflow flag will be
set. In this case C itself remains unchanged.

6.5.3 $ADD - Add to Accumulator
The $ADD statement adds the value of its computational operand, C, to
the value already held in the accumulator. The format qualifier, from
F or the picture clause of C, determines the scaling assumed as well
as the number of bytes of C actually processed. C itself is not
changed by the operation.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 81 of 141

6.5.4 $ADDS - Add to Accumulator and Store
The $ADDS statement adds the value of its computational operand, C, to
the value already held in the accumulator and stores the result in C.
The format qualifier, from F or the picture clause of C, determines
the scaling assumed as well as the number of bytes of C actually
processed.

6.5.5 $SUB - Subtract from Accumulator
The $SUB statement subtracts the value of its computational operand,
C, from the value held in the accumulator. The format qualifier, from
F or the picture clause of C, determines the scaling assumed as well
as the number of bytes of C actually processed. C itself is not
changed by the operation.

6.5.6 $SUBS - Subtract from Accumulator and Store
The $SUBS statement subtracts the value of its computational operand,
C, from the value held in the accumulator and stores the result in C.
The format qualifier, from F or the picture clause of C, determines
the scaling assumed as well as the number of bytes of C actually
processed.

6.5.7 $MUL - Multiply Accumulator
The $MUL statement multiplies the value held in the accumulator by its
computational operand, C. The format qualifier, from F or the picture
clause of C, determines the scaling assumed as well as the number of
bytes of C actually processed. C itself is not changed by the
operation.

6.5.8 $MULS - Multiply Accumulator and Store
The $MULS statement multiplies the value held in the accumulator by
its computational operand, C and stores the result in C. The format
qualifier, from F or the picture clause of C, determines the scaling
assumed as well as the number of bytes of C actually processed.

6.5.9 $DIV - Divide into Accumulator
The $DIV statement divides the value held in the accumulator by its
computational operand, C. The format qualifier, from F or the picture
clause of C, determines the scaling assumed as well as the number of
bytes of C actually processed. C itself is not changed by the
operation.

6.5.10 $DIVS - Divide into Accumulator and Store
The $DIVS statement divides the value held in the accumulator by its
computational operand, C and stores the result in C. The format
qualifier, from F or the picture clause of C, determines the scaling
assumed as well as the number of bytes of C actually processed.

6.5.11 $AND - Perform logical AND
The $AND statement performs a logical AND on the value held in the
accumulator and the value of its computational operand, C. The format
qualifier, from F or the picture clause of C, determines the scaling
assumed as well as the number of bytes of C actually processed. C
itself is not changed by the operation.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 82 of 141

6.5.12 $ANDS - Perform logical AND and Store
The $AND statement performs a logical AND on the value held in the
accumulator and the value of its computational operand, C and stores
the result in C. The format qualifier, from F or the picture clause of
C, determines the scaling assumed as well as the number of bytes of C
actually processed.

6.5.13 $RND - Round Accumulator
The $RND statement scales the accumulator to match the target field
and rounds the last digit of the result to the nearest digit. The
format qualifier, from F or the picture clause of C, determines the
scaling assumed as well as the number of bytes of C actually
processed. C itself is not changed by the operation.

6.5.14 $RNDS - Round Accumulator and Store
The $RNDS statement scales the accumulator to match the target field,
rounds the last digit of the result to the nearest digit and stores
the result in C. The format qualifier, from F or the picture clause of
C, determines the scaling assumed as well as the number of bytes of C
actually processed.

6.5.15 $STUS - Store Unsigned
The $STUS statement stores the accumulator in the target field, C,
without checking for overflow. The format qualifier, from F or the
picture clause of C, determines the number of bytes actually
transferred.

Important note: These instructions, although taking computational
variables for final arguments, will permit the coding of any data type
argument in this position. The compiler will deduce appropriate
qualifiers for non-computational variables depending on byte length.
For example, If a PIC PTR field with a length of 2 bytes is coded then
the compiler will deduce a PIC 9(4) COMP qualifier for it. This is
permitted so as to facilitate complex operations without proliferating
the redefinition of the fields concerned. Because of this, however,
you must take care when coding arguments using the arithmetic
intermediate code statements as the compiler will not check that they
are computational variables.

6.6 Numeric Conversion Instructions
Two intermediate code statements are provided to allow you to perform
numeric conversions when the format of one or more of the quantities
involved is not known until run-time. Using combinations of the
statements, together with the $LOAD and $STORE instructions described
above, you can convert computational quantities to display numeric and
vice versa; normalise display numerics by converting valid numeric
strings to standard numeric string form; and move variable format
computational fields.

The numeric conversion statements consist of a verb followed by one or
two arguments and are coded:

$BIN N [F]
$DEC N [F]

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 83 of 141

The second argument of each, the format qualifier, F, is optional.
When present it must be a computational literal or the name of a
simple (i.e. non-indexed) computational variable whose value specifies
the format of the first, computational or display numeric, operand as
described in 6.2.1.

The first argument, C or N, is, respectively, either a Computational
or display Numeric variable or for $BIN only, a literal. If a
variable, it may be indexed. When the second argument is not present
the format of C or N is derived from its Global Cobol picture clause.
However, if the second argument is present its value overrides the
picture clause information, which is ignored. In particular, if the
second argument is present and C or N is indexed, then the length used
for indexing is derived from the second argument, not the picture
clause of C or N.

Note that C, N and F must be variables or literals. Figurative
constants are not allowed in intermediate code instructions.

6.6.1 $BIN - Convert Display Numeric Variable to Binary
The $BIN statement converts its display numeric operand, N, to a
binary (i.e. computational) value which it places in the accumulator.
The format qualifier, from F or the picture clause of N, determines
the scaling and the number of bytes of N which participate in the
conversion. N itself remains unchanged by the operation.

If N is not a valid numeric string, compatible with the format
qualifier, the operation will be terminated and the overflow flag will
be set. This will occur if the string N is signed when the format
specified indicates it should be unsigned; or contains a decimal point
when it should be an integer; or is too large.

6.6.2 $DEC - Convert Accumulator to Decimal (Display
Numeric)
The $DEC statement converts the binary value in the accumulator to a
decimal (i.e. display numeric) value which it places in its display
numeric operand, N. The format qualifier, from F or the picture clause
of N, determines the scaling and the number of bytes of N actually
affected.

The overflow flag is set, and N remains unchanged, if the value in the
accumulator is too large for the format specified or if it is negative
when an unsigned format is specified.

6.6.3 Numeric Conversion Examples
In the examples below NUMST is the data name of a numeric string whose
format value is contained in NF, a computational variable. COMP is a
computational variable whose format (yet another computational
variable) is held in CF.

6.6.3.1 Computational to Display Numeric Conversion

$LOAD COMP CF * COMP TO ACCUMULATOR
$DEC NUMST NF * ACCUMULATOR TO DISP. NUM.
[ON OVERFLOW ... etc. * IF ERROR]

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 84 of 141

COMP is converted to a standard numeric string in NUMST unless the
format value in NF is incompatible with the value in the accumulator
following the $LOAD, in which case the overflow flag is set by $DEC.

6.6.3.2 Display Numeric to Computational

$BIN NUMST NF * DISP. NUM TO ACCUMULATOR
[ON OVERFLOW ... etc. * IF INVALID DISP. NUM]
$STORE COMP CF

[ON OVERFLOW ... etc. * IF COMP TOO SMALL]

Providing NUMST is a valid numeric string and COMP has sufficient
capacity this sequence will convert the numeric string to a
computational value in COMP.

The $BIN statement will set the overflow flag if NUMST is not a valid
numeric string and in this case the first ON OVERFLOW processing
indicated will take place. The $STORE statement will set the flag if
COMP has insufficient capacity for the converted value and then the
second ON OVERFLOW processing will gain control.

6.6.3.3 Display Numeric to Display Numeric Conversion

$BIN NUMST NF * DISP. NUM. TO ACCUMULATOR
[ON OVERFLOW ... etc. * IF INVALID DISP. NUM]
$DEC NUMST NF * STANDARD STRING TO NUMST

Providing NUMST is a valid numeric string this sequence will convert
it to a standard numeric string. If NUMST is invalid the $BIN
statement will set the overflow register.

6.6.3.4 Computational to Computational Conversion

(In this example W is defined as PIC S9(11,7) COMP)

$LOAD COMP CF * MOVE COMPUTATIONAL
$STORE W * TO WORK FIELD
[ON OVERFLOW ... etc. * IF TOO LARGE]
ADD 1 TO W * ARITHMETIC ON

[ON OVERFLOW ... etc. * IF TOO LARGE]
$LOAD W * WORK FIELD
$STORE COMP CF * RETURN TO COMP
[ON OVERFLOW ... etc. * IF TOO LARGE]

The first load and store sequence moves COMP to W, a conventionally
defined computational work field. $STORE sets the overflow flag if W
is of insufficient capacity to contain COMP. Next conventional
arithmetic takes place on W. In the example this only involves adding
1, but the principle of moving run-time defined computational fields
to large fixed-format fields to perform arithmetic is widely
applicable. Finally another load and store sequence is used to move W
back to COMP. The overflow register will be set if the addition of 1
has caused the capacity of COMP to be exceeded.

6.7 Pointer Handling Instructions
There are two pointer handling statements, $PUSH and $POP. They are
used in the processing of table entries where the length of each
entry, in bytes, is only known at run-time.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 85 of 141

6.7.1 $PUSH - Push Pointer onto Parameter Stack
The $PUSH statement is coded:

$PUSH A [L]

The first argument, A, can be a variable or literal. The optional
second argument, the length qualifier, L, has no effect if the
variable A is not indexed. When present it must be a computational
literal or the name of a simple (i.e. non-indexed) computational
variable containing the non-zero length in bytes of the entries
belonging to the table referenced by the first argument.

$PUSH calculates an address from its arguments and stores a pointer to
it at the top of the parameter stack. If the first argument is not
indexed, the address used is simply that of the first argument itself.
However, when the first argument is indexed, T(N) say, the pointer
addresses the byte at location:

t + (n - 1) * length

where:

t is the address of the first occurrence of T;

n is the value of the index N;

length is either given by the second argument, or if this

is omitted, is derived from the first argument, as
explained below:

 If A is a repeating group, or is contained within

a repeating group, then the length is taken as the
size of the repeating entry itself;

 If A is a non-repeating group or subgroup, the

length is the size of that group or subgroup;

 If A is an elementary item, with or without an
OCCURS clause, the length is the size implied by
the item's picture clause.

6.7.2 $POP - Pop Pointer from Parameter Stack
The $POP statement is coded:

$POP P

Its argument must be a pointer variable, and it may be indexed. The
effect of $POP is to remove the pointer currently at the top of the
parameter stack and place it in its operand, P.

6.7.3 Programming Notes
Items are placed on the parameter stack by $PUSH statements and CALL
statements with USING clauses. They are removed by $POP statements and
ENTRY statements with USING clauses. Note that the following four
sequences generate identical code:

CALL RTN USING A B C * ONE

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 86 of 141

$PUSH A * TWO
CALL RTN USING B C *

$PUSH A * THREE
$PUSH B *
CALL RTN USING C *

$PUSH A * FOUR
$PUSH B *
$PUSH C *

CALL RTN *

In all four cases an ENTRY statement of the form:

ENTRY RTN USING ALPHA BETA GAMMA

will pop the three pointers from the stack and use them to base the
proper linkage section groups ALPHA (overlaying A), BETA (overlaying
B) and GAMMA (overlaying C).

It is important that all information placed on the stack by $PUSH
statements is removed by corresponding $POP or ENTRY statements. If
this is not the case the effect will be to pass too many parameters to
some entry point. For example, as we have already seen, the sequence:

$PUSH X
.
.
.

[$POP statement erroneously omitted]
CALL SUBR USING A

will pass to the entry point at SUBR not the parameter A, which it
expects, but the two parameters X and A.

When an ENTRY statement receives the wrong number of parameters the
overflow flag is set and therefore, unless the statement is
immediately followed by an ON OVERFLOW statement (as explained in 3.5)
the program will be terminated in error.

6.7.4 Pointer Handling Examples

6.7.4.1 Address Calculation using the Parameter Stack
This first example is rather artificial, and is intended to show that
the parameter stack can be used to perform up to 7 address
calculations at one time, using a variety of different data
definitions.

Suppose the data division of a program contains the following
statements, where the numbers on the left indicate the decimal address
at which the first, or only, occurrence of each field begins:

1000 77 I PIC 9(4) COMP
1002 01 Y OCCURS 10 * 10 10-BYTE ENTRIES
1002 03 YA PIC X(5)
1007 03 YB PIC X(5)
1102 01 Z * l4 BYTE TABLE
1102 03 ZP OCCURS 7 PIC PTR

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 87 of 141

Then the procedure division statements shown below have the effect
indicated in their comments and eventually leave the parameter stack
empty:

$PUSH I * 1000 TO PARAMETER STACK
$PUSH YB(3) * 1027 TO PARAMETER STACK
$PUSH Z(4) * 1144 TO PARAMETER STACK
$PUSH ZP(3) * 1106 TO PARAMETER STACK
$PUSH I(2) 5 * 1005 TO PARAMETER STACK
$PUSH YA(2) 5 * 1007 TO PARAMETER STACK

$PUSH Y(2) 5 * 1007 TO PARAMETER STACK
MOVE 1 TO I *
DO UNTIL I = 8 * 1007 TO ZP(1)

$POP ZP(I) * 1007 TO ZP(2)
ADD 1 TO I * 1005 TO ZP(3)

ENDDO * 1006 TO ZP(4)
* 1144 TO ZP(5)
* 1027 TO ZP(6)
* 1000 TO ZP(7)

Note that, even though valid code will be generated, the compiler will
flag the statements:

$PUSH Z(4)
$PUSH I(2) 5

with warning messages because their first arguments, although coded as
indexed variables, are not actually data items with OCCURS clauses or
members of repeating groups.

6.7.4.2 Dynamic Table Handling
In the following rather more realistic examples, TABLE is defined as a
2000-byte area by the following statement:

77 TABLE OCCURS 2000 PIC X

TABLE actually consists of an array of contiguous equal-sized entries,
but the length of each entry is not known until run-time. This length
is held in the computational variable LENGTH. The computational
variable N contains a positive integer, n, which is the number of the
table entry you require to process, entry 1 being, of course, the
first entry at the beginning of the table. P is a pointer variable,
defined in working storage.

Each entry consists of a type flag, a counter, and a variable length
key. The entry is described by the based area EN, defined as follows:

01 EN BASED P
 02 ENTYPE PIC X * ENTRY TYPE

 02 ENCNTR PIC 9(4) COMP * COUNTER
 02 ENKEY PIC X * VAR LENGTH KEY

6.7.4.3 Basing a Selected Entry of the Table

$PUSH TABLE(N) LENGTH * POINTER TO STACK
$POP P * STACK TO P,
POSITIONING EN

The first $PUSH statement calculates the location of the n'th entry
and places a pointer to it on the top of the parameter stack. The
subsequent $POP statement transfers this pointer to P, thereby
positioning the based area EN. Fields within EN can now be accessed

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 88 of 141

using normal Global Cobol statements, although ENKEY would probably
have to be handled by intermediate code, since its actual length is
not given by its picture clause, but depends on the value of LENGTH.

6.7.4.4 Passing a Selected Entry to a Subroutine

$PUSH CA * PASS FIRST PARAMETER
$PUSH TABLE(N) LENGTH * PASS SECOND PARAMETER
CALL PROC * PASS CONTROL

The parameters are pushed onto the stack in the order that they are
required by the ENTRY PROC statement, which will be of the form:

ENTRY PROC USING CA EN

6.8 Indexed Variable Management Instructions
When both an index and a qualifier are specified on an intermediate
code statement, and the variable is not within a repeating group, the
length used when indexing is derived from the qualifier, and not from
the picture clause of the target. Hence if the table entry length is
not the same as the length given by the qualifier, an extra linkage
section variable must be used to access the field, as shown in the
examples below. If, however, the variable is within a repeating group,
the length of the repeating group is always used when indexing.

The examples all use character variables, although exactly the same
principles apply to computational variables. In them TAB-1 is a PIC X
OCCURS 24 character variable containing "ABC...X". TENT is an 01 level
linkage section variable. All the examples consist of moving part of
the table into a receiving character variable DEST. Computational
variables TL, TI contain the table length and index.

6.8.1 Variable Length Table Entry
The table is to be treated as entries whose length is given by TL, and
the TI'th entry is required.

$SET TAB-1(TI) TL * LENGTH TL FOR INDEX

$MOVE DEST

If TI contained 2, and TL 3, then this would set DEST to "DEF".

6.8.2 Variable Part of a String
DEST is to be set to the TL characters starting at position TI within
the string.

BASE TENT AT TAB-1(TI) * LENGTH 1 FOR INDEX
$SET TENT TL

$MOVE DEST

If TI contained 2, and TL 3, then this would set DEST to "BCD".

6.8.3 Variable Length String from Table of Fixed Length
Entries
The table is to be treated as 4 byte entries, and the first TL bytes
of entry TI are required. In order to force a fixed entry length to be
used, the table must be redefined as a PIC X(4) item within a
repeating group:

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 89 of 141

01 FILLER REDEFINES TAB-1 OCCURS 6
 03 TAB-4 PIC X(4)

and to access the required portion you code:

$SET TAB-4(TI) TL
$MOVE DEST

If TI contained 2, and TL 3, then this would set DEST to "EFG".

6.9 Register Load Instructions

6.9.1 $LOADI - Load Index
The $LOADI statements places the value of its computational operand,
C, in the I register. The register must then be used for indexing by
the next statement, unless the next statement is a $LOADQ or $LOADL.
Once the I register has been used for indexing it is zeroised.

6.9.2 $LOADL - Load Length
The $LOADL statements places the value of its computational operand,
C, in the L register. Once the L register has been used for indexing
it is zeroised.

6.9.3 $LOADQ - Load Qualifier
The $LOADQ statements places the value of its computational operand,
C, in the Q register. This will override the qualifier of the next
intermediate code statement, and once it used the Q is zeroised.

6.9.4 Programming Notes
If all or any combination of these instructions are used, then they
should be set up in the order described, that is: $LOADI, $LOADL,
$LOADQ.

6.10 Other Instructions

6.10.1 The $TRAP Statement
The $TRAP statement simply causes a trap program check when it is
executed. It is coded:

$TRAP "trap-id"

where "trap-id" is a character literal which will appear on the
diagnostic report. Only the first five characters of the trap-id are
used: a sixth or subsequent character will simply be ignored by the
compiler when it expands the $TRAP statement. If the trap-id is less
than five characters in length then it will be padded to five
characters by rightmost ASCII blanks.

6.10.1.1 Examples
When the statement:

$TRAP "INSPECT"

is executed from within program SALES, control is returned to the
Global Cobol monitor which outputs the following message and prompt:

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 90 of 141

$91 TRAP AT 43FE
$50 DEBUG:

The hexadecimal number following the word AT indicates the Global
Cobol location of the $TRAP statement. If you now reply D to the debug
prompt the first two lines of the resultant diagnostic report will be:

PROGRAM CHECK TYPE TRAP
AT INSPE IN SALES

The first five characters of the trap-id are displayed following the
word AT in the second line.

You can use debug to inspect and modify the interrupted program, or
set additional traps in it, as explained in the Global Cobol User
Manual. Eventually, you can resume execution of the program at the
statement following the $TRAP statement.

6.10.1.2 Programming Note
Traps are usually set interactively by using the debug facilities. The
$TRAP statement is provided to allow you to code a request for a trap
explicitly in those few cases when interactive working cannot achieve
the result you require. For example, you might only require a trap to
occur when a particularly rare combination of values was detected. In
this case you would include some testing logic in your program which
would execute a $TRAP when the condition you were interested in arose.

6.10.2 $RESUME - Resume Failed Program
The $RESUME statement is mentioned here only for completeness. It
should never be used.

INSTRUCTION STATEMENT $CC

CODE
OPERAND TYPE Notes
X 9 COMP PTR LABEL*

Set $SET Y Y A B B
Move $MOVE Y Y A B B
Compare $COMP Y Y A B B
Exchange $EXCH 26 Y Y A B B E

Binary $BIN Y
Decimal $DEC Y

Load $LOAD C Y C C
Store $STORE C Y C C
Round $RND 7 C Y C C
Round+Store $RNDS 107 C Y C C
Add $ADD 8 C Y C C
Add+Store $ADDS 108 C Y C C
Subtract $SUB 9 C Y C C
Subtract+Store $SUBS 109 C Y C C
Multiply $MULT 10 C Y C C C
Multiply+Store $MULTS 110 C Y C C
Divide $DIV 11 C Y C C
Divide+Store $DIVS 111 C Y C C
Store Unsigned $STUS 27 C Y C C
Logical AND $AND 28 C Y C C
Logical
AND+Store

$ANDS 128 C Y C C

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 91 of 141

Jump $JUMP Q Y Y
Call $CALL Q 13 Y Y
Stop $STOP Q 14 Y F
Exit $EXIT Q 15 Y Y G

Resume $RESUME 16 I
Escape None 17 L
Trace None J

Push $PUSH Y Y Y Y Y
Pop $POP Y
Pop List None K

Load Index $LOADI 22 C Y C C
Load Qualifier $LOADQ 23 C Y C C
Load Length $LOADL 24 C Y C C

Call Display None H

* - undefined globals are classed as labels
 A - treated as character string of appropriate length
 B - treated as PIC X(2)
 C - treated as computational integer of appropriate length
 E - length of operand is ignored
 F - operand conventionally PIC 9(4) COMP
 G - operand conventionally PIC X(2); second byte contains condition code as PIC
9(2) COMP
 H - Use DISPLAY statement I - No operand
 J - SECTION and $TRAP statements generate trace
 K - ENTRY and (UN)PRIVILEGED statements generate Pop List
 L - Generated at start of assembler code routines (#8800)
 Q - Must be one of EQ, NE, LT, GT, LE, GE, 8 (on exception) or 16 (on no
exception) Y – Valid

Table 6.12 - Intermediate code instructions and $CC equivalents

6.11 The $CC Statement and SVC Statements

6.11.1 The $CC Statement
The $CC statement generates an intermediate code instruction as if the
equivalent intermediate code statement had been coded. Intermediate
code instructions with their equivalent $CC statements is shown in
figure 6.12. For example, $CC 8 is equivalent to $ADD. This statement
is provided only for compatibility with pre-V6.1 Global System
Manager.

6.11.2 The SVC Statement
The SVC statement is similar to a CALL statement, but it invokes a
routine (known as a 'system service') which is permanently resident
within the monitor. It is coded as follows:

SVC nn [USING parameter...]

Where nn is a 1 or 2 digit number identifying the system service to be
executed.

Chapter 6 – Intermediate Code Support

Global Development Cobol Language Manual V8.1 Page 92 of 141

In practice there is little or no need for these services to be
invoked directly as they are nearly all available as Global Cobol
statements or as system subroutines. You may need to use an SVC
statement if there is a special - machine dependent – facility
available within the nucleus (for example, an interface to the native
operating system).

There are three SVC calls that may occasionally useful in ordinary
programs and these are described in the appropriate manuals:

SVC 14 - Search for lowest key (System Subroutines Manual)

SVC 25 - Display (Screen Presentation Manual)

SVC 48 - Calculate Cursor Position (Screen Presentation Manual)

SVC statements should be used with care and only by experienced
programmers.

Appendix A – The ASCII Character Set

Global Development Cobol Language Manual V8.1 Page 93 of 141

Appendix A - The ASCII Character Set

CHARACTER DECIMAL

CODE
HEX.
CODE

HEX. CODE OF EQUIVALENT
EBCDIC CHARACTER

REMARKS

NUL 0 00 00 CTRL SHIFT P. Null.
SOH 1 01 01 CTRL A.
STX 2 02 02 CTRL B.
ETX 3 03 03 CTRL C.
EOT 4 04 37 CTRL D.
ENQ 5 05 2D CTRL E.
ACK 6 06 2E CTRL F.
BEL 7 07 2F CTRL G. Rings the bell.
BS 8 08 16 CTRL H. Backspace.
HT 9 09 05 CTRL I. Horizontal tab.
LF 10 0A 25 CTRL J. Line Feed.
VT 11 0B 0B CTRL K. Vertical tab.
FF 12 0C 0C CTRL L. Form Feed.
CR 13 0D 0D CTRL M. Carriage Return.
SO 14 0E 0E CTRL N.
SI 15 0F 0F CTRL O.
DLE 16 10 10 CTRL P. (DC0).
DC1 17 11 11 CTRL Q. X-ON.
DC2 18 12 12 CTRL R.
DC3 19 13 (none) CTRL S. X-OFF.
DC4 20 14 3C CTRL T.
NAK 21 15 3D CTRL U.
SYN 22 16 32 CTRL V.
ETB 23 17 26 CTRL W.
CAN 24 18 18 CTRL X.
EM 25 19 19 CTRL Y.
SUB 26 1A 3F CTRL Z.
ESC 27 1B 27 CTRL [(or CTRL SHIFT K).
FS 28 1C 22 CTRL (or CTRL SHIFT L).
GS 29 1D (none) CTRL] (or CTRL SHIFT M).
RS 30 1E 35 CTRL ^ (or CTRL SHIFT N).
US 31 1F (none) CTRL - (or CTRL SHIFT O).
SP 32 20 40 Space.
! 33 21 5A
" 34 22 7F
35 23 7B Sometimes pounds sign.
$ 36 24 5B
% 37 25 6C
& 38 26 50
' 39 27 7D Apostrophe or Acute Accent.
(40 28 4D
) 41 29 5D
* 42 2A 5C
+ 43 2B 4E
, 44 2C 6B Comma.
- 45 2D 60 Hyphen.
. 46 2E 4B
/ 47 2F 61
0 48 30 F0
1 49 31 F1
2 50 32 F2
3 51 33 F3
4 52 34 F4
5 53 35 F5
6 54 36 F6
7 55 37 F7
8 56 38 F8
9 57 39 F9
: 58 3A 7A
; 59 3B 5E
< 60 3C 4C
= 61 3D 7E

Appendix A – The ASCII Character Set

Global Development Cobol Language Manual V8.1 Page 94 of 141

CHARACTER DECIMAL

CODE
HEX.
CODE

HEX. CODE OF EQUIVALENT
EBCDIC CHARACTER

REMARKS

> 62 3E 6E
? 63 3F 6F
@ 64 40 7C
A 65 41 C1
B 66 42 C2
C 67 43 C3
D 68 44 C4
E 69 45 C5
F 70 46 C6
G 71 47 C7
H 72 48 C8
I 73 49 C9
J 74 4A D1
K 75 4B D2
L 76 4C D3
M 77 4D D4
N 78 4E D5
O 79 4F D6
P 80 50 D7
Q 81 51 D8
R 82 52 D9
S 83 53 E2
T 84 54 E3
U 85 55 E4
V 86 56 E5
W 87 57 E6
X 88 58 E7
Y 89 59 E8
Z 90 5A E9
[91 5B AD
\ 92 5C E0
] 93 5D BD
^ 94 5E 5F Exponentiation symbol.
_ 95 5F 6D Underline.
 96 60 79 Sometimes grave accent.
a 97 61 81
b 98 62 82
c 99 63 83
d 100 64 84
e 101 65 85
f 102 66 86
g 103 67 87
h 104 68 88
i 105 69 89
j 106 6A 91
k 107 6B 92
l 108 6C 93
m 109 6D 94
n 110 6E 95
o 111 6F 96
p 112 70 97
q 113 71 98
r 114 72 99
s 115 73 A2
t 116 74 A3
u 117 75 A4
v 118 76 A5
w 119 77 A6
x 120 78 A7
y 121 79 A8
z 122 7A A9
{ 123 7B 8B
| 124 7C 6A
} 125 7D 9B Sometimes ALTMODE.
~ 126 7E A1 Tilde. Often a lead-in character.
DEL 127 7F 07 DELETE. RUBOUT.

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 95 of 141

Appendix B – Compiler and Cross-Reference
Options

This appendix explains the various compiler and cross-reference
options which can be controlled through OPT statements coded at the
beginning of your program, as described in 2.3.1. In most cases the
options are specified by pairs of codes of the form xx or Nxx, one
member of the pair automatically becoming the default if neither xx
nor Nxx is supplied. Thus if you do not provide an OPT ED or OPT NED
statement, OPT NED applies automatically and the compiler will not
force even byte data area alignment.

As well as supplying options by means of the OPT statement you can
provide them at run-time by keying the appropriate option codes in
response to the option prompt. This is described in the section of the
Global Cobol User Manual which explains how to run $COBOL and $XREF.
Those options you specify at run-time override any contradictory ones
specified in OPT statements.

Many options, such as NSL which suppresses the listing of source
lines, you will probably wish to supply only at run-time, whilst
others, such as LN, are more appropriately made a feature of the
program by means of an OPT statement.

Table B lists all the possible options, and indicates whether they
apply to the compiler, or the cross-reference utility, or both. Any
compiler option may be specified to the utility, and vice versa,
meaningless options simply being ignored.

OPTION DESCRIPTION COMPILER

OPTION
X-REF
OPTION

BL/NBL Print generated code in hexadecimal Y
CG/NCG Display number of line being processed

if <CTRL G> is keyed
Y

CX/NCX List contents of copy books* Y
ED/NED Force even byte data alignment Y
LN/NLN Use long (31 character) names Y Y
L$/NL$ Produce listing on first pass Y Y
PL=nnn Page length (default $$PAGE) Y Y
PR/NPR All ENTRY statements are privileged Y
SD/NSD Generate symbolic debug information Y
SL/NSL List all source lines* Y
SN/NSN X-reference by section-id Y
ST/NST Print symbol table Y
TC/NTC Print table of contents Y
TE/NTE Terminate job management if errors are

detected
Y Y

TO/NTO Print addition internal statistics Y
TR/NTR Generate trace information Y
TW/NTW Terminate job management if warnings are

detected
Y Y

XR/NXR X-reference unreferenced items in copy
books

 Y

The default option is emboldened.

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 96 of 141

* These options may appear anywhere within the source.

Table B - Compiler and Cross-Reference Options

In the descriptions which follow, the option code pairs appear in
parentheses following the headings to which they apply, and the
default option is underlined.

List Contents of Copy Books (CX, NCX)
NCX (no copy book expansion) may be used to prevent the compiler from
listing source lines introduced into the compilation as a result of
COPY statements, unless such a line is flagged in error. The default,
CX, causes the statements introduced by each COPY to be listed unless
it is from a COPY with the SUPPRESS option.

If option NSL (no source lines) is in force the NCX/CX option is
irrelevant since the copied statements, along with all the other
source lines, will only be listed if they are flagged in error.

Binary List (BL, NBL)
The generated intermediate code is printed in hexadecimal on the right
hand side of the listing. In order to understand this you will need to
refer to chapter TK-4 of the Global Cobol Toolkit Manual. Any
relocatable items, such as addresses, appear as a two byte offset
followed by a single quote. Any references to globals also appear in
this form. Note that specifying option BL causes program addresses
printed in the data division to be incorrect in a few cases. In
particular, the address associated with an 01 or 77 level item, or an
FD or MD, is likely to be incorrect if either it or the preceding item
is a redefinition, or if it is in the linkage section. Also, the
hexadecimal printed against a statement can relate to the preceding
statement, in particular if the previous statement was an
uninitialised or partially initialised variable, or was a conditional
statement (when the jump instruction may appear against the next
line).

Line Number Display on <CTRL G> (CG, NCG)
The default setting of this option causes the line number of the line
currently being processed by the compiler to be displayed on the
screen if the operator keys <CTRL G>. The option can be disabled by
selecting compiler option NCG.

Force Even Byte Data Area Alignment (ED, NED)
The ED option may be used to cause the compiler to force all file
definitions, map definitions and level 01 group items to begin on an
even byte boundary. It does this by inserting an extra binary zero
byte before a file, map or level 01 definition if this is necessary to
achieve the required alignment. This means, for example, that the
fields of two adjacent level 01 items will not necessarily occupy
contiguous storage, since if the first group declared an odd number of
bytes the compiler will have inserted a binary zero byte after it.

Note that this option should be used with caution, and should not be
used with Common or External Sections.

Option ED is for use when writing programs for machines such as the
DEC PDP-11 where file access is improved whenever an integral number
of 2-byte words, beginning on an even-byte boundary, participate in a

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 97 of 141

read or write operation. Program files resulting from code using
option ED will be aligned optimally, and will in general load faster
than those which have not used the option. Relative sequential blocks
established by the BLOCK CONTAINS clause will also be properly
aligned, so sequential file processing times will be reduced.

Note that if you use option ED to optimise program loading time, but
the first initialised data item in working storage begins on an odd
boundary, then the option will not have the desired effect and, in
consequence, the compiler will output a warning message. To avoid this
possibility, code partially initialised groups and level 77 items
after the first map definition, file definition, or fully initialised
group appearing in the program.

Use Long Names (LN, NLN)
This option is common to the compiler and cross-reference utility. LN
(long names) should be used if you wish to treat the first 31
characters of each symbol as a unique identifier.

The default, NLN, is that only the first 6 characters of each symbol
are used as an identifier: symbols may be longer, but their seventh
and subsequent characters are ignored by the compiler.

You should note that more table space is needed to handle long names,
and this can cause the tables to overspill more frequently to backing
storage, extending compilation times for large programs. This is
unlikely to present a problem on configurations with a user area of
30,000 bytes or more.

Even when long names are specified the first 6 characters of each
global symbol must be unique. Also, only the first 6 characters are
made available in the tables used by symbolic debugging, so if two or
more identifiers have their first 6 characters the same, only the
first of them to appear in the program can be referenced symbolically
at debug time.

First Pass Listing (L$, NL$)
The L$ option is mainly of use if the compiler fails during the first
pass, since by specifying L$ and writing the listing directly to the
printer, the line causing the failure can be determined. Option PR is
described below along with the PRIVILEGED statement.

Generate Symbolic Debug Tables (NSD, SD)
NSD (no symbolic debug tables) may be used to prevent the compiler
producing the tables that it normally prepares for the symbolic
debugging system. These tables do not increase the size of the loaded
program in any way, but they do occupy space in the compilation files
and program files that reside on backing storage. Approximately 11
bytes of table space is required for each symbol used in the program.

Option SD, which is the default, causes symbolic debug tables to be
produced in the normal way.

The Page Length (PL=nnn)
By default the listing is printed assuming that the page size in lines
is the configuration standard (the value in $$PAGE: normally 66)
defined when Global is installed or redefined using $CUS. A few lines

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 98 of 141

at the foot of each page are left blank in case the stationery is
slightly misaligned.

The PL=nnn (page length) option allows you to change the page size by
specifying the new length in lines, nnn, which must be an integer
between 10 and 127 inclusive. For example, for a page size of 50 lines
the option code would be PL=50.

All ENTRY Statements Privileged (PR, NPR)
In its normal mode of operation, the interpreter prevents you from
updating fields which are outside the user area. This is to prevent
you from accidentally corrupting system data or memory belonging to
another user. However, the interpreter can be put into a privileged
mode in which this check is bypassed, in order to allow system
routines and the monitor to update protected fields. If you load a
program or data onto the system stack this will be in a protected area
of memory, and so you need to make programs that update fields on the
system stack privileged.

If you load a Global Cobol program onto the system stack, any data in
its working storage will be protected. Therefore you must compile it
with option PR to allow it to access its working storage. Such a
program must not call any unprivileged routines, as this will cause it
to lose privileged status. In particular, most system routines,
including access methods, are unprivileged and cannot be used.
However, any form of the ACCEPT or DISPLAY statements can be used.

In order for a normal program to become temporarily privileged - for
example, so that it can update data areas on the system stack - it
must execute the statement:

PRIVILEGED

and to relinquish this status, it must execute the statement:

UNPRIVILEGED

Privileged status will also be lost if it executes any routine which
is not itself privileged, or if the program exits to a higher level of
control. You are recommended to put PRIVILEGED and UNPRIVILEGED
statements around just those statements which update the protected
fields.

Note that if a program is in privileged mode this has the side effect
of preventing time-slicing until this status is relinquished. The
program may still be swapped if it attempts I/O on a device which is
busy or not ready, or if it executes a SUSPEND statement.

A detailed account of the privileged mechanism appears in section 2.6
of the Global Toolkit Manual.

Cross-Reference by Section Name (SN, NSN)
SN (section name) causes all the line numbers printed in the cross-
reference listing to be prefixed with the first 2 characters of the
name of the section in which they occur. If you have used the naming
conventions described in Appendix E the first two characters of the
section name will be a unique section code. References to working

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 99 of 141

storage items are prefixed "D.", and references to linkage section
items are prefixed "L.".

The default, NSN, causes just the line numbers to be listed.

Produce a Symbol Table (ST, NST)
ST (symbol table) may be used if you require the compiler to produce a
sorted symbol table following the compilation listing. The table
contains the address, type and, where appropriate, picture clause
information for each symbol appearing in the program. An example
symbol table is shown in Appendix A of the Global Cobol User Manual.

The default, NST, is not to produce the symbol table. (The symbolic
debugging feature obviates the need for the table in most cases.)

Produce a Table of Contents (TC, NTC)
TC (table of contents) may be used if you wish to compiler to produce
a table of contents at the start of the listing, which lists all the
page titles supplied in PAGE statements within the program, together
with their line numbers. The table of contents has a maximum length of
58 lines.

The default, NTC, is not to produce the table of contents.

Terminate Job Management on Errors (TE, NTE)
NTE (no termination on errors) means that errors detected during a
compilation will not cause job management to be terminated.

The default, TE, means that the compiler or cross-reference will
terminate job management if it has detected any errors. Thus, for
example, if a job file compiles and links a program, the default means
that the linkage edit will not take place if any errors are detected.

Generate Trace Identifiers (NTR, TR)
NTR (no trace identifiers) may be used to reduce the amount of code
the compiler generates for ENTRY and SECTION statements: each expands
6 bytes less code than when option TR, the default, is in force.

Because of the implications for debugging, you should normally only
specify option NTR when storage is particularly critical: if a routine
or section compiled with no trace identifiers is in the control path
when the program is terminated in error, the diagnostic report you
obtain will not contain the relevant entry or section identifier,
although it will still supply you with the hexadecimal location of the
entry point or section.

The NTR option is primarily intended for programmers developing
storage-critical parts of Global System Manager. It should not
normally be necessary in applications work.

Terminate Job Management on Warnings (TW, NTW)
TW (terminate on warnings) means that job management will be
terminated at the end of the compilation or cross-reference if any
warnings were generated.

The default, NTW, means that warnings will not cause job management to
be terminated.

Appendix B – Compiler and Cross-Reference Options

Global Development Cobol Language Manual V8.1 Page 100 of 141

List Unreferenced Items in Copy Books (XR, NXR)
XR (cross-reference) may be used to cause symbols defined within copy
books but not referenced in the program to appear in the cross-
reference listing.

The default, NXR, will suppress unreferenced items defined in copy
books, giving a more compact listing. Note that unreferenced items
defined in the source program are always listed, as this often
highlights an unused variable or label which could be deleted.

Appendix C – Summary of Restrictions

Global Development Cobol Language Manual V8.1 Page 101 of 141

Appendix C – Summary of Restrictions

This appendix summarises the restrictions to be observed when
developing general-purpose Global Cobol systems to run on as wide a
possible range of configurations. Limitations imposed by the linkage
editor and librarian are included for completeness, but the use of
these programs is only described in detail in the Global Cobol User
Manual.

The limits on program size, number of files open at any one time, and
number of files per volume may be relaxed on larger systems. However,
programs which exceed them do so at the risk of restricting the range
of target configurations on which they may run.

Program Size
The compiler cannot handle a compilation larger than 32,767 bytes. In
practice, however, the size of the available user area is a more
restraining factor. On 8-bit machines, the Global System Manager user
area is often restricted to slightly over 30K, and therefore we
recommend that portable programs should be coded to execute within
this limit. The largest possible Global System Manager user area is
about 56K, but this is only realisable on machines which can directly
address more than 64K.

These limits are not as onerous as they might seem given that the
average amount of code generated by a procedure division statement is
under 8 bytes. (When making program size estimates, however, you must
remember that modules such as access methods and system routines will
be included in your program, if it needs them, when it is linkage-
edited. This topic is explained in more detail in Appendix D.)

Number of Levels of Subroutine
A maximum of 16 levels of subroutine are allowed within a program, or
12 if the lowest level itself calls a system routine, or uses SORT. A
subroutine in this context is a group of procedure division statements
entered by means of a CALL or PERFORM statement. The limit means that
a program can have 16 CALL or PERFORM statements outstanding at any
one time: a system routine may itself use another 3 levels of
subroutine internally, hence the lower limit of 12.

Number of Nested Conditionals
Format 1 conditional structures can be nested up to 32 times. For
example:

IF A=B
:

ON EXCEPTION
:
ON OVERFLOW

:
ACCEPT...NULL

: (up to 32 nestings allowed)
:

END
:

END
:

END
:

END

Appendix C – Summary of Restrictions

Global Development Cobol Language Manual V8.1 Page 102 of 141

Number of Nested DO statements
DO statements can be nested up to 16 times. This nesting is
independent of whatever nested conditionals are in force.

Number of Simultaneously Open Files
As a rule of thumb at least seven direct access files may be open at
any one time by a program. However, the actual limit depends on the
number of users of the system, and is no more restrictive than implied
by the following formulae:

Maximum number of open FDs at any one time = 8 * number of users

Maximum number of different files open at any one time
= 8 * SQRT (number of users) rounded up.

These limits are system-wide, so under multi-user or networking
versions of Global System Manager it is possible to mix programs which
use a very large number of files with more modest jobs. For example, a
four-user system will allow, at any one time, a maximum of 32 open FDs
accessing 16 different files. At a particular instant 3 programs might
each have 2 private work files and share 4 files with a fourth program
which has another 10 files opened exclusively. In this case there are
3(2+4)+14 = 32) FDs open, accessing 4+10 = 14 different files.

The limit of 7 rather than 8 open files is recommended for a single
user system because one file may be used by Global System Manager to
access the program library, if one is attached.

All the above limits can be increased by updating the configuration
file used to parameterise Global System Manager, as explained in the
Global Configurator Manual. The figures quoted are the minimum values,
used in the distributed configuration file.

Note that only one real printer file can be open for each printer the
configuration possesses.

Number of Locked Regions
A maximum of 15 different file regions can be locked at any time using
the LOCK statement described in the introduction to the File
Maintenance Manual. This is a system-wide restriction. A program
attempting to lock a region when the limit has been reached will be
told that the region in question is already locked - and this
situation will prevail until one of the existing locks is removed.

Number of Files per Volume
At least 63 files may be present on any direct access volume.
Furthermore, up to 100 programs, compilations or copy books can be
stored in a single library file of the appropriate type.

Number of Global Symbols per Compilation
The number of different global symbols defined or referenced by a
program cannot exceed 127.

Total Number and Size of Symbols
The compiler overspills its internal tables onto a work file so that
providing an irreducible minimum of main storage is available, this is

Appendix C – Summary of Restrictions

Global Development Cobol Language Manual V8.1 Page 103 of 141

not a limiting factor as far as the symbols used per compilation is
concerned. However, size constraints on the work file itself mean:

 The number of symbols per compilation is limited to about 1200;

 The total number of characters that make up the significant
portions of the different symbols used is limited to about
10,000.

It is unlikely that either of these limits will affect you unless you
develop huge programs using the long names option.

Symbolic Debugging
Only the first 650 symbols encountered in a compilation are available
for use in symbolic debugging.

Copy Libraries
Each copy library can contain up to 100 books. Any number of copy
libraries may be used, but the size of the compiler work file is
increased by about 600 bytes for each library specified.

A copy book may itself contain a COPY statement, and the book thus
referenced may contain a COPY statement, but that is as far as the
nesting may go. Thus just two levels of internal nesting are allowed.

Linkage Editing Considerations
A maximum of 100 compilation files and compilation library files can
be combined by the linkage editor to produce a program file. There
must be no more than 100 compilations included in the program and they
must not together contain more than 250 global definitions. The
linkage edit will fail if any global symbol is defined more than once.

Compilation Libraries
You can store a maximum of 100 compilations in a single compilation
library file, but the number of globals defined by the compilations,
taken together, must not exceed 250.

Program Libraries
You can store a maximum of 100 linkage-edited programs in a single
program library file. At run-time one application library file can be
"attached" at a time. Global System Manager will then retrieve all
application programs from this library.

If a program is not present in the library, Global System Manager will
determine if there is a program file of the same name available on the
program residence device, but it will not search a second library for
the missing program.

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 104 of 141

Appendix D – Programming Notes

This appendix is intended for programmers who require to develop
efficient, non-trivial applications in Global Cobol. It is not a
Global Cobol programming standard, but, as the title implies, consists
of notes based on practical program development experience.

Compiler Options
In order to compile and run efficiently on as many configurations as
possible start your programs with:

OPT ED * FORCE EVEN DATA ALIGNMENT

This option need not be used if you do not intend the programs to run
on a machine such as the DEC PDP-11 where even data alignment can
improve performance.

Layout of the Data Division
If you are using option ED you should be careful that the first
initialised data item you code starts on an even byte boundary. The
easiest way to ensure this is to code the file definitions and map
definitions together at the very beginning of the data division,
because these blocks, which are initialised, automatically begin on
the correct boundary. As a side-effect, the information they contain
is least likely to become inadvertently corrupted. Note that the first
two bytes of an FD or MD contain a pointer to an access method or
system routine and if this is overwritten unpredictable errors will
occur when a file or map processing statement using the FD or MD is
attempted.

Note that if you code FDs together as we suggest it becomes very easy
to introduce a catalogue later, should this prove desirable.

If a program contains large tables which do not require initialisation
you can reduce the size of the resulting program file, and therefore
the time taken to load the program, by defining the tables at the
start of the data division in front of any FD or MD statements or
variables which are initialised by VALUE clauses. This advice, of
course, contradicts the previous suggestion about coding FDs and MDs
first. For it to be worthwhile the tables in question should be large
both in absolute terms (a thousand bytes at least) and relative to the
size of the program which uses them.

In general you should always initialise the very first byte of any
subroutines you develop, because this allows the linker to combine
them into one program record which can be loaded by a single read
operation. The only exception is when a routine contains a very large
data area, typically 4K bytes or more in length, when it may be
worthwhile placing the table at the front and not initialising it
since, although an additional program file record will be produced
requiring an extra read, there will be significantly less data to
load. In addition the direct access storage requirements of the
compilation file and any program files which use it will be reduced by
the size of the non-initialised data area.

Use of Copy Books

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 105 of 141

Copy books are mainly employed to hold record definitions. These are
stored as collections of subordinate (i.e. level 02-49) data items,
possibly with VALUE clauses. Because the compiler ignores VALUE
clauses in copy books in the linkage section, such copy books can
equally well be included in either working storage or the linkage
section. When a copy book only contains subordinate items, its COPY
statement must be preceded by a level 01 data declaration. This allows
you to redefine the record area, should you so wish. For example:

01 SR REDEFINES RECORD-AREA
COPY SR

It is often necessary to include several copies of a particular record
layout in a single program. Therefore it is good practice to make the
first two characters of each data name a parameter, written &&, so
that different values can be substituted when it is copied, allowing
the book to be included in the program a number of times. For example,
in book SR the definition:

03 SRTOT PIC 9(9) COMP

should be coded as:

03 &&TOT PIC 9(9) COMP

Normally the book would be copied by a:

COPY SR

statement, but another version could be included by a:

COPY SR SUBSTITUTING "S2"

which would then contain data names starting "S2", for example S2TOT.
In this way you avoid the necessity to hold multiple copies of a
record layout in your copy library.

Size of the Data Division
To calculate the size of the data division you add together the space
occupied by all working storage data declarations and file definitions
and add two bytes for each level 01 or level 77 item coded in the
linkage section, which is not itself the redefinition of a previous
item. You must also add space for a high-values/low-values pool if you
have used the figurative constants HIGH-VALUES and LOW-VALUES anywhere
in your procedure division. The size of the pool is the sum of the
length in bytes of the largest variable tested or set to HIGH-VALUES,
plus that of the largest variable tested or set to LOW-VALUES.

The size of each data declaration is defined in section 3.3. The size
of each FD is specified in the part of the chapter devoted to the
relevant file organisation which describes the file definition. The
size of a map definition is defined in the Screen Presentation Manual.

Size of the Procedure Division
Each Global Cobol statement appearing in the procedure division
generates a number of instructions to be executed by the Global Cobol
interpreter. Usually one or two instructions are generated per
operand: two if the operand is indexed; one otherwise. Statements with
no operands generate a single 4-byte instruction, apart from END and

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 106 of 141

ENDPROG which generate no instructions and occupy no storage. A
paragraph name occupies no storage.

Some statements have an internal statement overhead of one or more
instructions in addition to the overhead induced by operands.
Examining a number of different programs we have found that the code
generated per procedure division statement (excluding comments and
directives) averaged about 8 bytes. So a good "rule of thumb" for
estimating the size of any procedure division code you create seems to
be:

size in bytes = number of statements * 8

(Remember that when estimating program size you must take into account
not only the instructions you actually code, but the additional space
requirements of any routines included in your program from the system
library.)

Labels in the Procedure Division
Avoid unnecessary paragraph names in the procedure division. Although
paragraph names cause no extra code to be generated they are still
extra symbols to be processed by the compiler and, as such, occupy
valuable table space, increase the time the compiler spends searching
its name table, and generally make the compilation process slower than
it need be. If you use structured programming few, if any, paragraph
names will be required.

Linkage Section Processing Considerations
If an operand is located in working storage or an external section a
single 4-byte instruction is usually generated to process it. If it is
located in the linkage section a 6-byte instruction is needed. The
difference in execution times of the 4-byte and 6-byte instructions is
negligible. However, since a character to character MOVE is a very
efficient instruction in Global Cobol, if a small linkage section
group is very frequently accessed and storage is critical it will pay
you to move it to working storage, process it, then return it to the
linkage section. Of course you may be able to avoid linkage section
processing altogether in some cases by passing information using the
common/external section mechanism. There is no extra overhead
associated with processing items in common and external sections.

Use of Literals and Figurative Constants
Use the language word SPACE (or SPACES) wherever appropriate because
it makes the program easier to follow and in many cases generates less
code because only a 2-byte instruction is needed when SPACE appears as
an operand.

HIGH-VALUES and LOW-VALUES also make a program easier to understand,
but these should be employed with caution and only used to test or
initialise fairly small variables since the compiler actually sets up
a high-values/low-values pool at the end of the data division
containing a string of #FF bytes and #00 bytes equal in size,
respectively to the largest variable used with HIGH-VALUES, and the
largest one used with LOW-VALUES. Thus if, for example, your program
contained:

MOVE HIGH-VALUES TO Y * Y PIC X(500)
MOVE LOW-VALUES TO Z * Z PIC X(800)

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 107 of 141

then your data division would be expanded with a high-values/low-
values pool at least 1300 bytes in length. The correct way, of course,
to initialise Y (or Z) in this example is to use an overlapping,
"ripple" move. Subdivide Y thus:

02 Y
 03 Y1 PIC X
 03 Y2 PIC X(499)

and then code:

MOVE HIGH-VALUES TO Y1 * ONLY 1 BYTE IN POOL
MOVE Y TO Y2 * INITIALISE REST OF Y

Handling of literals in Global Cobol is particularly efficient, with
the code specially optimised for single-character literals and
integers between -128 and 127 inclusive. You only save space by using
an initialised variable in working storage in place of a literal if it
is three bytes or more in length and is used more than once in the
program.

Indexing Considerations
Two instructions are generated to process an indexed elementary item,
but an additional 2-byte instruction is needed if the indexing applies
to a field within a repeating group. The two basic indexing
instructions are 4 or 6 bytes long according to whether or not the
simple variables which make up the indexed variable are located in
working storage or the linkage section. The extra one or two
instructions required to handle an indexed variable are very efficient
providing scaling is not required and therefore indexing does not
usually incur an appreciable overhead. However, if the same indexed
item is referenced frequently, consider moving it to working storage,
processing it, then returning it.

Scaling
Scaling of fixed point numbers is costly in terms of execution time
although, since most scaling is performed internally by the
interpreter, extra instructions are not usually required. Scaling
takes place:

 when indexing with a non-integer value;

 when variables with different numbers of digits after the decimal
point are used in ADD, SUBTRACT or MOVE;

 when non-integer values are used in MULTIPLY or DIVIDE

statements.

Avoid scaling wherever possible, particularly in indexing.

The Arithmetic Statements
Wherever possible use the two-operand form of the arithmetic
statements rather than the three-operand form since less instructions
are usually generated. For example, code:

ADD A TO B

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 108 of 141

rather than:

ADD A TO B GIVING B

The two-operand form of SUBTRACT generates an additional instruction
compared with a two-operand ADD. Therefore, to decrement by a constant
(3, say) code:

ADD -3 TO B

rather than:

SUBTRACT 3 FROM B

On machines without hardware multiply the execution time of a MULTIPLY
statement, which can be quite high, depends on the magnitude of the
second operand. Thus always code a MULTIPLY statement so that the
smaller operand comes second. For example:

MULTIPLY A BY -9 GIVING B

rather than:

MULTIPLY -9 BY A GIVING B

On machines without hardware divide, DIVIDE is usually the most costly
instruction of all in terms of execution time. It can typically take
fifty times as long as an ADD. It can expand up to four instructions
in addition to those required for its operands. Try, therefore, to
avoid DIVIDE wherever possible.

The MOVE Statement
Character to character or computational to computational moves without
scaling are very efficient. Indeed on many machines a small number of
characters (say up to 60) can be moved in about the same amount of
time that it takes for an ADD.

Display numeric to computational moves are slow, and the reverse
process is slower, so try to avoid them as much as possible.

Transfer of Control Statements
The transfer of control statements are all very efficient. If you can,
use a GO TO DEPENDING ON construct rather than an IF statement when
there are three or more conditions involved. The resulting code will
be more compact and faster.

The CALL/ENTRY mechanism used to transfer control to entry points in
other compilations is efficient, but the number of instructions
generated by the CALL depends on the number of operands in the USING
clause, if any.

The EXIT and STOP RUN statements both generate a single short
instruction. It is preferable to code EXIT or STOP RUN inline rather
than GO TO an EXIT or STOP RUN statement. For example:

IF A ZERO EXIT

rather than:

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 109 of 141

IF A ZERO GO TO AA990
...............
...............
...............
AA990.
EXIT

The second example not only introduces an unnecessary label and GO TO
instruction but is more difficult to understand.

Conditional and Iterative Statements
A format 2 conditional generates one less instruction than the
equivalent format 1 conditional. Thus, whenever possible, write IF and
ON statements on a single line. For example, code:

IF A ZERO EXIT

rather than:

IF A ZERO
EXIT

END

The most efficient condition to test is whether a computational
variable is POSITIVE, NEGATIVE, ZERO or NOT POSITIVE, NOT NEGATIVE or
NOT ZERO. Therefore, when a flag with up to three settings is required
define it as a PIC S9 COMP variable and use the values -1, 0 and +1 as
the different settings.

Make full use of IF/ELSE/END and DO/ENDDO to develop structured
programs with a minimum of GO TO statements and labels.

Statements for Console Input/Output
The teletype-compatible console I/O statements generate less code than
the DISPLAY...LINE and ACCEPT...LINE statements used for formatted
display support. Furthermore the presence of CLEAR, DISPLAY...LINE,
ACCEPT...LINE or SCROLL statements causes about 2 Kbytes of
subroutines from the system library to be included in the program. In
consequence, you should only use formatted displays in programs which
are not storage critical.

A teletype-compatible DISPLAY statement which operates on a character
variable, character literal or display numeric variable generates only
a single instruction, whereas a DISPLAY of a computational item
expands to three instructions. In practice character DISPLAYs occur
much more frequently than computational displays, so DISPLAY is, on
average, implemented very efficiently. This is important, since the
character DISPLAY is often the most highly used statement in a
program.

The NULL clause on an ACCEPT statement is handled very efficiently by
Global Cobol. Therefore, wherever possible, employ the null string as
an input option indicating some special processing condition such as
end of data, request for a new service, or so on.

Use the BELL statement before displaying input error messages or
terminal error messages which are followed by a STOP RUN.

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 110 of 141

When using formatted DISPLAY...LINE statements to create a menu you
can save a small amount of code by producing the output column by
column and therefore avoiding the need for COL clauses in some of the
DISPLAY...LINE statements. This also makes it easier to alter the
column positioning later, should this become necessary, since less
statements require their COL clauses to be changed.

Table Handling Statements
The table handling statements, SEARCH and SCAN, generate only a
linkage to a machine code system service routine. The statements are
therefore extremely efficient and you should always use them in
preference to coding a table lookup in Global Cobol. Indeed, when
designing an application, always try to develop table structures which
make full use of SEARCH or SCAN.

Program Management Statements
The CHAIN, RUN, LOAD and EXEC statements generate only a linkage to
the loader. Their execution time depends, of course, on the size of
the program file being loaded.

The EDIT Statement
The EDIT statement generates sixteen bytes, and also causes a 700 byte
system routine to be linked into the program.

 Sort Statements
The SORT, RELEASE and RETURN statements expand a linkage to a 4K-byte
service routine which controls the sort. This routine employs the
unoccupied part of the user area as a work area, and the amount of
space available determines the maximum number of records capable of
being sorted. If you invoke the sort from an overlay structure, you
may need to use the FREE$ routine described in Chapter 5 of the Global
Development System Subroutines Manual to ensure that it obtains the
maximum amount of free space actually available.

Multi-User Statements
SUSPEND generates 8 bytes when the seconds operand is coded, or 4
bytes otherwise. LOCK and UNLOCK generate 16 bytes each, and cause a
400 byte routine to be linked into the program.

File Processing Statements
The file processing statements; OPEN OLD, OPEN NEW, WRITE NEXT, WRITE,
REWRITE, READ NEXT, READ and CLOSE, generate only a call to an access
method routine included in the program containing the FD when it is
linkage edited. The compiler sets the first two bytes of the FD to
address the entry point of the access method routine and the file
processing statements simply pass control to the routine using an
internally generated:

CALL pointer USING FD operation-type record-area

System Routines
The CALL statement provides an efficient linkage to the system
routines. You should note that the COPY$ routine employs the
unoccupied part of the user area at the top of the Global Cobol memory
region as a temporary buffer area, and the amount of space actually
available determines the efficiency of the copy operation. If you
invoke COPY$ from an overlay structure you may need to use the FREE$
routine described in Chapter 5 of the Global Development System

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 111 of 141

Subroutines Manual to ensure that the routine obtains the maximum
amount of free space actually available.

Modular Programming Considerations
The SECTION statement should be used to subdivide the procedure
division into a number of concise, meaningful routines, each of which,
typically, would occupy only one or two pages of the listing. A PAGE
directive is usually coded immediately before each SECTION statement
to cause each section to begin on a new page. The overhead for each
section is simply a 6-byte instruction, expanded by the SECTION
statement, which Global Cobol uses to provide the control path trace
which appears on the diagnostic report following a program error. Even
this overhead can be eliminated, at the expense of suppressing
information which might prove useful in debugging, by coding OPT NTR
at the very start of your program, as explained in Appendix B.

Full use should be made of the linkage editor to construct complex
programs from a number of simpler compilations. It is good programming
practice to limit the size of individual compilations to about ten
pages of listing. The CALL and ENTRY statements used in passing
control between different compilations have been optimised to be
particularly efficient, as has the handling of the linkage section.

Overlay Programming Techniques
For particularly large programs you may need to adopt an overlay
scheme. In the simplest type a single root module invokes a separately
linked overlay module by means of the Global Cobol LOAD or EXEC
statement. At any instant the root will be present in storage together
with the current overlay module. When the processing requirement
changes a new overlay will be LOADed or EXECed from the root and will
occupy the space used by its predecessor.

Usually the access method routines, and possibly other subroutines,
will be employed by the root and most overlay programs. In this case
you must ensure that the routines are included in the root, and that
these copies are used by the overlays which need them. If you have
them linkage edited into every overlay you will waste storage because
they will be present twice: once in the root and once in the current
overlay. In addition the program files for the overlays will be larger
than they need be because they include the access routines
unnecessarily.

You can use the linker, $LINK, to create so-called dependent programs
which reference modules in other overlays known to be resident when
they, the dependents, are loaded. This feature enables you to create
programs which use access methods, system routines or application
subroutines from a previously loaded, separate root program.

You may wish to include an access method or subroutine in a root
program which does not access that routine. This is best done by
including a statement of the form:

GLOBAL routine-name

at the start of the DATA DIVISION of the root program. The GLOBAL
statement is described in detail in chapter 8 of this manual.

Appendix D – Programming Notes

Global Development Cobol Language Manual V8.1 Page 112 of 141

If the root program shares common data, such as master file
definitions, with its overlays then this data is best handled using
common and external sections. The data in question should be defined
in a copy book to ensure consistency. The root will then define the
common section by, for example, code such as:

COMMON SECTION SAMF
COPY MF

and each overlay which references it will do so by including the
corresponding external section:

EXTERNAL SECTION SAMF
COPY MF

This technique reduces the number of parameters that require to be
passed in CALL statements and at the same time avoids the longer
instructions required for linkage section access.

Appendix E – Recommended Naming Conventions

Global Development Cobol Language Manual V8.1 Page 113 of 141

Appendix E – Recommended Naming Conventions

ELEMENT NAME FORMAT
pp product code two alphabetic characters
nnn program number or paragraph

number
three digits

m...m mnemonic up to the indicated number
of alphabetic characters

ss section code two alphabetic characters
rr record code two alphabetic characters
ffff field code alphabetic mnemonic of any

length (first four characters
significant)

SYMBOL USED AS ... FORMAT
program name
program-id

ppnnn

common section name
external section name

ppmmmm

entry name
filename

mmmmmm

section name ss-description
paragraph name ssnnn
copy book name
01 data name

rr

02 data name rrffff
77 data name
accumulator
count
switch
constant
table
other

A-ffff
C-ffff
S-ffff
K-ffff
T-ffff
Z-ffff

volume-id
data file-id

ppmmmm
ppmmmmmm

Figure E.1 - Recommended Naming Conventions

If you require to compile programs efficiently on a wide range of
different configurations, some of which may have rather limited main
storage, you should optimise the compiler's use of table space by not
using the "long names" option. This requires that the first six
characters of each symbol used by a program be unique. The naming
conventions discussed below and summarised in Figure E.1 will prevent
naming conflicts between development teams.

Product Codes
Each development team is allocated a unique two character product
code, pp. For example, SA might be the product code allocated to the
team producing a sales ledger application.

Every volume-id or file-id identifying a volume or file produced by
the development team starts with the product code, and this prevents
file names used by one project conflicting with those of another.

Appendix E – Recommended Naming Conventions

Global Development Cobol Language Manual V8.1 Page 114 of 141

Program Names and Program-ids
Every program the development team produces is assigned a three digit
program number, nnn, unique to the product. The PROGRAM statement is
then of the form:

PROGRAM ppnnn

For example, SA013 could be the sales statistics print program. When a
number of compilations are linkage edited to produce a program file
the program-id is chosen to be the same as the program name of the
main program.

Common and External Section Names
The names given to common sections and their corresponding external
sections should be of the form:

ppmmmm

where mmmm is a m numeric identifying the common section. For example,
a common section containing master file definitions for product SA
might be named SAMF.

Entry Names
Entry names for subroutines entered via the CALL statement are chosen
to be meaningful alphabetic mnemonics up to six characters long. Thus
a common validation routine might be given the entry name CHECK and
invoked by a CALL of the form:

CALL CHECK USING...

A central list of the subroutine entry names used by the product
should be kept by the team to prevent inadvertent duplication. Note
that an entry name may not be the same as a filename (see "Naming Data
Files").

Section Names
Each section used in a program is allocated a section code, ss,
consisting of two alphabetic characters which reflect the section's
position in the control hierarchy. For example, AA is normally used
for the main line, BA might be the highest level logic of a subroutine
function and CA might be a routine of BA.

Section names are constructed by appending a hyphen and a meaningful
description to the section code. For example:

AA-MAINLINE

BA-OPEN-ALL-FILES

CA-DELETE-UNWANTED-WORKFILE

Paragraph Names
A paragraph name defined within section ss is assigned a name of the
form:

ssnnn.

where nnn is three digits. The names appear on the listing in
ascending order and are allocated from ss010. onwards, in steps of 10

Appendix E – Recommended Naming Conventions

Global Development Cobol Language Manual V8.1 Page 115 of 141

for ease of maintenance. For example, the AA-MAINLINE section may
contain the paragraphs named AA010. and AA020..

Public Data and Copy Book Names
Each level 01 group describing a record or control block shared by a
number of programs is allocated a two alphabetic character record
code, rr, unique within the product. The first character of rr should
not be Z.

The data name assigned to the level 01 item itself is simply rr. The
data name of each subordinate item is of the form:

rrffff

where ffff is a mnemonic qualifier, not all numeric, the first four
characters of which render the data name unique within the level 01
item. For example:

01 SR * SALES RECORD
 02 SRDSID... * SUBORDINATES
 02 FILLER...
 02 SRKEY...
 02 SRCODE...
 03 SRDEPT...
 03 SRQUAL...

The subordinate items will be saved as a copy book, and the two-
character book name allocated will be the same as the record code, rr.
The product copy library should be maintained in alphabetic order of
book name so as to serve as an automated central index of allocated
record codes.

Private Data Names
Private level 01 structures, local to a single program, are allocated
a record code beginning with Z, and the subordinate items within them
are prefixed accordingly:

01 ZS * STORAGE ELEMENT

 02 ZSFLAG...
 02 ZSTYPE...
 02 ZSLENGTH...

Level 77 data names are constructed from a single character indicating
the way in which the item is used, followed by a hyphen and an
alphabetic field code. The examples show the standard meanings of the
first letter:

77 A-TOTAL... * ACCUMULATOR

77 C-CLIENTS... * COUNT

77 S-OVERDRAWN... * SWITCH

77 K-PI... * CONSTANT

77 T-CODE... * TABLE

77 Z-REPLY... * OPERATOR REPLY

Naming Volumes

Appendix E – Recommended Naming Conventions

Global Development Cobol Language Manual V8.1 Page 116 of 141

Each volume used by a product is assigned a unique volume-id, ppmmmm,
where pp is the product code and mmmm is a mnemonic, four characters
or less in length, indicating the function of the volume. For example:

SAPROG a volume containing the programs of the sales ledger
suite;

SAMAST a volume containing the sales ledger master files;

SAWORK a work volume.

Naming Data Files
Each data file used by a product is assigned a unique alphabetic
filename, mmmmmm, six characters or less in length. This name appears
as the first operand of its FD and in file processing statements which
access the file.

The file-id associated with the file (i.e. the external name by which
it is known in the volume's directory) is of the form:

ppmmmmmm

The file-id is prefixed by the product code to prevent conflicts with
files developed by other projects. Here is an FD and an OPEN statement
for the example sales ledger STATS file:

FD STATS ORGANISATION RELATIVE-SEQUENTIAL
ASSIGN TO UNIT "DSK" FILE "SASTATS" VOLUME "SAMAST"

.

.
OPEN OLD STATS

A central list of the filenames used by the product should be kept by
the team to prevent inadvertent duplication. Note that a filename may
not be the same as a subroutine entry name (see "Entry Names").

Naming Program Development Files
The commands described in the Global Cobol User Manual uses file
prefixes (each a single letter and full stop, beginning the file-id)
to distinguish between the various files required during program
construction. Table E.2 shows the file-ids used in developing main
program SA013 if the recommended standard naming conventions are
adopted. A subroutine, CHECK say, would give rise only to the
additional files S.CHECK, B.CHECK and L.CHECK, since it would never be
linkage edited in isolation.

FILE-ID USED FOR
S.SA013 the file containing the most up-to-date Global Cobol source

of SA013.
B.SA013 the previous version of SA013, as it was before the last

edit took place. This version can be used as a backup should
S.SA013 be inadvertently destroyed.

S.SA the copy library used by every program of the sales ledger
suite, including SA013.

C.SA013 the compilation file produced by the Global Cobol compiler
when S.SA013 is compiled.

L.SA013 the compilation listing produced by the Global Cobol
compiler when S.SA013 is compiled.

Appendix E – Recommended Naming Conventions

Global Development Cobol Language Manual V8.1 Page 117 of 141

C.SA the subroutine library used when linkage editing C.SA013 and
every other program of the sales ledger suite.

M.SA013 the map listing produced by the Global Cobol linker when
C.SA013 is linkage edited.

SA013 the program file produced by the Global Cobol linker when
C.SA013 is linkage edited.

P.SA the program library which will eventually contain SA013 and
every other program of the sales ledger suite.

K.SA the AutoClerk control file used by the sales ledger suite.

Table E.2 - Example Program Development File Names

Appendix F – Copy Library Formats

Global Development Cobol Language Manual V8.1 Page 118 of 141

Appendix F – Copy Library Formats

A copy library is made up of statement lines rather like a normal
Global Cobol program, and is structured as follows:

[optional comments]
.BOOK b1
(Statements to be included in the program when the statement
COPY b1 is compiled)

.END
[Optional comments]
.BOOK b2
(Statements to be included in the program when the statement
COPY b2 is compiled)
.END
.
.
.
.
[Optional comments]

.BOOK bn
(Statements to be included in the program when the statement
COPY bn is compiled)
.END
[optional comments]

The special statements .BOOK and .END are used to name and delimit the
different books which make up the library. The optional comments
statements which may be supplied at the beginning or the end of the
library, or between the books, can never be copied into a Global Cobol
program, and, if coded at all, will simply be used to annotate the
listing of the library itself.

The books themselves can contain any Global Cobol statements,
including the COPY statement. Although a copied book may itself
contain a COPY statement, and the book thus copied may also possess
further COPY statements, this is as far as the nesting may go. Thus,
at most, two levels of internal nesting are supported.

The quantities b1, b2, ... bn which appear in the .BOOK statements
match the two-character book names used in COPY statements. The books
may appear in any order of book name, but if two or more are
erroneously given the same name only the first one on the file will
ever be referenced. The compiler can only process up to three copy
libraries per compilation, and each library must contain no more than
100 books.

Each book may contain a single parameter, coded as a string of &s.
This parameter may appear as often as required within the book, and
will be substituted by the string supplied in the SUBSTITUTING clause
of the COPY statement. It is good practice to make all the parameters
within a copy book the same length, although this is not strictly
necessary as the substituted string will be truncated or padded with
hyphens to match the length the parameter string.

* SALES LEDGER COPY LIBRARY
*
.BOOK MF
*

* FILE DEFINITION FOR MASTER FILE
FD MASTER ORGANISATION RELATIVE-SEQUENTIAL
ASSIGN TO UNIT "DSK" FILE "SAMASTER" VOLUME "SADATA"

Appendix F – Copy Library Formats

Global Development Cobol Language Manual V8.1 Page 119 of 141

.END
*
* THE FOLLOWING COPYRIGHT TEXT MUST BE INCLUDED
* IN EVERY PROGRAM
*
.BOOK CR
01 FILLER
 02 FILLER PIC X(26)

VALUE "COPYRIGHT-KLUDGE-KORP-1988"
.END
*

* ALL PROGRAMS OF THE MASTER FILE
* PROCESSING SUITE SHOULD BEGIN WITH A
* COPY MP STATEMENT FOLLOWING THE PROGRAM STATEMENT
*
.BOOK MP
*
* MASTER FILE PROCESSING SUITE
*
DATA DIVISION
COPY CR
*

COPY MF
*
.END
*
.BOOK ST
*
* SALES TRANSACTION RECORD
*
 02 &&CUST PIC X(8) * CUSTOMER CODE
 02 &&AMT PIC S9(6) COMP * AMOUNT IN POUNDS
 02 &&TYPE PIC X * CUSTOMER TYPE

(etc, etc, etc)
.END
.
.

Figure F - An Example Copy Library

If a copy book itself copies a book containing substitution
parameters, then the substitution string used for the inner copy book
is that specified on its COPY statement, or if the substituting clause
is omitted, the substitution string for the outer copy book is used.

Figure F shows part of a copy library which might be used by the
programs of a Sales Ledger system. A typical program of the master
file suite might begin:

PROGRAM SA003
COPY MP
*
01 ST

COPY ST

The result would be that the following statements would be included in
the compilation:

PROGRAM SA003
*
* MASTER FILE PROCESSING SUITE
*
DATA DIVISION

01 FILLER
 02 FILLER PIC X(26)

VALUE "COPYRIGHT-KLUDGE-KORP-1988"

Appendix F – Copy Library Formats

Global Development Cobol Language Manual V8.1 Page 120 of 141

*
* FILE DEFINITION FOR MASTER FILE
FD MASTER ORGANISATION RELATIVE-SEQUENTIAL
ASSIGN TO UNIT "DSK" FILE "SAMASTER" VOLUME "SADATA"
*
01 ST
*
* SALES TRANSACTION RECORD
*
 02 STCUST PIC X(8) * CUSTOMER CODE
 02 STAMT PIC S9(6) COMP * AMOUNT IN POUNDS

 02 STTYPE PIC X * CUSTOMER TYPE
(etc., etc., etc.)

You will note in the example library that the book names have not been
arranged in alphabetical order. Although this is legitimate as far as
Global Cobol is concerned, we would not recommend it in practice.
Unless you maintain the books in a sensible order, as the library
grows it will become more and more difficult to find them when they
require updating, and the chance of creating a duplicate name by
mistake will increase.

Note that the first two characters of all the data names in book ST
are coded as a parameter, allowing the book to be copied several times
in one program, substituting different record identifier codes. This
technique means that multiple copies of record layouts are not
required in the copy library, avoiding problems caused by duplicate
copies not being updated correctly.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 121 of 141

Appendix G – Compilation Listing Error and
Warning Messages

This appendix describes the error and warning messages produced by the
Global Cobol compiler, $COBOL, on its listing file. Errors are in
general serious faults, and result in an unusable compilation file.
The compiler is able to recover following a warning however, and the
description of the warning message specifies the recovery action
taken. Compilation files subject to warnings only are executable, but
it is of course good practice to correct the source so that clean
compilations can be obtained.

Each message consists of the error or warning number of up to 3 digits
and a short explanation. This is preceded by one or three asterisks
which conveniently allow the user to search for error or warning lines
within a listing file using the $INSPECT command.

Messages associated with a specific character position within the
faulty line are preceded by a positioning line containing a single up-
arrow character, located under the offending character or symbol. It
should be noted that the up-arrow character is displayed on some
printers or terminals as a circumflex, or a logical NOT symbol.
Messages not associated with a specific character position within a
line are not preceded by the positioning line.

The notes below are referred to, when appropriate, from the message
descriptions.

Note 1: This error message is included for completeness only. It

should not occur if the compiler is functioning correctly.

Note 2: If an attempt is made to linkage edit and execute the

program following this error, the result will be
unpredictable.

*** ERROR 1 - PROGRAM STATEMENT MISSING
The first recognised statement of a Global Cobol program is not a
PROGRAM statement. Only comments, PAGE, OPT or COPY directives may
precede the PROGRAM statement. See note 2.

* WARNING 2 - 'PROC. DIV.' ALREADY FOUND
A PROCEDURE DIVISION statement has been found after the beginning of
the procedure division. The PROCEDURE DIVISION statement should
delimit the data division and begin the procedure division. The
statement is ignored.

* WARNING 3 - 'DIVISION' EXPECTED
The language word DIVISION cannot be detected in a PROCEDURE DIVISION
or DATA DIVISION statement. DIVISION must follow PROCEDURE or DATA.
The statement is assumed to be a DATA DIVISION or PROCEDURE DIVISION
statement as appropriate.

* WARNING 4 - 'LINKAGE SECTION' MISPLACED
A LINKAGE SECTION statement has been found after the beginning of the
procedure division. If present, the LINKAGE SECTION statement should
occur within the data division. The statement is ignored.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 122 of 141

* WARNING 5 - 'LINKAGE SECTION' ALREADY FOUND
A LINKAGE SECTION statement has already been found. If present,
LINKAGE SECTION should occur only once within the data division. The
statement is ignored.

* WARNING 6 - 'SECTION' MISSING
The language word SECTION cannot be detected in a LINKAGE SECTION
statement. SECTION must immediately follow LINKAGE. The statement is
assumed to be a LINKAGE SECTION statement.

*** ERROR 7 - MULTIPLE LABELS NOT ALLOWED
Only one paragraph name may be coded on a line. A paragraph name can
be coded on a line by itself, or can be followed by a comment or a
Global Cobol statement.

*** ERROR 8 - PROGRAM NOT EXECUTABLE
This error only appears at the end of the source listing. It normally
appears as a consequence of a previously reported error. It indicates
that a very serious error condition has arisen, and that a compilation
file will not be created.

* WARNING 9 - LABEL NOT ALLOWED
A paragraph name has been found labelling a non-procedural statement.
Paragraph names must be coded in the procedure division only.

* WARNING 10 - DATA FOUND IN PROC. DIV.
A data division statement has been found within the procedure
division. Space has been reserved at the end of the data division for
this declaration, but it will not have been initialised and any VALUE
statements will be ignored.

* WARNING 11 - PROC. DIV. STATEMENT ASSUMED
A procedure division statement has been found before the incidence of
the PROCEDURE DIVISION statement. PROCEDURE DIVISION should delimit
the data division and begin the procedure division. A PROCEDURE
DIVISION statement is assumed to have immediately preceded the
statement, i.e. the procedure division is assumed to have started.

*** ERROR 12 - INVALID PROGRAM NAME
The item following the language word PROGRAM is not a valid Global
Cobol symbol. A symbol must begin with a letter (A to Z or $) and be
followed by zero or more alphanumeric characters (A to Z, $, 0 to 9 or
-). See note 2.

*** ERROR 13 - PROGRAM NAME DEFINED TWICE
An attempt has been made to use the program name in another symbol
declaration elsewhere in the program. Each user defined symbol must
have only one definition.

* WARNING 14 - UNEXPECTED END OF FILE
An ENDPROG statement has not been detected at the end of the program.
The last statement in a program must be the ENDPROG statement. An
ENDPROG statement is assumed.

*** ERROR 15 - STATEMENT NOT RECOGNISED
A line which does not begin with a paragraph name must start either
with the first word of a Global Cobol statement, or with an asterisk

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 123 of 141

to denote a comment. The word or asterisk may be preceded by spaces,
tabs or both.

If a line begins with a paragraph name then the remainder of the line
must either be a blank, or start with the first word of a Global Cobol
statement, or an asterisk to denote a comment. The word or asterisk
must be separated from the preceding paragraph name by one or more
spaces or tabs.

*** ERROR 16 - TOO MANY GLOBAL VARIABLES
The total number of global symbols defined or referenced in a single
compilation must not exceed 127. Global symbols include the program
name, entry points defined within the program, and externals such as
file access methods, system subroutines and entry points in other user
compilation units which are CALLed from this program. See note 2.

*** ERROR 17 - COMPILATION EXCEEDS 32K
The total size of the compilation exceeds 32767 bytes. Notes on how
much code is generated per statement can be found in Appendix D. The
size of the compilation unit must be reduced, possibly by dividing it
into two or more modules.

* WARNING 18 - 'DATA DIVISION' EXPECTED
A DATA DIVISION statement has not been detected after the PROGRAM
statement. Ignoring any comments, PAGE, OPT or COPY statements, DATA
DIVISION should be the second statement of the program. A DATA
DIVISION statement is assumed.

*** ERROR 19 - PROGRAM STATEMENT MISPLACED
A PROGRAM statement has been detected out of context. Ignoring any
comments, PAGE, OPT or COPY directives, the PROGRAM statement should
be the first of the program.

*** ERROR 20 - 'DATA DIVISION' MISPLACED
A DATA DIVISION statement has been detected out of context. Ignoring
any comments, PAGE, OPT or COPY directives, DATA DIVISION should be
the second statement of the program.

* WARNING 21 - ILLEGAL GLOBAL DECLARATION
An item declared as a global by means of a GLOBAL statement coded at
the start of the data division has been mistakenly defined in the
linkage section. This warning (which only appears on the compilation
listing) will be output immediately before the PROGRAM statement
itself is listed, and will appear once for every global statement
affected.

*** ERROR 22 - END OF FILE EXPECTED
There are non-blank lines following the ENDPROG statement. These lines
have not been processed.

*** ERROR 23 - MUST PRECEED LINKAGE SECTION
A COMMON SECTION or EXTERNAL SECTION statement has been detected
following the linkage section. The correct order is common sections
(if any), then external sections (if any) then the linkage section.

*** ERROR 24 - 'PROGRAM' ALREADY FOUND
A program should only contain one PROGRAM statement.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 124 of 141

*** ERROR 25 - 'DATA DIVISION' ALREADY FOUND
A second DATA DIVISION statement has been found, and ignored.

*** ERROR 26 - "PROC. DIV' ALREADY FOUND
A second PROCEDURE DIVISION statement has been found, and ignored.

*** ERROR 27 - 'SECTION' EXPECTED
The language word SECTION was not found in a COMMON SECTION or
EXTERNAL SECTION statement.

*** ERROR 31 - 'NAME' EXPECTED
The language word NAME is missing or misplaced in an INDEX statement.
It should be coded after INDEX.

*** ERROR 32 - 'ERROR' OR 'FAILURE' EXPECTED
The language words ERROR or FAILURE cannot be found after the word ON
in an FD declaration.

*** ERROR 33 - 'ADDRESS' OR 'LENGTH' EXPECTED
The language words ADDRESS or LENGTH cannot be found after the word
RECORD in an FD declaration.

* WARNING 34 - INDEX NAME ALREADY FOUND
More than one INDEX NAME IS statement has been detected in a file
declaration. Only one such statement should appear; the first will be
compiled, the rest ignored.

* WARNING 35 - RECORD ADDRESS ALREADY FOUND
More than one RECORD ADDRESS IS statement has been detected in a file
declaration. Only one such statement should appear, the first will be
compiled, the rest ignored.

* WARNING 36 - ON FAILURE ALREADY FOUND
More than one ON FAILURE statement has been detected in a file
declaration. Only one such statement should appear; the first will be
compiled, the rest ignored.

*** ERROR 37 - 'INDEX NAME' ONLY FOR DMAM
An INDEX NAME IS statement has been detected in a file declaration
that is not for data management files. This is not allowed.

*** ERROR 38 - 'RECORD ADDRESS' ONLY FOR DMAM
A RECORD ADDRESS IS statement has been detected in a file declaration
that is not for data management files. This is not allowed.

*** ERROR 39 - 'ON FAILURE' ONLY FOR DMAM
An ON FAILURE statement has been detected in a file declaration that
is not for data management files. This is not allowed.

*** ERROR 40 - 'BLOCK' INVALID FOR DMAM FILES
A BLOCK CONTAINS statement has been detected in a data management file
definition. This is not allowed.

*** ERROR 41 - CHARACTER NOT RECOGNISED
The specified character is an ASCII control character, and is not
permitted in a Global Cobol source program. Reference should be made
to the ASCII character set in Appendix A.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 125 of 141

*** ERROR 42 - ITEM NOT RECOGNISED
The specified item is not a legal Global Cobol language word, symbol,
numeric string or character string. Each item must be delimited by
space, tab, or in certain cases by a bracket or comma. Other
characters are not allowed.

* WARNING 44 - ITEM HAS INVALID DELIMITER
The specified item has been recognised as a legal Global Cobol
language word, symbol, numeric string or character string but is not
followed by a valid delimiter. Each item must be delimited by space,
tab, or in certain cases by a bracket or comma. Other characters are
not allowed. A valid delimiter has been assumed preceding the invalid
one, and the invalid delimiter now starts the following item.

*** ERROR 46 - INVALID NUMERIC STRING
A valid numeric string consists of optional leading blanks, an
optional sign, 1 - 15 digits (which may be omitted if the decimal
point is present), an optional decimal point which, if present, must
be followed by 1 - 7 digits, and optional trailing blanks. The total
number of digits must not exceed 18.

* WARNING 47 - STRING NOT TERMINATED BY "
The specified character string is not terminated by a quote character.
The string will be processed as if a quote character had been inserted
immediately before the end of line character.

* WARNING 48 - NON-PRINTABLE CHAR IN STRING
The specified character is an ASCII control character. It should be
noted that unpredictable results will occur if the string is
subsequently DISPLAY'ed or printed.

* WARNING 49 - ODD NUMBER OF HEX CHARS
A hexadecimal literal has been discovered containing an odd number of
hexadecimal characters. A leading zero has been inserted. Hexadecimal
literals must contain an even number of hexadecimal characters.

* WARNING 50 - ITEM TOO LONG
The specified item contains more than 64 characters. Only the first 64
characters will be recognised, and the remaining characters ignored.
The compiler will not accept Global Cobol symbols or character strings
greater than 64 characters long. Note that in the case of a symbol
only the first 6 or 31 characters are significant, depending on
whether or not the "long names" option is in force.

*** ERROR 51 - NUMERIC STRING TOO LARGE
A numeric string has been discovered with too many digits. There may
be no more than 15 digits preceding the decimal point, nor more than 7
following the decimal point. In addition the total number of digits
must not exceed 18.

* WARNING 52 - EXTRA CHARS ON END OF LINE
The specified Global Cobol statement is not followed by end of line or
a legal comment. All comments must begin with an asterisk. Characters
following the statement are ignored up to the end of the line.

*** ERROR 53 - ILLEGAL COPY STATEMENT

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 126 of 141

The item following the language word COPY is not a valid Global Cobol
copy book name. A copy book name must be a one or two character Global
Cobol symbol.

*** ERROR 54 - COPY NESTING LEVEL EXCEEDED
A COPY statement has been discovered which would exceed the maximum
copy nesting level.

* WARNING 55 - EXTRA CHARS ON END OF LINE
The specified PAGE or COPY statement is not followed by end of line or
a legal comment. All comments must begin with an asterisk. The
characters following the statement are ignored up to the end of the
line.

*** ERROR 56 - COPY BOOK NOT FOUND
The required copy book is not present on any of the copy libraries
submitted with this compilation.

*** ERROR 57 - NO COPY LIBRARY
A COPY statement has been detected, but no copy library was specified
at the beginning of the compilation.

* WARNING 58 - COPY BOOK NAME TRUNCATED
A COPY statement containing a book name longer than 2 characters has
been detected. Only the first two characters of a book name are
significant.

*** ERROR 59 - STRING EXPECTED
No character string was found following the SUBSTITUTING clause of a
COPY statement.

* WARNING 60 - ITEM TOO LONG
The string specified in the SUBSTITUTING clause of a COPY statement
contains more than 31 characters. Only the first 31 characters of the
string will be used during substitution.

*** ERROR 61 - ATTEMPTED TO CHANGE VAR. TYPE
The compiler symbol table has been corrupted. See note 1.

*** ERROR 62 - PROGRAM NOT EXECUTABLE
This message usually is a result of a preceding ERROR 201. It means
that the compiler cannot calculate the addresses of paragraph and
section names. If this is the only error in a compilation then see
note 1. The error indicates that a very serious error condition has
arisen, and that a compilation file will not be created.

*** ERROR 63 - >20 VARIABLES ON A LINE
The compiler's symbol buffer has overflowed. See note 1.

* WARNING 70 - SYMBOLIC DEBUG RECORD OVERFLOW
The compilation unit contains more than 1300 named symbols. The
symbolic debug record generated for this unit will only contain the
first 650 symbols referenced in the compilation.

*** ERROR 72 - UNRECOGNISED OPTION
One of the options specified in the OPT statement is not a member of
the valid options set. Options specified before this on the line will
be effective. Options specified after on the same line will not.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 127 of 141

* WARNING 73 - TOO MANY PROPER L.S GROUPS
The compilation contains more than 100 proper linkage section groups.
(Each level 01 or level 77 item coded in the linkage section, which is
not itself a redefinition, counts towards the total of 100.) The
compiler is unable to generate symbolic debug information in this
case, but, apart from this, the compilation is unaffected.

*** ERROR 98 - CODE TABLE OVERFLOW
The capacity of the compiler's code generation table has been
exceeded. See note 1.

*** ERROR 99 - UNRECOGNISED TOKEN MPR-MPS
The compiler's control module has passed a line of source to the wrong
processing module. See note 1.

*** ERROR 101 - LINE OUT OF CONTEXT
A Global Cobol data division statement has been detected out of
context. A VALUE statement must be preceded by a valid elementary or
77 level item declaration. A valid 01 level declaration must be the
first statement of a group declaration. Valid FD and ASSIGN statements
must be the first two statements of a file description. A valid MD
statement must be the first statement of a map definition.

*** ERROR 103 - ILLEGAL ORGANISATION
The specified organisation has not previously been defined in an
ORGANISATION statement. All ORGANISATION statements must be coded
immediately following the DATA DIVISION statement.

*** ERROR 104 - ASSIGN STATEMENT NOT FOUND
No ASSIGN statement has been detected in a file definition. An ASSIGN
statement should follow an FD statement in every working storage file
definition, although this is optional in the linkage section.

* WARNING 105 - 'ON ERROR' ALREADY FOUND
More than one ON ERROR statement has been detected in a file
definition. The ON ERROR statement may appear at most once in each
file definition. Further ON ERROR statements will be ignored.

* WARNING 106 - KEY STATEMENT ALREADY FOUND
More than one KEY statement has been detected in a file definition.
The KEY statement may appear at most once in each file definition.
Further KEY statements will be ignored.

* WARNING 107 - OPTION IGNORE NOT ALLOWED
The OPTION IGNORE statement is only allowed in indexed sequential file
definitions.

* WARNING 108 - RECORD STATEMENT ALREADY FOUND
More than one RECORD statement has been detected in a file definition.
The RECORD statement may appear at most once in each file definition.
Further RECORD statements will be ignored.

* WARNING 111 - OPTION RESET NOT ALLOWED
An OPTION RESET statement has been detected in an indexed sequential
file definition.

* WARNING 113 - SIZE STATEMENT ALREADY FOUND

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 128 of 141

More than one SIZE statement has been detected in a file definition.
The SIZE statement may appear at most once in each file definition.
Further SIZE statements will be ignored.

*** ERROR 114 - ENTRYNAME NOT ALLOWED
The symbol parameter in an AREA or ON ERROR statement cannot be an
entryname.

* WARNING 115 - LENGTH MUST BE VARIABLE
An incorrect RECORD LENGTH statement has been detected in an indexed-
sequential file definition. The length may not be coded as a literal.
The correct form is RECORD LENGTH IS symbol. The statement has been
ignored.

* WARNING 116 - KEY FIELD NOT ALLOWED
An incorrect KEY LENGTH statement has been detected in an indexed-
sequential file definition. The correct form is KEY LENGTH IS
keylength. The statement has been ignored.

* WARNING 117 - KEY MUST BE SYMBOL
An incorrect KEY statement has been detected in a file definition. The
correct form is KEY IS symbol. The statement has been ignored.

*** ERROR 119 - ITEM EXCEEDS 32K
The declaration of the current FD or data item will cause the total
compilation size to exceed 32767 bytes. This is the maximum size of a
single compilation unit permitted by the compiler. The declaration has
been ignored.

* WARNING 120 - VALUE TOO LONG
The number of bytes specified in this and any earlier associated VALUE
statements has exceeded the length of the previous elementary or 77
level item. For a character item the current value will be truncated
to the right and processed. Further VALUE statements will be ignored
within this item.

*** ERROR 121 - PICTURE AND VALUE DO NOT MATCH
A data item has been assigned a value that it cannot accept. Check the
picture clause definition with the value clause description.

* WARNING 122 - INCORRECT HEX LENGTH
The specified hexadecimal string does not have the correct length.
When a hexadecimal string is used to initialise a computational item
it must establish every byte of the item and no more. The compiler has
truncated or zero-filled to the right as appropriate.

*** ERROR 123 - VALUE TOO LARGE
The specified numeric or character string is too large for the data
item being initialised. The PIC clause of the data item should be
changed to permit additional leading digits and/or a sign.

*** ERROR 124 - PTR VALUE MUST NOT BE IN L.S
A pointer data item may not be initialised to address a data item
defined in the linkage section.

*** ERROR 125 - SYMBOL NOT DEFINED
The symbol in a REDEFINES clause, or a VALUE statement for a pointer
data item, is not defined in the compilation. Items to be redefined

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 129 of 141

must be declared in the same compilation as, and earlier than, the
REDEFINES clause.A pointer item may be initialised to address a data
name, file name, paragraph name, section name or entry name defined in
this compilation, or an external name defined in a GLOBAL statement.

*** ERROR 126 - ITEM MAY NOT BE REDEFINED
An illegal name has been detected in a REDEFINES clause. A data item
may only redefine another previously declared data item or filename.

*** ERROR 127 - ITEMS IN DIFFERENT SECTIONS
A data item in the linkage section may not redefine a data item or
file name declared before the LINKAGE SECTION statement. A data item
declared before the LINKAGE SECTION statement may not redefine a data
item or filename declared in the linkage section.

* WARNING 129 - VALUE TRUNCATED
The specified numeric or character string contains too many decimal
places for the data item being initialised. The compiler has truncated
the string to match the data item's PIC clause.

*** ERROR 130 - TOO MANY GLOBALS
The total number of global symbols defined or referenced in a single
compilation must not exceed 127. See note 2.

*** ERROR 131 - DOUBLY DEFINED VARIABLE
The specified symbol has been defined more than once in this
compilation. The compiler only recognises the first six characters of
a user symbol (or 31 if the long names option has been specified).
Each unique symbol must only be defined once in the compilation,
though it may be referenced many times. Each definition will be
flagged with an error.

*** ERROR 132 - SYSTEM VARS CANNOT BE GLOBAL
A system variable has been specified in a GLOBAL statement. System
variables are not permitted to be defined as global.

* WARNING 133 - INITIALISATION NOT ALLOWED
No initialisation can be performed for linkage section items,
redefinitions, and items within repeating groups. The attempted
initialisation is ignored.

* WARNING 134 - REDEFINITION TOO LARGE
The declaration of the current data item will cause the length of the
preceding 01 level data item to exceed the length of the data item
specified in the REDEFINES clause. The compiler will allow the
redefinition to continue, although unpredictable results may occur
when the program is executed.

*** ERROR 136 - PROGRAM NOT EXECUTABLE
This error will appear normally as a consequence of other errors in
the data division, particularly ERROR 131 and ERROR 126. When it
appears on its own, it implies an invalid REDEFINES clause, normally
ERROR 126. It indicates that a very serious error condition has
arisen, and that a compilation file will not be created.

*** ERROR 137 - REDEFINITION TOO LARGE
The declaration of the current data item will cause the length of the
preceding 01 level data item to exceed 32767 bytes. This is the

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 130 of 141

maximum size permitted by the compiler. The declaration has been
ignored.

Alternatively the declaration of the current data item will cause the
length of the preceding 01 level data item to exceed the length of the
absolute system variable specified in the REDEFINES clause. This is
not allowed.

*** ERROR 139 - ILLEGAL BASE
The item specified in a BASED clause was not a pointer data item
declared in working storage. The BASED clause is ignored.

*** ERROR 140 - 'BASED' ALLOWED IN L.S ONLY
A BASED clause has been detected on an 01 or 77 level declaration
which is coded before the LINKAGE SECTION statement. 01 or 77 level
declarations with BASED clauses must be coded in the linkage section.

*** ERROR 141 - ITEM MAY NOT REDEFINE ITSELF
A statement of the form:

01 A REDEFINES A

is meaningless.

*** ERROR 142 - LEVELS NESTED TOO DEEPLY
The current group data definition contains more than 19 nested levels.

*** ERROR 143 - NESTED OCCURS NOT ALLOWED
An OCCURS clause has been found on a data item which is part of a
repeating group.

* WARNING 144 - ODD INITIAL ADDRESS
The first initialised byte of the program is at an odd address within
the compilation. This warning is only generated if the program is
compiled with option ED (even data) specified.

* WARNING 145 - REDEFINITION TOO LARGE
See WARNING 134 for details

* WARNING 146 - GROUP OF ZERO LENGTH
A group has been found which has zero length. Indiscriminate use of
such items can lead to unpredictable results.

*** ERROR 147 - VALUE STATEMENT EXPECTED
A PIC X(?) item must be followed by a VALUE statement.

*** ERROR 148 - ILLEGAL USE OF PIC X(?)
A PIC X(?) declaration cannot be a redefinition, or have an OCCURS
clause, or be part of a repeating group.

*** ERROR 151 - 'TO' EXPECTED
The language word TO is missing or misplaced in an ASSIGN statement.
It should be coded after ASSIGN.

*** ERROR 152 - 'UNIT' EXPECTED
The language word UNIT is missing or misplaced in an ASSIGN statement.
It should be coded after ASSIGN TO.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 131 of 141

*** ERROR 153 - BRACKET MISSING
Either "(" or ")" is required at this position in the line for one of
the following reasons:

(a) In a PICTURE clause X or 9 can only be followed by a comment
or the character (.

(b) The character (must then be followed by an integer and the

character).

*** ERROR 154 - LABEL NOT ALLOWED IN D.D
Lines in the data division may not be labelled.

*** ERROR 157 - INTEGER EXPECTED
The statement is flagged where an integer value was expected. For
appropriate values, see the notes to ERROR 160.

*** ERROR 158 - 'IS' EXPECTED
The language word IS is missing or misplaced in a KEY statement. It
should be coded after KEY.

*** ERROR 159 - STRING EXPECTED
In a VALUE or ASSIGN statement a literal string was not found where
expected. A literal string begins and ends with a " character.

*** ERROR 160 - VALUE OUTSIDE VALID RANGE
This results from one of the following rules being broken:

In an OCCURS clause the language word OCCURS must be followed by
an integer in the range 1 to 32767;

In a PICTURE clause the length of a character string must be an
integer in the range 1 to 32767;

In a PICTURE clause for a numeric item, ie 9(p,q) or S9(p,q), p
must be in the range 1 to 15, q in the range 1 to 7 and p + q
must be less than 19;

In a KEY LENGTH statement, the key length must be unsigned and in
the range 1 to 99;

In a RECORD LENGTH statement, the record length must be an
integer in the range 1 to 32767;

In a SIZE statement, the size must be in the range 0 to
999999999;

In an ORGANISATION statement the type operand must be between 0
and 255 inclusive and the extension between 0 and 1016 inclusive;

The integer in a BLOCK CONTAINS statement must be in the range 1
to 32760.

*** ERROR 162 - 'PIC' EXPECTED
The language word PIC cannot be found in a level 77 data declaration.
It should be inserted following the OCCURS clause (if present) or the
data name. PIC must be on the same line as the level number. It cannot
start a line.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 132 of 141

*** ERROR 163 - INVALID PICTURE CLAUSE
The item type identifier X, 9, S9 or PTR is missing or misplaced in a
picture clause. It should be coded immediately after PIC. Only one 9
is allowed.

*** ERROR 164 - INVALID OPTION
The language word IGNORE, ERROR or RESET must follow the language word
OPTION in an OPTION statement.

*** ERROR 165 - 'ERROR' EXPECTED
The word ERROR was not found in an ON ERROR statement in an FD
declaration.

*** ERROR 166 - 'TYPE' EXPECTED
The language word TYPE has not been recognised in an ORGANISATION
statement. It should be coded following the organisation being
declared.

*** ERROR 167 - 'EXTENSION' EXPECTED
The language word EXTENSION has not been recognised in an ORGANISATION
statement. It should be coded following the type.

*** ERROR 168 - 'LENGTH' OR SYMBOL EXPECTED
The language word LENGTH has not been recognised in a RECORD LENGTH
statement in an FD, or a symbol did not follow the word RECORD in an
MD.

*** ERROR 169 - SYMBOL OR NUMERIC EXPECTED
In the KEY LENGTH, RECORD LENGTH and the SIZE statements the key
length, record length and size respectively must be specified as a
numeric literal or an identifier.

*** ERROR 171 - ILLEGAL USE OF A RESERVED WORD
A reserved word cannot be used as a file name in a FD statement or as
a data name. See section 2.1.2.

*** ERROR 172 - 'ORGANISATION' EXPECTED
The language word ORGANISATION (or ORGANIZATION) is missing or
misplaced in an FD statement. It should be coded after the filename.

*** ERROR 173 - TOTAL NO. OF PLACES > 18
A numeric data item cannot be declared with more than 18 decimal
digits in total.

*** ERROR 174 - 'FILE' EXPECTED
The language word FILE is missing or misplaced in an ASSIGN statement.
It should follow the unit-id.

* WARNING 175 - STRING TOO LONG
A string specified in the ASSIGN statement is too long, and has been
truncated according to the maximum lengths given below:

unit-id maximum length 3;
file-id maximum length 8;
volume-id maximum length 6.

*** ERROR 176 - ILLEGAL LEVEL NUMBER

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 133 of 141

A data declaration does not contain a legal level number.

*** ERROR 177 - MULTIPLE LABELS NOT ALLOWED
A line may not have more than one label.

*** ERROR 178 - MORE THAN FIVE AREA NAMES
The AREAS (or AREA) statement flagged in error introduces a list
containing more than five area names, thereby exceeding the maximum
number allowed.

*** ERROR 179 - IDENTIFIER EXPECTED
The specified item is not a valid Global Cobol symbol. A Global Cobol
symbol is always acceptable at this point, but in some cases other
items may also be acceptable (e.g. a string).

* WARNING 180 - ROUNDED UP TO MULTIPLE OF 8
The length specified in the EXTENSION clause of an ORGANISATION
statement should be an integral multiple of 8. It has been rounded up
accordingly.

*** ERROR 181 - 'CONTAINS' EXPECTED
The language word CONTAINS is missing or misplaced in a BLOCK
statement. It should be coded after BLOCK.

*** ERROR 182 - 'CHARACTERS' EXPECTED
The language word CHARACTERS is missing or misplaced in a BLOCK
statement.

* WARNING 183 - BLOCK STATEMENT ALREADY FOUND
More than one BLOCK CONTAINS statement has been detected in a file
definition. The BLOCK CONTAINS statement may appear at most once in a
file definition. Further BLOCK CONTAINS statements will be ignored.

*** ERROR 184 - 'BLOCK' INVALID FOR ISAM FILES
A BLOCK CONTAINS statement has been detected in an indexed sequential
file definition. This is not allowed.

* WARNING 185 - RECORD STATEMENT ALREADY FOUND
More than one RECORD statement has been detected in the same map
definition. Since at most one such statement should appear, only the
first RECORD statement of the definition will be compiled, and any
others will be ignored.

*** ERROR 186 - DATA NAME UNDEFINED
A non-symbolic name of the form:

"data-name"

has been coded in an AREAS (or AREA) statement, MAP clause, or ON
ERROR statement, but the data-name has neither been defined in the
current program, nor been declared a global symbol by a preceding
GLOBAL statement. It is impossible to set up the pointer to address
the area, and hence this error is signalled.

*** ERROR 187 - VARIANT ALREADY FOUND
More than one VARIANT statement has been detected in the same map
definition. Since at most one such statement should appear, only the

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 134 of 141

first VARIANT statement of the definition will be compiled, and any
others will be ignored.

* WARNING 188 - AREAS STATEMENT ALREADY FOUND
More than one AREAS (or AREA) statement has been detected in the same
map definition. Since at most one such statement should appear, only
the first AREAS (or AREA) statement will be compiled, and any others
will be ignored.

*** ERROR 190 - CANNOT BE LINKAGE SECTION ITEM
A non-symbolic name of the form:

"data-name"

has been coded in an AREAS (or AREA) statement, MAP clause, or ON
ERROR statement, but the data name involved is defined in the linkage
section. It is impossible to initialise the pointer to address a
linkage section item, and in consequence this error is signalled.

*** ERROR 191 - 'MAP' EXPECTED
The language word MAP is missing or misplaced in a map definition
coded in working storage. MAP may only be omitted from an MD occupying
the linkage section. In a working storage map definition it must
immediately follow the mapname.

*** ERROR 201 - DOUBLY DEFINED LABEL
A label previously found in the procedure division or declared as a
data item in the data division has been detected. The full stop does
not form part of the label name. The label should be altered to make
it unique.

* WARNING 202 - DOUBTFUL SECTION TERMINATION
A SECTION, ENTRY or ENDPROG statement has been encountered which is
not preceded by a STOP, EXIT or GO TO statement. Valid code will be
generated for the section or entry but this is not recommended coding
practice.

* WARNING 203 - CONSECUTIVE ENTRY STMTS FOUND
An ENTRY statement followed immediately by another ENTRY statement has
been detected. Code will be generated for both ENTRY statements but
execution via the first entry point will be doubtful.

* WARNING 204 - 'DO' NEST LEVEL NON-ZERO
The DO nest level was found to be non-zero upon encountering a SECTION
or ENTRY statement, probably indicating a missing ENDDO statement in a
previous section.

* WARNING 205 - 'IF' NEST LEVEL NON-ZERO
The IF nest level was found to be non-zero upon encountering a SECTION
or ENTRY statement, probably indicating a missing END statement in a
previous section.

* WARNING 206 - 'END' EXPECTED
The range of an IF, ACCEPT or ON structure declared within a DO
structure extends beyond the range of the DO structure.

*** ERROR 207 - NO MATCHING 'IF' FOUND

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 135 of 141

An END statement has been encountered for which no corresponding IF,
ACCEPT or ON statement was previously detected.

* WARNING 208 - 'ENDDO' EXPECTED
The range of a DO structure declared within an IF, ACCEPT or ON
structure extends beyond the range of the IF, ACCEPT or ON structure.

*** ERROR 209 - 'IF..ELSE..ELSE' DETECTED
Consecutive ELSEs attached to the same IF, ACCEPT or ON statement have
been detected. No code will be generated for the second ELSE.

*** ERROR 210 - MORE THAN 16 NESTED "DO'S"
The maximum nesting level for DO structures has been exceeded. No code
will be generated for any subsequent DO statements until an ENDDO
statement is encountered.

*** ERROR 211 - NO MATCHING 'DO' FOUND
An ENDDO or FINISH statement has been encountered with no
corresponding DO statement found previously.

*** ERROR 212 - MORE THAN 32 NESTED "IF'S"
The maximum nesting level for IF, ACCEPT and ON structures (32
overall) has been exceeded. No code will be generated for subsequent
IF, ACCEPT and ON block condition statements until an END statement is
encountered.

*** ERROR 213 - OPERAND OVER 80 CHARACTERS
The sending field of a DISPLAY statement or the receiving field of an
ACCEPT statement must not be greater than 80 bytes in length.

* WARNING 215 - INACCESSIBLE CODE LINE
This indicates an unlabelled line of code which is not a SECTION or
ENTRY statement following an unconditional program jump. Object code
is generated for the line.

*** ERROR 216 - LINE OUT OF CONTEXT
A TO statement must be preceded by a GO TO DEPENDING ON
statement. An AND or OR statement must be preceded by an initial
conditional statement.

*** ERROR 217 - 'TO' STATEMENT EXPECTED
A GO TO DEPENDING ON statement not followed by any TO statements has
been encountered. The statement is ignored. Every GO TO DEPENDING ON
must be immediately followed by at least one TO statement.

*** ERROR 218 - 'AND' AND 'OR' CANNOT BE MIXED
Compound conditions may contain either AND or OR statements but not
both.

* WARNING 220 - TARGET IS AN ENTRYNAME
The target of a PERFORM or GO TO statement is a program entry point.A
valid jump will be generated but this is not recommended programming
practice.

*** ERROR 221 - INVALID OPERAND TYPE
This type of operand is not allowed in this position. Allowable
operands will depend on the statement type, and Chapter 4 should be
consulted for details.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 136 of 141

* WARNING 222 - NOT AN INDEXED VARIABLE
An index has been specified for a variable declared without an OCCURS
clause. Object code to process the index will nevertheless be
generated.

* WARNING 223 - INDEX EXPECTED. (1) ASSUMED
A variable defined with an OCCURS clause has been referenced with no
index specified. A default index of one is assumed.

*** ERROR 224 - INTEGER OR COMP INDEX ONLY
An index of the wrong type has been encountered. Valid indices must be
either unindexed computational items or unsigned, non-zero integers.

*** ERROR 225 - TARGET MUST BE COMP
The target of an ADD, SUBTRACT, MULTIPLY or DIVIDE statement with no
GIVING clause specified must be a computational item.

*** ERROR 226 - DOUBLY DEFINED SECTION/ENTRY
A section name or entry name has been encountered which was previously
declared as a label, section name or entry name in the procedure
division or as a data item in the data division. The name should be
altered to make it unique.

* WARNING 227 - VALID FOR ISAM AND DMAM ONLY
An index area has been specified in an OPEN operation for a file not
declared as indexed-sequential or data management. Index area
specification is valid only for the indexed-sequential and data
management access methods. The specification is ignored.

*** ERROR 228 - VARIABLE TOO SHORT
The index area specified in an OPEN statement is too short. Index
areas must be at least 256 bytes long for indexed-sequential files,
and at least 516 bytes long for data management files.

*** ERROR 229 - FILENAME EXPECTED
The first operand of an I/O operation statement must always be a
filename.

*** ERROR 231 - L.S VARIABLE EXPECTED
All operands of a USING clause in an ENTRY statement and the first
operand of a BASE statement must be linkage section items.

*** ERROR 232 - MUST NOT REDEFINE A SUBGROUP
The operand of a USING clause in an ENTRY statement or the first
operand of a BASE statement must not be a redefinition of a
subordinate (02-49) level.

*** ERROR 233 - ITEM MUST BE 01, 77, FD or MD
All operands of a USING clause in an ENTRY statement and the first
operand of a BASE statement must be 01 or 77 level items, FDs, or MDs,
or their redefinition.

*** ERROR 234 - DOUBLY DEFINED SYSTEM ROUTINE
A user symbol in this compilation has the same name as a Global Cobol
system routine called from this compilation. To avoid problems of this
nature, it is recommended that the $ character is not used within
user-defined symbols.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 137 of 141

*** ERROR 235 - UNDEFINED OPERAND
The indicated operand has not been defined within the compilation
unit.

*** ERROR 236 - CANNOT 'CALL' THE PROGRAM NAME
The target of a CALL statement must be an entry name or external name.
The program name may not be used as an entry name.

* WARNING 237 - FIELD LONGER THAN 8 CHARACTERS
The target of a LOAD, CHAIN, RUN or EXEC statement is longer than
eight characters. Object code will be generated but only the first
eight characters of the target will be significant.

*** ERROR 238 - UNSUPPORTED OPCODE
The opcode specified is not supported for this statement in this
version of the compiler.

*** ERROR 239 - 'OPEN NEW' INVALID
An OPEN NEW operation on an indexed-sequential or data management file
has been encountered. Indexed-sequential and data management files
must be created separately before use.

*** ERROR 240 - ILLEGAL PIC ON LINE OR COL VAR
Operands of LINE or COL clauses must be PIC 9(4) COMP variables or
positive integer literals.

*** ERROR 241 - MAPNAME EXPECTED
The first operand of a MAPOUT, MAPCLEAR or MAPIN statement must always
be a mapname, or in the case of MAPIN the word ENTRY.

*** ERROR 242 - 'DO' NEST LEVEL NON-ZERO
The DO nest level was found to be non-zero upon encountering the
ENDPROG statement, indicating a missing ENDDO statement within the
program.

*** ERROR 243 - 'IF' NEST LEVEL NON-ZERO
The IF nest level was found to be non-zero upon encountering the
ENDPROG statement, indicating a missing END statement within the
program.

*** ERROR 244 - ZERO LENGTH ACCEPT NOT ALLOWED
The variable specified in an ACCEPT statement was an empty group or
subgroup item. It must be at least l byte long.

*** ERROR 246 - MAXIMUM SIZE IS PIC 9(12,6)
The first operand of an EDIT statement can have a maximum of twelve
digits preceding the decimal point, and six digits following the
decimal point.

* WARNING 247 - MAXIMUM LENGTH IS 30 CHARS
The second operand of an EDIT statement, the receiving field, cannot
be longer than 30 characters. Additional characters will remain
unchanged.

*** ERROR 249 - MUST BE PIC [S]9(4) COMP

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 138 of 141

If a variable is specified as the field number operand of a MAPOUT,
MAPCLEAR or MAPIN statement, its picture clause must be either PIC
9(4) COMP or PIC S9(4) COMP.

*** ERROR 251 - MULTIPLE LABELS NOT ALLOWED
More than one label has been found on a line. Only one label per line
is allowed. The labels should be recoded on separate lines.

*** ERROR 252 - LINE MUST NOT BE LABELLED
A label has been encountered on a SECTION, ENTRY, TO, AND or OR
statement. Labelling of these statements is not permitted.

*** ERROR 253 - INVALID OPERAND
The indicated operand is of the wrong type. For example attempting to
MOVE a data item to a literal will cause this error.

*** ERROR 254 - 'END OF LINE' EXPECTED
A carriage-return line-feed sequence or a legal comment were expected
but not found. Legal comments begin with an asterisk.

*** ERROR 255 - RIGHT PARENTHESIS EXPECTED
The closing round bracket on an index was expected in the specified
position.

*** ERROR 256 - INVALID ARITHMETIC CONSTRUCT
The word following the first operand of an arithmetic statement is
invalid. The correct constructs are:

ADD...TO
SUBTRACT...FROM
MULTIPLY...BY
DIVIDE...INTO

*** ERROR 257 - 'GIVING' OR 'ROUNDED' EXPECTED
An ADD, SUBTRACT, MULTIPLY or DIVIDE statement has continued beyond
its second operand. However the continuation is not one of ROUNDED,
GIVING or a legal comment. These are the only valid continuations for
the statements.

*** ERROR 258 - 'AT' OR 'ON' EXPECTED
AT or ON cannot be found after the first operand of a BASE statement.

*** ERROR 259 - TOO MANY PARAMETERS
Too many parameters have been encountered in the USING clause of a
CALL, ENTRY or SVC statement. The maximum number of parameters
permitted is seven.

*** ERROR 260 - INVALID ACTION
The action specified at the end of an IF, ACCEPT or ON statement is
not one of PERFORM, GO TO, STOP, EXIT or carriage-return line-feed.
Other single-line actions should be specified on the next line with
ELSE or END coded on the line following.

*** ERROR 261 - ILLEGAL USE OF A RESERVED WORD
The programmer has attempted to use a reserved word in a position
where it is not permitted.

*** ERROR 262 - INVALID 'DO' STATEMENT

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 139 of 141

DO may only be followed by the language words WHILE, UNTIL or FOR.

*** ERROR 263 - 'GO TO DEPENDING' INVALID
GO TO DEPENDING ON may not be coded as an action on the end of an IF,
ACCEPT or ON statement. It should be coded on the next line followed
by the appropriate number of TO statements, followed by either an ELSE
or END statement.

*** ERROR 264 - EXCEPTION/OVERFLOW EXPECTED
ON must always be followed by OVERFLOW or EXCEPTION.

*** ERROR 265 - OLD, NEW OR SHARED EXPECTED
OPEN must always be followed by one of OLD, NEW or SHARED.

*** ERROR 266 - INTEGER EXPECTED
The operand in the indicated position must be a valid integer.

*** ERROR 267 - INVALID CONDITION
Either the condition clause of the indicated DO, IF, AND or OR
statement does not conform to any valid format described in Table
4.6.3, or the condition operand of a $JUMP statement is not one of EQ,
NE, GT, LT, GE or LE.

*** ERROR 268 - STRING EXPECTED
The operand in the indicated position must be a valid Global Cobol
character string.

*** ERROR 269 - VARIABLE EXPECTED
The operand involved in a ZERO, POSITIVE, NEGATIVE, HIGH-VALUES, LOW-
VALUES, SPACES or NUMERIC test in an IF or DO statement must be a
valid Global Cobol variable (possibly indexed).

*** ERROR 270 - BOOLEAN CONDITION EXPECTED
One of ZERO, POSITIVE, NEGATIVE, NUMERIC, EQUAL, =, LESS, <, GREATER,
>, or a figurative constant cannot be found after the first operand
(and possibly a NOT) of an IF or DO statement.

*** ERROR 271 - 'FROM' EXPECTED
FROM cannot be found after the first operand of a WRITE or REWRITE
statement.

*** ERROR 272 - 'USING' EXPECTED
Non-comment characters have been detected after the entry name in an
ENTRY statement. However the language word USING has not been found.

*** ERROR 273 - 'INTO' EXPECTED
INTO cannot be found after the first operand of a READ or EDIT
statement.

*** ERROR 274 - 'AT' EXPECTED
AT cannot be found after the first operand of a POINT statement.

*** ERROR 275 - TOO MANY TARGETS
Too many targets have been encountered in a multiple-target MOVE
statement. The compiler will handle a maximum of seven targets on any
one MOVE statement. The statement should be split into as many MOVEs
as are required to bring the number of targets within the allowable
range.

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 140 of 141

*** ERROR 276 - INDEXED VARIABLE NOT ALLOWED
An indexed pointer has been detected as the target of the transfer of
control part of a format 2 condition statement. The statement should
be recoded as a format 1 condition.

*** ERROR 277 - UNEXPECTED END OF LINE
A mandatory operand has been omitted.

*** ERROR 279 - 'TO' EXPECTED
The language word TO was not found in the expected position in a MOVE
or GO statement.

*** ERROR 280 - MUST BE UNSIGNED
The integer in the specified position must not be preceded by + or -.

*** ERROR 282 - NUMBER OUTSIDE VALID RANGE
The specified integer must be in the range 1 to 99 for the SVC
statement and 0 to 31 for the $CC statement.

*** ERROR 283 - MUST BE POSITIVE
Index values must be strictly positive.

* WARNING 284 - CONDITION HAS NO VARIABLE PART
Both operands of a comparison in an IF or DO statement have been found
to be literals. Valid code will still be generated.

*** ERROR 285 - 'ON' EXPECTED
The ON following GO TO DEPENDING cannot be found. The statement will
be ignored.

*** ERROR 286 - INVALID MAPPING OPTION
The option specified in a MAPOUT, MAPIN or MAPCLEAR statement must be
one of the words: ALL; FIELD; OUTPUT; PRINT; QUERY; RECORD; or TEXT.

*** ERROR 288 - 'FORMAT' EXPECTED
The word FORMAT was not found in an EDIT statement.

*** ERROR 289 - INVALID OPTION
The mapping option specified is not valid for this MAPOUT, MAPCLEAR or
MAPIN statement. See the Global Screen Presentation Manual for details
of valid options.

*** ERROR 290 - '=' EXPECTED
An equals sign cannot be found after the first operand in a DO FOR
statement.

*** ERROR 291 - 'TO' OR 'STEP' EXPECTED
Non-comment characters have been detected after the second operand in
a DO FOR statement. However the language words TO or STEP have not
been found.

*** ERROR 292 - 'STEP' EXPECTED
Non-comment characters have been detected after the third operand in a
DO FOR statement. However the language word STEP has not been found.

*** ERROR 293 - INVALID VALUE

Appendix G – Compilation Listing Error and Warning Messages

Global Development Cobol Language Manual V8.1 Page 141 of 141

The VALUE clause for a PIC DATE or PIC FLT item has been given in an
incorrect format.

*** ERROR 294 - LOCK TYPE EXPECTED
Non-comment characters have been found at the end or a READ statement.
For data management files the language words LOCK, PROTECT or DELETE-
LOCK can optionally appear.

