

Global Development Cobol User Manual V8.1 Page 1 of 174

Global 16-bit Development System
 Cobol User Manual
 Version 8.1

Global Development Cobol User Manual V8.1 Page 2 of 174

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,
electrical, mechanical, photocopying,

recording or otherwise, without
the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development Cobol User Manual V8.1 Page 3 of 174

TABLE OF CONTENTS

Section Description Page Number

1. Introduction ... 5
1.1 Text File Creation and Maintenance 5
1.2 Compiling and Cross-Referencing 7
1.3 Linkage Editing .. 7
1.4 Compilation and Program Library Maintenance 7
1.5 Debugging Facilities .. 8
1.6 Print Files and Example Listings 8
1.7 Print Files and Example Listings 8

2. Text file editing using $EDIT 10
2.1 Overview .. 10
2.2 Editing Instructions ... 15
2.3 Error and Warning Messages during Editing 28

3. Inspecting, searching and listing 30
3.1 Processing Text and Print Files using $INSPECT 30
3.2 Searching for Strings using $SEARCH 36
3.3 Listing Files of any Format Using $L 38

4. Compiling and cross referencing programs 43
4.1 Compiling Programs using $COBOL 44
4.2 Cross-Referencing Programs Using $XREF 48

5. Library maintenance using $LIB 53
5.1 Introduction .. 53
5.2 Inspect and Extract Operations 59
5.3 Including and Comparing Members 62
5.4 Rename and Delete Operations 65
5.5 Space Saving Operations .. 67
5.6 Dispersed Program Library Support 69
5.7 Job Management Support ... 75

6. Linkage editing using $LINK 78
6.1 Linkage Editing an Independent Program 79
6.2 Linkage Editing Dependent Programs 90

7. Symbolic debugging using $DEBUG 97
7.1 Introduction .. 97
7.2 Establishing the Symbolic Debug Table for a Compilation 103
7.3 Setting the Program Base .. 105
7.4 The Diagnostic Report ... 108
7.5 Inspecting and Modifying Variables 109
7.6 Executing and Resuming Programs from Debug 113
7.7 Traps .. 119

8. Record and Playback Using $RCP 129
8.1 Recording Keystrokes ... 129
8.2 Playing Back a Script .. 131
8.3 Record or Playback Failure 133
8.4 Requirements for Running Record and Playback Software 133
8.5 Structure of the Script File 133

Global Development Cobol User Manual V8.1 Page 4 of 174

APPENDICES

Appendix Description Page Number

A Program Preparation Example 138

B Linkage Editor Error Messages 143

C The Pre-V6.1 $DEBUG Facility 145

Chapter 1 - Introduction

Global Development Cobol User Manual V8.1 Page 5 of 174

1. Introduction

This manual describes the Cobol commands used for preparing, testing
and maintaining Global Cobol programs. The principal ones are: the
text editor, $EDIT; the Global Cobol compiler, $COBOL; the linkage
editor, $LINK; the librarian, $LIB; and the file inspection utility,
$INSPECT. Figure 1 shows how they inter-relate. Rectangles represent
the operation of the named commands, and the other boxes indicate
files. The example file names used in the figure assume that the user
system is being used to create or amend program SA013, and that the
standard naming conventions recommended in Appendix E of the Global
Cobol Language Manual are adopted.

Space prevents a number of other commands described in this manual
from being shown in the figure. These are: the string search utility,
$SEARCH; the program cross-reference utility, $XREF; the symbolic
debugging system, $DEBUG; the record and playback handler, $RCP; and
the file list and dump utility, $L. However, all are introduced and
explained in the brief overview of the user system which follows.

1.1 Text File Creation and Maintenance
The text editor, $EDIT, uses a father/son updating technique to allow
you to create or amend text files. For example, in the figure, S.SA013
might be set up initially by the operator keying its source at the
terminal under control of $EDIT. If later a modification is required,
$EDIT is used to produce an amended version of S.SA013. The command
then renames the original file as B.SA013 so that it remains available
as a backup version. The current text file and the previous backup
must occupy the same unit.

A text file is held in an industry-standard form, consisting of a
string of contiguous bytes interpreted as 8-bit ASCII characters.
Appendix A of the Global Cobol Language Manual contains a table
relating each possible byte value to its ASCII character equivalent.

A text file provides a particularly compact medium for storage of
character information, such as program source and listings, since each
line is terminated by a recognisable sequence such as form-feed or
carriage-return line-feed and can therefore be stripped of unnecessary
rightmost tabs and blanks. Furthermore, within the line, a single tab
character may replace up to 8 contiguous blanks. Thus when the
compilation listing produced by the Global Cobol compiler is output to
direct access storage, rather than to a printer, it is in the format
of a text file in order to be as compact as possible.

The $INSPECT command allows you to examine text or print files at the
terminal. It can also be used to list selected portions of such files.
Furthermore, by "listing" to a direct access device rather than an
actual printer you are able to combine two or more fragments from a
number of text files to form a new one. You can also use $INSPECT to
convert text files to relative sequential print file format and vice
versa.

Chapter 1 - Introduction

Global Development Cobol User Manual V8.1 Page 6 of 174

Figure 1 - Principal Commands of the Global Cobol User System

The string search utility, $SEARCH, enables you to examine any number
of text files to determine all occurrences of up to 10 different
strings. $SEARCH is particularly useful when enhancing or documenting
large systems involving many programs.

1.2 Compiling and Cross-Referencing

S.SA013
Source

Any text
or print
files (*)

$EDIT
Text
editor

$INSPECT
Inspect
file

S.SA013
Revised
source

Copy
libraries

List
selected
parts

Selected
parts from
input

$COMWKnn
on $C
Scratch
file

$COBOL
Cobol
compiler

$COMWORK
on $CP
Error
message
file

Members to
include in
the
library

L.SA100
Compilatio
n listing

C.SA013
Compilatio
n file

C.$MCOB
etc.
System
libraries

$LIB
Librarian

$LINK
Linkage
editor

C.SA etc.
Other
compile &
library
files

I.SA
Library
index
listing

M.SA013
Link map
listing

SA013
Program
file

Renamed
B.SA013 after
edit

Chapter 1 - Introduction

Global Development Cobol User Manual V8.1 Page 7 of 174

The compiler, $COBOL, processes a source program, together with up to
three copy libraries, to produce a compilation file and an optional
compilation listing. The compiler uses a read-only error message file,
$COMWORK, which resides on the unit occupied by $COBOL itself. During
the course of any compilation a temporary scratch file, named $COMWKnn
(where nn is a unique number on the system in question), is developed
on the unit assigned to $C. This file will be deleted when $COBOL
completes normally.

The source program and the optional copy libraries are all text files,
and as such can be maintained by $EDIT, and inspected or searched by
$INSPECT or $SEARCH. The rules for creating valid source programs and
copy libraries are, of course, described in the Global Cobol Language
Manual.

The compilation file output by $COBOL may contain unresolved global
references to access methods and system routines. It is not itself an
executable program, and must be processed by the linkage editor in
order to become so.

When, towards the end of development, you wish to cross-reference a
program, you supply its source and any supporting copy libraries to
$XREF. This uses the error message and scratch files in the same way
as $COBOL, but outputs a cross-reference listing instead of the
compilation file and listing.

1.3 Linkage Editing
The linkage editor, $LINK, is used to combine one or more compilation
files with subroutines or maps from the system libraries, C.$MCOB and
C.$APF and optional user libraries in order to form an executable
program file. A link map listing describing the program so created in
terms of its constituent modules may be output at the same time. The
program file produced by $LINK may either contain an independent
stand-alone program, or the root, or a dependent program, of an
overlay structure.

Although the system libraries are shown as optional in Figure 1, In
practice they are required by all but the most trivial programs. They
contain not only system routines explicitly invoked by CALL
statements, but also access methods and other routines implicitly
called to support Global Cobol statements such as EDIT and SORT.

The system libraries must occupy the unit assigned to $S along with
the $$LINK file which controls library selection.

User libraries are optional. When present, they fulfil a role similar
to that of the system library, except that they contain common modules
coded by the user rather than supplied as part of Global. In any case
the linker is able to create a program from up to 25 different input
files, each of which may be either a compilation library or an
individual compilation file.

1.4 Compilation and Program Library Maintenance
The librarian, $LIB, is responsible for maintaining user compilation
and program libraries. Compilation libraries contain your own
subroutines or screen formats (created by the Global Screen
Presentation's $FORM command), and are used when linking a program,

Chapter 1 - Introduction

Global Development Cobol User Manual V8.1 Page 8 of 174

just like the system library. Program libraries, on the other hand,
are employed at run-time, since a program may equally well be executed
as a stand-alone file or as a member of the currently attached program
library.

The librarian can be used to create or update library files containing
up to 100 different members. It can also display or print an index
which lists the contents of any particular library. Libraries are
updated in place and may be allocated spare space to allow for
expansion.

$LIB is not responsible for processing copy libraries, which are
conventional text files and are therefore updated using $EDIT.

1.5 Debugging Facilities
The symbolic debugging system, $DEBUG, consists of a collection of
overlayed commands which execute in a separate Global partition.

The symbolic debugging system may be invoked following a program
check, stop or exit condition, trap, or break request. It is also
possible to execute programs from $DEBUG and set traps to cause the
system to be re-entered once a particular statement is reached, or a
certain overlay is loaded.

Providing the program files involved remain online during $DEBUG's
execution, symbolic information is available which allows you to
inspect or modify a named data item, or set traps on the first
instruction of named sections or paragraphs. You can also work with
absolute addresses when symbolic information is not available.

The file list and dump utility, $L, is also a valuable debugging aid
since it allows you to display or print files of any type in
hexadecimal, with an ASCII conversion where appropriate.

1.6 System Testing Facilities
The record and playback facility using $RCP and <SYSREQ> Q enables you
to record keystrokes typed on a keyboard and to subsequently play them
back to repeat the original processing. The record script is held in a
text file and can be run several times allowing you to repeat program
testing dialogue when program amendments have been made. The scripts
can also be chained together to enable the testing of large systems so
that you can apply the whole of the entire script run or only part.

1.7 Print Files and Example Listings
The files represented by a printer symbol in Figure 1 may either be
written to a real printer or to direct access storage, according to
information you supply at run-time. You can use $INSPECT to examine a
direct access print file at your terminal, or $PRINT (described in the
Global Utilities Manual) to output it either to a real printer or a
spooling volume.

A sample source program, S.SAMPLE, is provided as part of the Global
Cobol Development System. Appendix A of this manual contains the
following example listings:

 Source listing, S.SAMPLE, output by $PRINT;

Chapter 1 - Introduction

Global Development Cobol User Manual V8.1 Page 9 of 174

 Compilation listing, L.SAMPLE, output by $COBOL;

 Link Map listing, M.SAMPLE, output by $LINK;

 Cross Reference listing, X.SAMPLE, output by $XREF;

 String Search listing, D.$SRCH, output by $SEARCH.

The appendix explains how you can print, compile, link, cross
reference and search S.SAMPLE yourself in order to produce copies of
these listings on your own computer. It is recommended that you work
through this exercise step by step before using the development system
for production work.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 10 of 174

2. Text File Editing Using $EDIT

2.1 Overview
The $EDIT command described in this chapter is used either to create a
new text file or to modify an existing one. Typically $EDIT is
employed to amend programs and copy libraries or to create short
programs. The command assumes you are using a display terminal with an
adequate line width (usually 79 or 80 characters). The maximum size of
line that can be edited is 72 characters, to conform to Global Cobol
standards. If $EDIT finds a longer line it will simply truncate it.

$EDIT can only be used to create or modify a single file at a time.
Editing is a father/son updating process with both the old input file
(if any) and the new output file residing on the same direct access
volume. Whenever a "son" is produced by amending a "father", and the
edit is successful, the son is given the file-id of the father file,
whilst the father has the prefix of its file-id changed to B. so that
it remains available as a backup version.

Any number of files may be edited successively during a single
execution of $EDIT, and text may be passed from one to another using a
hold buffer which $EDIT maintains internally. Thus selected portions
of text may be concatenated from a number of files (for example, to
merge two or more copy libraries into one).

This chapter is divided into 3 sections. This initial overview
describes how to run the $EDIT command and enter its amendment phase
in which a number of editing instructions are provided to enable you
to change or create text. Following this overview, section 2.2
describes the editing instructions in alphabetical order. (Table 2.2
provides a summary of these instructions which you will be able to use
as soon as you are familiar with the basic strategy.) Section 2.3,
which concludes the chapter, describes the error and warning messages
which may appear during the amendment phase.

When you run $EDIT it displays the edit file prompt, requesting the
name and unit-id of the file you require to create or update. Unless
you explicitly supply a prefix when you key the file-id, $EDIT will
assume you are working with a source file and append the S. prefix by
default.

For example:

$42 EDIT:SAMPLE UNIT:205

indicates that the operator wishes to create or modify source file
S.SAMPLE on unit 205.

Note that you are not allowed to edit a file with a B. prefix because
this prefix is reserved by $EDIT for backup versions of edited files.

2.1.1 To Quit
To quit and return control to the monitor simply key <ESCAPE> in
response to the edit file prompt.

Figure 2.1 - Specifying a new file

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 11 of 174

Figure 2.2 - The empty input file

2.1.2 Creating a New File
If the file you have specified is not present on the unit the editor
displays an introductory screen similar to that shown in figure 2.1.

This screen describes the conditions prevailing at the start of the
creation of a source file. The size of the data area allocated for the
new file is displayed, and you should check that this is adequate to
hold the file that you are about to create. The size of $EDIT's
internal line buffer, which depends on the size of the Global Cobol
user area, is given, as well as the number of lines of this buffer
that are currently being used as a hold buffer. If you are not
satisfied with this information, you should key N as requested to
return to the edit file prompt. Otherwise key <CR> (or any single
character apart from N) and the editor enters its amendment phase and
displays the screen shown in figure 2.2.

This shows that the input file is empty (as, of course, it will be).
The cursor is positioned at the left of the base line to allow you to
key an editing instruction. You would typically key I now to insert
lines of text.

Once you have keyed I you are prompted for the first line of the file
by a text prompt on the base line. This prompt, which appears as a
colon in column 8, is repeated over and over again so that you can
supply every line of the file. Figure 2.3 shows the situation when the
operator is part of the way through keying the ninth line of a new
program.

2.1.3 Updating an Existing File
When the file you specified in response to the edit prompt is present
on its volume, $EDIT displays an introductory screen similar to the
one below, describing the conditions prevailing at the start of an
update to an existing source file as shown in figure 2.4.

The size of the existing old file is displayed, together with the size
of the data area allocated for the new file, and the difference which
is the amount by which the file may be expanded by this edit. If there
is no capacity for expansion then a warning message is displayed at
the top of the screen. The size of $EDIT's internal line buffer, which
depends on the size of the user area, is given, as well as the number
of lines of this buffer that are currently being used as hold buffer.
If you are not satisfied with this information, you should key N as
requested to return to the edit file prompt. Normally you should key
<CR> (or any single character apart from N) to proceed to the
amendment phase, but if a warning message appears at the top of the
screen then you must key Y if you wish to proceed in spite of the
warning. The first page of the file will then be displayed as
displayed in figure 2.5.

Figure 2.3 - Keying in a program

Figure 2.4 - Amending an existing file

The cursor is positioned at the left of the base line to allow you to
key any appropriate editing instruction. The base line indicates that

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 12 of 174

the top line of the screen (i.e. the first line of the file) is the
current line.

2.1.4 The Amendment Phase
Once the amendment phase has been entered you can create a new file or
modify an existing one. The screen remains partitioned into two areas,
as shown in figures 2.3 and 2.4. The last line, the base line, is used
to accept instructions and text, and to display amended lines and
error messages. The remainder of the screen, termed the current page,
is used as a 'window' into the file to show the part that is currently
being edited. Except when a sequence of insertions is taking place,
the lines that make up the current page are formatted as shown in the
following table:

 COLUMN CONTENTS
1 – 4 Blank except for the top line of the screen, which contains

a sequence number from the input file if that line number
still applies to the current state of the edited file.

5 Blank
6,7 The line number within the current page. The top line is

number 1, the second number 2, and so on. If you delete a
line and your terminal has cursor control capability, then
the entire display line, including the line number, will be
blanked out.

8 Blank
9 onwards The text to be stored on the output file.

Table 2.1.4 - Structure of Lines of the Current Page

At any moment the only text lines that may be changed by editing
instructions are those that appear on the current page. However, the
current page may be moved forward or backward within the file to make
other lines available for modification. Once the file has been
modified during an edit there will be a limit beyond which the current
page may not be moved backward and if you should encounter this limit
you will have to begin a new edit to update the output file itself.
(There is a special instruction, B, which allows you to start editing
again from the beginning of the output file without having to quit the
amendment phase and return to the edit file prompt.).

Figure 2.5 - First page of an existing file

Figure 2.6 - End current file

If you are working at a terminal with cursor control capability, then
whenever you amend or delete a line the current page is updated to
show the result of your modification. If there is no suitable cursor
control feature available then the current page will not be updated.
However, in this case the amendment is displayed on the base line to
confirm the change, and the current page can be refreshed at any time
by keying <CTRL A> in response to either the instruction or the text
prompt.

Note that you may also key <CTRL A> (or <ESCAPE>, which is treated
identically) if at any time during the amendment phase you "lose your

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 13 of 174

place" in your dialogue with the editor. This will simply refresh the
current page without causing any file updates. In this way you will be
able to see exactly which modifications have been effected and still
be able to reverse any unwanted change. <ESCAPE> is deliberately
treated specially, to prevent you from losing an edit by hitting the
key by mistake.

2.1.5 Quitting the Amendment Phase
Two special editing instructions cause $EDIT to quit the amendment
phase and redisplay the edit file prompt so that you can either
process a new file or return control to the monitor.

The E (End Current Edit) instruction is used when you have
satisfactorily completed an edit. It causes the remainder of the input
file (if any) to be copied to the output file, then the input file (if
present) to be renamed with prefix B. as the new backup file, any
previous backup file being deleted. The output file is then given the
edit file-id. For example, suppose you had keyed SAMPLE in response to
the edit file prompt, in order to modify source file S.SAMPLE. Then,
as a result of the E instruction:

 If a file named B.SAMPLE already exists on the volume containing
S.SAMPLE it is deleted;

 Then the existing S.SAMPLE is renamed B.SAMPLE;

 Next, the new file containing the result of the edit operation is

itself named S.SAMPLE;

 Finally, the edit file prompt is redisplayed.

The screen shown in figure 2.6 shows E being used to complete one edit
and start another.

The A (Abandon Current Edit) instruction can be used if you have made
a serious mistake in your editing and wish to leave the file you are
working with in its original state. Following your keying of A the
editor responds with a second prompt:

ARE YOU SURE?:

If you key Y to this prompt the abandon instruction will be honoured
and the edit file prompt will be redisplayed. A reply of N, <CR> (or
any single character apart from Y) will cause the "A" to be ignored
and a new instruction prompt to appear.

2.1.6 Edit Jobs
An edit job consists of a fixed sequence of editing instructions which
is defined by the J (Job) instruction. The job can then be invoked as
often as required at any time during the same execution of $EDIT,
using the U (Use Job) or Q (Quiet Job) instruction. A typical use of
an edit job might be to replace all occurrences of a given text string
within a file by another string.

2.1.7 Operating Notes

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 14 of 174

If the output file is not large enough the editor will be terminated
as soon as it is full with the error message:

$42 EDIT OUTPUT FILE EXHAUSTED

In this case control will be returned to the monitor and unless you
take special pains to recover the editor work file, as explained
below, you will have lost the result of your editing session. You
should therefore be particularly careful to check the information on
the introductory screen to ensure there is enough file space available
for your purposes. If there is not you should key N as requested to
return to the edit file prompt, <ESCAPE> to quit $EDIT, then use the
file utility to delete any unwanted files and possibly condense the
volume. For example:

GSM READY:$EDIT
$42 EDIT:SAMPLE UNIT:205
.........
......... (introductory screen)

.........
$42 KEY N IF NOT SATISFACTORY:N
$42 EDIT:<ESCAPE>
GSM READY:$F
$66 INPUT DEVICE:205
$66 OUTPUT DEVICE:<CR>
$66 FILE MAINTENANCE
:LIS
......... (directory listing which you examine to see how
......... much spare space is available, which files
......... can be deleted, and so on)

$66 FILE MAINTENANCE
:
(here you are able to DELete files, or CONdense the volume)

If the "output file exhausted message" interrupts a long editing
session, you may wish to recover the results of your labours from the
editor work file, S.$EDInn, where nn is 01, 02, ... etc., your user
number, which is 01 on a single-user system. It occupies the same
volume as the source file, and contains that part of the file which
has been correctly updated. You may use the $INSPECT command to merge
this with the remainder of the original source file, so that you can
continue working from where you left off. See the example in 3.1.14,
at the end of the description of $INSPECT.

EDITING
INSTRUCTION

DESCRIPTION

A Abandon current edit.
B Begin again at the start of the new edit file.
C[line] Comment part only of line is replaced.
D[line] Delete line.
E End current edit.
F[line] Find a line containing a given string.
H[line] Hold a line in the hold buffer.
I[line] Insert lines in front of the specified line.
J Job definition, i.e. define an edit job.
K[line] Kill, i.e. delete lines to end of screen.
L Line with sequence number supplied to text prompt

becomes top of the current page.
M[line] Move a line to the hold buffer.
N Repeat last instruction until end of screen (D, H, M,

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 15 of 174

T, W, X or Y only).
O[line] Output the contents of the hold buffer before the

specified line.
P or –P Page forward (P) or backward (-P).
Q[line] Quiet job, i.e. run an edit job without display.
R[line] Replace line.
S[line] Statement part only of line is replaced.
T[line] Tabulate statement and comment.
U[line] Use job, i.e. run an edit job with display.
V[line] Position specified line at top of current page.
W[line] Set the current line from the specified line.
X[line] Exchange the first occurrence of field-a on the line

for field-b. You supply the string: field-a/field-b in
response to the text prompt.

Y[line] Exchange the first occurrence of field-a on the line
for field-b. You supply the string: <delimiter>field-
a<delimiter>field-b in response to the text prompt.

Z Zeroise (i.e. clear) the hold buffer.
$pp Change editor tabulation, as follows:

pp=SC Statement column (default starting at 9)
pp=CC Comment column (default starting at 41).

$*=x Change comment start character to x
nnnn
+nnn
-nnn

Go forward (nnnn or +nnn) or backward (-nnn) the
specified number of lines and display a new page.

<CR> Repeat the previous instruction (D, F, H, M, P, Q, T,
U, W, X, Y, -P, nnnn, +nnn or -nnn only).

! Terminate iteration in Edit Job if exchange fails
? Terminate iteration in Edit Job if exchange succeeds

Table 2.2 - Summary of Editing Instructions

2.2 Editing Instructions
Table 2.2 summarises the editing instructions which may be keyed in
response to the instruction prompt, a colon appearing in character
position 1 of the base line. An editing instruction typically consists
of a letter followed by optional line information represented by
[line], where [line] may be:

 an integer, corresponding to the number of a line within the
current page, typically between 1 and 23 inclusive;

 omitted, in which case the current line number is assumed;

 N, in which case the current line number plus one is used, any

deleted lines being skipped over. If, however, the current line
is the last line of the current page this option is invalid, an
error message will be displayed, and the instruction ignored.
Instructions can only affect lines on the current page.

During its amendment phase $EDIT usually displays the current line
number in columns 6 and 7 of the base line, so that it appears
immediately below the numbers used to identify individual lines of the
current page.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 16 of 174

When you key certain instructions $EDIT requests additional
information, such as the contents of a new line, by means of a text
prompt, a colon appearing in character position 8 of the base line.
For example, to replace line 12 with new information you key R12 in
response to the instruction prompt, and the new information to the
subsequent text prompt:

R12 12:THIS NEW INFORMATION REPLACES LINE 12

If you make an error in keying an instruction, one of the warning
messages described in section 2.3 will appear in the area usually
reserved for your reply to the text prompt. The message will be
blanked out as soon as you key a valid instruction to the instruction
prompt. For example, suppose you key:

:$ 12

on the base line (which shows that line 12 is current). This is not a
valid editor instruction, so $EDIT displays:

: 12 EDITOR INSTRUCTION NOT RECOGNISED

If you now key R, the warning message will be blanked out so you can
supply information for a replacement line in response to the text
prompt:

R 12:

In the subsections which follow we describe the editing instructions
in the same order as Table 2.2, but in more detail.

When editing, updates are reflected on the screen. If you are using a
non-cursor control VDU (such as during system installation, for
example) this will not occur.

2.2.1 A - Abandon Current Edit
To abandon editing a file, leaving the original source file (if any)
unchanged, key the instruction:

A

The editor responds by asking "ARE YOU SURE?" in case you keyed A by
mistake. You must key Y to complete the abandon operation and obtain
the edit file prompt so that you can process another file or return
control to the monitor. For example:

:A ARE YOU SURE?:Y

$42 EDIT:

If you reply <CR>, N (or any single character apart from Y) the A
instruction you have miskeyed will be ignored, and you will be able to
continue the edit.

2.2.2 B - Begin Again at the Start of the New Edit File
To cause the new file you have created to be saved, along with the
remaining input, as the source file, and the previous source file to
be made the backup file, key the instruction:

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 17 of 174

B

The introductory screen will then be displayed so that you can update
the file again from the beginning.

The effect of the B instruction if you were, say, editing S.SALES on
unit 205, is identical to the longer sequence:

:E (end edit)

$42 EDIT:SALES UNIT:205

It is simply more convenient. During a complex edit you might use the
B instruction several times. You may wish to pass the file once for
each different type of change you are making, or you may simply want
to take a periodic checkpoint of any amendments you have made.

2.2.3 C - Comment Replacement
To replace the comment part of a line, leaving the statement part
unchanged, key the instruction:

C[line]

For example:

:C12 or :CN or :C

Once you have keyed the instruction you will be prompted with the
current comment as a field editable default. If you do not begin your
comment with an asterisk, then one will be automatically supplied by
the editor. If you key spaces the comment part of the line is deleted.

The comment part of a line starts with the first asterisk which Is not
enclosed within a pair of " characters. The new comment keyed replaces
any existing comment in its entirety, and starts in the same column.
If there is no existing comment the new comment begins in the comment
starting column (explained in 2.2.25) unless the statement part
extends into this column, in which case the new comment is positioned
so as to leave one space between it and the statement part.

Following the instruction the line modified becomes the current line.
The current page will be altered to reflect any change.

2.2.4 D - Delete a Line
To delete a specified line from the current page you key the
instruction:

D[line]

For example:

:D12 or :DN or :D

Following the instruction the deleted line becomes the current line.
However it is not possible to process a deleted line, and if an
attempt is made to do so $EDIT will skip to process the next line on
the current page, but will not advance past the end of the current
page.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 18 of 174

The current page will be modified to reflect any change.

If you are not, and you wish to check the effect of any amendments,
simply key <CTRL A>.

2.2.5 E - End Current Edit
To finish editing a file, and copy any remaining input unchanged to
the new file, key the instruction:

E

This causes the existing source file, if any, to become the backup
file, and the new file to become the current source file. The edit
file prompt will be output next so that you can process another file
or obtain the monitor's ready prompt. For example:

:E
$42 EDIT:

2.2.6 F - Find a Line
To find a line containing a given string, and display it at the top of
the screen as the first line of the current page, key the instruction:

F[line]

For example:

:F12 or :FN or :F

You will then be prompted, by a text prompt, for the characters to be
searched for. The search commences at the specified line of the
current page and continues until the string is found or the end of the
input file is reached. For example, to "find" the linkage section:

:F :LINK

When a line containing the characters you specified is found a new
page is displayed with that line at the top of the screen. It is the
new current line. If the line found is not the one you actually
require you can repeat the same search by simply keying <CR> in
response to the instruction prompt. You are offered the last F string
as a field editable default.

You must take care when searching for a string containing spaces,
since the number of spaces actually appearing is significant. There is
no convention such as multiple spaces counting as one.

2.2.7 H - Hold a Line
To copy a specified line to the end of the hold buffer, leaving the
original line unchanged, key the instruction:

H[line]

For example:

:H12 or :HN or :H

Following the instruction the line held becomes the current line.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 19 of 174

Once a line has been added to the hold buffer it remains there until
either the Z instruction is keyed or control is returned to the
monitor. Thus text can be moved between files via the hold buffer.

2.2.8 I - Insert One or More Lines
To insert one or more lines you key the instruction:

I[line]

For example:

:I12 or :IN or :I

where [line] gives the number of the line in front of which the new
line or lines are to be inserted. If the 'end of file' line is
specified then any new lines will be added to the end of the file.

Once you have keyed the instruction, the current page will be
redisplayed, showing only those lines that precede the proposed
insertion. Immediately below these, on the base line, the text prompt
will be output as a colon in position 8. You should then key the first
new line to be inserted.

As soon as you hit <CR> to signal that the line is complete, the
display will scroll, to show your insertion in its proper place, with
the character I in column 2 of each line of the current insertion. A
new text prompt will be output to allow you to key a second or
subsequent line should you so wish. You must key <CR> to indicate that
you have finished inserting lines. (If you key <CR> to the first text
prompt the I instruction is simply ignored.)

When you terminate the insertion by keying <CR> the screen is
refreshed to show the new addition and the instruction prompt is
redisplayed. When the screen is refreshed an attempt is made to
display all the inserted lines, subject to the restriction that the
following line, which becomes the current line, is always displayed.

2.2.9 J - Job Definition
To define an edit job for subsequent execution, key the instruction:

J

The screen will be cleared except for the title EDIT JOB DEFINITION
which appears above an instruction prompt on the base line, indicating
that $EDIT is ready to accept your edit job definition. You supply the
edit job definition by replying to instruction prompts and text
prompts exactly as if you were keying instructions for immediate
execution. As each complete editing instruction is entered, the
display is scrolled so that, within the limits of the screen size, the
job definition is displayed in full to allow you to check it. To
terminate the job definition, making it available for execution by a Q
or U instruction, key <CTRL C> to an instruction prompt. The job
definition remains available for execution until either a subsequent
edit job is defined or control is returned to the monitor.

If you make a syntax error in your job definition, your input will
either be ignored or rejected with an appropriate error message. If

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 20 of 174

you realise that you have made a mistake then you must key <CTRL A> or
<ESCAPE> to abandon the job definition and return to the instruction
prompt so that you can rekey the J instruction.

The following edit job finds the first occurrence of the string FRED
on or after the current line, replaces it by the string JIM and
updates the current line to become the line edited. When executed
repetitively by a Q or U instruction it can be used to replace all
occurrences of FRED by JIM within an entire file:

EDIT JOB DEFINITION
:F :FRED
:X :FRED/JIM
:<CTRL C>

Note that the V instruction can be particularly useful within an edit
job as it positions the current line at the top of the screen and thus
enables any line within the new screen to be addressed directly. The
following edit job, when executed repetitively, will insert a copy of
the hold buffer at intervals of ten lines within the input file, and
is independent of the number of lines contained in the hold buffer:

EDIT JOB DEFINITION
:O11
:V
:<CTRL C>

2.2.10 K - Kill (Delete to the End of the Page)
To delete all lines on the current page, from a specified line number
onwards, key the instruction:

K[line]

For example:

:K12 or :KN or :K

The next page is then displayed. The top line of this page is the line
immediately following the last line of the previous page, and it
becomes the current line.

2.2.11 L - Line Number Positioning
Each source line of a Global Cobol listing is assigned a sequence
number. To move to a numbered source line you can key the instruction:

L

and then supply its sequence number, no greater than 9999, in response
to the subsequent text prompt. For example:

:L :205

Since the line number applies to the input file, you must not select a
line which is earlier than any line that has been modified in the
current edit.

2.2.12 M - Move a Line to the Hold Buffer

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 21 of 174

To move a specified line from the current page to the end of the hold
buffer, deleting the original line at the same time, key the
instruction:

M[line]

For example:

:M12 or :MN or :M

Following the instruction the original line, now deleted, becomes the
current line. However it is not possible to process a deleted line,
and if an attempt is made to do so $EDIT will skip to process the next
line on the current page, but will not advance past the end of the
current page.

Once a line has been added to the hold buffer it remains there until
either the Z instruction is keyed or control is returned to the
monitor. Thus text can be moved between files via the hold buffer.

2.2.13 N - Repeat the Last Instruction until the End of the
Page
If the last instruction keyed was D, H, M, T, W, X or Y, then you may
key the instruction:

N

to cause the last instruction to act repeatedly on consecutive lines,
starting with the line following the current line and ending with the
bottom line of the current page, which then becomes the current line.

2.2.14 O - Output the Contents of the Hold Buffer
To insert the entire contents of the hold buffer before a specified
line, key the instruction:

O[line]

For example:

:O12 or :ON or :O

If the 'end of file' line is specified then the contents of the hold
buffer will be added to the end of the file. The contents of the hold
buffer remain unchanged by the instruction.

Following the instruction the screen is refreshed, and an attempt Is
made to display all the inserted lines, subject to the restriction
that the following line, which becomes the current line, is always
displayed.

2.2.15 P - Page Forward or Backward
To page forward within the file you key the instruction:

P

The last line of the current page will become the top line of the new
page displayed, and this line will be the new current line.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 22 of 174

To page backward within the file you key the instruction:

-P

The top line of the current page will become the last line of the new
page displayed, and the top line of the new page will become the new
current line.

2.2.16 Q - Execute the Edit Job without Display
To execute the current edit job in "quiet" mode, i.e. without
displaying the results of intermediate steps of the edit job, key the
instruction:

Q[line]

For example:

:Q12 or :QN or :Q

Once you have keyed the instruction you will be prompted for the
iteration count (i.e. the number of times that you wish the edit job
to be repeated). If you reply <CR>, the iteration count is assumed to
be 1.

Before the first iteration of the edit job, the current line is set to
the line specified by the instruction. While the edit job is being
executed, the display will remain constant, but when the last
iteration is complete the screen will be refreshed.

You can key <CTRL W> (or <PR> W) to halt an edit job during execution
and return to the instruction prompt. When this keystroke is detected
the job is terminated at the end of its current instruction line and
the prompt is redisplayed.

2.2.17 R - Replace a Line
To replace a specified line from the current page you key the
instruction:

R[line]

For example:

:R12 or :RN or :R

Once you have keyed the instruction you will be prompted for the text
of the new line by the text prompt, which appears as a colon in column
8. The current line is a field editable default.

Following the instruction the replacement line becomes the new current
line. The current page will only be modified to reflect any change.

2.2.18 S - Statement Replacement
To replace the statement part of a line, leaving the comment part
unchanged, key the instruction:

S[line]

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 23 of 174

For example:

:S12 or :SN or :S

Once you have keyed the instruction you will be prompted for the text
of the statement by the text prompt, which appears as a colon in
column 8. If you key spaces the statement part of the line is deleted.

The statement part of the line consists of all the characters up to
but excluding the first asterisk (if any) which is not enclosed within
a pair of " characters. The remainder of the line is the comment part.
If the new statement keyed starts with a tab or space then it will
define its own indentation. If it does not start with a tab or space
then it will be given the same indentation as the statement it
replaces, unless the statement part of the line is blank, in which
case the new statement will begin in the statement starting column
(explained in 2.2.26).

Following the instruction the line that has been modified becomes the
current line. The current page will only be modified to reflect any
change. If you are not, and you wish to check the effect of any
amendments, simply key <CTRL A>.

2.2.19 T - Tabulate a Line
To tabulate a line to cause the indentation to correspond to the
current defaults you key the instruction:

T[line]

For example:

:T12 or :TN or :T

The line is considered to be in two parts: the statement part
consisting of all the characters up to but excluding the first
asterisk not enclosed within a pair of " characters and the comment
part which begins with that asterisk and includes the rest of the
line. Either part may be absent.

The instruction forces the first character of the statement part,
which is not itself a space or tab, to begin at the statement starting
column. The asterisk of the comment is forced to the comment starting
column, or separated from the statement part by a single space if
significant characters of the statement part (not tabs or spaces)
extend into the comment area.

Across the page comments (starting in column 1) are not affected by
the T instruction.

The statement start column and comment start column are initially 9
and 41 respectively, but can be changed or independently disabled
using the $SC and $CC instructions explained in 2.2.26.

Following the instruction the line that has been modified becomes the
current line. The current page will only be modified to reflect any
change.

2.2.20 U - Use the Edit Job

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 24 of 174

To execute the current edit job, displaying the results of the
intermediate steps of the job, key the instruction:

U[line]

For example:

:U12 or :UN or :U

Once you have keyed the instruction you will be prompted for the
iteration count (i.e. the number of times that you wish the edit job
to be repeated). If you reply <CR>, the iteration count is assumed to
be 1.

Before the first iteration of the edit job, the current line will be
set to the line specified by the instruction. As the execution of the
edit job proceeds, each individual editing instruction will update the
display exactly as if it has been keyed in the normal way.

You can key <CTRL W> (or <SYSREQ> W) to halt an edit job during
execution and return to the instruction prompt. When this keystroke is
detected the job is terminated at the end of its current instruction
line and the prompt is redisplayed.

2.2.21 V - Redisplay with Specified Line as Line 1
To redisplay the current page with the specified line as line 1 you
key the instruction:

V[line]

For example:

:V12 or :VN or :V

Additional lines will be read as necessary from the input file to fill
up the bottom of the current page. This facility is mainly used in
edit job definitions, as it enables the current line to be positioned
at the top of the current page, so that an editing instruction can
operate on a line whose position relative to the current line is
known. There is an example of this use in section 2.2.9.

2.2.22 W - Set the Current Line
To set the current line to a specified line from the current page, key
the instruction:

W[line]

For example:

:W12 or :WN or :W

The display of the current page is not affected by the instruction.
Keying WN has the effect of incrementing the current line by 1 and
keying W has no effect. This instruction would not normally be used
directly from the console, but has a use in special edit jobs.

2.2.23 X - Exchange Character Strings

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 25 of 174

To exchange the first occurrence of a specified character string
within a given line for another character string, key the instruction:

X[line]

For example:

:X12 or :XN or :X

Once you have keyed the instruction you will be asked for an exchange
string by the text prompt with the last exchange string used as a
field editable default. This may assume any of the following formats,
where fff and ggg are character strings which may contain spaces but
do not contain a / character:

fff The first occurrence of fff is removed from the line;
or: fff/

fff/ggg The first occurrence of fff is replaced by ggg.
or: fff/ggg/

 /ggg ggg is inserted at the start of the line.
or: /ggg/

The table shows, by way of an example, the exchange strings necessary
to change various erroneous lines to the correct form, MOVE A TO B.
Note that the final / character is optional.

ERROR LINE EXCHANGE STRING
MOVEX A TO B X
MOX VE A TO B X /
MOXE A TO B X/V
MOVE A TV B V /O /

Table 2.2.23 - Typical Exchange Strings

The line you have specified will be modified if an occurrence of fff
is found; otherwise it will remain unchanged. In either case it
becomes the current line. The current page will only be modified to
reflect any change.

2.2.24 Y - Exchange Character Strings with Special Delimiter
This instruction is similar to the X instruction, but may be used to
exchange strings containing / characters. You key the instruction:

Y[line]

For example:

:Y12 or :YN or :Y

Once you have keyed the instruction you will be asked for an exchange
string by the text prompt, with the last exchange string used as a
field editable default. This may assume any of the following formats,
where fff and ggg are character strings which may contain spaces and d
represents any character chosen by you as a delimiter because it is
not present in either fff or ggg:

dfff The first occurrence of fff is removed from the line;

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 26 of 174

or: dfffd

dfffdggg The first occurrence of fff is replaced by ggg;
or: dfffdgggd

ddgggd ggg is inserted at the start of the line.
or: ddggg

Thus to correct the line:

DISPLAY "//---//"

to:
DISPLAY "--///--"

you might use the delimiter + and thus the exchange string would be:

+//---//+--///--

As exchange strings for the X and Y instructions are held independent
of each other, it is possible to have two default exchange strings
simultaneously available.

2.2.25 Z - Zeroise the Hold Buffer
To clear the hold buffer of all lines of text you key the instruction:

Z

When $EDIT is loaded the hold buffer is cleared automatically. Lines
of text added by the H or M instruction accumulate in the hold buffer
and the Z instruction is the only means of removing them.

2.2.26 Change the Editor's Default Tab Columns
To change the statement starting column number (used by the Statement
replacement and Tabulate instructions) key the instruction:

$SC

The current positions of the statement starting column and comment
starting column will be indicated by an S and C character respectively
appearing on the base line, and you will be prompted for the new
statement starting column, a number in the range 1 to 64. This
parameter is initially set to 9 and can be reset to this value by
keying <CR>. If you reply 0, statement tabulation will be disabled, so
that you can use the T instruction to tabulate comments without
affecting the indentation of statements. The base line will be
refreshed to show the change that has been made to the statement
starting column.

To change the comment starting column number (used by the Comment
replacement and Tabulate instructions) key the instruction:

$CC

The current positions of the statement starting column and comment
starting column will be indicated by an S and C character respectively
appearing on the base line, and you will be prompted for the new
comment starting column, a number in the range 1 to 64. This parameter
is initially set to 41 and can be reset to this value by keying <CR>.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 27 of 174

If you reply 0, comment tabulation will be disabled, so that you can
use the T instruction to tabulate statements without affecting the
indentation of comments. The base line will be refreshed to show the
change that has been made to the comment starting column.

Note that the statement starting column must always be to the left of
the comment starting column.

2.2.27 Go Forward or Backward a Number of Lines
To go forward a specified number of lines within the file you key the
instruction:

nnnn

where nnnn, the number of lines you wish to advance, is an integer in
the range 0 to 9999 inclusive. Alternatively you may key:

+nnn

where +nnn is an integer in the range +0 to +999, to obtain the same
effect.

The instruction causes the specified number of lines to be read from
the input file, and the screen is refreshed with the last line read
displayed immediately above the base line. The new top line becomes
the current line.

If you key <CTRL A> the screen will be refreshed so that the new page
displayed shows the effect of any amendments or deletions. If there
were deletions extra lines from the input file will be read in order
to fill up the screen.

To go backward a specified number of lines within the file you key the
instruction:

-nnn

where -nnn is an integer in the range -999 to -0.

The instruction causes the last nnn lines of the output file to be
reread, and the screen to be refreshed with the last line read
displayed at the top. This line becomes the new current line.

If you have not yet modified the file during this edit, you will be
able to go right back to the start of the file if required. Otherwise
there will be a limit beyond which you will not be able to retreat.
This limit will depend on the position of the highest numbered
modified or inserted line within the output file and the size of
$EDIT's internal line buffer (reduced by the current size of the hold
buffer). Thus it is good practice to use the Z instruction to clear
the hold buffer of any unrequired lines so that $EDIT's ability to go
backward is maximised.

2.2.28 Repeat an Instruction
If you key <CR> to the instruction prompt and the previous instruction
was D,F,H,M,Q,T,U,W,X or Y, then the current line will be incremented
by 1 and the instruction will be automatically repeated once each time

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 28 of 174

that <CR> is keyed. If the current line is already set to the bottom
line of the current page, a <CR> instruction will be ignored.

If you key <CR> to the instruction prompt and the previous instruction
was P, -P, nnnn, +nnn or -nnn then that instruction will be
automatically repeated once each time that <CR> is keyed.

At any other time a <CR> instruction will be ignored.

2.2.29 Special Instruction for Edit Job Control
? causes termination of current iteration of edit job if last exchange
(X or Y) failed to find match.

! causes termination of current iteration of edit job if last exchange
(X or Y) successfully found a match.

These instructions should be used for greater validation. For example,
if you wish to change all occurrences of ZWK in MOVE statements to
ZWL1, then use:

:FN:ZWK
:X:MOVE/MOVE
:?
:X:ZWK/ZWK1

2.3 Error and Warning Messages during Editing
The error and warning messages described in this section may be
displayed on the base line during the editor's amendment phase. Each
is followed by an instruction prompt so that you can take corrective
action. If any of these messages appears while an edit job is being
executed, the edit job will be terminated and the text "IN EDIT JOB"
will be appended to the message.

EDITOR INSTRUCTION NOT RECOGNISED
Table 2.2 lists all the valid replies to the instruction prompt. The
optional line information can only be the letter N or an unsigned
integer and must directly follow the instruction letter. The
unrecognised instruction is ignored and the prompt repeated so that
you can correct your keying error.

INVALID LINE NUMBER
The line number keyed as part of a C, D, F, H, I, K, M, O, Q, R, S, T,
U, V, W, X or Y instruction is either:

 the letter N, when the current line is already the last line of
the page. You cannot change pages using N;

 a number greater than the line number assigned to the last line

of the current page;

 not a valid, unsigned positive integer.

The faulty input is ignored and the instruction prompt repeated so you
can correct your keying error.

INVALID OR MISSING SEQUENCE NUMBER

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 29 of 174

This means that the sequence number supplied to the text prompt
following the L instruction is either missing, not an unsigned
integer, or refers to a line in the input file which precedes a line
which has already been modified. In this last case the -nnn
instruction may allow you to move back further. Your faulty input will
be ignored and the instruction prompt repeated so that you can correct
a keying error.

ONLY INSERTS CAN REFER TO END LINE
Only the I and O instructions may select the special *** END OF FILE
*** line as their target. This allows you to insert new records at the
end of a file or create a new file. You must not select the end line
as the target of a C, D, F, H, K, M, R, S, T, V, X or Y instruction.
When this message appears your faulty input will be ignored and the
instruction prompt repeated so that you can correct a keying error.

INVALID TAB SETTING
The tab setting you have specified in response to the text prompt
following the $SC or $CC instruction is not an integer in the valid
range, 1-64 inclusive, or you have attempted to set the comment
starting column to the left of the statement starting column, or the
statement starting column to the right of the comment starting column.
The $SC or $CC instruction will be ignored, and the instruction prompt
repeated so that you can correct your keying error.

HOLD BUFFER FULL
An H or M instruction has attempted to add a line to the hold buffer
but there is no space available. The existing contents of the hold
buffer should be output at their destination, so that the hold buffer
may be cleared and then reused.

ATTEMPTED TO GO BACK TOO FAR
A -nnn instruction has failed to move the current page as far back as
was requested. This may be because you have reached the start of the
file, or because you have reached the limit beyond which $EDIT cannot
backtrack. If you need to go back further you will have to use the B
instruction to terminate the current edit and start again at the start
of the output file, or alternatively clear the hold buffer using the Z
instruction.

INVALID JOB ITERATION COUNT
The job iteration count must be between 1 and 9999 inclusive.

JOB DEFINITION TABLE OVERFLOW
The edit job being defined by the J instruction is too large to fit in
the definition table.

NOT ALLOWED IN EDIT JOB
You may not use an A, B, E, J, Q or U instruction when using the J
instruction to define an edit job.

HOLD BUFFER CLEARED
This message confirms that the Z instruction has successfully cleared
the hold buffer.

x---x NOT FOUND
The string x---x specified in an F instruction has not been found
before the end of file was reached.

Chapter 2 – Text File Editing Using $EDIT

Global Development Cobol User Manual V8.1 Page 30 of 174

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 31 of 174

3. Inspecting, Searching and Listing
This chapter describes three commands, $INSPECT, $SEARCH and $L, which
can be used to examine the contents of files and, in the case of $L,
volumes.

$INSPECT will display text and relative sequential print files. It can
also be used to extract parts of such files, concatenate them and
convert text format to relative sequential print format, or vice
versa. $SEARCH will search text files for specified strings. $L will
produce a dump of the whole or part of any type of file or volume.

INSPECT
INSTRUCTION

DESCRIPTION

E Exit to process next file (see 3.1.10).
F Find a line containing a specified string and display

a page with the line at the top of the page (see
3.1.4).

G Get a line starting with a specified string and
display a page with the line in the middle of the
page (see 3.1.5)

P Page, i.e. move forward so that the bottom line of
the current page becomes the top line of the new
page.

-P Page backwards, i.e. move backwards so that the top
line of the current page becomes the bottom line of
the new page.

WS
WE

Used to print or write out selected parts of the file
under inspection (see 3.1.7 on).

$LS Prompts you for the starting column of the part of
the line to be displayed (see 3.1.6)

n (a number between 0 and 9999). Moves forward n lines
and displays the page thus selected.

-n (a number between -9999 and -1). Moves backward n
lines and displays the page thus selected.

<CR> Following an F, G, P, -P, n or -n instruction it
causes the instruction to be repeated, otherwise it
is ignored.

W Enter wide mode (if available) – use compressed
characters.

N Re-enter narrow mode.

Table 3.1 - Summary of Inspect Instructions

3.1 Processing Text and Print Files using $INSPECT
The $INSPECT command allows you to examine any text or print file
using a display terminal. It is frequently used to examine compilation
and map listings which have been written to direct access storage to
avoid the overhead of printing.

$INSPECT can also be employed to print selected parts of any text or
print file, convert between text and print format, or produce a file
containing selected parts of one or more input files. It can be used
to concatenate files or produce a re-arrangement of the text within a
file.

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 32 of 174

3.1.1 The Inspect File Prompt
When you run $INSPECT it signs on by outputting the inspect file
prompt, so that you can specify the file-id and unit-id of the file
you wish to process. For example:

$48 INSPECT:L.SALES UNIT:205

indicates that the operator wishes to inspect the compilation listing
file L.SALES on unit 205.

3.1.2 To Quit
To quit and return to the monitor simply key <ESCAPE> in response to
the inspect file prompt.

3.1.3 Using Wide Screen Mode
If your screen facilitates wide mode, where the characters are
compressed to display 132 characters across the screen, then $INSPECT
will ask you:

$48 USE WIDE MODE?:

If you specify a file which has a line length that is greater than the
current screen width. Use Y or <CR> to use the compressed mode
characters, N to stay in normal mode.

Note that $INSPECT will always make use of the maximum logical width
of screen possible, so that you may, where appropriate, use <SYSREQ> L
and R to inspect the listing, rather than needing to use the $LS
instruction.

Figure 3.1 - Inspecting a file

3.1.4 File Inspection Instructions
Once you have entered the details of the file to be inspected, the
first page of the file is displayed, followed by the inspection
instruction prompt; this is a single colon displayed on the base line,
in character position 1.

The group of lines displayed by $INSPECT at any time is termed a page.
The number of lines in a page is one less than the number available on
the screen as the base line is always reserved for the instruction
prompt, as shown in figure 3.1.

When lines are displayed print control characters such as form feeds
or multiple line feeds are ignored. Each line appears on the screen
directly below its predecessor. Normally, if the line length is
greater than the screen width, only the start of each line is
displayed. However, other parts of longer lines may be examined by
using the $LS instruction.

The instructions that you may key in response to the prompt are
summarised in Table 3.1 and explained in more detail, when necessary,
in the remainder of this section. Note that if you key an instruction
such as -9999 which would take you past the beginning of the file then
the very first page of the file will be displayed again. If you select
a line past the end of the file by, say 9999, or if an F or G

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 33 of 174

instruction fails to find a line satisfying the specified search
criteria then the special message:

*** END OF FILE ***

 will appear as the top line of an otherwise blank page.

3.1.5 F - To Search for a String within a Line
This instruction has a similar function to the F instruction of $EDIT.
Once an F instruction has been keyed, an extra colon prompt is
displayed on the base line. You must reply with the characters of the
string that you are searching for. Spaces in the string are
significant. Sufficient characters should be supplied to uniquely
identify the required line, but if the search finds an unwanted line
containing the search string the search can be resumed again by keying
<CR>.

The search always starts at the second line of the screen and whenever
a match is found a page is displayed with the line containing the
specified string at the top of the page.

3.1.6 G - To Search for a String starting a Line
If a G instruction is keyed then an extra colon prompt is displayed on
the base line. You must reply with the starting characters of the line
to be searched for. Spaces or tabs at the beginning of the line must
not be keyed. Multiple spaces or tabs should not be keyed within the
search string. Sufficient characters should be supplied to uniquely
identify the line, but if the search finds an unwanted line starting
with the characters keyed the search can be resumed again by keying
<CR>.

The first line examined is normally the second line of the screen
except when one search (G or null resumption) immediately follows
another. In this case the first line examined is always the one
immediately following the last line found. Whenever a line is found a
page is displayed with that line in the middle of the screen.

The G instruction can be used to search for errors in a compilation
listing, as all error lines start with an asterisk (see example 2).

Note that the G instruction differs from the F instruction in two
respects: it will only find strings located at the start of a line and
it displays the line containing the string in the middle of the
screen.

3.1.7 $LS - Set Line Start
$INSPECT normally displays each line with its first character in the
first column of the screen. Up to 132 characters may be displayed on a
line, depending on the width of the screen. If the screen is narrower
than the lines being inspected, you can use the $LS instruction to
inspect other parts of the line. If you key the $LS instruction you
will be prompted, by a single colon on the same line, for the starting
column (1 to 150) of the part of the line to be displayed. For
example:

:$LS :41

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 34 of 174

This example causes $INSPECT to display columns 41 onwards of the
files being inspected, rather than columns 1 onwards. This option
remains in force until overridden by a subsequent $LS instruction.

Note that the $LS instruction does not affect the search instructions
F and G, which always examine lines starting at column 1. Nor does it
affect the operation of the WS and WE instructions.

3.1.8 Supplying the Output File for WS and WE Instructions
The WS and WE instructions are used to print or write to an output
file selected parts of the files under inspection. Each time that a WS
or WE instruction is keyed you are prompted for the file-id and unit-
id of the output file, unless an output file is already open. The new
file will be produced as a text file if the file-id you supply begins
with an S. prefix and is on a direct access unit which is not a spool
unit. In all other cases a relative sequential print file will be
produced. You can use this convention to convert from text to print
file format, or vice versa. For example, assuming direct access unit
205 is not a spool unit:

OUTPUT FILE:S.SALES1 UNIT:205

will result in a text file named S.SALES1 whereas:

OUTPUT FILE:SALES2 UNIT:205

will result in a relative sequential print file named SALES2.

You may reply <CR> to both the OUTPUT FILE: and the UNIT: prompts. In
this case a relative sequential print file will be produced on the
unit assigned to $PR, the logical printer. If $PR is assigned to a
direct access device the output file will be named D.$INSPE.

3.1.9 WS - Set Write Start Pointer
The WS instruction sets the write start pointer to the line which is
at the top of the current page displayed on the screen. The write
start pointer is initialised to address the first line in the file
being inspected, and is reset whenever an E instruction is keyed.

3.1.10 WE - Set Write End Position
The WE instruction causes lines to be written to the output file from
the line addressed by the write start pointer up to and including the
line at the top of the page currently displayed on the screen. If the
line pointed to by the write start pointer is later in the file than
the top line of the screen the message:

START LINE PAST TOP OF SCREEN - IGNORED

is displayed on the base line and the instruction is ignored.

Once the lines have been written to the output file, the prompt:

DO YOU WISH TO CLOSE THE OUTPUT FILE?:

appears. You should key Y if you intend to end extraction and this
will cause the output file you have constructed to be correctly

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 35 of 174

closed. If, however, you reply <CR> (or any single character apart
from Y) the file remains open so you can continue extending it.

3.1.11 E - End Inspection of Current File
To examine a second (or subsequent) file, or to end inspection, key
the E instruction. The inspect file prompt will then appear to allow
you to either continue processing files or to return to the monitor by
keying <ESCAPE>.

3.1.12 W - Enter Wide Mode
This causes the display to go into the compressed wide mode, if the
screen facilitates of this mode.

3.1.13 N - Re-enter Narrow Mode
This causes the display to revert to non-compressed, narrow mode.

3.1.14 Example 1 - Examining a Listing
The following dialogue takes place on a 24-line screen if you examine
the first, second and last page of the compilation listing L.SALES on
unit 205:

GSM READY:$INSPECT
$48 INSPECT:L.SALES UNIT:205
.........
......... (first page of 23 lines)
.........
:<CR>

.........

......... (second page of 23 lines)

.........
:9999 (force to end of file)
*** END OF FILE ***
:-23 (display last page)
.........
.........
.........
:E
$48 INSPECT:<ESCAPE>

GSM READY:

3.1.15 Example 2 - Examining Error and Warning Messages
You wish to examine all the errors and warnings in a compilation
listing file L.SALES which has been produced on subunit 209. The
following dialogue will take place:

GSM READY:$INSPECT
$48 INSPECT:L.SALES UNIT:209
.........

......... (first page of 23 lines)

.........
:G :* (search for lines starting with '*')
.........
.........
*** ERROR..... (page containing 1st error)
.........
.........
:<CR>
.........
.........

*** ERROR.... (page containing 2nd error)
.........
.........

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 36 of 174

:<CR>
*** END OF FILE ***

(end of file - all errors inspected)
:E
$48 INSPECT:<ESCAPE>
GSM READY:

3.1.16 Example 3 - Printing Part of a Listing
You wish to obtain a print-out of source listing S.SALES on unit 205
for the program section MAIN only. You know that the only EXIT
statement within section MAIN is the final statement of the section.
The following dialogue will take place:

GSM READY:$INSPECT
$48 INSPECT:S.SALES UNIT:205
.........
......... (first page)
.........
:F :SECTION MAIN
SECTION MAIN

.........

......... (page with SECTION MAIN as top line)

.........
:WS OUTPUT FILE:<CR> UNIT:<CR>

(printer output)
:F :EXIT
EXIT
.........
......... (page with EXIT as top line)
.........
:WE DO YOU WISH TO CLOSE THE OUTPUT FILE?:Y

: (section is printed)
$48 INSPECT:<ESCAPE>
GSM READY:

3.1.17 Example 4 - Converting an RS File to a Text File
You require to convert a relative sequential file, COMMFILE, to text
file format as S.COMMS, so that it can be modified using $EDIT.
COMMFILE is online on 204 (not a spool unit) and S.COMMS will occupy
the same volume. You use WS to convert the whole file:

GSM READY:$INSPECT
$48 INSPECT:COMMFILE UNIT:204
.........
......... (first page)
.........
:WS OUTPUT FILE:S.COMMS UNIT:204
:9999
*** END OF FILE ***

:WE DO YOU WISH TO CLOSE THE OUTPUT FILE:Y
:E

$48 INSPECT:<ESCAPE>
GSM READY:

3.1.18 Example 5 - Concatenating Text
While editing the file S.PROG on subunit 201, $EDIT has exhausted its
output file. The editor work file, which is named S.$EDI01 in a
single-user system, will contain the first part of the source of
S.PROG, containing most, if not all, of the updates applied in this
editing session, and S.PROG itself will still contain the original
source. This example shows how $INSPECT can be used to concatenate the
editor work file with the latter part of S.PROG, producing the source

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 37 of 174

file S.RECOV, which, after careful checking, is renamed as S.PROG,
completing the recovery process. The following dialogue will take
place:

GSM READY:$INSPECT
$48 INSPECT:S.$EDI01 UNIT:201
.........
......... (first page of editor work file)
.........
:9999 (to end of editor work file file)

*** END OF FILE ***
:-P
.........
......... (last page of edit work file -
......... make a note of the last line)
:P (return to end of editor work file)
:WE OUTPUT FILE:S.RECOV UNIT:201
DO YOU WISH TO CLOSE THE OUTPUT FILE?:N
:E (end inspect of S.$EDI01)
$48 INSPECT:S.PROG UNIT:201
.........

......... (first screen of original source file)

.........
: (supply inspect instructions to cause the first line

that is to be concatenated from the original source
file to be positioned at the top of the page)

.........

......... (first page that is to be concatenated)

.........
:WS
:9999 (advance to end of original source file)
*** END OF FILE ***

:WE DO YOU WISH TO CLOSE THE OUTPUT FILE?:Y
:E
$48 INSPECT:S.RECOV UNIT:201
.........
......... (first page of recovered source file)
.........
: (supply inspect instructions to check carefully that

the file has been successfully recovered)
:E
$48 INSPECT:<ESCAPE>
GSM READY:

Now that S.RECOV has been checked to be satisfactory, $F can be used
to rename it as S.PROG, replacing the original source. Note that the
editor work file will be re-used the very next time that $EDIT is run,
so it is essential that this recovery procedure is carried out (or the
editor work file is renamed) before $EDIT is run again.

3.2 Searching for Strings using $SEARCH
You run the $SEARCH command to produce, from one or more Global Cobol
text files, a listing of all the lines which contain one of the
specified search strings. Up to 10 different search strings may be
specified at one time. Appendix A contains a typical search listing.

3.2.1 The Search Prompt
$SEARCH begins by prompting you for the strings for which it is to
search. When a string has been specified the prompt is repeated to
allow another string to be specified. Up to 10 strings may be
specified, and each may be of up to 50 characters in length. You may
reply <CR> to indicate that you have finished specifying search
strings before ten have been supplied. For example, the following

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 38 of 174

dialogue would occur if you wished to search for the two strings DO
WHILE and DO UNTIL:

GSM READY:$SEARCH
$68 SEARCH FOR:DO WHILE
$68 SEARCH FOR:DO UNTIL
$68 SEARCH FOR:<CR>
$68 LISTING UNIT:

Spaces are significant in search strings, and thus:

DO WHILE

and:
DO WHILE

are different strings.

3.2.2 The Listing Unit Prompt
Once the search strings have been specified, the listing unit prompt
is displayed:

$68 LISTING UNIT:209

In the above example, the output will be written to file D.$SRCH on
subunit 209. If this file already exists it will be deleted, and the
new file will replace it. If you reply <CR> to the prompt the file
will be written to the unit assigned to $PR. The special reply of
<CTRL A> will cause it to be listed on the screen.

3.2.3 The File Prompt
Once the output unit has been specified, the file prompt is displayed:

$68 FILE:

To search an individual file, you must supply the file-id and unit-id
of the file. If you do not explicitly key a prefix $SEARCH will assume
that the file is a conventionally named source file, and will append
the S. prefix. For example, the dialogue:

$68 FILE:SA100 UNIT:209

will cause file S.SA100 on subunit 209 to be searched.

If you reply <CR> to the file prompt then all the text files on that
unit will be offered for processing. This option is particularly
useful if you wish to find all the references to a variable in a suite
of programs. For example the dialogue:

$68 FILE:<CR> UNIT:209

will cause the first text file on subunit 209 to be offered for
processing. For example:

$68 SEARCH filename?:

You must key Y to search the file, <CR> or N (or any other single
character except Y) to avoid searching it.

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 39 of 174

You can use comparable selection codes to those in $F to select files
to be searched, e.g. <CR> to be prompted for each file in turn, <CTRL
A> to avoid processing any, and <CTRL B> to process all the files on
the unit.

Once you have specified the file or unit the message:

SEARCHING filename UNIT uuu

will be displayed, and then the file or files specified will be
searched and a listing printed or displayed. The message:

STRING(S) NOT FOUND

will be displayed when appropriate.

When the search is complete the file prompt will be redisplayed to
permit you to search further files for the same strings.

3.2.4 To Quit
To quit and return control to the monitor key <ESCAPE> to either the
file or the unit prompt.

3.3 Listing Files of any Format using $L
The $L command allows you to produce a hexadecimal dump of all or part
of a file or volume. Files of any organisation and format can be
processed. The dump appears as fixed-length records and each line
contains hexadecimal and ASCII translations side by side.

3.3.1 The Input File Name Prompt
When you run $L it displays an identifying message followed by the
input file name prompt:

GSM READY:$L
$63 SELECTIVE FILE LIST/DUMP PROGRAM
$63 INPUT FILE NAME:

You must specify the file-id and unit-id of the file you require to
list. For example:

$63 INPUT FILE NAME:SADATA UNIT:209

The special reply <CTRL B> to the input file name prompt informs $L
that you wish to dump the sectors of a volume, and you are then
prompted for the unit containing that volume. The unit supplied must
address a discrete direct access volume or domain, not a subvolume of
a domain. Each sector of the volume is treated as though it were a
record of an RS file, where the physical sector number corresponds to
the record number and the record size is the sector size. For example:

$63 INPUT FILE NAME:<CTRL B> UNIT:101

If you have replied previously to the input file name and unit prompts
during this execution of $L, a reply of <CR> to either prompt is
acceptable and causes input to default to the previously supplied
value.

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 40 of 174

3.3.2 To Quit
You may quit and return to the monitor by keying <ESCAPE> to any
prompt.

3.3.3 The Listing Option Prompt
Once the input file has been defined the listing option prompt:

$63 LISTING OPTION:

is output repeatedly to enable you to specify zero or more options to
control the listing. The valid options and their meanings are as
follows:

An This option is only valid when dumping the contents of
a volume. The value n is a one or two digit access
option specifying the interleaving of sectors within a
track;

D Direct all subsequent dumps to the display. This option

remains in force for the current file until cancelled by
a P option;

En Set the ending record number to n, a decimal integer.

The first record number is 1;

On Set a byte offset n which is to be added to all file or
volume addresses. This permits a correctly-aligned dump
in cases where fixed-length records do not start at the
first byte of the file, e.g. the overflow records of an
IS file; key OVERFLOW to align in the overflow area;

P Redirect all subsequent dumps to unit $PR, the logical

printer;

P=uuu Redirect all subsequent dumps to unit uuu.

Rn Set the record length to n, a decimal integer giving
the size of the record in bytes;

Sn Set the starting record number to n, a decimal integer;

n Select single-record mode, with n, a decimal integer,

being the number of the first record to be dumped.

The special replies of <CTRL C> and ? will list on the screen the
current options in force, including details of the input file type,
record length and size, data size and total file size.

Each time a new input file or volume is selected, the listing options
are restored to default values. The dump will be directed to the
console, the starting record number and ending record number will be
set to select every record/sector of the file/volume, and the byte
offset will be set to 0. For a file, the record length will be set to
that established when an RS or IS file was created, or to 256 if the
file is of another organisation, without a fixed record length. For a
volume, the record length will be set to the sector size and the
access option will be set to 1 (no interleaving).

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 41 of 174

To proceed when all the required options have been specified, key <CR>
in response to the final listing option prompt. If you are dumping a
range of records, the starting record number will be incremented as
each complete record is listed. When the listing is complete, the
listing option prompt is repeated. You may now change the settings of
one or more options to obtain another listing of the same file.

If you have selected single-record mode by supplying a record number
to the listing option prompt, then after each record has been dumped
the prompt:

$63 NEXT RECORD?:

will appear to allow you to select the next record to be dumped. You
key Y or <CR> to dump the next higher record, or a decimal integer to
select a specific record. If you reply N the output process will be
terminated and the listing option prompt will be redisplayed.

You may return to the input file prompt by keying <CTRL A> to the
listing option prompt.

The error message:

RECORD SIZE TOO LONG

indicates that the dump cannot be produced because $L has insufficient
work space to hold a single record of the file. In this case use the
listing option prompt to specify a smaller record size (ideally a
divisor of the true record size) and try again.

3.3.4 Output to the Console
When the dump is output to the console, each page of output is
followed by the prompt:

$63 NEXT PAGE?:

which appears on the base line immediately below the dumped data of
the file. You key Y or <CR> to proceed to obtain the display of the
next page. If you reply with a decimal integer, the starting record
number will be set to that value and the next page displayed will
start with the dump of that record.

If you reply N the output process will be terminated and the listing
option prompt will be redisplayed. If you now key <CR> to this prompt,
the listing will resume from the beginning of the last record to be
output, if this were only partially displayed, or from the next record
otherwise. Thus <CR> has the effect of aligning the dump so that the
start of the current record coincides with the start of the display.

3.3.5 Output to Direct Access Storage
If your computer does not possess a printer, you may decide to output
the dump to a direct access volume (e.g. diskette) in order to have it
printed on another machine later. In this case the dump will occupy
the file D.$L. If this file already exists on the output volume it
will be deleted and the new dump file will replace it.

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 42 of 174

3.3.6 Operating Notes
You can use the E listing option to access records beyond the end of
the file (though not beyond the end of the extent allocated to the
file). This allows you to examine the records written to a new file by
a program which has failed before closing that file.

If you use $L on an indexed sequential file and allow the start, end
and record length to be defaulted, the records of the prime data area
will be output satisfactorily, then will come the index, which may not
be meaningful to you, and this will be followed in turn by fragmented
records of the overflow area. This is because the program is not
sensitive to file organization and can, indeed, be used to dump every
type of file. It simply treats any file as a string of contiguous
fixed length records.

Figure 3.2 - Displaying records from a file

It is possible to use the O option to offset all file addresses by the
byte address of the first overflow record, and thus obtain a
correctly-aligned dump of the overflow area; a more effective
approach, however, is to run the conversion command program, $CONV, to
extract a relative sequential file from the indexed sequential file
and then use $L on the new file. $CONV is described in the Global
Utilities Manual. Example 3 shows it being used in conjunction with $L
to dump an indexed sequential file.

3.3.7 Example 1 - Displaying Records from a File
This example shows how you would use $L to display selected records of
an RS file on the console, in hexadecimal format. Firstly, to display
the first few records:

GSM READY:$L
$63 SELECTIVE FILE LIST/DUMP PROGRAM
$63 INPUT FILE:SADATA UNIT:205
$63 LISTING OPTION:<CR>
.........
......... (first page of information)

.........
$63 NEXT PAGE?:<CR>
.........
......... (second page of information)
.........
$63 NEXT PAGE?:

If a page finishes with a partial record, then the next page can be
easily displayed starting with a complete dump of this record as
follows:

$63 NEXT PAGE?:N
$63 LISTING OPTION:<CR>
.........
......... (next page aligned with start of record)
.........
$63 NEXT PAGE?:

To continue displaying at a specific record, without returning to the
listing option prompt, proceed as follows:

$63 NEXT PAGE?:1234
.........
......... (page starting with record 1234)

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 43 of 174

.........
$63 NEXT PAGE?:

Figure 3.2 shows a typical page of information. Note how the display
is subdivided into numbered records. Each line holds 16 bytes of
information which appears both in hexadecimal form and in an ASCII
translation.

3.3.8 Example 2 - Comparing Two Files
The file utility's CFI instruction (described under $F in the Global
Utilities Manual) has been used to compare two files, TESTA and TESTB
and has discovered a discrepancy at byte 11406. You decide to print
bytes 11000 to 11999 of each of the files to see the problem in
context:

GSM READY:$L
$63 SELECTIVE FILE LIST/DUMP PROGRAM
$63 OUTPUT UNIT:$PR
$63 WIDE FORMAT?:Y

$63 INPUT FILE NAME:TESTA UNIT:205

3.3.9 Example 3 - Dumping an IS File
Following a program test you wish to dump the indexed sequential file
SAINDEX. You first of all use $CONV (described in detail in the Global
Utilities Manual) to convert the file to relative sequential form as
SAWORK and then you print all the records of this file:

GSM READY:$CONV

$65 CONVERSION INPUT:SAINDEX UNIT:205
$65 CONVERSION OUTPUT:SAWORK UNIT:<CR> SIZE:<CR> TYPE:R
$65 CONVERTING
(the conversion process, which may take some time, depending
on the size of SAINDEX, takes place)
$65 CONVERSION SUCCESSFUL
$65 CONVERSION INPUT:<ESCAPE>
GSM READY:$L
$63 SELECTIVE FILE LIST/DUMP PROGRAM
$63 INPUT FILE NAME:SAWORK UNIT:205
$63 LISTING OPTION:P

$63 LISTING OPTION:<CR>
(the whole work file is now printed)
$63 LISTING OPTION:<ESCAPE>
GSM READY:

3.3.10 Example 4 - Dumping the Directory Track of a Volume
You wish to obtain a printed dump of the directory track of a diskette
on unit 100, (which need not necessarily contain a Global volume). You
already know that the directory track is the first track on the volume
and contains 26 sectors, i.e. sectors 1 to 26 are to be dumped. The
sectors are interleaved such that every other sector is skipped
(Global System Manager access option 52). Proceed as follows:

GSM READY:$L
$63 SELECTIVE FILE LIST/DUMP PROGRAM
$63 INPUT FILE NAME:<CTRL B> UNIT:100
$63 LISTING OPTION:P
$63 LISTING OPTION:A52
$63 LISTING OPTION:E26
$63 LISTING OPTION:<CR>

(the dump is now produced in wide format on the printer)
$63 LISTING OPTION:<ESCAPE>
GSM READY:

Chapter 3 – Inspecting, Searching and Listing

Global Development Cobol User Manual V8.1 Page 44 of 174

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 45 of 174

4. Compiling, and Cross-Referencing Programs

This chapter describes two commands, $COBOL and $XREF, which allow you
to compile and cross-reference Global Cobol source files.

The Global Cobol compiler, $COBOL, compiles a source file, together
with up to four copy libraries to produce a compilation file and a
compilation listing. The compilation file contains relocation
information and, in most cases, unresolved references to subroutines.
It therefore cannot be immediately executed, but must be linkage
edited using $LINK, as described in Chapter 6.

The cross-reference utility, $XREF, produces, from a Global Cobol
source file and any number of copy libraries, a listing in
alphabetical order of all the symbols used in the program together
with the number of the line on which each symbol is defined and the
numbers of the lines from which each is referenced. This utility is
particularly useful when amending a program, as it enables a
programmer to examine every reference to a particular variable before
changing the usage of that variable. A cross-reference listing would
not normally be produced each time a program is compiled, but it is
recommended that one is produced for every completed program used for
live running.

Both commands use two work files, the error message file, $COMWORK,
and a scratch file, $COMWKxx where xx is a number unique within the
unit concerned. The error message file must be on the unit from which
the command was run. The scratch file is allocated on the unit
assigned to $C, and will be deleted at the end of the run.

If $COMWORK is not present on the unit from which $COBOL or $XREF is
run, the command immediately terminates with the message:

$43 MESSAGE FILE NOT FOUND

Similarly, if there is less than the minimum amount of space required
for the scratch file (approximately 2u - 31K, where u is the size of
the user area), or there are no free directory entries in the
directory, the command terminates with the message:

$43 INSUFFICIENT SPACE TO CREATE WORKFILE ON uuu

where uuu is the unit address involved, determined from the assignment
of $C.

Note that if you terminate either $COBOL or $XREF prematurely by
keying <CTRL W> the scratch file will still be allocated. You should
use $F's DEL instruction to delete it.

All the files used by the compiler and cross-reference, including the
command library containing $COBOL or $XREF, must remain online
throughout the processing. In systems where storage is limited it is
usual to place the central copy library used by a project on the
volume occupied by $COBOL.

Appendix A contains the listings resulting from compiling and cross-
referencing an example program. These listings are annotated to
explain the meanings of the various fields.

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 46 of 174

4.1 Compiling Programs using $COBOL
You run the $COBOL command to compile a Global Cobol source file named
S.xxxxxx to produce a compilation file C.xxxxxx and a listing file
L.xxxxxx. Both the compilation file and the listing file are optional
and may be individually suppressed if they are not required.

4.1.1 The Source File Prompt
$COBOL signs on by prompting you for the file-id of the source file to
be compiled and its unit-id. If you do not explicitly key a prefix
when you input the file-id $COBOL will assume that the file is a
conventionally named source file and will append the S. prefix by
default. For example:

GSM READY:$COBOL
$43 SOURCE:SA100 UNIT:205
$43 COMPILATION UNIT:

indicates that the operator wishes to compile source file S.SA100 on
unit 101.

4.1.2 The Compilation Unit Prompt
When the source file has been specified you will be prompted for the
unit and size of the compilation file to be produced:

$43 COMPILATION UNIT:205 SIZE:8K
$43 COPY LIBRARY:

The suffix of the file is always the same as that of the source file.
In this example, if the source file is S.SALES the compilation file
would be C.SALES on unit 205, with size 8K bytes.

If you reply <CR> to the unit prompt then the compilation file will be
placed on the same unit as the source file.

If you reply <CTRL A> to the unit prompt this means that you do not
wish to produce a compilation file. In this case the size prompt is
not output.

You must reply to the SIZE: prompt with one of the following:

 a decimal number, the number of bytes to be allocated;

 a decimal number, between 1 and 99 inclusive, immediately
followed by the letter K, indicating the number of kilobytes to
be allocated. (K = 1024);

 <CR>, when 20K bytes will be allocated.

At the end of the compilation any unused space possessed by the
compilation file will be released for re-allocation.

4.1.3 The Copy Library Prompt
Once the compilation file has been specified the copy library prompt
is displayed. It requests the library's file-id and unit-id. If you do
not explicitly key a prefix when you input the file-id, $COBOL will

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 47 of 174

assume that the library is a conventionally named source file and
append the S. prefix by default. For example:

$43 COPY LIBRARY:SL UNIT:205

causes file S.SL on unit 205 to be used as the copy library.

When you have specified a copy library, the prompt is redisplayed, so
that you can specify further copy libraries. Note that a book is
always copied from the first library specified in which it exists, so
that, for example, if the same book were in both the first and second
copy libraries, it would be copied from the first library.

The reply <CR> to the copy library prompt indicates that you have
finished specifying copy libraries. If you reply <CR> to the first
copy library prompt this means that no copy library is needed, and
COPY statements found in the compilation will be flagged as errors.

If you reply <CR> to the unit prompt then the file is assumed to be on
the same unit as the previous copy library specified. However, if you
reply <CR> to the very first unit prompt, the first copy library is
considered to be on the same unit as the source file itself.

4.1.4 The Listing Unit Prompt
Once any copy libraries required have been specified, the listing unit
prompt is displayed:

$43 LISTING UNIT:205
$43 COMPILER OPTION:

If the suffix of the source file is SA100 then the above example will
cause the listing to be written to file L.SA100 on unit 205. If the
listing unit is a direct access device rather than a printer then the
file will be allocated the largest available space on the volume and
will be written in text file format (which is more compact than print
file format). Any unused space will be released at the end of the
compilation.

If <CR> is keyed in response to the prompt the file will be placed on
unit $PR. You should note that when the listing is output to a real
printer, the print file is only opened when the compiler is ready to
produce the listing at the beginning of its second pass. If you have
forgotten to turn the printer on and it is a very simple device unable
to provide Global System Manager with status information, then this
may cause the compilation to mysteriously "hang" after a few minutes.
The remedy is to follow the instructions laid down in your Global
Operating Manual, and always switch any printers on when you initiate
Global System Manager.

If you reply <CTRL A> to the prompt no listing will be produced.

4.1.5 The Option Prompt
When the listing unit has been specified the option prompt is
displayed:

$43 COMPILER OPTION:

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 48 of 174

You may reply with any single valid compiler option or <CR>. If you
specify a compiler option the same prompt is redisplayed so that you
can input further options. The reply <CR> indicates that you have
finished specifying options, and that compilation is to commence. For
example, the following dialogue indicates that the printing of
statements included from copy books is to be suppressed, and a symbol
table is to be produced at the end of the listing:

$43 COMPILER OPTION:NCX

$43 COMPILER OPTION:ST
$43 COMPILER OPTION:<CR>
$43 COMPILING

The available compiler options are described in detail in Appendix B
of the Global Cobol Language Manual, and summarised in table 4.1:

OPTION DESCRIPTION
CX/NCX List contents of copy books.
CG/NCG Display no. of line being processed on <CTRL G>
ED/NED Force even byte data alignment.
LN/NLN Use long (31 character) names.
PL=nnn Page length (default $$PAGE).
SD/NSD Generate symbolic debug information.
SL/NSL Print all source lines.
ST/NST Print symbol table.
TC/NTC Print table of contents.
TE/NTE Terminate job management if errors are detected.
TR/NTR Generate trace information.
TW/NTW Terminate job management if warnings are detected.

Table 4.1 - Summary of Compiler Options (Defaults Underlined)

If an option has been specified in an OPT statement appearing in the
source file it can be overridden by respecifying it in response to the
option prompt. If, in response to the option prompt, an option is
specified twice, or conflicting options are specified, then the last
one to be specified is the one which is used.

4.1.6 Source Program Validation
Once any options required have been input the message:

$43 COMPILING

is displayed and the initial stage of the compilation, known as the
first pass, begins.

The source program is input and validated. Should a line giving rise
to an error or warning condition be encountered it is displayed on the
terminal, along with the appropriate explanatory message. Once this
first pass validation is complete, the compiler outputs the message:

$43 END OF FIRST PASS

If your program contains some trivial error you will be able to cancel
the compilation and return to the monitor by keying <CTRL W>, so that
you can run $EDIT to make any amendments required. In this way you
save time by avoiding the compiler's second pass, which normally

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 49 of 174

accounts for about 60 percent of the time spent in processing a
program.

Note that although the majority of error and warning conditions can be
listed on the terminal during the first pass validation process, there
are a few conditions which cannot be displayed in this way, since they
are only detected on the second pass. Normally when compiling a new
program, or one subjected to a major amendment, you should allow it to
complete, even if first pass errors are detected, so that you obtain a
compilation listing for thorough checking.

The error or warning messages appear on the terminal or listing along
with the source statement to which they apply. Each has a message
number which allows you to refer to the appropriate part of Appendix G
of the Global Cobol Language Manual where the condition is described
in detail, and a recovery action suggested.

4.1.7 Summary and Completion Messages
When the compilation completes normally $COBOL closes all its files
and then outputs the following summary messages:

$43 NUMBER OF ERRORS eeee
$43 NUMBER OF WARNINGS wwww

The quantities eeee and wwww are decimal numbers which will appear as
0 if no errors or warnings have been detected: these totals are
accurate and include conditions detected on both passes.

Some errors that $COBOL detects are fatal inasmuch as they destroy the
integrity of the compilation and mean that not only the statement
flagged in error, but other correct statements, fail to compile good
code. If such an error occurs during a run where a compilation file
was being produced, that file is not created, and a further message is
displayed:

$43 *** COMPILATION FILE NOT CREATED BECAUSE OF SERIOUS ERRORS

Once the two (or three) summary messages have been produced, the
compiler displays its final message:

$43 COMPILATION COMPLETED

and then returns control to the monitor.

4.1.8 Processing if the Compilation File Becomes Full
If the space allocated to the compilation file is insufficient, once
$COBOL is unable to write a record it outputs the message and prompt:

$43 INSUFFICIENT SPACE ON COMPILATION FILE
$43 SPECIFY NEW COMPILATION UNIT:

You should reply with the unit-id of the new device to which the
compilation is to be written. If you key <CR> the file will be
reallocated on its current unit. The size of the new file allocated
will be 10K bytes larger than the original file. If you key <CTRL A>
the compilation will continue but will not produce a compilation file,
only a listing file.

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 50 of 174

If you do not wish to continue once the compilation file has become
full, key <ESCAPE> in response to the new compilation unit prompt.

4.1.9 Respecifying the Listing File Unit
There are two cases in which you may be asked to change the listing
file unit, indicated by the message:

$43 PRINTER IN USE

or:
$43 INSUFFICIENT SPACE ON LISTING FILE

preceding the prompt:

$43 SPECIFY NEW LISTING UNIT:

The first message can only occur if you are attempting to write to a
real printer in a multi-user environment. (Not recommended - you
should use a spool unit.) The second message means that the listing
file has become full and there is no room to write any more output.

You should reply to the prompt by specifying the unit-id of the new
device to which the listing file is to be written. You can specify the
same device if you believe the printer is no longer in use, or, in the
case of the second message, you are willing to let the later part of
the listing overwrite the earlier part.

The following special replies are also valid:

<CR> write the remainder of the listing to the logical
printer assigned to $PR;

 <CTRL A> suppress further printing of the listing and
continue;

 <ESCAPE> abandon the job and return to the monitor.

4.1.10 Example
You require to compile source program S.SA100 on unit 205 to produce
compilation file C.SA100 and listing L.SA100. L.SA100 is to be written
to the logical printer assigned to $PR. Two copy libraries are to be
used, S.SL on unit $C and a special copy library S.SL100 on unit 205
which contains new versions of some of the books in library S.SL, and
hence must be specified first so that the new versions are used. The
following dialogue takes place:

GSM READY:$COBOL
$43 SOURCE:SA100 UNIT:205
$43 COMPILATION UNIT:<CR> SIZE:<CR>

$43 COPY LIBRARY:SL100 UNIT:<CR>
$43 COPY LIBRARY:SL UNIT:$C
$43 COPY LIBRARY:<CR>
$43 LISTING UNIT:<CR>
$43 COMPILER OPTION:<CR>
$43 COMPILING
(the compilation now begins)
$43 END OF FIRST PASS
(the second pass now takes place)
$43 NUMBER OF ERRORS 0
$43 NUMBER OF WARNINGS 0
$43 COMPILATION COMPLETED

GSM READY:

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 51 of 174

4.2 Cross-Referencing Programs using $XREF
You run the $XREF command to produce, from a Global Cobol source file
named S.xxxxxx, an alphabetic listing X.xxxxxx of all the symbols used
in the program together with the numbers of all the lines on which
each symbol is defined or referenced. Undefined symbols are indicated
by an asterisk in the definition column. Appendix A shows some typical
cross-reference listings.

4.2.1 The Source File Prompt
$XREF begins by prompting you for the file-id of the source file to be
referenced and its unit-id. If you do not explicitly key a prefix when
you input the file-id $XREF will assume that the file is a
conventionally named source file and will append the S. prefix by
default. For example:

GSM READY:$XREF
$54 SOURCE:SA100 UNIT:205
$54 COPY LIBRARY:

indicates that the operator wishes to produce a cross-reference of
source file S.SA100 on unit 205.

4.2.2 The Copy Library Prompt
Once the source file has been specified the copy library prompt is
displayed. It requests the library's file-id and unit-id. If you do
not explicitly key a prefix when you input the file-id, $XREF will
assume that the library is a conventionally named source file and
append the S. prefix by default. For example:

$54 COPY LIBRARY:SL UNIT:205

causes file S.SL on unit 205 to be used as the copy library.

When you have specified a copy library, the prompt is redisplayed, so
that you can specify further copy libraries. Note that a book is
always copied from the first library specified in which it exists, so
that, for example, if the same book were in both the first and second
copy libraries, it would be copied from the first library.

The reply <CR> to the copy library prompt signifies that you have
finished specifying copy libraries. If you reply <CR> to the first
copy library prompt this means that no copy library is needed, and
COPY statements found in the source will be flagged as errors.

If you reply <CR> to the unit prompt then the file is assumed to be on
the same unit as the previous copy library specified. However, if you
reply <CR> to the very first unit prompt, the first copy library is
considered to be the same unit as the source file itself.

4.2.3 The Listing Unit Prompt
Once any copy libraries required have been specified, the listing unit
prompt is displayed:

$54 LISTING UNIT:205
$54 X-REFERENCE OPTION:

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 52 of 174

If the suffix of the source file is SA100 then the above example will
cause the listing to be written to file X.SA100 on unit 101. If the
listing unit is a direct access device rather than a printer then the
file will be allocated the largest available space on the volume. Any
unused space will be released at the end of the cross-reference.

If <CR> is keyed in response to the prompt the file will be placed on
unit $PR. You should note that when the listing is output to a real
printer, the print file is only opened when the utility is ready to
produce the listing at the beginning of its second pass. If you have
forgotten to turn the printer on and it is a very simple device unable
to provide Global System Manager with status information, this may
cause the cross-reference to mysteriously "hang" after a few minutes.
The remedy is to follow the instructions laid down in your Global
Operating Manual, and always switch any printers on when you bootstrap
your system.

4.2.4 The Option Prompt
When the listing unit has been specified the option prompt is
displayed:

$54 X-REFERENCE OPTION:

You may reply with any single valid cross-reference option or <CR>. If
you specify a cross-reference option the option prompt is redisplayed
so that you can input further options. The reply <CR> indicates that
you have finished specifying options, and that the cross-reference
processing is to commence. For example, the following dialogue
indicates that references are to be prefixed by the first two
characters of the section name, and that the first 31 characters of
each symbol are significant:

$54 X-REFERENCE OPTION:SN
$54 X-REFERENCE OPTION:LN
$54 X-REFERENCE OPTION:<CR>
$54 SOURCE PASS

The available cross-reference options are described in detail in
Appendix B of the Global Cobol Language Manual, and are summarised in
table 4.2.

If an option has been specified in an OPT statement appearing in the
source file it can be overridden by respecifying it in response to the
option prompt. If, in response to the option prompt, an option is
specified twice, or conflicting options are specified, then the last
one to be specified is the one which is used.

4.2.5 Source Program Pass
Once any options required have been input the message:

$54 SOURCE PASS

is displayed, and the initial phase of the cross-reference, the
scanning of the source program, begins.

OPTION EFFECT
LN/NLN Use long (31 characters) names.
PL=nnn Page length (default $$PAGE).

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 53 of 174

SN/NSN X-reference by section-id.
TE/NTE Terminate job management if errors are detected.
TW/NTW Terminate job management if warnings are detected.
XR/NXR X-reference unreferenced items in copy books.

Table 4.2 - Summary of X-Reference Options (Defaults Underlined)

A program to be cross-referenced should normally be free from
compilation errors. If, however, the program does contain syntax
errors then the erroneous lines may not be analysed by $XREF and will
be displayed on the console, together with the corresponding compiler
error message, as described in Appendix G of the Global Cobol Language
Manual. References contained in such erroneous lines may not be
included in the cross-reference listing produced.

Note that the validation done by $XREF is much less rigorous than the
checking done by $COBOL, and should not be used as a substitute.

Once the source program has been scanned the message:

$54 END OF SOURCE PASS

is displayed and the references are then sorted into alphabetical
order and printed.

4.2.6 Summary and Completion Messages
When $XREF completes normally the files are closed and the following
summary messages are output:

$54 NUMBER OF ERRORS eeee
$54 NUMBER OF WARNINGS wwww

where the quantities eeee and wwww are the decimal numbers of syntax
errors and warnings reported.

$XREF then displays its final message:

$54 X-REFERENCE COMPLETED

and then returns control to the monitor.

4.2.7 Respecifying the Listing File Unit
There are two cases in which you may be asked to change the listing
file unit, indicated by the message:

$54 PRINTER IN USE

or:
$54 INSUFFICIENT SPACE ON LISTING FILE

preceding the prompt:

$54 SPECIFY NEW LISTING UNIT:

The first message can only occur if you are attempting to write to a
real printer in a multi-user environment. (Not recommended - you
should use a spool unit.) The second message means that the listing
file has become full and there is no room to write any more output.

Chapter 4 – Compiling and Cross-Referencing Programs

Global Development Cobol User Manual V8.1 Page 54 of 174

You should reply to the prompt by specifying the unit-id of the new
device to which the listing file is to be written. You can specify the
same device if you believe the printer is no longer in use, or, in the
case of the second message, you are willing to let the later part of
the listing overwrite the earlier part. The following special replies
are also valid:

<CR> write the remainder of the listing to the logical
printer assigned to $PR;

<CTRL A> suppress further printing of the listing and
continue;

<ESCAPE> abandon the job and return to the monitor.

4.2.8 Example
You require to cross-reference source program S.SA100 on unit 205 to
produce a cross-reference listing X.SA100 on the logical printer unit
assigned to $PR. Two copy libraries are to be used, S.SL on unit $C
and a special copy library S.SL100 on unit 205, which contains new
versions of some of the books in S.SL, and hence must be specified
first so that the new versions are used. The following dialogue takes
place:

GSM READY:$XREF
$54 SOURCE:SA100 UNIT:205
$54 COPY LIBRARY:SL100 UNIT:<CR>
$54 COPY LIBRARY:SL UNIT:$C
$54 COPY LIBRARY:<CR>
$54 X-REFERENCE OPTION:<CR>

$54 SOURCE PASS
(the source pass now takes place)
$54 END OF SOURCE PASS
(there is a pause whilst information is sorted. Then
the cross-reference listing is produced.)
$54 NUMBER OF ERRORS 0
$54 NUMBER OF WARNINGS 0
$54 X-REFERENCE COMPLETED
GSM READY:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 55 of 174

5. Library Maintenance Using $LIB

You can use the librarian, $LIB, to inspect, create or update program
or compilation library files, each of which may contain up to 100
executable programs or subroutines. There are special features to
allow you to set up dispersed libraries with files on a number of
exchangeable volumes, and to run the command under job management.

You should note that $LIB is not used to maintain Global Cobol copy
libraries. These are merely specially structured source files and are
therefore updated by $EDIT.

INSTRUCTION GROUP AND FUNCTION

INSPECT AND EXTRACT OPERATIONS (5.2)
LIS List the index of a selected library (see note-1)
PRI Print the index of a selected library (see note-1)
EXT Extract a member from a selected library (see note-1)
EXD Extract and delete a member from a selected library

INCLUDING AND COMPARING MEMBERS (5.3)
MER Merge one or more selected members into target library
COP Copy one or more selected members into target library
COM Compare one or more selected members with originals

RENAME AND DELETE OPERATIONS (5.4)
CHA Change target library-id or title
REN Rename or retitle target library member
DEL Delete one or selected members from the target library

SPACE SAVING OPERATIONS (5.5)
NSD Remove symbolic debug records from target library
TRU Truncate target library, leaving specified free space

DISPERSED PROGRAM LIBRARY SUPPORT (5.6)
OFF Introduce stubs for selected offline members
LNK Introduce stubs for selected online members
DLN Delete stubs for selected offline members

JOB MANAGEMENT SUPPORT (5.7)
I Mount named input volume

Note-1: The inspect, print and extract operations are the only
instructions which do not require a target library to be established.

Table 5.1 - Librarian Instructions

5.1 Introduction
$LIB can process two types of libraries: compilation libraries and
program libraries. Each such library is held as an individual file,
containing up to 100 members. The file-id of a library (sometimes
referred to as the library-id) must begin with the prefix P. to
identify a program library, or C. in the case of a compilation
library. The members of a compilation library are either subroutines
created by the Global Cobol compiler, $COBOL, or maps produced by the
Screen Formatter, $FORM. A program library contains main programs or
overlays created by $LINK, the linkage editor, or relocatable programs
produced by $RELOC, as described in the Global Cobol Assembler
Interface Manual. Members from the two types of library cannot be
mixed.

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 56 of 174

Each member contained in a library is uniquely identified by means of
its member-id. The member-id of a subroutine is the program name
defined in the PROGRAM statement that begins its source listing. The
member-id of a map is the map-id specified when $FORM was used to
create it. The member-id of a main program, overlay or executable
program is initially the file-id of the individual program file which
contained the member when it was first included in the library.
However, the librarian's REN instruction can be used to rename program
library members, although the member-ids of compilation library
members cannot be changed.

If you require to create or amend a library, you must first of all
establish it as the current target library. Then you can use the
instructions listed in Table 5.1 to include new members or update old
ones. $LIB can only operate on one target library at a time, but the
dialogue is structured in such a way that you can process any number
of targets, one after another, during a single run.

When you amend a library file it is updated in place. Spare space must
be reserved when the library is created to allow for new members or
extensions to old ones. $LIB keeps track of any "holes" in the library
due to deletions and, when updating is complete, re-organises it so
that all the free space is collected together at the end of the file.

The remainder of this introduction describes the way in which the
librarian dialogue is structured, and shows in outline how you
inspect, create or amend a library. It then describes how and when re-
organisation takes place, how duplicate globals are reported, and the
way in which errors are handled. The remaining sections of the chapter
define the groups of related librarian instructions listed in Table
5.1.

5.1.1 General Dialogue Structure
When you run $LIB it begins by asking you to identify a target
library:

GSM READY:$LIB

$95 TARGET LIBRARY:

If you only need to list or print a library index you need not specify
a target. However, if you wish to create a new library, or amend an
existing one, you must establish it as the target library by keying
its file-id and unit-id (together with other information described
later). In either case, eventually the library maintenance prompt will
appear:

$95 LIBRARY MAINTENANCE
:

You may then key any appropriate instruction from the list in Table
5.1. The instruction you select will continue with its own dialogue,
and eventually redisplay the library maintenance prompt so that you
can supply a further instruction, or terminate the process by keying
END. When you do so the target library prompt will re-appear, so that
you can operate on another library, or return to the monitor by keying
<ESCAPE>. Any dialogue with the librarian therefore assumes the
following general form:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 57 of 174

GSM READY:$LIB
$95 TARGET LIBRARY:
(Identify first target library, if required)
$95 LIBRARY MAINTENANCE
:first instruction
.........
......... (operate on first target library)
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:
(Identify next target library, if required)

$95 LIBRARY MAINTENANCE
:first instruction
.........
......... (operate on next target library)
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY
.........
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>

GSM READY:

Whenever you have established a target library, you must ensure it
remains online until the next target library prompt appears following
your keying of END. This is because the END processing is responsible
for rewriting the updated library directory, and possibly compacting
the members so that all the free space is collected together at the
end of the file. If this is not done, the library will be invalid, and
will be rejected when it subsequently comes to be used by the linker
or loader, or indeed the librarian itself.

5.1.2 Inspecting an Existing Library
If you only wish to inspect an existing library, or extract a member
from it, there is no need to identify a target library, so you simply
key <CR> to its prompt:

$95 TARGET LIBRARY:<CR>
$95 LIBRARY MAINTENANCE
:

(Only LIS, PRI and EXT instructions can be used)
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:

If you attempt to use an instruction which requires a target library
to be established your request will not be honoured. Instead, the
message:

NO TARGET LIBRARY

will appear, followed by the library maintenance prompt, so that you
can continue with an appropriate instruction.

5.1.3 Creating a New Library
To create a new library, you must key its library-id and unit-id to
the target library prompt. Then you key Y to the subsequent
confirmation prompt, and supply size and title. For example:

$95 TARGET LIBRARY:P.SA UNIT:205
$95 NEW?:Y SIZE:100K
$95 TITLE:SALES LEDGER SYSTEM

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 58 of 174

$95 LIBRARY MAINTENANCE
:
(MER or COP instructions to include the initial members, and
any other instruction, such as TRU, where appropriate)
:END
$95 TARGET LIBRARY:

If you key N, <CR> (or any single character apart from Y) to the NEW?:
prompt, the creation operation will be abandoned, and the target
library prompt will re-appear. This allows you to take corrective
action if you really meant to update an existing library, but miskeyed
its name or unit.

In response to the SIZE: prompt you may key: a number of bytes; a
number followed by the letter K, indicating that so many kilobytes of
storage are to be allocated; or simply 0, in which case the maximum
amount of contiguous unused space will be made available. You do not
have to be particularly precise in your size request since once the
library is built you normally use the TRU instruction, described in
5.5.2, to truncate the new library and release any unwanted storage
for subsequent re-allocation. TRU allows you to specify an amount of
free space to remain in the library so that you can update it in place
if you need to add or amend members later.

The title you specify can be up to 30 characters in length. It is
displayed on the console when a program library is attached, and, in
the case of a compilation library, appears on the map listing when it
is used in a linkage edit.

5.1.4 Amending an Existing Library
To amend an existing library you must key its file-id and unit-id to
the target library prompt, and then key Y, <CR> (or any single
character apart from N) to the subsequent process prompt to confirm
that the library it identifies is indeed the one you require to
modify. For example:

$95 TARGET LIBRARY:P.SA UNIT:205
$95 PROCESS SALES LEDGER SYSTEM OF 14/02/88?:Y

$95 LIBRARY MAINTENANCE
:
(MER or COP instructions to add or update members and any
other instruction, such as REN or DEL where appropriate)
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:

If the library title or date of last modification, which appear as
part of the process prompt, are not as expected, you should respond by
keying N. Then a new target library prompt will appear to allow you to
respecify the library you require to update.

5.1.5 To Quit
To quit and return control to the monitor you must type END to the
library maintenance prompt and key <ESCAPE> to the subsequent target
library prompt:

$95 LIBRARY MAINTENANCE

:END
$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 59 of 174

When a target library has been created or amended you must perform the
END processing to update its directory. In this case <ESCAPE> is
treated in exactly the same way as <CR>. If keyed by mistake to the
library maintenance prompt itself the warning:

$95 KEY END TO REWRITE THE TARGET LIBRARY DIRECTORY

appears, followed by the library maintenance prompt itself.

5.1.6 Library Re-organisation
If you delete one or more members from a target library, $LIB will re-
organise it so that all the spare space is held as a contiguous area
at the end of the file. For performance reasons re-organisation does
not take place after every deletion, but only occurs when necessary:
before adding a member if the free storage is too fragmented to
contain it; before processing instructions, such as NSD and TRU, which
cannot operate satisfactorily if the library contains "holes"; or as a
part of END processing, so that the library is left in a fully
compacted form. The message:

$95 RE-ORGANISING LIBRARY

appears, and the normal dialogue is temporarily interrupted whilst the
file is scanned and the members are moved.

5.1.7 Global Symbol Checking
When you have finished creating or amending a compilation library, the
END processing checks whether the library contains multiple
definitions of the same global symbol, since unplanned duplicates can
cause problems at linkage edit time. Whenever a duplicate definition
is found $LIB displays a warning message of the form:

$95 WARNING - GLOBAL symbol DEFINED IN BOTH member1 AND member2

For example:

$95 WARNING - GLOBAL MLR DEFINED IN BOTH SA100 AND SA204

Such messages immediately precede the new target library prompt. Each
identifies the symbol involved, the first routine (in alphabetical
order) in which it is defined, and the second or subsequent routine in
which a duplicate definition appears.

If more than 250 global symbols are defined by the members of a
library the warning message:

$95 WARNING - MORE THAN 250 GLOBALS IN LIBRARY

appears. This indicates that a complete index record cannot be built,
and, in consequence, subsequent attempts to linkage edit programs
using the library may fail. Therefore, in the unlikely event of this
limit being reached, you should immediately create two or more smaller
library files from the affected one.

5.1.8 Some Common Errors during Library Processing
If you have established a program library as a target, you cannot
process compilation files or libraries, and similarly, when the target

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 60 of 174

is a compilation library, you cannot operate on program files or
libraries. If you attempt to do so the warning message:

WRONG TYPE

is displayed, and the library maintenance prompt is redisplayed so
that you can correct your error.

If you demount the target library by mistake, before you have keyed
END, you will be requested to remount it by a prompt of the form:

$95 REMOUNT volume-id ON unit-address FOR library-id:

where volume-id is the name of the volume occupied by the target
library. For example:

$95 REMOUNT SAPROG ON 100 FOR P.SA:

Mount the volume containing the library, then key <CR>, or any single
character, to continue.

The warning messages:

FILE NOT FOUND
MEMBER NOT FOUND
$95 INSUFFICIENT SPACE ON TARGET LIBRARY
$95 TARGET LIBRARY FULL

may appear at certain stages of the instruction dialogue. Processing
of the current instruction is then terminated and the library
maintenance prompt is redisplayed so that you can take corrective
action. The first warning is output if you name a file which is not
present on the specified unit. The second if you attempt to process a
member which is not in the designated library. The third will appear
if there is insufficient space available when you are updating or
adding to a library. The fourth means that the target library already
contains its full complement of 100 members and there is no space in
its directory to hold the details of a new one.

5.1.9 I/O Error Handling
I/O errors are handled using the normal Global retry mechanism:

$04 ERROR ON unit-address file-id error-message
$04 RETRY?:

If you decide the error is irrecoverable and key N to the retry
prompt, then, if only an input file was affected, $LIB will "clean up"
to prevent a partial, inconsistent member from being added to the
target library, and a new library maintenance prompt will appear so
that you can continue with other work. You would normally use the LIS
or PRI instruction to obtain an up-to-date index of the target library
before continuing.

If an irrecoverable I/O error affects the target library itself, the
librarian will attempt to write back a consistent index so that the
damaged library can be used as input to $LIB itself, even though it
cannot be submitted to the linker or librarian. Possibly you will be
able to copy all but one affected member into a new library. When $LIB

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 61 of 174

is able to recover the library in this limited way it outputs the
message:

$95 END FORCED BY TARGET LIBRARY I/O ERROR

This is immediately followed by another target library prompt, so that
you can set about creating the new library.

If $LIB is unable even to write back the index, the command is
terminated with STOP 9501 and the monitor's ready prompt appears. In
this case the error is catastrophic, and you must recover the affected
target library from your own backup copy.

Figure 5.2a - The Last Page of a Global System Manager Command Library

Figure 5.2b - An Intermediate Page of the Global System Manager System

Library

5.2 Inspect and Extract Operations
Three of the four instructions described in this chapter are unique
inasmuch as they are the only ones that do not require a target
library to be established in order to operate successfully. LIS and
PRI allow you to display or print any library index, and EXT enables
you to create an individual program file from a specified member of a
selected library. EXD, which does require a target library, behaves as
the EXT instruction but also deletes the selected member from the
library.

5.2.1 LIS - List the Index of a Selected Library
You can use the LIS instruction to display the library index page by
page on the screen. You must specify the library-id together with the
unit it occupies:

$95 LIBRARY MAINTENANCE
:LIS LIBRARY:library-id UNIT:unit-id
............
............ (listing of specified library)

............
$95 LIBRARY MAINTENANCE
:

For example, if you wanted to display the index of library P.SA from
unit 205 you would key:

:LIS LIBRARY:P.SA UNIT:205

and the first page would appear.

If the LIS instruction requires to output more information than can be
contained on a single screen display the prompt:

$95 NEXT PAGE?:

is output on the base line. You must key Y, <CR> (or any single
character apart from N) to obtain the next page of output. If you
reply N no more of the index will be displayed, and the library
maintenance prompt will re-appear.

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 62 of 174

The screens shown in Figures 5.2a and 5.2b show selected pages from
P.$CMLB0, the Global System Manager command library (a program
library) and C.$APF, a system library (a compilation library). The
format of the display is that of a header, appearing on every page, an
information line for each member contained in the library, and trailer
information, only output on the very last page. The information lines
are arranged in alphabetical order of member-id.

The header contains the library-id, the title and today's date.

Each information line consists of the member-id, followed by its
creation date, type, size and title. The date indicates when a
subroutine was last compiled, a map was created or updated, and an
executable program last linked or relocated. The size is the number of
bytes of file space occupied within the library, not the amount of
main storage the member requires. Table 5.2.1 defines the codes that
may appear in the TYPE column:

TYPE MEANING
AS Absolute assembler program created by $NF.
CO Compilation file (i.e. subroutine) created by the Global Cobol

compiler.
MA Map created by the Screen Formatter, $FORM.
MC Global Cobol program or command, created by $LINK.
PI Position independent program created by $NF.
Rn Relocatable program, address form n, created by $RELOC.
ST Stub locating an offline member, created by the librarian's

OFF instruction described in 5.6.

Table 5.2.1 - Types of Library Member

The trailer information at the very end of the listing indicates the
date at which the library was last updated, its size, the number of
members it currently contains, and the amount of free space available
for new members.

5.2.2 PRI - Print the Index of a Selected Library
You can use the PRI instruction to cause a specified library index to
be printed on the unit assigned to $PR:

$95 LIBRARY MAINTENANCE
:PRI LIBRARY:library-id UNIT:unit-id
(The specified library index is now printed)
$95 LIBRARY MAINTENANCE
:

For example, if you wanted to print the index of library P.SA from
unit 205 you would key

:PRI LIBRARY:P.SA UNIT:205

and the index would be printed, then another library maintenance
prompt would appear.

When $PR is assigned to a direct access volume, rather than a printer,
the PRI instruction writes print records to the file D.$LIB, extending
the file if it already exists. This allows you to accumulate

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 63 of 174

information concerning a number of volume directories on a single
direct access file when no printer is immediately available.

5.2.3 EXT - Extract a Member from a Selected Library
The EXT instruction enables you to create an individual program file
from a specified member of a selected library. The library is read-
only as far as EXT is concerned. Therefore, despite the name, the
member is not actually physically extracted, but only a copy of it is
made. You must specify the library and its unit, together with the
member-id and the name and unit for the new file to be created from
it:

$95 LIBRARY MAINTENANCE
:EXT LIBRARY:library-id UNIT:unit-id
$95 EXTRACT:member-id TO:file-id UNIT:unit-id EXTRACTED
$95 LIBRARY MAINTENANCE
:

5.2.4 Operating Notes
Although the LIS, PRI and EXT instructions can function without a
target library, they also operate when one has been established. In
this case, to process the target library itself, you need only key
<CR> to the LIBRARY: prompt. For example, supposing you intend to
update program library P.SA. You might decide to list its contents
prior to including new members with COP and MER instructions. You
might start as follows:

GSM READY:$LIB

$95 TARGET LIBRARY:P.SA UNIT:205
$95 PROCESS SALES LEDGER SUITE OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:LIS LIBRARY:<CR>
...........
........... (first page of P.SA's index)
...........
$95 NEXT PAGE?:<CR>
...........
........... (second, and last page of index)
...........

$95 LIBRARY MAINTENANCE
:

If you now decided to examine library P.NEW on 205 which you
intend to merge with P.SA, you would continue:

$95 LIBRARY MAINTENANCE
:LIS LIBRARY:P.NEW UNIT:205
............
............ (first page of P.NEW's index)

............
$95 NEXT PAGE?:
etc, etc.

5.2.5 EXD - Extract and Delete a Member from a Selected
Library
The EXD instruction enables you to create an individual program file
from a specified member of a selected library deleting the specified
member. You must specify the member-id and the name and unit of the
new file to be created from it:

$95 LIBRARY MAINTENANCE
:EXD

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 64 of 174

$95 EXTRACT AND DELETE:member-id TO:file-id UNIT:unit-id
EXTRACTED DELETED
$95 LIBRARY MAINTENANCE
:

PROMPT RESPONSE NORMAL ACTION
FILE: file-id If the file consists of an individual map,

subroutine or program, process it. If the file
is a library itself, respond with the MEMBER:
prompt to see which members of that library you
require to process.

<CR> Respond with file-id?: selection prompts for all
appropriate libraries and files on the specified
unit, so you can process them if you wish.

<CTRL A> Terminate the instruction.
<CTRL B> Process every appropriate member on the unit.

file-id?: Y If the file consists of an individual map,
subroutine or program, process it. If the file
is a library itself, respond with the MEMBER:
prompt to see which members of that library you
require to process.

<CR> Skip this file, and proceed to the next
appropriate one on the specified unit.

<CTRL A> Do not process this file. Terminate the
instruction.

<CTRL B> Process the member or members this file
contains, and every member from each appropriate
file remaining on the unit.

MEMBER: member-id Process the specified member.
<CR> Respond with member-id?: selection prompts for

all members in this library, so that you can
process them if you wish.

<CTRL A> Process no members from this library.
<CTRL B> Process all the members from this library.

member-
id?:

Y Process this member.
N, <CR> Skip this member and proceed to the next.
<CTRL A> Do not process this member, nor any more from

the current library.
<CTRL B> Process this member and every other one

remaining in the current library.

Table 5.3 - Responding to File, Member and Selection Prompts

5.3 Including and Comparing Members
The instructions described in this section are employed in creating or
amending a target library. You can include new members using COP or
MER; replace existing ones with COP; and check that members have been
included correctly by comparing them with the originals using COM.

5.3.1 COP - Copy Member(s) into Target Library
The COP instruction allows you to copy one or more selected members
into the target library. You first of all specify the input unit
containing the new members, which are read-only as far as the copy
operation is concerned. Then in the simplest case, when you just wish
to include a member held as an individual file, you key the file-id to

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 65 of 174

the subsequent prompt. For example, to copy program OURSORT on 205
into target library P.SA:

$95 LIBRARY MAINTENANCE
:COP FROM UNIT:205
$95 FILE:OURSORT INCLUDED
$95 LIBRARY MAINTENANCE
:

If you supply a library-id in response to the FILE: prompt a
subsequent MEMBER: prompt asks you to specify which member or members
you require. For example, to include $SORT from library P.FREE on 209:

$95 LIBRARY MAINTENANCE
:COP FROM UNIT:209
$95 FILE:P.FREE MEMBER:$SORT INCLUDED
$95 LIBRARY MAINTENANCE
:

These are the two simplest ways in which to use the FILE: and MEMBER:
prompts. In fact, as Table 5.3 shows you may also key the special
responses <CR>, <CTRL A> and <CTRL B> to serve as selection codes,
with meanings similar to those used in $F. For example, a single COP
instruction might be used to copy program SALES, the entire contents
of P.FREE, and members SA200 and SA201 of library P.NEW, into target
library P.SA on 205. All these are on unit 209 together with program
file SATEST and program library P.SAOLD which are not required:

GSM READY:$LIB

$95 TARGET LIBRARY:P.SA UNIT:205
$95 PROCESS SALES LEDGER SYSTEM OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:COP FROM UNIT:209
$95 FILE:<CR>
SALES ?:Y
SATEST ?:N
P.FREE ?:Y MEMBER:<CTRL B>

$A INCLUDED
$C INCLUDED
.........
.........

.........
$SORT INCLUDED

P.NEW ?:Y MEMBER:<CR>
SA100 ?:N
SA200 ?:Y
SA201 ?:Y
P.SAOLD ?:<CTRL A>

$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

The copy operation may be used to replace an existing member with an
updated version. Both the old and the new one must have the same
member-id. Then, whenever $LIB detects that you are attempting to
include a member whose member-id matches one already present on the
target library, it outputs the warning:

MEMBER ALREADY EXISTS - DELETE?

If you reply Y the existing member will be replaced by the new
version. If you key N, <CR>, (or any single character apart from Y)
the target library will remain undisturbed and the new member will be

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 66 of 174

ignored: if you are including a number of members the copy process
will then continue with the next satisfying the selection criterion.

5.3.2 MER - Merge Member(s) into Target Library
The MER instruction enables you to include one or more selected
members into the target library, rather like a copy operation. The
difference is that a merge cannot be used to update an existing
member, since members already present on the target library take
precedence over new ones with the same member-id. When a match is
detected $LIB simply outputs the warning:

MEMBER ALREADY EXISTS

and ignores the later member: if you are including a number of members
the merge process will then continue with the next to satisfy the
selection processing.

 Merge dialogue is exactly the same as that used for a copy operation,
except that the MER instruction is used in place of COP. Simple
examples such as:

$95 LIBRARY MAINTENANCE
:MER FROM UNIT:100
$95 FILE:OURSORT INCLUDED
$95 LIBRARY MAINTENANCE

or:
$95 LIBRARY MAINTENANCE
:MER FROM UNIT:209

$95 FILE P.FREE MEMBER:$SORT INCLUDED
$95 LIBRARY MAINTENANCE

are not particular realistic, since in these cases it would be more
flexible to use the COP instruction, in case you needed to update an
old version of OURSORT or $SORT. A more relevant use of the merge
operation is provided by the following example.

Suppose diskette SRBASE contains subroutines required by a development
project, and represents the status of the routines when they were
throughly unit tested, say, a month previously. In the interim period,
corrections have been made to some of these routines, and new ones
have been added. The additional members involved are all on SRNEW.
Then the following procedure could be used to create an up-to-date
subroutine library, C.SR, on SRLIB:

GSM READY:$LIB
$95 TARGET LIBRARY:
$95 TARGET LIBRARY:C.SR UNIT:205
$95 NEW:Y SIZE:0

$95 TITLE:COMBINED SUBROUTINE LIBRARY
$95 LIBRARY MAINTENANCE
:
(Mount SRNEW on diskette drive 100 before replying)
:MER FROM UNIT:100
$95 FILE:<CTRL B>
..........
.......... (all members from SRNEW are included, from both
.......... individual files and compilation libraries)
..........
$95 LIBRARY MAINTENANCE

:
(Mount SRBASE on diskette drive 101 before replying)
:MER FROM UNIT:101

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 67 of 174

$95 FILE:<CTRL B>
.........
......... (members from SRBASE are included, except when
......... they have already been superseded members
......... previously merged from SRNEW)
.........
$95 LIBRARY MAINTENANCE
:TRU NEW SPARE SPACE:<CR> (explained in 5.5.2)
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>

GSM READY:

Of course, a similar effect could have been achieved using a COP
instruction, providing SRBASE had been processed before SRNEW.
However, whenever an update occurred you would need to reply Y to the
member already exists prompt, which would be operationally less
convenient. There would be more data transferred, since old members
would have been copied prior to deletion. Furthermore because of the
deletions a library re-organisation would be necessary which is not
needed using the merge technique.

5.3.3 COM - Compare Member(s) with Originals
The COM instruction is provided so that you can compare members
previously copied or merged into the target library with their
original versions. It is particularly useful when you require to
distribute software on an inherently unreliable medium such as
diskette. The dialogue is similar to that employed in a copy or merge
operation, except that the COM instruction is used.

For example, suppose you decide to update library P.SA1 with program
SALES, $SORT from P.FREE, and the entire contents of P.NEW, and you
wish to check that the copy process has been performed accurately.
This requires just one COP instruction, followed by a similar COM:

GSM READY:$LIB
$95 TARGET LIBRARY:P.SA1 UNIT:100
$95 PROCESS V6.0 SALES LEDGER SYSTEM OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE

:COP FROM UNIT:209
$95 FILE:<CR>
SALES ?:Y INCLUDED
SATEST ?:N
P.FREE ?:Y MEMBER:$SORT INCLUDED
P.NEW ?:Y MEMBER:<CTRL B>

SA100 INCLUDED
.........
.........
.........
SA920 INCLUDED

P.SAOLD ?:<CTRL A>
$95 LIBRARY MAINTENANCE
:COM FROM UNIT:209
$95 FILE:<CR>
SALES ?:Y IDENTICAL
SATEST ?:N
P.FREE ?:Y MEMBER:$SORT IDENTICAL
P.NEW ?:Y MEMBER:<CTRL B>

SA100 IDENTICAL
.........
.........

.........
SA920 IDENTICAL

P.SAOLD ?:<CTRL A>

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 68 of 174

$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

Providing that every byte of the member selected from the input unit,
apart from its creation date and title, matches those of the copy on
the target library, the confirmation message:

IDENTICAL

appears, as shown in the example. The warning messages:

DISCREPANCY AT nnnn

or:
NOT FOUND

are displayed if either the copies do not tally, or if the member-id
of a selected member was not present in the target library. The
quantity nnnn is the number of the first byte within the two members
not to match, counting from 0.

5.4 Rename and Delete Operations
The instructions described in this section can be used to change the
file-id or the title of the target library, and rename, retitle or
delete one of its members. Titles can be at most 30 characters in
length.

5.4.1 CHA - Change Target Library-id or Title
The CHA instruction allows you to change the library-id or title of
the target library. For example, to change P.SA, entitled SALES LEDGER
SYSTEM, to P.SAOLD, SALES LEDGER SYSTEM (FEB 88):

$95 LIBRARY MAINTENANCE
:CHA P.SA TO:P.SAOLD
OLD TITLE SALES LEDGER SYSTEM
NEW TITLE:SALES LEDGER SYSTEM (FEB 88)
$95 LIBRARY MAINTENANCE

:

You may key <CR> in place of the new library-id or new title, in which
case the existing library-id or title will remain unchanged.

You may replace selected characters at the beginning of the old title
by keying your amendment, terminated by <CTRL A>, as the new one. For
example, to change the title of library C.SA from V1.0 SALES LEDGER
ROUTINES to V6.0 SALES LEDGER ROUTINES:

$95 LIBRARY MAINTENANCE
:CHA C.SA TO:<CR>
OLD TITLE:V1.0 SALES LEDGER ROUTINES
NEW TITLE:V6.0<CTRL A>
$95 LIBRARY MAINTENANCE

5.4.2 REN - Rename or Retitle Target Library Member
You can use the REN instruction to change a particular member-id
within a target program library, and to alter the title of any type of
member. The dialogue is of the general form:

$95 LIBRARY MAINTENANCE

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 69 of 174

:REN :old-member-id [AS:new-member-id]
OLD TITLE old-title
NEW TITLE:new-title
$95 LIBRARY MAINTENANCE
:

The part in square brackets is omitted for a compilation library,
because it is only possible to rename subroutines or maps by
recompiling using $COBOL, or by creating an updated map using $FORM.
For example, to correct a spelling mistake in the title of subroutine
SAMLR:

$95 LIBRARY MAINTENANCE
:REN :SAMLR
OLD TITLE BANK RATE APPLICATION
NEW TITLE:BANK RATE APPLICATION
$95 LIBRARY MAINTENANCE
:

You may key <CR> in place of a new member-id or new title, in which
case the existing member-id or title will remain unchanged.

You may replace selected characters at the beginning of the old title
by keying your amendment, terminated by <CTRL A>. For example, to
adjust a version code by changing the title of program SA100 from V1.0
SALES ACCT ROOT to V6.0 SALES ACCT ROOT:

$95 LIBRARY MAINTENANCE
:REN :SA100 AS:<CR>
OLD TITLE V1.0 SALES ACCT ROOT

NEW TITLE:V6.0<CTRL A>
$95 LIBRARY MAINTENANCE
:

Note that if you rename a program library member and the new member-id
you choose is already present on the target library, the warning
prompt:

MEMBER ALREADY EXISTS - DELETE?:

appears. If you key Y the old member will be deleted and the rename
operation will continue as though it had never existed. A reply of N,
<CR> (or any single character apart from Y) causes the instruction to
be abandoned and the library maintenance prompt to re-appear.

5.4.3 DEL - Delete Member(s) From the Target Library
The DEL instruction enables you to delete one or more selected members
from the target library. To delete one particular member, you simply
key its member-id in response to the MEMBER: prompt. For example, to
remove SA100 from the target library:

$95 LIBRARY MAINTENANCE
:DEL MEMBER:SA100 DELETED
$95 LIBRARY MAINTENANCE
:

You may also use the special responses <CR>, <CTRL A> and <CTRL B>, to
delete a selection of members, using the scheme summarised in the
lower half of Table 5.3. For example:

$95 LIBRARY MAINTENANCE

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 70 of 174

:DEL MEMBER:<CR>
SA200 ?:N
SA205 ?:N
SA300 ?:Y DELETED
SA310 ?:Y DELETED
SA400 ?:N
SA500 ?:Y DELETED
SA600 ?:<CTRL A>

$95 LIBRARY MAINTENANCE
:

Here SA300, SA310 and SA500 are deleted from the target library, which
has been displayed member by member for selection, following a <CR>
response to the member prompt. The keying of <CTRL A> to the select
prompt terminates the process.

5.5 Space Saving Operations
The two instructions described in this section help to limit the
amount of direct access storage required by the target library, either
by reducing the size of the members themselves (NSD), or by returning
unwanted free space to the volume for re-allocation (TRU).

5.5.1 NSD - Remove Symbolic Debug Records
Normally Global Cobol compilation files created by $COBOL contain
symbolic debug records which, in turn, become part of any program
files produced by linking the compilations. The records do not affect
normal program execution in any way, since they are only interrogated
by $DEBUG, the symbolic debugging system. However, they may occupy a
sizeable proportion of a library, since there will be an 11-byte
record for each symbol employed in a subroutine, or for each symbol of
each subroutine used in constructing a program. The symbolic debug
records can be removed at compile or link time by specifying the NSD
option when $COBOL or $LINK is executed. However, it may prove simpler
to eliminate them from the target library itself when they are no
longer needed by using the NSD instruction:

$95 LIBRARY MAINTENANCE
:NSD target-library-id?:Y SYMBOLIC DEBUG RECORDS REMOVED

$95 LIBRARY MAINTENANCE
:

Following your keying of NSD the library-id of the target is displayed
in a confirmation prompt, to check that you really do wish to remove
symbolic debug records from the library in question. The operation
will only proceed if you key Y. For example:

$95 LIBRARY MAINTENANCE
:NSD P.SA?:Y SYMBOLIC DEBUG RECORDS REMOVED

$95 LIBRARY MAINTENANCE
:

5.5.2 TRU - Truncate Target Library
You use the TRU instruction to return any unwanted free space in the
target library to the volume it occupies, so that the storage thus
released becomes available for re-allocation. The dialogue allows you
to specify how much free space you require to remain in the library,
once truncation has taken place:

$95 LIBRARY MAINTENANCE
:TRU NEW SPARE SPACE:required-free-space TRUNCATED

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 71 of 174

$95 LIBRARY MAINTENANCE
:

If you never intend to update the library you will require no spare
space at all, and in this case you may key <CR> or 0 in response to
the NEW SPARE SPACE: prompt. Normally, however, you should leave
enough room to hold several extra members, to prevent re-organisation
having to take place unnecessarily.

The special response -A will leave sufficient spare space to create
stubs in the library for up to 100 members in total. It is intended
for use under Job Management by installation software.

The following example shows how a program library might be set up
initially:

GSM READY:$LIB
$95 TARGET LIBRARY:P.SA UNIT:205
$95 NEW:Y SIZE:0

$95 LIBRARY MAINTENANCE
:
(COP or MER instructions to include the initial members).
$95 LIBRARY MAINTENANCE
:TRU NEW SPARE SPACE:40K
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

By specifying an initial SIZE request of 0 in the third line of the
dialogue, the maximum amount of contiguous space available is
allocated to the library initially. The TRU instruction returns any
unwanted space to the volume, but keeps 40K bytes spare for subsequent
expansion.

Note that if you request more spare space than is actually present on
the library the warning message:

TOO LARGE

will appear and the truncation operation will be abandoned.

5.6 Dispersed Program Library Support
The two instructions described in this section are mainly for use In
software installation jobs. They allow large program libraries to be
split up into smaller ones and dispersed onto separate disks, but
interlinked so that Global System Manager knows where to find all the
programs required.

A dispersed program library consists of a number of files, each of
which has the same library-id but occupies a different volume. For
example, when Global Cobol used to be installed on low-capacity
diskettes, the command library, P.$CMLIB, was treated as a dispersed
program library. As a result identically named P.$CMLIB files, each
containing different commands, occupy the four system volumes SYSRES,
SYSDEV, SYSLNK, and SYSMAP. Alternatively, if Global Cobol is now
installed onto hard disk, a volume is allocated on the domain called
SYSDEV containing P.$CMLIB, which is linked to the P.$CMLB0 on SYSRES.

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 72 of 174

A dispersed program library therefore consists of two or more P. files
with the same name occupying different volumes. The volumes may be
exchangeable (e.g. diskettes all occupying the same unit address) or
they may occupy different addresses (e.g. different volumes on a
domain or a library split between diskette and RAM disk).

By using the OFF or LNK instructions you can add small dummy members,
known as stubs, to each part of a dispersed library. Each stub
contains the volume name of the disk containing the program with that
name and also the unit address if it is on a different unit. If you
list the library (as shown in screen 5.2a) the stub will appear as:

OFFLINE - LOOK ON SYSRES

or:
OFFLINE - LOOK ON SYSRES - 201

If the operator attempts to run a program represented by a stub,
Global System Manager reassigns $P or $CP as necessary and makes sure
the correct volume is mounted, giving a message such as:

PLEASE MOUNT SYSRES ON LEFT HAND DRIVE DISKETTE DRIVE – 100 AND KEY <CR>:

if it is not.

Note that if a stub had not been present for the volume, Global System
Manager would have simply output the program prompt which it uses
whenever a required program or command is missing. For example:

$01 PROGRAM SALES IN LIBRARY P.SL REQUIRED ON 100:

The operator would now have to guess which of the other volumes
actually contained the program. If the wrong one was mounted, the
program prompt would simply re-appear. There might be a frustrating
search until the right volume was obtained.

You can use the OFF instruction to interconnect your own dispersed
libraries if you are developing systems which exceed the capacity of
the available direct access volumes. Each separate file of such a
library must be created or amended as an individual target library.
The members whose code the file actually contains are included using
copy or merge operations in the normal way. Then stubs for every one
of the offline members, residing on the other volumes occupied by the
dispersed program library, must be introduced using the OFF
instruction.

5.6.1 OFF - Introduce Stubs for Offline Members
The OFF instruction allows you to introduce one or more selected stubs
into the target library. Operationally the dialogue is very similar to
that of the MER (merge) instruction, except that OFF is keyed in place
of MER, and there is an additional prompt to determine the volume to
be occupied by the offline members

For example, to introduce a stub into the target library to inform
Global System Manager that program SALES will be offline on SAPRG1:

$95 LIBRARY MAINTENANCE

:OFF FROM UNIT:100 VOLUME:SAPRG1
$95 FILE:SALES OFFLINED
$95 LIBRARY MAINTENANCE

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 73 of 174

:

Note that SALES may not actually be on SAPRG1 at the time of using the
OFF instruction: you may move it to the correct volume at some later
stage before you come to use the target library. Similarly, in the
following example, stubs are introduced into the target library, P.SA,
for all the members currently occupying P.NEW. Eventually, if the
dispersed library is correctly constructed, all those members will
either have to be part of another P.SA library on SAPRG1, or will have
to appear as individual program files on that volume:

$95 TARGET LIBRARY:P.SA
$95 PROCESS SALES LEDGER SYSTEM OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:100 VOLUME:SAPRG1
$95 FILE:P.NEW MEMBER:<CTRL B>

SA100 OFFLINED
SA200 OFFLINED
.........
.........

SA950 OFFLINED
$95 LIBRARY MAINTENANCE
:

Note that if the members whose stubs you are including are already
occupying the destination volume, you can simply key <CR> to the
VOLUME: prompt. The librarian will then obtain the volume-id to use in
the stubs from the label of the input volume itself.

A stub introduced by the OFF instruction will replace one with the
same member-id which is already present on the target library.
However, a stub will never replace the code of an existing member. If
this is attempted the warning message:

MEMBER ALREADY EXISTS

appears in place of the confirmation OFFLINED which is normally
displayed to show that the proper interconnection has been made.

Sometimes the members selected for processing by the OFF instruction
may themselves be represented by stubs introduced by a previous use of
OFF. In this case the volume information in these secondary stubs is
copied unchanged to the target library, and displayed as the volume-id
in the confirmation message, providing of course, that the
corresponding real member is not already present on the target
library. Example 2 below shows how secondary stubs may be used.

5.6.2 LNK - Link Together On-line Libraries
The LNK instruction is similar to OFF, but is intended for use when
the two libraries are usually on-line, but occupy different unit
addresses. You might use LNK to connect together libraries for two
separate but related products installed on two different volumes of a
domain (or indeed, on two volumes on separate domains). You can also
use LNK if one library is resident on RAM disk and the other is on
diskette or hard disk. This is usually necessary because most RAM
disks are too small to hold the complete library, and so you can only
put the frequently used overlays in the RAM disk.

The dialogue is the same as for the OFF instruction, except that there
is an additional prompt to determine the unit to be occupied by the

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 74 of 174

programs not in the library. For example, to introduce a stub to
indicate that file SALES, currently on unit 100, is to be off-line on
SAPRG1 on unit 109:

$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:100 VOLUME:SAPRG1 ON UNIT:109
$95 FILE:SALES OFFLINED
$95 LIBRARY MAINTENANCE

If the program is already on the correct volume and unit you can
simply key <CR> to the "volume" and "on unit " prompts. If the file
name you supply is a library, you will be prompted for each member as
for the OFF instruction.

A stub introduced by LNK will replace one with the same member name
which is already present in the library. However, a stub never
replaces a program that is already in the library. If you link to a
library that already contains stubs, the information in these stubs
will be copied to stubs in the target library.

5.6.3 Operating Notes
Bear in mind that as each file of a dispersed library is built, every
member belonging to the total library must be held as an individual
file on the same volume, or have a stub created for it by the OFF
instruction. Failure to obey this rule will mean that either some
members, or some stubs, will be missing - a situation which will
normally lead to an unexpected program prompt appearing.

If a stub contains wrong information Global System Manager may issue a
mount prompt that the operator is unable to honour, or a program
prompt if the volume exists but does not contain the member in
question. If Global System Manager detects a stub for a member, mounts
the indicated volume, and then finds only another stub, it terminates
the load operation with a stop code: a stub must always identify the
volume upon which the code of its member resides.

Although you can use DEL to delete a stub, the other instructions that
can affect individual members (COP, MER, COM and REN) do not operate
on stubs. In consequence members represented only by stubs are omitted
from selections obtained by keying <CR> or <CTRL B> to the MEMBER:
prompt. If you request to copy or merge a specific member, but there
is only a stub for it, the instruction will be terminated with the NOT
FOUND warning message. The same will occur if you attempt to compare a
stub with a real member, or rename a member which is only represented
by a stub within the target library.

5.6.4 Example 1 - Interconnecting Two Library Files
Suppose $LIB has already been used to create two library files named
P.SA, which occupy diskettes named SAPRG1 and SAPRG2, because there is
not enough room to hold the entire library on a single volume. The two
files have been created by copying or merging members in the normal
way. They are quite suitable for development working where program
prompts are acceptable. Now, however, it is decided to interconnect
them using the OFF instruction so that mount prompts appear whenever a
volume change is needed. Both library files have sufficient spare
space (46 bytes per stub) to allow the update to take place. SAPRG1 is
on 100, and SAPRG2 on 101:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 75 of 174

GSM READY:$LIB
$95 TARGET LIBRARY:P.SA UNIT:100
$95 PROCESS SALES LEDGER PART ONE OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:101 ON VOLUME:<CR> (SAPRG2 will be used)
$95 FILE:P.SA MEMBER:<CTRL B>

........

........ (Stubs added to P.SA on SAPRG1 for offline members on SAPRG2)

........
$90 LIBRARY MAINTENANCE
:END

$95 TARGET LIBRARY:P.SA UNIT:101
$95 PROCESS SALES LEDGER PART TWO OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:100 ON VOLUME:<CR> (SAPRG1 will be used)
$95 FILE:P.SA MEMBER:<CTRL B>

........

........ (Stubs added to P.SA on SAPRG2 for offline members on SAPRG1)

........
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>

GSM READY:

5.6.5 Example 2 - Interconnecting a Third File
Some little time after the previous example, more sales ledger
programs have been developed, and the new components occupy library
P.SA on SAPRG3. It is decided to interconnect the new library file
with the existing two. Initially SAPRG1 is on 100, and SAPRG3 on 101:

GSM READY:$LIB

$95 TARGET LIBRARY:P.SA UNIT:100
$95 PROCESS SALES LEDGER PART ONE OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:101 ON VOLUME:<CR> (SAPRG3 will be used)
$95 FILE:P.SA MEMBER:<CTRL B>

........

........ (Stubs added to P.SA on SAPRG1 for offline members on SAPRG3)

........
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:

(Replace SAPRG1 by SAPRG2 before replying)
$95 TARGET LIBRARY:P.SA UNIT:100
$95 PROCESS SALES LEDGER PART TWO OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:101 ON VOLUME:<CR> (SAPRG3 will be used)
$95 FILE:P.SA MEMBER:<CTRL B>

........

........ (Stubs added to P.SA on SAPRG2 for offline members on SAPRG3)

........
$95 LIBRARY MAINTENANCE
:END

$95 TARGET LIBRARY:P.SA UNIT:101
$95 PROCESS SALES LEDGER PART THREE OF 25/03/88?:Y
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:100 ON VOLUME:<CR> (SAPRG2 will be used)
$95 FILE:P.SA MEMBER:<CTRL B>

........

........ (Stubs added to P.SA on SAPRG3 for offline

........ members on SAPRG2 and, because of secondary

........ stubs, for members on SAPRG1)

........
$95 LIBRARY MAINTENANCE
:END

$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 76 of 174

This dialogue therefore performs three OFF operations:

OFF P.SA from SAPRG3, to include the required new stubs in P.SA
on SAPRG1;

OFF P.SA from SAPRG3, to include the required new stubs in P.SA
on SAPRG2;

OFF P.SA from SAPRG2 to include the stubs needed by the new P.SA
library on SAPRG3.

Note that the fourth operation that you might have expected:

OFF P.SA from SAPRG1 to include the stubs needed by the new P.SA
library on SAPRG3;

is in fact unnecessary, because secondary stubs already present in
P.SA on SAPRG2 establish the necessary interconnection to SAPRG1
during the third OFF operation.

5.6.6 Example 3 - Installing Part of a Library on RAM Disk
Suppose that a suite of programs has been split by $LIB into a small
library of frequently used overlays, P.SA1, and a second library of
the remaining components, P.SA. This has been done so that the
programs in P.SA1 can be held in RAM disk when installed onto a
suitable computer.

The libraries are to be installed on volume SAPROG on unit 100.
However, before the programs are run, P.SA2 will be copied to the RAM
disk ($$WORK on 109) and renamed as P.SA. In order that the programs
will be automatically loaded from the correct unit, the libraries must
be linked as follows:

GSM READY:$LIB
$95 TARGET LIBRARY:P.SA UNIT:100
$95 PROCESS SALES LEDGER MAIN PART OF 14/02/88?:Y

$95 LIBRARY MAINTENANCE
:LNK FROM UNIT:<CR> ON VOLUME:$$WORK ON UNIT:109
$95 FILE:P.SA1 MEMBER:<CTRL B>

........

........ (stubs added to P.SA)

........
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:P.SA1 UNIT:100
$95 PROCESS SALES LEDGER COMMON OVERLAYS OF 14/02/88?:Y
$95 LIBRARY MAINTENANCE

:LNK FROM UNIT:<CR> ON VOLUME:<CR> ON UNIT:<CR>
$95 FILE:P.SA MEMBER:<CTRL B>

.........

......... (stubs added)

.........
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:

5.6.7 DLN - Delete Stub Links
The DLN instruction allows you delete stubs for a single linked member
or a selected group of members according to the volume-id and unit
criteria.

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 77 of 174

The dialogue is as follows:

$95 LIBRARY MAINTENANCE
:DLN
$95 UNLINK STUBS VOLUME:volume-id UNIT:unit-id
$95 MEMBER:member-id

If you want to delete a single line you must key <CR> to the volume
and unit prompts and key the member name to the member prompt. For
example, to delete the link member SA100 you must key:

$95 LIBRARY MAINTENANCE
:DLN
$95 UNLINK STUBS VOLUME:<CR> UNIT:<CR>
$95 MEMBER:SA100 DELETED

To delete all linked members found on a specific volume-id you must
key the volume-id to the volume-id prompt, <CR> to the unit-id prompt
and <CTRL B> to the member prompt. The dialogue to delete all links to
volume SAPRG1 would be as follows:

$95 LIBRARY MAINTENANCE
:DLN
$95 UNLINK STUBS VOLUME:SAPRG1 UNIT:<CR>
$95 MEMBER:<CTRL B>

SA100 DELETED
SA200 DELETED
.........
.........

SA950 DELETED

To delete members with links to a specified unit-id you must key <CR>
to the volume prompt, the unit to the unit-id prompt and <CTRL B> to
the member prompt. Should you only want to delete members with both a
specific unit and volume you must reply to both volume and unit
prompts and key <CTRL B> to the member prompt.

5.7 Job Management Support
The features described in this section are intended for use when the
librarian runs under job management. They allow you to check that the
correct output volume is loaded before processing a target library,
and that specific input volumes are mounted when required. There is
special support for the COP instruction, so that identical dialogue
can be used both to add new members or replace existing ones.

5.7.1 Mounting the Target Library Volume
If you key the special response <CTRL C> to the target library prompt
$LIB will ask you for a volume-id and then repeat the prompt. For
example:

GSM READY:$LIB
$95 TARGET LIBRARY:<CTRL C> VOLUME-ID:SAPRGA
$95 TARGET LIBRARY:

Then, when you have identified the target library, $LIB will open it
using volume-id checking, and if the volume you have specified is not
on the unit you have indicated, it will be requested by a normal mount
prompt. For instance, the dialogue introduced above might continue:

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 78 of 174

$95 TARGET LIBRARY:P.SA UNIT:100
PLEASE MOUNT SAPRGA ON 100 - LEFT HAND DISKETTE DRIVE AND KEY <CR>:

A mount prompt always appears, even when the rest of the responses
supplied to $LIB are obtained from the dialogue table, since it is one
of the special ones which bypass job management. The operator must key
Y, <CR> (or any single character apart from N) to cause the job to
continue.

The mount prompt will be redisplayed, over and over again if
necessary, until the correct volume is loaded. However, a reply of N
causes the mount operation to be abandoned and, if job management was
in control, it will be terminated.

5.7.2 I - Mount Input Volume
The I instruction enables you to control the mounting of a specified
input volume required for subsequent library maintenance operations.
It prompts you for the volume-id, which it remembers so that it can
open the next file specified by an instruction using volume-id
checking. This will cause a mount prompt to appear if the volume is
not already present on the indicated unit. For example, suppose you
wish to copy the file named OURSORT from volume OURDEV on 100 to be
the target library on 205. You can use the I instruction to control
the mounting of OURDEV as follows:

$95 LIBRARY MAINTENANCE
:I VOLUME-ID:OURDEV
$95 LIBRARY MAINTENANCE

:COP UNIT:100
$95 FILE:OURSORT

If at this stage OURDEV is not present on unit 100, the mount prompt:

PLEASE MOUNT OURDEV ON 100 - LEFT HAND DISKETTE DRIVE AND KEY <CR>:

will appear. As explained above, since this is one of the special
prompts that bypass job management it will always be displayed on the
console, even when the other responses to $LIB are supplied in the
dialogue table. The operator must load the requested volume and key Y,
<CR> (or any single character apart from N) to continue. A reply of N
terminates job management.

5.7.3 The COP Instruction under Job Management
You will recall from 5.3.1 that when the COP instruction is used to
replace an existing member on the target library with an update the
prompt:

MEMBER ALREADY EXISTS - DELETE?:

appears, allowing you to choose whether or not to replace the member
in question. When $LIB runs under job management a response of Y is
automatically supplied to this prompt. This allows you to code exactly
the same dialogue, whether you intend to add a new member, or replace
an existing one. For example:

$95 LIBRARY MAINTENANCE

:COP FROM UNIT:100
$95 FILE:OURSORT

Chapter 5 – Library Maintenance Using $LIB

Global Development Cobol User Manual V8.1 Page 79 of 174

will cause OURSORT to either be added to the target library, if it is
not already present, or replaced with the new version, if it is.

5.7.4 Example Job Management Dialogue
In the previous section we described how a sequence of COP and OFF
instructions could be used to install a dispersed library named P.SA
on newly initialised volumes named SAPRG1 and SAPRG2. P.SA is created
from libraries P.SAA and P.SAB residing on distribution volumes named
SAA and SAB respectively. The following dialogue could be encoded in a
job description so that the installation process could be performed
under job management. The new volumes are to be created on unit 100,
the existing ones read from 101:

GSM READY:$LIB
$95 TARGET LIBRARY:<CTRL C> VOLUME-ID:SAPRG1
$95 TARGET LIBRARY:P.SA UNIT:100
$95 NEW?:Y SIZE:0
$95 TITLE:DISPERSED LIBRARY PART 1
$95 LIBRARY MAINTENANCE

:I VOLUME-ID:SAA
$95 LIBRARY MAINTENANCE
:COP FROM UNIT:101
$95 FILE:P.SAA MEMBER:<CTRL B>
$95 LIBRARY MAINTENANCE
:I VOLUME-ID:SAB
$95 LIBRARY MAINTENANCE
:OFF FROM UNIT:101 ON VOLUME:SAPRG2
$95 FILE:P.SAB MEMBER:<CTRL B>
$95 LIBRARY MAINTENANCE
:TRU NEW SPARE SPACE:<CR>

$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<CTRL C> VOLUME-ID:SAPRG2
$95 TARGET LIBRARY:P.SA UNIT:100
$95 NEW?:Y SIZE:0
$95 TITLE:DISPERSED LIBRARY PART 2
$95 LIBRARY MAINTENANCE
:COP FROM UNIT:101
$95 FILE:P.SAB MEMBER:<CTRL B>
$95 LIBRARY MAINTENANCE
:I VOLUME-ID:SAA

:OFF FROM UNIT:101 ON VOLUME:SAPRG1
$95 FILE:P.SAA MEMBER:<CTRL B>
$95 LIBRARY MAINTENANCE
:TRU NEW SPARE SPACE:<CR>
$95 LIBRARY MAINTENANCE
:END
$95 TARGET LIBRARY:<ESCAPE>
GSM READY:

You may find it instructive to compare this with the original example
in 5.6.5 where comments were used to describe the volume mounting
requirements and the effect of the various COP and OFF instructions.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 80 of 174

6. Linkage Editing Using $LINK

The $LINK command is used to linkage edit selected modules to form a
loadable program, which can then be brought into main memory by the
operator keying its name in response to the ready prompt, or as the
result of a program already in memory executing a LOAD, EXEC or CHAIN
statement. The modules involved may be either compilations created by
$COBOL or maps produced by $FORM. They may be held as individual
files, or may be members of a compilation library.

The linkage edit process is responsible for determining the storage
locations that the program will occupy when it is loaded, together
with the Global Cobol address of its entry point. Each module is
originally created to start at Global Cobol address 0, so $LINK has
the problem of modifying all the addresses involved appropriately. In
addition the linkage edit must attempt to satisfy all global
references to symbols not contained in the current map or compilation
by including the module or modules defining them.

Table 6.1 lists the Global Cobol statements which reference or define
global symbols. You will note that many of them refer to globals which
are defined within members of the system libraries. $LINK normally
includes this library in every linkage edit so that the appropriate
subroutines for formatted display working, editing, file handling
(access methods), display mapping and sorting are included in the
resulting program as and when required. In addition if there are any
calls on system routines, such as COPY$, CONV$... etc, the appropriate
modules from the system libraries will be brought in. There is not
enough space in Table 6.1 to show them all, but if you need to know
the member or members included by a particular call you can refer to
the appendix of the manual describing it, entitled "Included
Routines".

You should note, for completeness, that a map produced by $FORM
defines its map-id as a global, addressing the first location that its
data tables occupy. If the map refers to a user validation routine
then it will contain a global reference to the entry name of that
routine.

There are normally two outputs from $LINK: the program file, whose
name, the program-id, is used to identify the program in LOAD, EXEC or
CHAIN statements, or when run from the console; and the link map
listing, detailing the input files, the modules included in the
program, and any error or warning conditions. There is an annotated
link map listing of a simple example program in Appendix A.

You should note that a single invocation of $LINK produces just one
program file and link map, so you have to use the command repeatedly
for an application involving an overlay structure, where the root,
together with each of the lower level overlays, each count as separate
programs.

In the description which follows we first of all explain how $LINK can
be used to create independent programs, which contain all the modules
they use. Then we describe how you can employ the command to produce
dependent programs, to optimise the storage requirements of certain
overlay structures. A dependent program is able to access some or all

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 81 of 174

of the modules it requires from separate "information" overlays known
to be already resident when the dependent is entered.

COBOL STATEMENTS GENERATING
GLOBAL SYMBOLS

WHERE THE GLOBAL SYMBOL IS DEFINED

ACCEPT...LINE, DISPLAY...LINE In member QS$A of C.$MCOB
CALL entry-name [USING...] In a module where entry-name

occurs in an ENTRY Statement, or
is a local symbol made into a
global definition by the GLOBAL
statement

CLEAR In member GA$A of C.$MCOB
COMMON SECTION name The section name is defined as a

global where the statement is
coded

EDIT In member QL$A of C.$MCOB
ENTRY entry-name [USING...] The entry-name is defined as a

global where the ENTRY statement
itself is coded

EXTERNAL SECTION name In a module containing a COMMON
SECTION with the same name

FD...ORGANISATION RELATIVE-
SEQUENTIAL

In member AR$B of C.$MCOB if the
FD possesses a BLOCK CONTAINS
statement, otherwise in AR$A.

FD...ORGANISATION INDEXED-
SEQUENTIAL
FD...ORGANISATION OR$83
FD...ORGANISATION OR$84
FD...ORGANISATION OR$85
FD...ORGANISATION DMAM

In member AI$A of C.$MCOB
In member AT$A of C.$MCOB
In member AV$A of C.$APF
In member AB$A of C.$APF
In member AM$A of C.$APF

GLOBAL symbol In a compilation where symbol
occurs as a program name in the
PROGRAM statement, an entry name
in the ENTRY statement, the name
of a COMMON SECTION, or is locally
defined but rendered global by a
GLOBAL statement, or in a map
where symbol is the map-id

MD...[MAP map-id] In member SM$A of C.$APF [if the
optional MAP clause is present
another global reference is
generated, to a symbol located at
the start of the map named map-id]

PROGRAM program-name The program-name is defined as a
global where the PROGRAM statement
itself is coded

SCROLL In member QB$A of C.$MCOB
SORT, RELEASE, RETURN In member QO$A of C.$MCOB

Table 6 - Global Cobol Statements Generating Global Symbols

6.1 Linkage Editing an Independent Program
This section describes how you use $LINK to create an independent
program, which is to contain all the modules it requires. Such a
program may be a single, stand-alone application; the root of an
overlay structure; or even a lower level overlay if there is no need

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 82 of 174

to minimise main storage requirements by including modules common to
several overlays only once.

6.1.1 The LINK Prompt
When you run $LINK the link prompt is displayed, so that you can
specify the start address of the independent program, and the input
files and units containing the modules to be linkage edited:

GSM READY:$LINK

$44 LINK:

You may key one of the following responses:

#hhhh where #hhhh is an even hexadecimal
number in the range #0 to #FFFE, specifying
the program start address. (This response is
invalid unless supplied to the very first
link prompt);

file-id the name of a compilation or map file

containing a single module to be included in
the program file;

library-id/member-id to indicate that a specific member

of a given compilation library is to be
included in the program file;

library-id to search the specified library for any

modules containing global definitions
matching outstanding global references;

<CR> to terminate the link list.

Following the second, third and fourth responses, you are prompted for
the unit on which the input file resides. The link prompt is re-
displayed until you key <CR>, allowing you to specify details for up
to 100 input files. You can respond <CR> to a second or subsequent
unit prompt, to cause the last address actually keyed to be used. You
may omit the C. prefix when keying a file-id or library-id and $LINK
will append it by default. If you do not specify a starting location,
$LINK will create the program to start at address #500 to leave space
for the overlays of the symbolic debugging system.

In the following example a program is to be linked from module SA950
of file C.SA950 and member SADIAG of library C.TEST. In addition any
routines required from library C.SA are to be included. Space is to be
left for the symbolic debugging system and all the input files are on
unit 205:

GSM READY:$LINK
$44 LINK:SA950 UNIT:205
$44 LINK:TEST/SADIAG UNIT:<CR>
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>
$44 PROGRAM:

Since all but the most trivial programs require modules from the
system libraries, they are included automatically when you terminate
the link list.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 83 of 174

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 84 of 174

The figure below shows a storage map of the program thus linkage
edited:

In the usual case when the first module is a compilation, its very
first procedure division statement is taken to be the entry point of
the program file. When the first module is a map produced by $FORM the
entry point is at the start address of the program.

6.1.2 To Quit
To quit and return control to the monitor, key <ESCAPE> in response to
any prompt output by $LINK.

6.1.3 The Program Prompt
The program prompt appears after you terminate the link list by keying
<CR> to the link prompt. It requests you to supply the program-id and
the address of the unit upon which the program file is to be created:

$44 PROGRAM:program-id UNIT:unit-id
$44 LISTING UNIT:

For example, to specify that program SALES is to be produced on unit
101:

$44 PROGRAM:SALES UNIT:101
$44 LISTING UNIT:

You may key <CR> to the PROGRAM: prompt, in which case the name of the
program file is derived from the first module in the link list. If it
is a compilation, the name used is the one coded in its PROGRAM
statement. If the module is a map produced by $FORM, the name is its
map-id.

If you key <CR> to the UNIT: prompt the program file is created on the
unit occupied by the first module. Therefore, returning to the example
introduced in the previous section, the following dialogue could be
used to create program file SA950 on unit 205:

GSM READY:$LINK
$44 LINK:SA950 UNIT:205

$44 LINK:TEST/SADIAG UNIT:<CR>
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>

Free space reserved for symbolic debug
(pre-V6.1)

Module SA950

Module SADIAG

Modules from C.SA required by SA950 and
SADIAG

System routines from system libraries
required by SA950, SADIAG and the
modules previously included from C.SA

#0

#500

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 85 of 174

$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:

6.1.4 The Listing Unit Prompt
After you have defined the program file to be produced by $LINK you
are asked to key the unit-id of the device to hold the link map
listing. You may key <CR> to indicate that you wish to use $PR, the
logical printer, or <CTRL A>, to suppress production of the listing.
If you specify a direct access device, for example:

$44 LISTING UNIT:205
$44 LINK OPTION:

then the report is written to a file whose name is constructed from
the prefix M. concatenated with the first 6 characters of the program-
id. Thus if the above dialogue were used to continue the previous
example, it would result in the link map listing being output to
M.SA950 on unit 205.

6.1.5 The Link Option Prompt
Once you have specified the listing unit, the link option prompt is
output. You may key:

NSD to suppress the production of symbolic debug
records;

OSD V6.0 format symbolic debug record;

TW if $LINK is to be run under job management, to
indicate that job management is to be terminated
in the event of one of the warning messages
beginning $44 WARNING appearing;

I=nnnn Initialise any gaps in the program file (due to

uninitialised data in a sub-routine) up to nnnn
bytes. The default is 6 bytes.

SD=xxxxxxxx Create a separate symbolic debug file called

xxxxxxxx.

<CR> to terminate the option list.

LIVE to link the code at #0000 (DEBUG will set this
back to #0500). This is for use with V6.0 or
earlier systems.

The link option prompt is output repeatedly, until you key <CR>, so
that you can specify several options if you require them:

$44 LINK OPTION:NSD
$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING

If you key <CR> to the first occurrence of the prompt (the normal
case) symbolic debug records will be produced and the program will not
terminate job management if a warning message is displayed.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 86 of 174

6.1.6 Processing and Normal Completion
Once you reply <CR> to the link option prompt the message:

$44 LINKAGE EDITING

is output and $LINK begins the process of combining the modules you
specified in the link list together with any that are required from
the system library to form the new program file. Your inputs to the
link list are processed one by one, in the order they were submitted.
Where an input specifies an individual module, this is immediately
added to the program file. The globals defined in the new module may
be used to resolve previous unsatisfied references, whilst any extra
ones are added to the list of currently outstanding references.

Where you specified a library, rather than an individual module, $LINK
searches it for missing globals. Only those members of the library
which define currently outstanding globals are selected, but as each
such member is included in the new program file, any unsatisfied
global references that it itself contains are added to the currently
outstanding list, and may therefore cause yet more members of the same
library to be selected. The arrangement of the members within a
library is not important, except if it contains multiple definitions
of the same global (discussed in example 2, below). The order in which
libraries themselves are specified to the link prompt clearly is
significant, because of the way members are selected to satisfy
currently outstanding global references. Normally you will include
your own user libraries (if any) at the end of the link list, so that
they are searched just before the system library, which, since it
contains globals referenced by nearly all modules, must be processed
last of all.

If at the end of its processing $LINK finds that there are still
unsatisfied global references remaining it outputs a warning message
of the form:

$44 WARNING nnnn UNDEFINED GLOBAL(S)

This message is then followed by a list of the global symbol names
which are missing from the program just linked. Except during testing
when you have deliberately omitted some modules and plan to exercise
the program without them, this message indicates an error situation.

There are two other warnings that may appear during the linkage edit
processing:

$44 WARNING NO ROOM FOR SYMBOLIC DEBUG RECORDS

$44 WARNING xxxxxx OBSOLESCENT

The first of these appears if the program file is too small, but it is
still possible to produce a valid program, providing the symbolic
debug records are omitted. The second will only occur if you are
linking a program initially developed under an earlier version of
Global System Manager and it contains a reference to system routine
xxxxxx which is now obsolescent. Although the routine in question is
still supplied, the intention is to remove it from later versions of
the system.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 87 of 174

Even if warning messages occur the linkage edit process may still
produce a valid program file and link map listing. When this is
accomplished satisfactorily the command outputs the message:

$44 LINKAGE EDIT COMPLETED

and control returns to the monitor.

6.1.7 Operating Notes
The first filename you specify in response to the link prompt must not
be an unqualified library-id, since there is clearly no point in
beginning the linkage edit by searching a library when there are no
outstanding global references. However you may respond:

library-id/member

since this, of course, specifies that the named member is to be
included, not that the library is to be searched. For example, if
SA950 were a member of C.SA, rather than being held as an individual
file named C.SA950, the link list used as an example in 6.1.1 would
become:

$44 LINK:SA/SA950 UNIT:205
$44 LINK:TEST/SADIAG UNIT:<CR>
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>

The result, as before, is to create a program file from SA950, the
first module, SADIAG from C.TEST, and any necessary modules from C.SA
and the system subroutine libraries.

It is essential that all the files used by $LINK, i.e. those specified
in the link list, the system libraries (if they are used), the program
file and listing file, remain online throughout the linkage edit
process.

The system libraries to be used are specified in a list contained
within the $$LINK file, which is located on the $S unit. Normally this
link list specifies C.$APF and C.$MCOB to be used (both located on
$S), but you may create your own $$LINK file to provide a different
set of libraries for inclusion.

When Global System Manager is installed $S addresses the system
residence device used for SYSDEV and the system libraries occupy this
volume.

There is some room on this volume to add your own user libraries, if
you wish.

If the listing file is written to the same unit as the program file it
is allocated just 10K bytes, sufficient for 126 lines of output. The
program file obtains the maximum remaining contiguous space, and is
truncated appropriately at the end of the linkage edit. If either of
these allocations proves insufficient, or if you do not comply with
certain restrictions concerning the maximum number of modules and
globals (as defined in Appendix B of the Global Cobol Language
Manual), the linkage edit will fail. A single error message of the
form:

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 88 of 174

$44 LINK ABORTED - reason [FILE nn][MODULE nn]

will be displayed, and, if possible, printed on the listing. Control
will then return to the monitor. Partially completed program and
listing files may then be in existence: they can be deleted either by
running $LINK again, or by using the file utility's DEL instruction.
There is a full description of the various messages that may occur in
Appendix B.

The linkage edit will be terminated in a similar way, but without the
link aborted message, if there is an irrecoverable I/O error on any of
the files involved and you key N to the retry prompt.

6.1.8 Example 1 - The Simplest Linkage Edit
In the very simplest case you use $LINK to linkage edit a single main
program, which is not part of an overlay structure, and which uses no
subroutines apart from the ones provided as part of Global System
Manager in the system library. Suppose $COBOL has been used to produce
compilation file C.SA100 on unit 205 from source file S.SA100. Then to
create program file SA100, also on 205, and print the link map
listing, use the following dialogue:

GSM READY:$LINK
$44 LINK:SA100 UNIT:205
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>

$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

This example creates symbolic debug records in the program file, and
makes it load at location #500 onwards, so that a 1280-byte "hole" is
reserved at the start of the Global Cobol user area, for use by the
debugging system. When the program is fully tested, if it would
benefit from having more storage available to it, it could be linked
at location 0. This will prevent non-destructive use of the debugging
system, whose overlays will corrupt the start of the program. If debug
is not expected to be used, or the source is not being provided, you
can reduce the size of the program file (though not its main memory
requirement) by removing symbolic debug records.

The following dialogue links SA100 to start to location 0, and removes
the unwanted records from the program file:

GSM READY:$LINK
$44 LINK:#0
$44 LINK:SA100 UNIT:205
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:NSD
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

6.1.9 Example 2 - Using Your Own Subroutine Libraries

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 89 of 174

If the system you are developing contains a number of common routines,
you may store them in one or more compilation libraries to be searched
at the end of the link list. A typical scheme might involve two such
libraries, C.SA and C.SANEW. The first, updated only infrequently,
contains proven code. C.SANEW on the other hand contains either very
new routines, or updates to existing ones already on C.SA. The
following dialogue will cause the new modules to be selected in
preference to the old ones. Both libraries occupy the same unit as
C.$MCOB and C.$APF:

GSM READY:$LINK
$44 LINK:SA100 UNIT:205
$44 LINK:SANEW UNIT:$S
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:NSD
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING

$44 LINKAGE EDIT COMPLETED
GSM READY:

In disk-based systems where plenty of online storage is available,
some users find it convenient to keep all the component routines of a
system in a single library. Suppose then, that all the components are
in C.SA, including the "mainline", SA100. Then to link it to start at
location #500:

GSM READY:$LINK

$44 LINK:SA/SA100 UNIT:$S
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

6.1.10 Example 3 - Duplicate Global Definitions
Normally you should avoid creating a compilation library where two or
more members define the same global and for this reason the librarian,
$LIB, outputs a warning message whenever it detects a duplicate global
definition within a compilation library. However, there are cases in
which duplicate definition may prove useful. Before giving an example,
we explain how $LINK handles duplicates.

Clearly duplicate global definitions must reside in different members
of the library, otherwise the modules involved would not compile
correctly. Therefore if $LINK is searching a library and finds that a
global with a duplicate definition satisfies an outstanding reference,
it resolves the ambiguity by including only the containing member
whose member-id is lowest in ASCII collating sequence (i.e. nearest
the front of the alphabet) and in this case there is no problem.
However, if $LINK includes a module, for whatever reason, and finds
that it contains a definition of a global which has already been
defined by a previous inclusion, this is considered to be a fatal
error, and the linkage edit is aborted.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 90 of 174

Suppose therefore that program SA100 calls a calculation subroutine
whose entry name, CALC, is defined by ENTRY statements in two members,
CALCA and CALCB, of library C.SA. In outline these members might have
been coded as follows:

PROGRAM CALCA PROGRAM CALCB
DATA DIVISION DATA DIVISION

.....

.....
PROCEDURE DIVISION PROCEDURE DIVISION

ENTRY CALC [USING...] ENTRY CALC [USING...]
.....
.....
EXIT EXIT

ENDPROG ENDPROG

The following linkage edit will create program SA100 to use the
calculation subroutine from CALCA:

GSM READY:$LINK

$44 LINK:SA100 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

However, this one creates a program named SANEW, identical to SA100,
except that it uses the calculation subroutine from CALCB:

GSM READY:$LINK
$44 LINK:SA100 UNIT:205
$44 LINK:SA/CALCB UNIT:$S
$44 LINK:SA UNIT:<CR>
$44 LINK:<CR>
$44 PROGRAM:SANEW UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING

$44 LINKAGE EDIT COMPLETED
GSM READY:

Note that if, by mistake, you forced the inclusion of both calculation
routines, by starting, for example, like this:

GSM READY:$LINK
$44 LINK:SA100 UNIT:101
$44 LINK:SA/CALCA UNIT:$S
$44 LINK:SA/CALCB UNIT:$S

then the subsequent linkage edit would abort due to global symbol CALC
being doubly defined.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 91 of 174

The Ideal Structure

 LOW MEMORY (#500)

HIGH MEMORY

A Possible Implementation

 #500

#3C00

#5000

Figure 6.1.11 - Overlay construction using independent programs

6.1.11 Example 4 - Overlay Construction
In the top part of Figure 6.1.11 the ideal structure of a simple
overlay scheme is shown. There are five programs, SA100, SA200, SA210,
SA300 and SA310. The root, SA100, occupies the lowest memory
locations. It uses a LOAD or EXEC statement to load one of the
overlays SA200 or SA210. The latter can itself load SA300 or SA310 in
the same way.

SA100

SA210

SA310 SA300

SA200

SA100

SA210

SA310 SA300

SA200

Space for
expansion

Space for expansion

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 92 of 174

The lower part of the figure shows how the structure might be
implemented using five independent programs. First you link the root,
SA100, making use of the techniques that have already been described.
You examine the link map listing and see that if you begin the next
overlay level at location #3C00 there will be space for SA100 to
expand slightly if it is subsequently modified. You therefore link
SA200 and SA300 to begin at this address. For example, the following
links SA200 together with your own subroutine library C.SA:

GSM READY:$LINK
$44 LINK:#3C00
$44 LINK:SA200 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

You next link SA210 in the same way and, after examining the listing,
determine that SA300 and SA310 should begin at location #5000. Once
these are processed, the entire structure will have been created. In
all $LINK will have been invoked 5 times, once for each overlay
involved.

There are some weaknesses in this scheme. The calculation of start
addresses is clumsy, and can lead to errors unless you are careful.
Much more of a problem comes about because the five programs are
independent of each other, insofar as each must contain all the
modules it requires. Thus if SA100 and SA200 each contain an indexed
sequential file definition in their working storage, there will be two
copies of the indexed sequential access method, module AI$81, in
memory at the same time, one linked into SA100, and one in SA200. This
can be avoided by special programming, by holding all the FD's in
SA100, for example, and passing pointers to them as the lower level
overlays are called. However, it would be much simpler if SA200 could
simply know about SA100 and use the modules it contains, rather than
including them again, unnecessarily. In this case, however, SA200
would be a dependent program, since its successful execution would
depend on the use of information from another overlay. The linking of
dependent programs referencing information overlays is the topic of
the next section.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 93 of 174

LOW MEMORY

HIGH MEMORY

PROGRAM TYPE LEVEL INFORMATION OVERLAYS
SA100 Independent A None
SA200 Dependent B SA100
SA210 Dependent B SA100
SA300 Dependent C SA100, SA210
SA310 Dependent C SA100, SA210

Figure 6.2 - Overlay construction using dependent programs

6.2 Linkage Editing Dependent Programs
You can create overlay structures which require a minimum of main
memory by using a special feature of $LINK which allows you to create
what are termed dependent programs. Such a program does not
necessarily contain all the modules it requires. Instead it may access
modules from other programs which are known to be resident when the
dependent is loaded. These other programs are known as information
overlays, and are the dependent's predecessors in the structure. Thus,
in Figure 6.2, SA300 has two information overlays SA100 and SA210. If
these three programs all use the indexed sequential access method, and
SA210 and SA300 are both linked as dependent programs, then only one
copy of the access method module, AI$81, will be included in the
structure, and it will be a part of SA100. Note that the first level
of the structure, the root program, SA100 in the example, is unique in
having no information overlays. It need simply be linked as an
independent program using the techniques already described.

Linking of a dependent is slightly more complicated than that of an
independent program, since you have to specify link lists defining
each of the information overlays preceding the dependent. Apart from
this the principles remain unchanged. The information overlays
themselves do not become part of the resulting program file: they are
simply used in resolving global references and determining where in
memory the dependent program is to be loaded. A single invocation of
$LINK still produces just one program file, so the command must be
executed once for every program of the structure.

6.2.1 Defining Information Overlays

SA100

SA210

SA310 SA300

SA200

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 94 of 174

When you run $LINK to create a dependent program you must key <CTRL A>
to the very first link prompt to indicate that you wish to define its
information overlays:

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 LINK:

The linker responds by displaying a confirmation message noting that
you are about to define the first information overlay (the root
program), considered to be at level A. The link prompt is then
redisplayed so that you can begin to key the link list defining it.
The contents and order of this list should be exactly the same as the
one used to create the information overlay originally. However, when
you come to the last link prompt, you may either key <CTRL A> if you
need to define another information overlay, or <CR> if the information
definitions are complete and you wish to proceed to link the dependent
program itself.

For example, let us assume a very simple system in which there is not
even a user subroutine library. Then the root, SA100, could be linked
as described in 6.1.8:

GSM READY:$LINK
$44 LINK:SA100 UNIT:205
$44 LINK:<CR>
etc, etc.

This will cause a program file loading at location #500 to be
developed. To link dependent program SA210, so that it uses modules
already indicated in SA100 whenever possible, you must specify the
same link list again, to define the information overlay at level A.
Since there is only one such overlay, you terminate the list by keying
<CR>, then link the dependent program itself:

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A

$44 LINK:SA100 UNIT:205
$44 LINK:<CR>
$44 DEFINE DEPENDENT PROGRAM AT LEVEL B
$44 LINK:SA210 UNIT:205
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

You will note that the dialogue following the line beginning "$44
DEFINE DEPENDENT PROGRAM" is exactly the same as that used for an
independent program. The dialogue to link SA310, a dependent of SA100
and SA210 at level C, is therefore:

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 LINK:SA100 UNIT:101
$44 LINK:<CTRL A>

$44 DEFINE INFORMATION OVERLAY AT LEVEL B
$44 LINK:SA210 UNIT:101
$44 LINK:<CR>

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 95 of 174

$44 DEFINE DEPENDENT PROGRAM AT LEVEL C
$44 LINK:SA310 UNIT:<CR>
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

6.2.2 Error Recovery
If you terminate a link list by keying <CTRL A> when you should have
keyed <CR>, or vice versa, you can correct this error by making the
right response to the next link prompt. <CTRL A> will return you to
information overlay definition mode, whilst <CR> will allow you to
create the dependent program at the current level. For example:

.........
$44 LINK:<CTRL A> (keyed erroneously)
$44 DEFINE INFORMATION OVERLAY AT LEVEL D

$44 LINK:<CR> (the correct response)
$44 DEFINE DEPENDENT PROGRAM AT LEVEL D
$44 LINK:

6.2.3 Start Address Considerations
If none of the link lists involved specify an absolute start address,
then the root information overlay will be assumed to begin at location
#500, and the other information overlays and the dependent program
itself will follow on and occupy contiguous storage. You may of course
decide to start the root at some other location, such as address 0, in
which case you must begin its link list whenever it is used with a
#hhhh response. In our example, the list might then appear as:

$44 LINK:#0
$44 LINK:SA100 UNIT:205
$44 LINK:

You may also start other programs of the overlay structure at absolute
addresses, but this is not generally useful, since you normally will
need to relink all the dependents of a particular overlay if it
changes at all, because the global symbols it defines will have moved.

In very special circumstances you may start a program at an absolute
address in order to force it to overwrite part of its previous
information overlay when you know it is no longer required. This
technique is not recommended, since in most cases it is better to
introduce an additional program in place of the overwritten portion.
In any case, if $LINK detects that by specifying an absolute address
you have forced one program into the memory area occupied by another,
it outputs a warning message of the form:

$44 WARNING LEVEL y CONFLICTS WITH LEVEL x MEMORY AREA

For example, if you decide to force SA200 to begin at location #2000,
actually within the root, SA100, the dialogue appears as:

GSM READY:$LINK
$44 LINK:<CTRL A>

$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 LINK:SA100 UNIT:205
$44 LINK:<CR>

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 96 of 174

$44 DEFINE DEPENDENT PROGRAM AT LEVEL B
$44 LINK:#2000
$44 LINK:SA200 UNIT:205
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 WARNING LEVEL B CONFLICTS WITH LEVEL A MEMORY AREA
$44 LINKAGE EDIT COMPLETED
GSM READY:

When one or more information overlays are linked at an absolute
address, then a subsequent overlay with no start address specified
will be linked following the highest memory location occupied by any
of the previous information overlays.

6.2.4 Removing Duplicate Modules from the Overlay Structure
Suppose in our example that programs SA200 and SA300 use IS files, but
the root, SA100 does not. If no special steps are taken the indexed
sequential access method, module AI$81, will appear twice in the
overlay structure thus:

However, you can force AI$81 into the common information overlay
shared by its users (i.e. in this case the root program, SA100) in two
ways. You can either link it explicitly into SA100 by extending its
link list, for example:

$44 LINK:SA100 UNIT:205
$44 LINK:$MCOB/AI$81 UNIT:$S
$44 LINK:

Or you can change the source of SA100 to include a reference to AI$81
and then recompile it. Rather than setting up an unnecessary indexed
sequential FD, simply code a statement:

GLOBAL AI$81

at the front of the data division preceding the first file, map or
data definition. In either case the result will be an overlay
structure such as:

SA100

SA300

(AI$81
)

(AI$81
)

SA200

SA100

SA300

(AI$81
)

SA200

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 97 of 174

The main memory requirement will be identical to that of the previous
structure: the saving will be made on the file space required by the
overlays, and, in consequence, the time taken to load them. We
recommend that when you are developing an application you examine the
link map listing carefully with a view to moving duplicated modules to
the root (or an appropriate overlay at a lower level) since the total
savings can be considerable.

A similar problem arises if you link a dependent program which uses
blocked relative sequential files together with an information overlay
which uses only unblocked RS files. The dependent requires access
method AR$B, whereas the information overlay already includes AR$A,
which is really superfluous, since AR$B contains a superset of its
functions. The message:

$44 WARNING 2 VERSIONS OF RSAM PRESENT

will be displayed in this case. You can remove AR$A from the structure
by linking AR$B explicitly into the relevant information overlay, or
one of its predecessors in the structure. Alternatively, you can
update the appropriate source code and recompile, having coded:

GLOBAL AR80

at the front of the data division. (In this very special case, you
must not code GLOBAL AR$B as you might expect. This is due to
technical problems involved in the handling of blocked and unblocked
RSAM, which are beyond the scope of this manual).

6.2.5 Operating Notes
You may specify up to 9 information overlays when linking a dependent
program. Each is identified by means of its level code, which is A for
the root program, B for the overlay adjacent to it in main storage,
and so on, down to I. The dependent program is linked at the level
below that of the last information overlay you specify.

The program occupying each level is defined by its link list, which is
automatically supplemented by including the system libraries at the
end in the normal way.

If, at the end of linking either an information overlay, or the
dependent program itself, there are still outstanding global
references, a warning message of the form:

$44 WARNING nnn UNDEFINED GLOBALS AT LEVEL x

appears, together with a list of the missing globals. The quantity nnn
is the decimal number of distinct symbols not present, and x is the
level code of the information overlay affected, or the dependent
program itself. Except when you have deliberately omitted modules
during testing, this message normally indicates an error condition.

6.2.6 Example - Linking an Entire Structure
This example shows the dialogue necessary to link all five programs of
the overlay structure shown in Figure 6.2. Compilation files C.SA100,
C.SA200, etc. are assumed to reside on 205, on which the new program
files are developed.

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 98 of 174

All parts of the structure may use routines from a user subroutine
library named C.SA. The link map listings are all produced on the unit
assigned to $PR, the logical printer.

The dialogue is intended to be used under job management, so the TW
option is specified to cause job management to terminate if any of the
conditions that give rise to a $44 WARNING message arise:

(First link step - link SA100)

GSM READY:$LINK
$44 LINK:SA100 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED

GSM READY:

(Second link step - link SA200)

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 LINK:SA100 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 DEFINE DEPENDENT PROGRAM AT LEVEL B

$44 PROGRAM:SA200 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

(Third link step - link SA210)

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 PROGRAM:SA100 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 DEFINE DEPENDENT PROGRAM AT LEVEL B
$44 LINK:SA210 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>

$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

(Fourth link step - link SA300)

GSM READY:$LINK

$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A
$44 LINK:SA100 UNIT:205

Chapter 6 – Linkage Editing Using $LINK

Global Development Cobol User Manual V8.1 Page 99 of 174

$44 LINK:SA UNIT:$S
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL B
$44 LINK:SA210 UNIT:205
$44 LINK:<CR>
$44 DEFINE DEPENDENT PROGRAM AT LEVEL C
$44 LINK:SA300 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>

$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

(Fifth link step - link SA310)

GSM READY:$LINK
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL A

$44 LINK:SA100 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CTRL A>
$44 DEFINE INFORMATION OVERLAY AT LEVEL B
$44 LINK:SA210 UNIT:101
$44 LINK:<CR>
$44 DEFINE DEPENDENT PROGRAM AT LEVEL C
$44 LINK:SA310 UNIT:205
$44 LINK:SA UNIT:$S
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>

$44 LISTING UNIT:<CR>
$44 LINK OPTION:TW
$44 LINK OPTION:<CR>
$44 LINKAGE EDITING
$44 LINKAGE EDIT COMPLETED
GSM READY:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 100 of 174

7. Symbolic Debugging Using $DEBUG

INSTRUCTION GROUP AND FUNCTION

H
Q

INTRODUCTION (7.1)
Display help text
Quit, returning control to the monitor

W size

THE SCREEN DISPLAY (7.2)
Change window size

N name
U

ESTABLISHING THE SYMBOLIC DEBUG TABLE (7.3)
Name the compilation
Change symbolic debug table library

D

THE DIAGNOSTIC REPORT (7.5)
Produce diagnostic reports and dumps

I address
[format]
M address
[format]
X index1
[index2]
Y length
S string
? address

INSPECTING AND MODIFYING VARIABLES (7.6)
Inspect a variable
Modify a variable
Index the next I or M instruction
Establish length of repeating group
Search for string in memory
Displays address as address (base+offset)

R [address]
A

RESUMING PROGRAMS FROM $DEBUG (7.7)
Resume execution of an interrupted program
Advance a single step

T address
C [address]
O program-id
V address
[format]
 condition
value

SETTING TRAPS (7.8)
Set a trap on a Global Cobol statement
Clear the trap on a statement
Trap the loading of an overlay/chained program
Value trap

E
L number
F string
G hex

LISTING FILE INSTRUCTIONS (7.9)
End or start inspecting a file
Get line number
Find source line string
Get source line containing address

K

TEMPLATES (7.10)
Keep template

P
Z

ALTERNATIVE DEBUGGING MODES (7.11)
SCF debugging mode
Assembler debugging mode

Table 7.1 - Debug Instructions

7.1 Introduction
The symbolic debugging system described in this chapter is intended
for programmers responsible for developing Global Cobol applications.
The full debugging system explained below enable you to inspect and
modify variables, set traps in programs and on variables, and so on,
using symbolic information if it is available. The debugger runs in a
separate partition from the program being debugged. This is usually a
second partition on the same screen, but can be a completely separate
screen from the one on which the program is running. Because it uses a

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 101 of 174

separate partition the V6.1 debugger cannot be used on a single user
system.

Note: The V6.1 debugger should not be used with programs that gain
exclusive control.

This chapter begins by explaining the concepts underlying the system.
A description of the individual instructions used in debugging
follows, with related instructions grouped together in the same
section so that it is easy to appreciate the scheme on a first
reading.

7.1.1 Running the $DEBUG command
To start debugging a program you run the $DEBUG command in the normal
way from a ready prompt. For example:

GSM READY:$DEBUG

You are then asked for the number of the partition you want the
program you would like to debug to run on:

Partition to be debugged:partition

The partition must be a partition other than the one on which you are
running $DEBUG. To debug a program running on another screen, you
should key the operator-id followed by the partition number; for
example:

Partition to be debugged:NER/2

At this point the debugger attempts to make the partition resident in
memory. If this is not possible because there are no free memory banks
available, the following message will appear on your screen:

TOO MANY TASKS ARE CURRENTLY KEPT RESIDENT IN MEMORY FOR
THE TARGET PARTITION TO BE KEPT RESIDENT AS WELL.

YOU MAY TRY REDUCING THE NUMBER OF RESIDENT TASKS (BY

TERMINATING DEBUG SESSIONS FOR EXAMPLE), AND TRY AGAIN. (SEE
CU-7 FOR DETAILS)

Key <CR> to retry or <ESC> to abandon:

You may be able to free some memory banks by reducing the number of
tasks resident in memory. This can be done on the system by stopping
some of the other programs that may be running, especially programs
that may be explicitly keeping a partition resident, for example
$DEBUG. If you are not in a position to try this, key <ESC> at this
point to abandon the debugging session. If you can do this, do so, and
then key <CR> to the prompt. The debugger will then again attempt to
find an available memory bank.

Figure 7.1 - Selecting the template

It maybe that the partition being debugged is not readily available in
memory because it has been swapped to disk. You will then get the
following message:

THE TARGET PARTITION IS NOT CURRENTLY RESIDENT IN MEMORY.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 102 of 174

YOU SHOULD BE ABLE TO CAUSE IT TO COME INTO MEMORY BY
RUNNING A PROGRAM IN THE TARGET PARTITION (SEE CU-7 FOR
DETAILS)

Waiting for target partition to become active. Key <CTRL G> to abandon

The debugger will now be in a state where it is waiting for you to
activate the target partition. It should be possible to do this by
switching to the partition and running a program and then going back
to a ready prompt. You will then need to switch back to the debug
partition. If you are at the next prompt the partition to be debugged
has become resident. If this is not so you may want to try again or
key <CTRL G> to terminate the debugging session.

Once the target partition is resident if there is a template data
library present the debugger will then ask you for the name of the
template you want to load:

Key template name, ? to list, <CR> for none:

If you key ? to this prompt the list of available templates will be
displayed allowing you to choose one as shown in figure 7.1.

You can key the name or number of the template you want to choose or D
to delete any old templates.

A template contains the details of the debugging system for a specific
program. These include:

 the program to be debugged;
 the overlay to be trapped;
 bases;
 variables to be shown in the formatted area;
 file under inspection;
 window of application last selected.

Further detail on templates is given in section 7.10. If you have a
file being inspected on a spool unit and there is more than one file
of this name, you will be asked at this point which file you want to
inspect as explained in section 7.9.1.

If no template is specified or there is no template file, $DEBUG will
then ask for the program you want to debug and the overlay you want to
set the initial trap at:

Program to be debugged program Overlay to be trapped overlay

The overlay trap will be signalled after the overlay requested is
loaded. The default will set the overlay trap on the actual program to
be debugged.

$DEBUG will now run the program in the partition you specified so it
is advisable to make sure this partition is at a ready prompt.

You may not want to debug a program at this particular time but you
may just want to run the debugger in case you get an unexpected error
in the target partition. In this case you should just key <CR> to the
program prompt. You may now key debugger commands to set some initial

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 103 of 174

debug information (the instructions are described in further
chapters). You must then key R to resume the debugging session. The
following message will then appear:

AWAITING PROGRAM CHECK IN PARTITION BEING DEBUGGED

You may now switch to the partition being debugged and continue with
your application. If an error occurs the debugger will be activated.

You can now begin debugging your program. Instructions are provided to
allow you to inspect and modify the program loaded and eventually
cause it to be executed. You can also set traps on selected Global
Cobol statements so that, when a statement is encountered, the
debugging system is reactivated. This enables you to test a program in
a highly controlled manner since you can determine exactly those
points at which debug is to be re-entered to allow you to inspect or
modify storage, or even set further traps.

7.1.2 Entering Debug from an Active Program
If there is no debugger active for the partition then following any
program check, stop code, exit code, or trap, the monitor loads a
diagnostics overlay and one of the following messages will appear:

$91 PGM CHECK number AT location
$91 TERMINATED - STOP code
$91 TERMINATED - EXIT code
$91 TRAP AT location
$91 OVERLAY TRAP ON program-id

$91 VALUE TRAP AT location

This will be followed by the diagnostics prompt:

Activate debugger, key D for diagnostics report, H help, or <ESC> to exit:

The diagnostics overlay is also entered when the operator interrupts
the program using <CTRL W> and replies Y to the resulting break
prompt:

<CTRL W>
$91 BREAK?:Y
Activate debugger, key D for diagnostics, H for help, or <ESC> to exit:

Keying <ESC> to this will return you to the ready prompt.

A reply of D or <CR> will print a diagnostics report on unit $PR. You
may key up to 10 lines describing the events causing the program
error. These lines can be edited in the same way as text in $TED (see
OM-6), except that the commands are not available. You will then be
asked if a full memory dump is required:

Full memory dump?:

A reply of Y will cause the diagnostics to print a full memory dump to
the $PR unit.

A reply of D<CTRL A> to the diagnostics prompt will cause the concise
report to be displayed on the screen.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 104 of 174

You may want to debug the program in which case you will need to
switch partition and activate a debugger as described in section
7.1.1.

7.1.3 Debugging User System Requests
When debugging user system requests you must always run the debugger
as described in section 7.1.1 and not as described in section 7.1.2.
The memory you will inspect if you run $DEBUG after the diagnostics
prompt has been reached, will have been replaced by the calling
program and will not be that of the system request itself. The
debugger must also be run from a separate screen.

7.1.4 Debug Instructions
Table 7.1 summarises the format of the debug instructions described in
detail in this chapter. Most of them take one or more operands, though
in some cases these may be optional.

7.1.5 Address Specification
Many of the commands take an address operand, to specify an address on
which you want to apply the operation. The address format is as
follows:

[@]address [(symbol)|(decimal)]

where address is one of the following:

symbol
hex
decimal.
,hex
,decimal.
b,[hex]
b,decimal.

and:

@ means indirection
b is a single digit indicating the base to be added.

You can simply specify the hex address from address zero by keying a
"," followed by the hex value. For example:

,500

You can also express this address as a decimal value as follows by
following the decimal value with a decimal point:

,1280.

The address of a symbol can be indicated by keying the symbol name. If
a symbol is also a valid hexadecimal address then the symbolic format
is assumed. Subject to the limitation that hexadecimal operands can
consist of a maximum of four characters, a 0 prefix can be used to
indicate hexadecimal format (e.g. AA1 may be a symbol, but 0AA1 must
be hexadecimal).

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 105 of 174

If you want to access an address offset from a base address (explained
later) you key the base followed by the hexadecimal or decimal
address. For example, to access (base 1 + #500) you key:

1,500 (or 1,1280. for the decimal)

A hexadecimal address not prefixed by "," will always have the default
base, base 0, added to it. For example:

500

will access (base 0 + #500)

You can express an index using a decimal value or a computational
symbol. For example, if the following symbols have been introduced by
an N instruction (explained later):

77 ABC PIC X(3)

VALUE "ABC"
77 ALPHA REDEFINES ABC OCCURS 3 PIC X

and:

77 INDEX PIC 9(4) COMP
VALUE 3

then:

ALPHA(INDEX) will access "C"
and:

ALPHA(2) will access "B"

The "@" prefix is provided to allow you swift access to data
structures which are linked by pointers. It is also useful for
handling linkage section or system area data if you are unable to
refer to it symbolically.

For example if you wish to access the area pointed at by the pointer
PAPTR whose address is #500 from base 9 you can key:

@PAPTR
or:

@9,500
or:

@9,1280.

7.1.6 Format
For some instructions you may need to specify a format in which you
want the value specified by the address to be displayed or accepted.
The format must be separated from the address by at least one space.
The available formats are:

Cn or Cn,m computational 9(n,m)
C 9(4) COMP
Xn X(n)
X X(1)
H hexadecimal 16 bytes
Hn hexadecimal n bytes
P pointer

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 106 of 174

D date
F floating point

If the format is omitted and the address is not a symbol a format of
H16 is assumed.

7.1.7 H - help
If you want to refer to the help text given in the debugger you just
key the instruction H to the command prompt.

7.1.8 Q - quit from the debugger
To quit from the debugging session and return control to the monitor,
when the problem that caused the error is fully understood, key Q to
the command prompt. You will be asked if you want to terminate the
program in the partition being debugged. You will then be asked if you
want to keep the current template. If you reply Y to this you will be
asked for the program name, overlay trap record name and title as
explained for the K command in section 7.10.

7.2 Screen display
When you are in a position to debug your program you will find the
screen divided into three areas. First there are two lines of heading.
These contain the basic status information such as the last program
check, stop code, exit code, or trap as well as any outstanding
overlay or value trap. Next is a window area followed by a scrolled
area for keying commands.

The window area can be used to display various information by keying
function keys F1-F5 to the command prompt:

Command

The windows available are:

F1 - Selected variables;
F2 - User screen;
F3 - Source file;
F4 - Diagnostics;
F5 - Scientific variables.

7.2.1 Selected variables window
The selected variables window is chosen by keying F1 to the command
prompt. The last name table loaded using the N instruction will be
shown on the second header line. This window allows you to display up
to 30 variables in your program. The variables will be displayed in
the window at a specified position, and their values updated when
there is an error or a trap in your program, or when you modify the
variable using an M command.

To enter the mode in which you can edit the variable window area you
key one of the following:

cursor up to position yourself in the top left hand corner
of the window;

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 107 of 174

cursor down to position yourself in the bottom left hand
corner of the window;

home to position yourself to the last place previously
positioned in the window.

You can now use the cursor positioning keys to move around the window
area.

To select a variable that you would like to be defined in the window
you position the cursor at the place where you want it displayed. You
then key F1 and are prompted for the address and format of the
variable as follows:

Variable address [format]

The address and format are as described in sections 7.1.4 and 7.1.5.

The variable will now be displayed at the defined position in the
window.

Other functions are provided to allow you to edit the variable window.
You can delete a variable at the current cursor position in the window
by keying F2 and insert and delete a line at the current cursor
position in the window by keying F3 and F4 respectively. If you
specify a new variable whose display overlaps that of a previously
defined variable, the earlier definition is automatically deleted.

Once you have completed editing the window you key <ESC> to return to
the command prompt.

The values of the variables in the symbol window will be updated every
time there is an error or trap in the program you are debugging,
whenever you modify the variable using the M instruction or as you
advance through the program using the A command.

7.2.2 User screen window
This window is chosen by keying F2 to the command prompt. The
partition number of the user partition will be shown on the second
header line. The window shows the screen of the partition being
debugged and is useful if you are debugging another screen which is
remote. You can view the sections of the screen that do not fit into
this window by keying cursor down and cursor up respectively to the
command prompt. You can also move up and down a number of lines as
follows:

Command +n

or:
Command -n

where n is the number of lines.

To return to viewing the start of the screen you key the home key.

This window will be refreshed whenever the program you are debugging
has an error or trap.

7.2.3 File inspect window

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 108 of 174

This window is chosen by keying F3 to the command prompt. It shows the
file specified by the E command described in section 7.9., the name
and unit of which will be shown on the second header line. You can
move forward or back a screen by keying cursor down or cursor up key
and move up and down a number of lines by keying + or - as with the
user screen window. You can also use the home key to display the first
lines of the listing. Other instructions provided for inspecting the
file are explained in section 7.9.

Provided that the listing file corresponds to the program being
debugged, the base 0 address correctly set, and the "Track addresses
in listing file" option has been selected, the debugger will track the
line in the listing file which contains the address of the last error,
trap or value trap.

7.2.4 Diagnostics report window
This window is chosen by keying F4 to the command prompt. It shows a
concise diagnostic report, which is often sufficient to pin-point the
cause of the error without further investigation. Figure 7.3 shows the
format of the diagnostics report, together with an example.

You can move back and forwards and go back to the start in the
diagnostics window as previously described for the user screen and
listing file windows.

The window will be updated at every error or trap in the program you
are debugging.

7.2.5 Scientific variables window
This window is chosen by keying F5 to the command prompt. If you have
any scientific variables in the program you are debugging, it shows
the last scientific instruction together with the scientific variables
and their values. You can move the display up and down as previously
described.

The window will be updated at every error or trap in the program you
are debugging.

7.2.6 W - Change window size
You can change the depth of the window area shown on the screen by
using the W instruction as follows:

Command W size

where size is the size of the window area. This size excludes the
lines drawn at the top and bottom of the window.

7.3 Establishing the Symbolic Debug Table for a
Compilation
The instructions described below allow debug to access the short names
and attributes of all symbols defined in a single compilation. You can
then use any such symbol (rather than a hexadecimal location and
attributes) as the location operand of the instructions which allow
you to inspect and modify variables, display memory, clear and set
traps, and so on.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 109 of 174

The symbols introduced by the N instruction remain available either
until another N instruction is used, until you quit the debugger or
until the program is no longer on the current program unit.

Only the first six characters of each symbol are retained in the
symbolic debug table so if you are testing a program which has been
compiled using the "long names" option and several of its names begin
with the six characters you key, this will be interpreted as a
reference to the very first such name appearing in the compilation. If
you supply a symbol as an operand and it is not present in the debug
table the following warning message is displayed:

INVALID - REINPUT

In programs compiled with pre-V6.1 Global Cobol, global symbols only
appear for the compilation in which they are defined, not for every
compilation which references them. In particular, variables in
external sections are not available.

7.3.1 N - Name the Compilation for Symbolic Debugging
To name the compilation in which any symbols to be used in subsequent
instructions are defined, you must key the command:

N

You are then asked to key the template name:

Key template name, ? to list, <CR> for none

This allows you to use a previously created template that displays the
required variables in the selected variables window.

Whether or not you use a template you are next asked to supply the
compilation name and the program-id:

Compilation name name Program-id program

where the name you supply is that used in the compilation's PROGRAM
statement and program is the program which contains the compilation.
You may reply <CR> to either of these to accept the default displayed.
(This default option is useful when you wish to work with the main
program of a program constructed according to the recommended naming
conventions, under which the program-id and main program name are
identical.)

7.3.2 N - Examples
A sales invoicing program (program-id SA100) is under test and you
wish to examine data within its main program (program name SA100).
This was the last program loaded.

You need only key:

Command N
Key template name, ? to list, <CR> for none <CR>
Compilation name <CR> Program-id <CR>

to establish its symbols in the symbolic debug table because in this,
the most usual case, all the default conditions prevail.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 110 of 174

Next you need to examine data within one of this program's subroutines
(program name SASUBR). You key:

Compilation name SASUBR Program-id <CR>

The symbols of SA100 are replaced by those of SASUBR.

You now wish to continue execution of the program, and expect that it
will load an overlay. You use debug's R instruction (explained later)
to continue executing the program and it loads the overlay SALESOVL,
which terminates in error with a program check. SA100 is no longer the
last program loaded - that is SALESOVL - so if you wish to look at
data within SASUBR again you must key:

Compilation name SASUBR Program-id SA100

7.3.3 N - Operating Notes
When the N instruction is successful your reply to the "Program-id"
prompt is immediately followed by a command prompt to allow you to key
the next instruction. In some cases, however, the N instruction will
fail and a warning message will precede the command prompt.

If the program is not found, of the wrong type or corrupt in some way,
one of the following messages will appear:

PROGRAM FILE NOT FOUND

or:
INVALID PROGRAM FILE

If no symbolic information was present for the compilation in the
program specified the following warning message will appear:

NO SYMBOLIC DEBUG RECORD

Either you have used the N instruction incorrectly, and the wrong
compilation name is being searched for, or no symbols are present in
the program file. The latter will be the case if the module was
compiled or linked using the NSD option, or if the symbols were
eliminated later during library maintenance by using $LIB's NSD
instruction. It may also mean debug is unable to access the file
containing the symbols for some reason.

7.3.4 U - Change Name Table Library
The N instruction will first look for the program module from which to
load the name table in the last attached program library. The U
instruction described below allows you to change this library. This is
especially useful if you have used $LINK to create separate symbolic
debug modules (CU-6.1) and have placed them in a separate library. It
also allows you to load the name table even if the program you want to
debug attaches another program library.

To change the library from which the symbols are loaded you must key
the command:

U

You are then asked to key the library name and unit as follows:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 111 of 174

U Library name name Unit unit

The default library name and unit supplied is that of the currently
attached library.

7.3.5 U - Operating Notes
If you do not supply a library name or unit then the currently
attached library will be used for the N instruction.

If the program library is not present on the unit then the following
warning message will appear:

NOT FOUND OR WRONG TYPE

7.4 Setting the Program Base
There are 10 base registers (0-9) for you to use to set base
addresses. When you successfully use the N instruction to name the
compilation whose symbolic debug tables are to be loaded, $DEBUG
automatically establishes the base 9 address and the default base -
base 0 - to be the start address of the compilation thus identified.
The first effect is to cause location information appearing in the
diagnostics window and any of the error messages:

TRAP AT location

VALUE TRAP AT location

EXIT CODE nnnn AT location

STOP CODE nnnn AT location

PGM CHECK nn AT location

ADVANCED TO location

that appear in the header lines will be displayed in the form:

address (base 0 + offset)

For example, if program SAPROG has been linked to start at location
#500, and the base has been set to #500, then if an overflow program
check takes place at location #0648, the message:

PGM CHECK 11 AT 0648 (0500+0148)

appears on the header line. The importance of the offset, 0148 in this
example, is that it relates to the location printed on the compilation
listing and saves you having to perform hexadecimal subtractions to
convert the addresses used at run-time to listing locations.

The base addresses are also used in establishing addresses as
described in section 7.1.4.

7.4.1 - Examine Base and Set Base Explicitly
Bases 0-8 can be set up explicitly. Base 9 can only be set by an N
instruction. To examine a base you must key the base number to the
command prompt:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 112 of 174

Command n

The address will then be shown on the same line. With bases 0-8 you
will be allowed to edit the address in the format described in section
7.1.4. Base 0 is the base used when displaying the location in the
error messages, diagnostics report and symbol window. It is also the
base used to calculate the address in the listing file in the G
instruction which is explained later.

7.4.2 Bases - Operating Notes
Bases are most useful when you are debugging programs where symbolic
information is not available, because it allows you to work with the
locations printed on the compilation listing rather than absolute
addresses, which require hexadecimal conversion. They can be used in
defining an address as described in section 7.1.4. Before you use the
other debug instructions you should determine from your linkage edit
map listing the starting location of the compilation in which you are
interested. This is the value that appears in the LOCN column next to
the program name in the PROGRAM column. The value is always
hexadecimal 500 for main programs linkage edited at the linkers
default address.

You can avoid having to use the link map in this way by exploiting the
symbolic debugging facility and relying on the N instruction to set
the program base.

Base addresses can also be used to ease access of linkage section item
offsets (see I instruction).

Figure 7.2 - Example dump

Figure 7.3 - Example diagnostics report

7.5 The Diagnostic Report
The D instruction described in this section allows you to print the
diagnostic report, together with selected dumps of main memory. The
diagnostics facility, entered following a program check when the
debugger is not activated also produces a diagnostic report, and this
can be followed by a dump of the whole of memory.

Figure 7.5 describes the format of the diagnostic report and the
photograph shows a report produced following an error in program
SAPROG, which was deliberately constructed to fail by dividing by
zero.

7.5.1 D - Produce Diagnostic Report and Dumps
To produce a diagnostic report (and possibly follow this by printing
memory dumps) you must key the instruction:

D

You will then be asked for a print unit:

Print unit unit-id

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 113 of 174

The initial default will be $PR. This causes the diagnostic report to
be written as a print file to the unit-id you have specified. For
example, to write the report to the standard printer:

Command D Print Unit $PR
Dump from

The "dump from" prompt that now appears allows you to specify the
start address (in the standard format address) of the memory area you
require to output, together with its length:

Dump from address Length length

For example:

Dump from SAREC Length 100
Dump from

or:
Dump from EC0 Length #3C0

Dump from

These examples show how the first input you supply, address is an
address of the format explained in 7.1.4, and the second input, the
length, may be either specified as a decimal number or as a
hexadecimal value introduced by a #-character. Figure 7.2 shows the
dump produced as a result of the second example, when the program base
is #500.

Once the information has been printed, a new dump prompt appears so
that you can print out another area, if you wish. If you do no want to
print any further dumps then reply <CR> to the dump prompt. This
closes the print file and displays the debug prompt.

For example:

Command D Print unit $PR
Dump from SAREC Length 100
Dump from EC0 Length #3C0
Dump from CB-DAT Length #8E

Dump from <CR>
Command

7.5.2 D - Operating Notes
Usually the dump is written to the standard printer, but it may be
produced on a direct access device. In the latter case it is output to
a file named D.$DEBUG.

When you key the D Print unit unit-id instruction any existing file
named D.$DEBUG is deleted, and a new file with that name created. The
file is allocated the maximum amount of contiguous space available on
the volume. Any unused space is returned to the system for re-
allocation when you reply <CR> to the dump prompt to obtain a new
debug prompt.

The prompt:

Reset?

appears if an I/O error occurs when debug attempts to open the dump
file in response to a D Print unit unit-id instruction. If you reply Y

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 114 of 174

this will cause any files currently in use by the program under test
with the printer in question to be closed, and the open operation to
be retried.

This may allow the dump to be produced successfully if the original
error arose because the program under test already had a file open on
the printer. If you reply Y you may be able to produce the dump.

There are, of course, other possibilities for error if you attempt to
write the dump to printer in a multi-user environment. You are likely
to find it is in use by another program. You should normally try to
produce the dump on a direct access spool unit or work unit, or your
own private work unit.

If you reply N, <CR> (or any single character apart from Y), the dump
request will be abandoned and the command prompt will re-appear.

7.5.3 Notes on the Diagnostic Report
The last file access may be one performed using a system routine, for
example CONV$.

The final part of the report, the stack listings, will normally only
be of interest if you are loading modules onto one of the stacks, as
described in the Global Cobol Assembler Interface Manual. It may also
contain modules loaded by Global System Manager. In particular, job
management and field editing all involve the loading of modules onto
the stack. If a stack is empty, then the listing is compressed into a
single line of the form:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 115 of 174

SYSTEM STACK EMPTY nnnnn BYTES SPARE

check-type [CODE code] AT location-1
[SYSTEM system SERIAL NUMBER serial]
LAST PROGRAM LOADED program ACCUMULATOR VALUE accumulator
LAST TRANSFER FROM location-2
[LAST FILE ACCESS operation ON file-id INDEX index]
GSM version CALLED RETURN ADDRESS
[name] location-3 location-4
......
......

......

......

......

......

......

......

......

SYSTEM STACK MODULE TYP USER ENTRY SIZE

 module typ user address size

nnnn MODULES IN STACK space BYTES SPARE
SYSTEM STACK MODULE TYP USER ENTRY SIZE

 module typ user address size

nnnn MODULES IN STACK space BYTES SPARE

Figure 7.5 - The Diagnostic Report

Where:

check-type is the type of program check that occurred, for

example EXIT or OVERFLOW. See UM-A.

code is the exit or stop code, and is only present following

a $91 TERMINATED message. See UM-B or UM-C.

location-1 is the address of the Global Cobol instruction at

which the error was detected.

system indicates the type and serial number of the system
on which the error
serial occurred. This line is omitted when the report is
displayed on the screen.

program is the program-id or command name of the last module
loaded.

accumulator this is the value loaded into the accumulator when
the error occurred.

location-2 is the address of the last transfer of control

instruction to have been executed before the error
occurred.

One such line for
each level of control
in the calling
sequence at the point
of failure. The
deeper the level, the
later it is listed.

One such line for each
module in the system
stack.

One such line for each
module in the user
stack.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 116 of 174

operation indicates the last file processing statement executed
(e.g. OPEN OLD, READ

file-id NEXT, CLOSE ... TRUNCATE). The index will only
appear for a DMAM file

index or SpeedBase file accessed using SPAM. The line is
omitted if no such statement has been executed since
the previous ready prompt or main menu display.

version number specifies the Global System Manager version and release

name is the first five characters of a CALLed entry name or

PERFORMed section name appearing in the control path.
This will be blank if the module containing the entry
name or section name was compiled with the NTR option.

location-3 is the address of an EXECed or CALLed entry point,

or a PERFORMed section or paragraph.

location-4 is the address to which control would return were

an EXIT statement issued at this level. That is it is
the address of the statement following the EXEC, CALL
or PERFORM that passed control to location-3.

module is the program-id of a module loaded onto a stack,

either by the Global System Manager LOAD customization
instruction, or by the LOAD$ system routine described
in the Global Cobol Assembler Interface Manual. Modules
on the user stack with names $JOBhhhh indicate that the
program is running under job management.

typ is P for program modules, or D for data modules.

user is the number of the user who loaded the module onto

the stack. Temporary entries on the user stack have the
user number suffixed with [T]. If the module was loaded
on the system stack as a result of LOAD customisation
the word SYSTEM will appear. If the module has been
unloaded, but the space cannot be released due to a
subsequently loaded module, the word FREE will appear.

address is the address of the entry point of a module on a
stack.

size is the size of a module on a stack.

space is the free space in bytes remaining on the user

or system stack. For the user stack, this free space
represents the currently unused part of the user area.

7.6 Inspecting and Modifying Variables
The I and M instructions described in this section allow you to
inspect and modify variables. If you are using symbolic debugging you
need only refer to a variable by name for debug to display it, and
allow you to modify it, according to the picture clause information
you supplied when the program containing it was compiled. In the case
of groups, subgroups, file and map definitions, which have no picture
clause, debug treats them as PIC X items whose length is the sum of

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 117 of 174

their constituent fields. However, it is normally better to use the H
format to display the fields of such a group in hexadecimal.

Items in the linkage section can be referred to symbolically, but
since they are based dynamically it is essential that the base has
been set up previously. For example, the operands of the USING clause
of an ENTRY statement cannot be inspected until the ENTRY statement
has been executed.

If you inspect an entry name, section name or paragraph name, then the
first two bytes of the statement at that location are output (in
hexadecimal). The first byte will be odd if the trap flag is set on
the statement, and even otherwise.

Both the I and M instructions can be followed by BACKTAB or TAB to
step backwards or forwards.

7.6.1 I - Inspect a Variable
To inspect a variable you key the I instruction in response to the
command prompt. If you have established a symbolic debug table by
identifying the relevant compilation in a previous N instruction, you
can use the symbols in defining the address:

I address [format]

The symbol table of a Global Cobol compilation listing contains, in
addition to the location, hhhh, of each symbol, a compressed form of
picture clause which can be used to deduce the format of a variable.

7.6.2 I - Examples
Subroutine SASUBR, linkage edited to begin at 1CE4, is passed a
parameter area which contains the field PAPTR. This in turn addresses
a 16-byte data area which you wish to examine. The parameter area is
of course defined in the linkage section.

If the symbols in SASUBR have been introduced by a previous N
instruction, proceed as follows:

Command I @PAPTR H
0648 (0648+0000) 4141 5320 0000 0102 0001 FFFF FFFF 00FF
Command

Alternatively, when no symbolic information is available you will have
to consult the compilation listing's symbol table for PAPTR. It
appears as:

PAPTR 02 P 001A(01E4)

This indicates that the pointer to the linkage section group is at
location 1E4 relative to the start of SASUBR and PAPTR is offset 1A
bytes from the origin of that group. You can now examine the data area
as follows:

Command 1 1CE4 (base SASUBR)
Command 2 @1,1E4 (base group)
Command I @2,1A H (display 16 bytes)

0648 (0648+0000) 4141 5320 0000 0102 0001 FFFF FFFF 00FF
Command

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 118 of 174

You should note that linkage section group pointers are set up at run-
time by ENTRY or BASE statements, and therefore a linkage section item
cannot be addressed using the @ prefix until one of these statements
has been executed for the linkage group which is to be examined.
Similarly, a based area should not be referenced before its pointer
has been initialised.

The base address of program SA100, linkage-edited to begin at the
location immediately following the debug area, is #500. The
compilation listing shows that:

 PNTR, a PIC PTR variable is at location 10;

 STRNG, a PIC X(8) variable is at location 12A;

 TOTAL, a PIC 9(6) COMP variable is at location 156;

 RATE, a PIC 9(4,2) COMP variable is at location 2AE;

 TODAY, a PIC DATE variable is at location 2CD.

If the symbols of SA100 have been established in the debug table by a
previous N instruction, these variables can be examined using the
following dialogue:

Command I PNTR
132A (0500+0E2A)

Command I STRNG
"ABCDEFGH"
Command I TOTAL
181204
Command I RATE
23.09
Command I TODAY D
23/03/1988

Alternatively, when no symbolic information is available, you have to
supply the hexadecimal locations and attributes:

Command 1 ,500
Command I 1,10 P
132A (0500+0E2A) (pointer)
Command I 12A X8
"ABCDEFGH" (string)
Command I 156 C6
181204 (integer)
Command I 2AE C4,2
23.09 (fixed point)
Command I 2CD D

23/03/1988

Note how, whenever a pointer is inspected, its hexadecimal value is
displayed followed by base and offset information in brackets.

To examine the next/previous block of memory you only need to key TAB
or BACKTAB respectively to the next command prompt.

For a hexadecimal display only the number of bytes that can fit in the
scroll area will be displayed.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 119 of 174

7.6.3 M - To Modify a Variable
To modify a variable you key the M instruction in response to the
debug prompt. If you have established a symbolic debug table by
identifying the relevant compilation in a previous N instruction, you
can key the short name of the variable you wish to modify in an
instruction of the form:

M address [format]

The instruction operates exactly as Inspect, described above, except
that once the value has been displayed you are allowed to edit it.

When modifying values in hexadecimal format you can move around the
area using the cursor movement keys and you can switch from the
hexadecimal to the ASCII area using the tab key. You will only be able
to edit the amount that fits into the scrolled area. To modify the
next section of memory you only have to key TAB to the next command
prompt or for the previous section BACKTAB.

To modify a pointer, simply key one to four hexadecimal digits giving
the desired new value. (This facility can be used to set any two
adjacent bytes of storage to any specific value).

To modify a character or display numeric variable simply key the ASCII
characters required. If you key less characters than displayed
previously, your input will be padded with rightmost blanks.

To modify a computational variable, key the new number as appropriate.
It can be signed and have a maximum of 18 significant digits of which
no more than 15 may precede the decimal point and no more than 7 may
succeed it, depending on the format supplied.

To modify a PIC DATE variable just key the date in dd/mm/yy form.

To modify a floating point number just type in the new floating point
number.

7.6.4 M - Example
Program SA100 has failed with a numeric conversion program check at
location 1C62. It was linkage edited to start at location #500, the
first byte following the area used by debug.

Examining the listing you find that a MOVE statement at listing
location #1762 has failed. This is because of an erroneous value in
the PIC 9(4) display numeric variable ALPHA whose listing location is
8E.

If the symbols in SA100 have been established in the debug table by a
previous N instruction (which has the side effect of setting the base
at #500) then the following dialogue shows how you might correct
ALPHA:

Command M ALPHA 1111
Command

Alternatively, when no symbolic information is available, you have to
supply the hexadecimal locations and attributes of ALPHA after having
established the base:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 120 of 174

Command 0 500
Command M 8E X4 1111
Command

in both cases the spurious value of AA** is initially displayed and
overtyped with the correct value of 1111.

7.6.5 X - Index the Next I or M Instruction
The X instruction is provided to help you use the I and M instructions
to operate on variables within tables or repeating groups established
by means of the Global Cobol OCCURS clause.

Note, however, that you cannot use the X instruction in conjunction
with the symbolic form of the I and M instructions to index a variable
which is greater than 255 bytes in length, or index a field within a
repeating group whose entries are more than 255 bytes long. This
limitation is due to symbolic debug table size restrictions. If you
mistakenly attempt an X instruction in these circumstances the result
will be unpredictable.

To select a particular occurrence of a variable, key the instruction:

X index

in response to the debug prompt. The index should be a decimal integer
between 1 to 9999 inclusive. This will cause the next I or M
instruction, which should define the first occurrence of the variable,
to actually process the occurrence specified by the index.

To select a range of occurrences, key the instruction:

X index1 index2

in response to the debug prompt. Both the indices specified must be
decimal integers between 1 and 9999 inclusive, and index2 must be
greater than index1. The next I or M instruction, which should define
the next occurrence of the variable, will actually process the
occurrences in the range defined by the indices.

In the case of an inspect instruction each entry value will be output
and only when the entire range has been displayed will the next debug
prompt appear.

In the case of the modify instruction each entry value will be
displayed on a new line followed by a modify prompt. You can then
either change the value as described in section 7.5.3 or key <CR> to
leave the value unaltered and proceed to the next entry. You will
obtain the next debug prompt only when the entire range of values has
been processed in this way.

The X instruction only affects the very next inspect or modify
instruction. A new X instruction must therefore be keyed for every I
or M that is to be indexed.

Note that you can inspect (or modify) a single indexed variable by
using the form:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 121 of 174

I address(index) [format]

where index may be either a number in the range 1-9999 or the name of
a computational variable present in the currently attached symbols.

7.6.6 X - Example
A table within program SA100 is defined as follows:

01 TABLE OCCURS 20

 02 TANAME PIC X(8)
 02 TACOUNT PIC S9(4) COMP

The compilation listing shows that the first occurrence of TACOUNT is
at location 8E relative to the start of the program. SA100 has been
linkage-edited to begin at location #500, the byte immediately
following the debug area.

The following examples show you how the index instruction might be
used to modify the 3rd, 5th and 6th occurrences of TACOUNT.

If the symbols in SA100 have been established in the debug table by
the previous N instruction, proceed as follows:

Command X 3 6 (select items 3 to 6)
Command M TACOUNT
-1104 108 (3rd entry changed)
208 <CR> (4th entry unchanged)
13 0 (5th entry changed)
1287 1 (6th entry changed)

Command (range processed)

7.6.7 Y - Establish Length of Repeating Group
The Y instruction is provided to allow you to inspect variables inside
a repeating group when no symbols are available.

To establish the length of a repeating group, key the instruction:

Y length

in response to the debug prompt. The length should be a decimal
integer in the range 1 to 32767. The instruction must be keyed
immediately following an X instruction, and immediately before an I or
M instruction which specifies a hexadecimal (not symbolic) address. If
used under any other circumstances it has no effect.

For example, if you wished to inspect TACOUNT in the example in 7.6.6,
but symbolic information was not available, you would have to use the
following sequence of instructions:

Command X 3 6
Command Y 20
Command M 8E C4
etc, etc.

Note that if you do not use the Y instruction in the above example,
$DEBUG will have no way of telling the length of the group, and you
will get erroneous results.

7.6.8 S - Search for String

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 122 of 174

To find the location of a particular string in memory, you key the
instruction:

S "string"

or:
S hex

where hex is the hexadecimal value of the string. The whole of the
partition, except for the user stack and debug area, is then searched
for occurrences of the string. Each time the string is found, its
start address is displayed on a new line. For example, to find
occurrences of the string "123":

Command S "123" 9316 (0500+8E16) 3121 (0500+2C21)
2AB5 (0500+25B5)
Command

The instruction is particularly useful if you do not have an up-to-
date listing of the program, or if you want to locate a data item
allocated from free memory.

7.6.9 ? - Display Address as Base and Offset
To convert any address to the format address (base+offset), you key
the instruction:

? address

For example:

? @PTNR 0501(0500+0001)

7.7 Resuming Programs from Debug
If a break, trap, exit or program check occurs debug will be re-
entered. You can then examine or alter the program and possibly
restart it using the resume instruction. A typical sequence might be:

 Run $DEBUG which loads the subject program;
 Use N to obtain symbolic information;
 Set traps at significant points using T;
 Modify data for testing purposes using M;
 Resume program using R (debug is re-entered when a trapped

instruction is encountered);
 Inspect variables using I;
 Set additional traps using T;
 Resume subject program using A or R.

A and R are employed to resume the program which was active when debug
was entered. The program will be resumed in the target partition but
the debugger will not switch you to that partition unless input from
the screen is required by the program being debugged. If this does
happen then you will not again be switched to the debug partition
unless there is an error or trap. While the program is being executed
the $DEBUG will display the message:

Key <CTRL G> for command prompt

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 123 of 174

If you want to quit from the debugging session any time during the
execution you may key <CTRL G> to get to the command prompt followed
by the Q instruction as explained in section 7.1.8.

If you do key <CTRL G> to get the command prompt the following will
appear on the status line:

OPERATOR INTERRUPT

Caution must be taken in performing instruction other than Q at this
stage, because the user partition is still active, and the program
being debugged may still be executing.

7.7.1 R - Resume a Program from Debug
To resume a program which has entered debug for any reason you must
key the instruction:

R

or:
R address (relativised)

in response to the debug prompt.

The first format, R, is used to continue at the interrupted
instruction following a trap or break.

The second format will normally only succeed in resuming the program
successfully if a program check occurred because of invalid data and
it is possible to correct this using the M (modify) instruction. If
this is possible you must resume by specifying address as the location
of the failing statement. This location may not correspond exactly to
the program check location because a single statement often expands
into a number of internal instructions, any of which might fail. You
must resume the program on a statement boundary at the same level of
control as the failing instruction or unpredictable errors may arise.

7.7.2 R - Operating Notes
If you have removed an application volume to mount SYSRES so that the
debugger can be loaded, you must replace your disk before executing
the R instruction, or there is a risk that the system volume will be
corrupted if the application writes records to it.

7.7.3 R - Examples
The following dialogue takes place when you set a trap at location
104E of program SA100 in order to inspect certain variables before
continuing the program:

GSM READY:$DEBUG
Partition to be debugged 2

Program to be debugged SA100
Overlay to be trapped SA100
Command 0 500
Command T B4E (set trap, explained later)
Command R (execute program previously loaded)
.........

......... (dialogue from SA100 carried

......... on in partition 2)
TRAP AT 104E (0500+0B4E) (appears on the header line)

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 124 of 174

Command: etc etc (instructions to inspect data)
Command R
.........
......... (more dialogue from SA100)
.........
PGM CHECK 11 AT 218C (0500+1C8C) (appears on the header line)
Command

At the end of this you have unexpectedly entered debug again with
program check 11 (overflow). If you can determine the cause of the
problem you may be able to patch data fields and continue testing the
program. For example, the following dialogue resumes program execution
at location 2184 (listing offset 1C84) which you have determined to be
the location of the failing statement, 8 bytes earlier than the
instruction which caused the program check:

Command R 1C84

Note that if the symbols in SA100 have been established in the debug
table by a previous N instruction, then you can use a symbol as the
operand of the R instruction. This would allow you to resume at a
particular section or paragraph. For example:

Command R BA-OPE

resumes the program at the beginning of the section named BA-OPEN-
FILES.

7.7.4 A - Advance to a Transfer of Control Instruction
When a program has entered debug for any reason, you may single step
it by keying:

A

This causes execution to proceed to the next transfer of control
instruction or memory modification instruction. This is typically
equivalent to executing a single Global Cobol statement.

When the next transfer of control instruction or memory modification
instruction is reached, this is confirmed by a header line message of
the form:

ADVANCED TO location

For example:

Command A <CR>
ADVANCED TO 0536 (0500 + 0036)

Command

You may want to single step through your program for a while, to
observe the route of execution. To get into this continuous advance
mode you must key the following to the command prompt:

A<CTRL B>

To return to the command prompt you must key <CTRL G>.

7.7.5 A - Operating Notes

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 125 of 174

Some complex statements (such as DO FOR) contain a number of transfer
of control and memory modification instructions. In such cases you
will have to Advance a number of times to fully execute the statement
in question. A few Global Cobol statements generate no such
instructions and will therefore not cause the program execution to
halt when Advancing.

Advance will interrupt execution on the next statement, even if it is
in a Global system routine or subroutine. You should normally Trap the
program after the exit point of the subroutine as it may take some
time to Advance through all the statements it contains.
Notwithstanding this, Advance will not interrupt execution of
privileged code (used extensively in the Global System Manager monitor
and in some Global system routines such as LOAD$).

The continuous advance mode will stop execution if a program error or
trap occurs.

7.7.6 A - Example
Your program contains a DO-loop and you wish to examine the first
iteration of the loop in detail. The start of the DO-loop is labelled
START, and the loop count is held in COUNT. You proceed as follows:

GSM READY:$DEBUG

Partition to be debugged:2
Program to be debugged PROG Overlay to be trapped PROG (load program)
Command N

Compilation name <CR> Program-id <CR> (introduce symbols)
Command T START (set trap at start of loop)
Command R
...
...
TRAP AT 050C (0500+000C) (trap at start of loop)
Command I COUNT 1 (check first iteration)
Command A
ADVANCED TO 0512 (0500+0012) (advance through expected path
Command A in the loop)
ADVANCED TO 051E (0500+001E)

Command A
ADVANCED TO 0524 (0500+0024) (advance to unexpected

instruction in loop, inspect
variables to find what may have
caused this and modify variables
to rectify the error)

Command R 1E (resume program to avoid this path)
...
...
TRAP AT 050C (0500+000C)
Command I COUNT 2 (check second iteration)

7.8 Traps
Debug's T and C instructions, explained below, may be used to set or
clear the trap flag associated with any Global Cobol procedure
division statement. The trap flag may be set on any number of
statements within the subject program.

The interpreter detects when a program attempts to execute an
instruction with the trap flag set, and causes the debugger to
interrupt it with:

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 126 of 174

TRAP AT location
Command

You can then use whatever debug instructions you require, and normally
resume the program at the indicated location, by means of the R
instruction. A trap remains in force until either the
subject program is reloaded, or it is explicitly cleared using the C
instruction.

The O instruction described in this section extends the concept of a
trap by allowing you to request that debug is entered whenever a named
overlay is loaded.

The V instruction also traps when a value of a variable reaches a set
condition.

7.8.1 T - Trap a Statement
To set a trap on a statement you must key the instruction:

T address (relativised)

in response to the debug prompt. The trap flag is then set and the
debug prompt again displayed.

By using the T instruction repeatedly, any number of traps may be set.
For example, the dialogue:

Command N Program-id:<CR> (base address 0500)

Command T BA-OPE 06EA(0500+01EA)
Command T 171A 1C1A(0500+171A)
Command T 1C20 2220(0500+1C20)
Command

firstly names the currently loaded main program as the compilation
whose symbols are to be used, and then sets a trap on BA-OPE, so that
the first statement of the section named BA-OPEN-FILES is trapped.
Subsequent T instructions are used to trap the statements at listing
locations 171A and 1C20.

7.8.2 T - Operating Notes
If you set a trap on an ON OVERFLOW or ON EXCEPTION statement and the
exception or overflow condition arises, then the message:

PGM CHECK 11 AT location

or:
TERMINATED - EXIT code

corresponding to that condition, rather than the normal TRAP message,
will appear on the header line.

This indicates that the overflow or exception condition has been
cleared which means that if you attempt to resume a program terminated
in this way it will execute as though the condition had never
occurred. However, if the ON OVERFLOW or ON EXCEPTION statement is met
and no overflow or exception condition prevails, then the trap is
handled in the normal way.

7.8.3 C - Clear the Trap Flag

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 127 of 174

To clear a trap on a statement you must key the instruction:

C

or:
C address (relativised)

in response to the debug prompt. The trap flag is then cleared and the
debug prompt again displayed.

The first form of the instruction, C, clears the trap flag of the
statement which last caused debug to be entered. The second form
clears the trap on the statement at the location specified. By using
the C instruction repeatedly, any number of traps may be cleared. For
example, the following dialogue might take place after the traps
introduced in the description of the T instruction in section 7.7.1
had been set, and would have the effect of removing all of them:

Command R (resume program with traps set)
TRAP AT 1C1A (0500+171A) (appears on the header line)

Command C BA-OPE (clears T BA-OPE)
Command C (0500+171A) (clears T 171A)
Command C 1C20 2220(0500+1C20) (clears T 1C20)

7.8.4 C - Operating Notes
When you use the R instruction to resume execution of the subject
program following a trap, it will not cause the trap to be immediately
repeated because the interpreter always ignores the trap flag when it
is set on the very first instruction following a resume. This prevents
you having to use the C instruction unnecessarily simply to proceed
with your program.

7.8.5 O - Trap the Loading of an Overlay
To force a trap whenever a particular overlay is loaded (by CHAIN,
EXEC, LOAD, RUN, CALL QLOAD$ or CALL LOAD$ statement) you key the
instruction:

O program-id

or:
O ? (to trap on every overlay load)

in response to the command prompt. Once the overlay trap has been set
the command prompt is again displayed.

Only one program at a time can have a overlay trap set for it, and the
latest O instruction determines the program affected. You may key the
instruction:

O

with no parameter (type a space in order to clear the default) to
clear the overlay trap. The trap is also automatically cleared
whenever you quit the debugger.

The trap takes place as soon as the program identified by the O
instruction has been loaded but before it is entered. This enables you
to set additional traps using the T instruction. When you have
finished setting traps, or otherwise modifying the program, you can
resume execution by using the R instruction.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 128 of 174

7.8.6 O - Example
Program SA100 invokes overlay SA103 by means of an EXEC statement. You
wish to set traps in this overlay before it is executed. The following
dialogue takes place:

GSM READY:$DEBUG
Program to be debugged SA100 Overlay to be trapped SA103
Command R

OVERLAY TRAP ON SA103 (appears on the header line)
Command

7.8.7 O - Operating notes
You should note that overlays loaded by pre-V6.2 LOAD$ and QLOAD$ will
not be trapped using the O ? command.

7.8.8 V - Value Trap
The value trap instruction allows you to force a value trap when the
value of a variable satisfies the condition you specify. To set a
value trap you key the following instruction to the command prompt:

V address [format] condition value

The trap takes place at the first memory modification instruction
where the value at address satisfies the criteria given by the
condition and value. The address and format of the variable are as
described in section 7.1. However, the format must not describe a
variable longer than 8 bytes, as this is the maximum that can be
compared (so the default format is H8 and not H16).

Normally the instruction on which the trap occurs will be the one
which has changed the variable to the specified value. However, if you
are testing programs that use asynchronous assembler process such as
communications routines, the variable may have been changed by such a
process. Also the value trap will not be realised during the execution
of privileged code (as used in the Global System Manager monitor and
by certain system routines) and in such cases the value trap will be
realised at the end of the first memory modification instruction,
after control returns from the monitor or system routine in question.

The conditions allowed to compare the variable to the value are:

<>, >, <, =, GE, LE, GT, LT, EQ, NE

the condition <> or NE is allowed in order to trap if the value of the
variable changes in any way. In this case a value is not required.

If the variable is specified as a computational field, the test
comparing the variable with the value will be signed, otherwise it
will be unsigned.

The value to be compared with must be in the same format as the
variable specified. If you specify a hex format then you must supply a
hex string (without the preceding "#"), if you specify a computational
format you must supply a numeric value etc. A character string should
be specified between double quotes.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 129 of 174

Only one value trap can be set at a time. To explicitly clear the trap
you may key the instruction:

V 'space'

The 'space' is keyed in order to delete the default value set for the
last value trap.

The value trap will be automatically cleared once the conditions have
been satisfied and the trap has happened. It is also cleared when you
quit from the debugger.

7.8.9 V - Example
Consider the example given for the advance instruction in section
7.7.10. We can trap at the start of the loop and check the first
iteration as shown. We then also want to check the 20th iteration. To
get to the twentieth iteration we can set a value trap as follows:

Command V COUNT EQ 20 (set trap)
Command R (resume program)
...
...
VALUE TRAP AT 050C (0500+000C) (trap after COUNT has reached 20)
Command I COUNT 20 (check 20th iteration)

7.9 Listing file instructions
The following set of instructions are provided to allow greater
flexibility when examining source files.

7.9.1 E - end or start inspecting a file
The E command automatically closes the listing file currently being
inspected if there is one. It then asks you for another file to be
inspected:

Command E Source file:file Unit:unit

where file is the file to be inspected and unit is the unit it is on.
If you do not key a prefix on the file name "L." prefix will be taken
by default. If the unit on which you are inspecting the file is a
spool unit and there are more than one file of this name it will ask
you for the file you want the most recent file first.

Command E Source file:L.SA100 Unit:$PR
Listing file 865SUE /4 OF 20/04/88?:N (Not this one)
Listing file 863SUE /4 OF 19/04/88?:Y (this one)

If you do not want to inspect any file you just key <CTRL A> to the
source file prompt.

Once the listing file has been found you are asked:

Track addresses in listing file?

If you key Y to this, then the listing (displayed in the F3 window),
will track the instructions within the program as they are carried
out. Note that tracking the listing file imposes an overhead on re-
entering the debugger after a program check, so you may want to
disable it to speed execution.

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 130 of 174

7.9.2 L - get line number
To inspect a specific line in the listing file you key:

Command L number

where number is the line number you want to inspect.

The window will then display the source file starting from the line
specified. If this line number is greater than the number of lines in
the file, the end of file message will be displayed.

7.9.3 F - find source line string
This instruction will find the string passed if it exists in the
listing file. You key:

F string

The F instruction will retrieve the next line in the listing file
containing the string. If the string is not found when the end of the
listing file is reached, it will return to the start of the file and
continue searching until the present line in the file is reached. If
the string is not found then the part of the file displayed on the
screen will not change.

7.9.4 G - get source line containing address
This instruction can only be used on "L." files produced by the
compiler. It obtains the line in the listing file containing the 2
byte hex address passed to it:

G hex

As with the F instruction the G instruction will search to the end of
file and then return to the start.

7.10 Templates
Templates allow you to keep details of the current debugging session.
These details are:

 the program being debugger (see 7.1);
 the initial overlay to be trapped (see 7.1);
 the base registers (see 7.4.2);
 variables to be shown in the symbol window (see 7.2.1);
 file under inspection (see 7.9);
 the window of application last selected (see 7.2).

Templates are provided so that these details do not have to be entered
again when debugging the same program in a different debugging
session. They are stored in a data library called $$DEBUG which will
be created on the SYSRES unit.

7.10.1 K - keep template
The K command allows you to keep the current debug template. It asks
you to confirm the name of the program and the initial overlay trap:

Command K Program to debugged:Program Overlay to be trapped:Overlay

Chapter 7 – Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 131 of 174

Record name:Record Title:Title

If the data library is full you will get the option of deleting other
templates. If you do not wish to do so you will be unable to store the
template.

7.11 Alternative debugging modes
The debugger allows you to inspect and modify both SCF variables. To
do this you need to enter a different mode of debugging.

7.11.1 P - SCF Debugging mode
The P command puts you into the mode where you can manipulate
scientific variable using SCF programs. It can only be run when you
are in the scientific variable window, and there are scientific
variables available in the program you are debugging. To enter SCF
mode you key:

Command P
scientific program

You will then be prompted for the scientific programs you want to
apply. After each scientific program you apply the scientific
variables displayed in the window will be updated accordingly. Once
you have finished manipulating the scientific variables you key <ESC>
to return to the command prompt.

7.11.2 P - Example
Your program may fail because of a syntax error, for instance COMPUTE
"a = sqw b" as follows:

GSM READY:$DEBUG
Partition to be debugged:2
Program to be debugged SQROOT
Overlay to be trapped SQROOT
OVERLAY TRAP ON SQROOT (header line)
Command 0 ,0500
Command R
EXIT CODE 25401 AT 0546 (0500 + 0046) (invalid syntax)

(look at the listing file to find the syntax error
COMPUTE "a = sqw b " tracked; switch to the SCF window
to key the correct syntax)

Command P
scientific program
a = sqr b
<ESC>
Command R (resume the program with the correct values)

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 132 of 174

8. Record and Playback Using $RCP

The $RCP command is used in conjunction with <SYSREQ Q> (the
record/playback system request) to enable you to record keystrokes
typed on the keyboard and to subsequently play them back to repeat the
original processing. The repeated playback facility can be used to
test again programs which have had amendments applied. The record
script is held in a text file which can be edited to account for any
dialogue changes to the program being tested.

8.1 Recording Keystrokes
To record keystrokes you first key <SYSREQ> Q at the required point in
the processing (normally this will be from some well defined
commencement point, such as the system main menu). You can choose one
of two options (record or playback) and you should select the record
option.

You must now switch to a different partition, and run the $RCP command
which manages the actual recording of the keyed data. You are first
asked to identify the partition which you wish to record as follows:

GSM READY:$RCP
Record/Playback Maintenance

Target Partition:

You must specify the number of the partition in which <SYSREQ> Q is
run $RCP will check that this partition is expecting to be recorded,
that it resident in memory and otherwise suitable to be recorded. If
there is some problem an error or warning message is displayed, which
will suggest any appropriate recovery action you might take.

Having selected the partition to be recorded, $RCP will prompt for the
filename and unit of the script file to be created. If the file
already exists the prompt:

FILE ALREADY EXISTS - DELETE?:

will appear. If you reply Y then the existing file will be deleted and
replaced by the new file you are creating. If you reply with N then
you are asked if you wish to extend the existing file. If you elect
not to extend the existing file, you will be prompted again for the
script file to be created. If you do wish to extend the existing file
then you will be asked to select a filename and unit for the new
script file to be created, and the contents of the existing file will
be copied into that file and will have the current record session
appended to it.

[Note that it will be most common to use this latter facility to
extend an existing script after playing it back to position the
dialogue in the appropriate place. This facility is most useful when
it has been necessary to break off creating a script for some reason.]

Having selected the new script file to be created you are returned to
the partition in which <SYSREQ Q> was run to begin typing keystrokes
to be recorded.

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 133 of 174

8.1.1 Keystrokes Recorded
The following screen processing is recorded by the record/playback
programs:

Character Accepts
All character accepts, including use of the ACCEPT verb, calls to
ACCE$ and PASS$, screen formatting accepts managed by the MAPIN
statement, calls to BASEL$ and accepts generated by SpeedBase are
recorded.

Single Character Input
Characters input by CHAR$, CHARX$ and single character handling
within SpeedBase Presentation Manager are recorded.

BELL Statements
To monitor correct operation of script files on playback, all
incidences of the BELL verb, including those generated internally
by Global System Manager, are recorded.

System Requests
Global System Manager system requests (<SYSREQ> A, C, D, E in
particular) are recorded specially, as is the dialogue used to
run the system request.

The following processing is not recorded, and must therefore not be
included in a playback script:

Accept operations
Any Global System Manager command program or Global application
not using the standard accepts as described above will not be
recorded. This means, for example, that $T and certain other
terminal test programs cannot be recorded, along with Writer,
Planner and Finder and Reporter.

Interrupt Keys
Global System Manager system requests which do not run a program
(for example <SYSREQ> L, R, Z), together with the BREAK and <CTRL
G> keys are not recorded. The use of such keys during creation of
a script file is strongly discouraged, especially if their use
might cause variations in the dialogue of the program being
recorded.

Variable Dialogue
If a program contains variable dialogue, which is sensitive to
the keying of an interrupt key, such as <CTRL G>, or to the
presence of type-ahead, it is very unlikely that this can be
successfully recorded. The activation of variable dialogue during
creation of a script file is strongly discouraged, and any
programs which respond in a significant way to the presence of
type-ahead may not be capable of being recorded.

SpeedBase Help Function
The SpeedBase help function used within an accept in SpeedBase
Presentation Manager will not be recorded. The use of the help
function is discouraged as its use may change the screen display.

8.1.2 Annotating the Script File and Data Checking

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 134 of 174

At any point during the recording you may make annotations to the
current script file by changing to the partition where $RCP is being
run. Here you will see a list of the lines which have been created in
the script file, and you may enter maintenance mode by keying <CTRL
G>. This will take you into standard text edit ting mode (as in $TED)
and will allow you to modify up to the last 50 lines created. You may
move these lines around, making changes if required and adding
comments (usually to describe the purpose of the line for future
reference and maintenance) - spurious lines may be deleted (such as
the response to an inadvertent break prompt) and checking of screen
data may be established.

To check data you should position the cursor at the appropriate point
in the script for checking to be performed. Checking will take place
before the processing of any subsequent keystrokes, and the check
should usually be inserted at the end of the current script). You then
key Command (F3) followed by the number 1, 2, 3 or 4 to select one of
the check windows (initially positioned at the top left, top right,
bottom left and bottom right corners of the screen respectively). The
position of each window is remembered during this session of
recording, so you may establish default check windows over areas of
the screen which are likely to be of interest. You can now position
the selected window using the cursor keys, and when it is in the
correct position key F1. The size of the window can now be changed
using the cursor keys. Keying F1 again to return to positioning mode
if necessary). Note that the data checked is all of the characters
covered by the displayed box, including those covered by the box
edges.

When the appropriate data has been selected for checking key <CR> to
cause CHECK statements to be generated in the script file. If you
decide that checking is not, in fact, required key <ESC> to return to
script editing.

Once changes to the script are complete you should key <ESC> to exit
from editing, and you will be returned to the recorded partition to
enter more keystrokes.

8.1.3 Finishing Record Script Creation
When you have finished creating your record script, you key <SYSREQ> Q
again. This stops the recording process and transfers you to the
partition running $RCP so that you may make any final modifications to
the script. When the script file is satisfactory, key <ESC> and $RCP
will write out the remaining lines of script to the file and return to
the main menu.

8.1.4 Editing a Script File
Once created a script file may be edited using any text editor ($EDIT,
$ED, even $TED if it is sufficiently small), although obviously care
should be taken with any changes made. The script syntax definition is
described later.

The most usual reasons to edit a script file are to correct changes in
the dialogue of the program run, and to establish a linked set of
scripts by judicious use of the CHAIN and EXEC statements. In the
latter case care should be taken to remove extraneous SYSREQ 'Q'

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 135 of 174

statements from the individual record files as these will terminate
playback if they are encountered.

8.2 Playing Back a Script
To initiate playback of a script file you key <SYSREQ> Q, and then
select the playback option. You must then transfer to another
partition and run $RCP, specifying the original partition as the one
into which playback is to be directed.

You are asked to select a playback filename and unit, and to indicate
whether this is a simple playback or debugging test. In the former
case you are returned to the original partition and playback
commences, whereas in the latter case you are asked to specify a
breakpoint in the playback (see below) first.

Once playback has started it will control the partition until it has
run its course. The playback will be stopped by one of the following
events:

End of Script
At the end of a script, or set of script files executed using
EXEC and CHAIN statements, the playback is terminated and the
partition once again accepts operator input.

SYSREQ 'Q'
If a line in the script asks for SYSREQ Q to be loaded this
terminates the playback and the partition once again accepts
operator input.

Failed CHECK
If a CHECK does not match the contents of the screen this will be
reported and the playback terminated with an error.

Syntax Error
If a line in the script file contains a syntax error this will be
reported and the playback terminated with an error.

BELL (Program Error)
Use of the BELL verb usually indicates a program error. If a BELL
verb is executed and there is not a corresponding BELL in the
script (indicating that the BELL arose when the script was
originally created, and is hence presumably dealt with by
subsequent dialogue) this will be reported and the playback
terminated with an error.

Accept Mismatch
If the wrong kind of accept is encountered (a character accept
when a CHAR$ call was expected, or vice versa) then this will be
reported and the playback terminated with an error.

Additionally the execution of the script may be interrupted by the
operator.

8.2.1 Interrupting and Debugging Scripts
At any stage during playback you may switch to the partition running
$RCP, where a list of lines read from the script file is displayed,

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 136 of 174

and key <CTRL G> to interrupt. Playback will also be interrupted when
a breakpoint is encountered.

When playback is interrupted, you are prompted as follows:

Key Breakpoint, Single Step, Q to quit:

If you key <CR> then execution resumes (but note that any interruption
of execution, even by operator keying <CTRL G>, clears any outstanding
breakpoints). The following options are also available:

Breakpoint
You may specify a breakpoint by selecting a script filename, unit
and line number. Execution will be interrupted just before that
line of the named file is processed. This is usually used to
locate problems in a set of playback scripts.

Single Step
This causes the script to be run for the next processing
statement (CHECK, or any accept or system request load), and then
execution is suspended again until the operator keys <CR> for the
next step. Keying <ESC> exits single step mode and returns to the
interrupt prompt. Note that as there is quite a bit of partition
switching involved in single step operations, it is normally most
convenient to set a breakpoint in the vicinity of a piece of
suspect code and then single step through it.

Quit
If the debugging session is finished and there is no point in
attempting to run the remainder of the script, then the operator
may quit from the playback file, which will leave the partition
running the playback dialogue exactly where it was.

8.3 Record or Playback Failure
In some situations, when $RCP terminates abnormally, the partition
which is having its responses recorded, or into which data is being
played back, may be left in a state where nothing can be keyed. If
this should happen simply run $RCP again, specifying the appropriate
partition, and the following message should appear:

INVALID PLAYBACK STATE x - CANCEL mode?:

Where x will be a number identifying the failing operation type (of
internal interest only) and mode will be one of RECORD or PLAYBACK as
appropriate. If you reply Y to this prompt the record or playback
process will be disconnected and the partition returned to accept
operator dialogue from the console in the normal way.

Please bear in mind that while $RCP is editing the record file you
cannot key responses in to the recorded partition - to restart
recording in this case move to the partition running $RCP and key
ESCAPE to exit from edit mode.

8.4 Requirements for Running Record and Playback
Software
The record and playback facilities are only available under Global
System Manager V8.0 and later. In addition programs using CHAR$ must

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 137 of 174

have been linked with V8.0 or later CHAR$, and programs written using
SpeedBase must have been compiled with V8.0 or later SpeedBase
Development System and be using the appropriate version of SpeedBase
Presentation Manager.

8.5 Structure of the Script File
The script files are ordinary Global System Manager text files, which
are created by $RCP with a default Q. prefix. They are processed in a
line-oriented way by the playback software, which checks for a limited
syntax for each line. Comments may be introduced by use of the '*' or
';' characters (not enclosed within ", ', < or [), and cause the rest
of the line to be ignored. Completely blank lines, or those containing
only comments, are ignored by the playback software.

The following characters are significant to the playback software, and
will cause the remainder of the line to be processed in a particular
way:

" Introduces a character accept string
< Introduces a CHAR$ or CHARX$ function
[Introduces a SpeedBase function
' Identifies a system request load
BELL Identifies a BELL line
CHECK Identifies a Check line
CHAIN Identifies a Chain line
EXEC Identifies an Exec line

If the first token on a line is one of the key words above, or begins
with one of the special characters, it is processed, otherwise it is
discarded and the process repeated with the next token.

8.5.1 Chain and Exec Lines
These take the form:

CHAIN filename unit

or
EXEC filename unit

where filename is the name of a script file to be processed (including
any prefix) and unit is the unit on which the file is located (may be
a logical unit-id).

The effect of a Chain is to transfer processing to the first line of
the file thus identified - the remainder of the current file, if any,
is not processed.

The effect of an Exec is to run the identified script, starting at the
first line. When the end of that script is reached control returns to
the line in the current script following the Exec line. Exec lines may
be nested to a depth of at least three calls (exact depth depends on
free user area). Note that none of the 'EXEC'ed scripts should contain
a SYSREQ 'Q' line as this will terminate playback when it is
encountered.

8.5.2 Playback Strings
Strings are used in the playback file in character accept, Check lines
and Speedbase accept. These obey the normal rules for string

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 138 of 174

definition with " characters at the start and end of the string.
However, if the 'terminating' " for a string is immediately followed
by another " then this is taken to represent an actual " character in
the string, and the actual " terminating the string lies somewhere to
the right of this.

To take an example, the string "ABC" represents the characters ABC,
but the string "AB""C" represents the characters AB"C. Similarly the
string """A""" represents the characters "A".

8.5.3 Check Lines
A check line has the format:

CHECK line,col "check-string"

where line and col define the position on the screen where the data to
be checked resides, and check-string is a playback string defining the
expected contents of the line from that position.

Checks which cover more than one line cause multiple Check lines to
appear in the script file, as do checks where the check-string is
longer than 50 characters. All Check lines encountered are processed
immediately before the following keystroke lines.

8.5.4 PAUSE lines
A pause line has the format:

PAUSE nn

or
PAUSE "pause string"

where nn is the number of seconds you wish the dialogue to pause for
on playback. The second variation displayed the pause-string on the
status line at that point in the dialogue playback, and then prompts,
in the playback partition for the continuation of the dialogue.

8.5.5 BELL Line
BELL lines take the form:

BELL

and serve to identify one incidence of the BELL verb arising in the
program(s) being recorded. When the script is played back each BELL
generated by the software must be matched by a BELL line in the script
file, coming before any keystroke lines or Check lines. Excess BELL
lines in the script file will be ignored.

8.5.6 Keystroke Lines
There are five types of keystroke lines. Note that although these are
produced with a 'keyword' by the record software, this is purely
documentary and plays no part in the analysis of the lines by the
playback software.

Character Accept Lines
These are recognised as any line containing a token starting with the
" character which is not a Check line. There are two types of
character accept lines which have the formats:

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 139 of 174

"accept-string" <eof> (ACCEPT statements)

or:
"accept-string" [ch] func (Speedbase accepts)

where accept-string is a playback string which defines the response to
the character accept. For basic accepts eof is an optional end-of-
field code (to be placed in $$EOF). If no value is supplied then a
value of M (<CR>) is assumed. For Speedbase accepts, ch is a single
character, or two-digit hex code representing the actual terminating
end-of-field value returned by the accept function and func is the
internal SpeedBase function number.

For those, relatively rare, cases when the accept deals with more than
50 characters, two consecutive character accept lines may be added
together. The first line may not contain an eof
and instead has a single + character following the accept-string. The
accept-string of the following line (ignoring an intervening lines
which do not contain an accept-string) is added to the end of the
first string before being passed to the prompt.

If the length of the total accept built up is greater than the
expected maximum length of accept from the program, it is treated as
an error and the playback is terminated.

EOFCH$, CHAR$ and CHARX$ Functions
These are recognised as any line containing a token starting with the
< character which are not character accept lines. They have the
format:

<ch> excep func count

where ch is either a single character or two-digit hex code
representing the actual character value returned by the call, excep is
the exception number generated, which may be omitted if it is zero,
func is the function key number (returned in QT$FUNC) which will be
omitted if it is zero, and count is the number of occurrences returned
by CHARX$ only, omitted if it was 1.

If a count other than 1 is specified the program receiving the
playback must have issued a CHARX$ call, otherwise any one of a CHAR$,
EOFCH$ or CHARX$ call will be satisfied by this line.

SpeedBase Functions
These are recognised as any line containing a token starting with the
[character. They have the format:

[ch] func

where ch is either a single character, or two-digit hex code
representing the actual character value returned by the function and
func is the internal SpeedBase function number.

System Request Functions
These are recognised as any line containing a token starting with the
' character. They have the format:

'x'

Chapter 8 – Record and Playback Using $RCP

Global Development Cobol User Manual V8.1 Page 140 of 174

where x is the letter identifying the system request to be loaded ('_'
is used for SYSREQ space).

A system request function is activated when the target partition
requests any keystrokes and the next line in the script is a system
request function. Subsequent dialogue will be fed to the system
request until it exits, at which point the original operation causing
keystrokes to be required will be reactivated (in the usual way).

Normally scripts will be created by using $RCP in record mode. While
small changes to scripts may be safely made manually, large scale
script creation by manual methods is not recommended as the scope for
errors is too large.

8.5.7 Programming Note
Where programs insert characters into the type-ahead buffer for any
reason, these will be intercepted by the record process and stored in
the playback script. Consequently, when running in playback mode any
characters inserted into the type-ahead buffer by a program will be
discarded, and those present in the record file used instead. Great
caution should be used when running such programs as changes in them
may not be noticed by the playback software, possibly causing (or
masking) errors.

Appendix A – Program Preparation Example

Global Development Cobol User Manual V8.1 Page 141 of 174

Appendix A – Program Preparation Example

Each Global Cobol system comes complete with a sample program The
program demonstrates interactive use of a relative sequential file,
allowing you to create new records and then interrogate them by
supplying a record number. Naturally it has been made fairly simple in
order to keep its listings to a reasonable size. These are extensively
annotated in the remainder of this appendix so that you have a
reference example of the listings produced by the compiler, linker,
cross-reference utility and string search utility.

We only supply you with the source file of the sample program (file-id
S.SAMPLE) and even this has deliberate errors in it. By working
through the procedures described below you will become familiar with
the start-up procedure required to initiate Global System Manager, the
file utility, the file print utility, the compiler, the text editor,
the linker, and the symbolic debugging system, the cross-reference
utility and the string search utility.

When you have completed the exercise you will have produced the
listings, contained in pages A-8 to A-28, for yourself, and have run
the program, obtaining results similar to those shown in the
photographs of this appendix. You will also have made a temporary
modification to the program using debug.

Initiating Global System Manager
Perform the start-up procedure described in your Global Operating
Manual. Sign on and obtain a ready prompt:

GSM READY:

You can supply the names of the Global System Manager commands or
programs you require to run in response to this prompt whenever it
appears.

Preparing a Work Volume
Run $V, the volume maintenance utility described in the Global
Operating and Global Utilities Manuals, to prepare a work volume. Once
you have set this up successfully, copy file S.SAMPLE to it using the
COP instruction of $F, the file utility, described in the Global
Utilities Manual. You will find S.SAMPLE on SYSDEV.

Your First Compilation
Run $COBOL, the Global Cobol compiler described in section 4.1, to
compile S.SAMPLE. The program does not require a copy library. Do not
supply any compiler options. Write the listing to your work volume if
your system does not have a printer. By the time the message:

$43 END OF FIRST PASS

appears, three statements will have been flagged in error. Key <CTRL
W>, or <SYSREQ> W if your terminal does not support CTRL, in order to
cause a console interrupt. Then key <ESCAPE> in response to the break
prompt to obtain a new ready prompt. If the listing file is being
written to diskette, aborting the compiler in this way will leave it
allocated, and so before continuing it is advisable to delete L.SAMPLE
using $F's DEL instruction described in the Global Utilities Manual,
thus releasing the diskette space occupied.

Appendix A – Program Preparation Example

Global Development Cobol User Manual V8.1 Page 142 of 174

Correcting the Errors
Run $EDIT, the text file editor described in Chapter 2, to remove the
three erroneous statements and replace them by the three statements:

DISPLAY SPACES
DISPLAY "TRAINING EXERCISE COMPLETED BY your name"
DISPLAY SPACES

Printing the Source File
Run $PRINT, the file print utility described in the Global Utilities
Manual, to produce a print-out of the corrected source file. This
should be the same as the example on page A-8 onwards except that your
name will appear in place of the name E.A.HART, because of the
corrections you have made.

(If you are training on a machine without a printer omit this stage -
all your printing will be done later as described in "Printing using
Another Machine" at the end of the section.)

Recompiling
Run $COBOL to recompile the corrected source file. Use compiler option
ST to produce a symbol table and TC to provide a table of contents. If
possible, assign the listing file to a printer. (If you have no
printer assign it to the unit containing the work volume).

This time there should be no first pass errors, and you should let the
compiler run to completion. The messages:

$43 NUMBER OF ERRORS 0
$43 NUMBER OF WARNINGS 0
$43 COMPILATION COMPLETED

will appear followed by the ready prompt.

Linkage Editing
Run $LINK, the linkage editor described in Chapter 6, to create an
executable program from the module you have successfully compiled.

You should create program SAMPLE, linkage edited at the first location
following the debug area, on your work volume. The map listing should
be assigned to the printer, if one is available, or to the unit
containing the work volume otherwise.

Checking the Program Residence Device Assignment
Before you attempt to run the program you have just created, you may
use the $A assignment command to check that unit-id $P - which
determines the device from which application programs are loaded - is
actually assigned to the unit address your work volume occupies. If
this is not the case, you can make the required assignment, then key
<ESCAPE> to obtain a ready prompt:

GSM READY:$A
.......
....... (list of all unit assignments)
.......

$69 UNIT:$P ADDRESS:209 (if your volume is on 209)
$69 UNIT:<ESCAPE>
GSM READY:

Appendix A – Program Preparation Example

Global Development Cobol User Manual V8.1 Page 143 of 174

A rather simpler way of achieving the same effect is to terminate the
program name with <CTRL A> rather <CR> when you key it in response to
the ready prompt. This causes $A to delete any current assignment of
$P and prompt for it again. For example:

GSM READY:SAMPLE<CTRL A>
$03 ASSIGN $P:209
etc. etc.

Running the Program
Key the name SAMPLE in response to the ready prompt and the program
you have just created will be loaded and executed. The program signs
on with the following display:

<PHOTO>

Key the name of the file to be created, e.g. DATA, and then select the
create function, C. You will then be prompted to supply the physical
unit address corresponding to the logical unit-id DSK used in SAMPLE,
and you should reply with the unit address your work volume occupies,
e.g. 209. Next you will be prompted to create text records by
supplying their text. You reply <CR> when you have finished entering
records, when the file will be closed and the display will look like
this:

<PHOTO>

Now you can select the D function to display selected records, finally
keying <CR> to successive prompts until the ready prompt is once again
displayed:

<PHOTO>

Using Debug
Although the program now runs correctly it is instructive to execute
it from debug and modify its processing slightly, just as you might
when developing a production application.

Run $DEBUG in one partition and the SAMPLE program in another. Then
key the N instruction to introduce the symbols of SAMPLE to the
symbolic debug table, followed by the T instruction to set a trap on
the DO statement that starts paragraph AA010. Key the R instruction to
cause the program to be resumed.

The program will be interrupted with the trap program check as soon as
it has output the blank line following your "training exercise
completed" message. The diagnostic report will appear in the window
area of the debugger.

Normally another n blank lines follow before the "specify file
identifier" prompt. You can stop those blank lines being produced by
using the M instruction to change the value in C-LINE from n to zero.
When this is done, use the R instruction to resume the program. The
"specify file identifier" prompt will appear on the next line. The
last few lines of the dialogue should look like this:

Command:M C-LINE: 0
Command:R

Appendix A – Program Preparation Example

Global Development Cobol User Manual V8.1 Page 144 of 174

SPECIFY FILE IDENTIFIER:

The value of n varies from terminal to terminal depending upon the
screen size. For most terminals, it will have a value of 6.

Cross-referencing
For program maintenance purposes it is extremely useful to obtain a
cross-reference listing of every program. Run $XREF, the Global Cobol
cross-reference utility described in section 4.2, to produce a cross-
reference listing of S.SAMPLE. No copy library is needed and the
listing can be written to your work volume if your system does not
have a printer. If you do not supply any cross-reference options you
will obtain the default listing of page A-24, but if you use the SN
option the listing of page A-26, with section name prefixes for each
reference, will be obtained.

Searching for Strings
$SEARCH, the string search utility described in section 3.2, is
another useful program maintenance aid. The listing on page A-28 shows
the result of using $SEARCH to find all occurrences of the two strings
C-LINE and $$ within S.SAMPLE.

Printing using Another Machine
If you have been training on a system without a printer you will need
to move your work volume to a machine with a printer to obtain the
source, compilation and map listings of the sample program.

Once this is done run $PRINT and request print-out for:

S.SAMPLE the version of the sample program containing your
"correction"

L.SAMPLE the compilation listing

M.SAMPLE the linkage edit map listing

X.SAMPLE the cross-reference listing

D.$SRCH the string search listing

If no printer is available on any machine, you may examine your output
list files on your terminal by running $INSPECT.

Source Listing, S.SAMPLE - Page 1
Source Listing, S.SAMPLE - Page 2
Source Listing, S.SAMPLE - Page 3
Source Listing, S.SAMPLE - Page 4
Source Listing, S.SAMPLE - Page 5
Source Listing, S.SAMPLE - Page 6

Compilation Listing, L.SAMPLE - Page 1
Compilation Listing, L.SAMPLE - Page 2
Compilation Listing, L.SAMPLE - Page 3
Compilation Listing, L.SAMPLE - Page 4
Compilation Listing, L.SAMPLE - Page 5
Compilation Listing, L.SAMPLE - Page 6
Compilation Listing, L.SAMPLE - Page 7
Compilation Listing, L.SAMPLE - Page 8
Compilation Listing, L.SAMPLE - Page 9

Appendix A – Program Preparation Example

Global Development Cobol User Manual V8.1 Page 145 of 174

Link Map Listing, M.SAMPLE
Cross-Reference Listing, X.SAMPLE - Page 1 (Using Default Cross-

reference Options)
Cross-Reference Listing, X.SAMPLE - Page 2 (Using Default Cross-

reference Options)
Cross-Reference Listing, X.SAMPLE - Page 1 (Using Cross-reference

Option SN)
Cross-Reference Listing, X.SAMPLE - Page 2 (Using Cross-reference

Option SN)
String Search Listing, D.$SRCH

Appendix B – Linkage Editor Error Messages

Global Development Cobol User Manual V8.1 Page 146 of 174

Appendix B – Linkage Editor Error Messages

The termination errors described in this appendix cause the linkage
editor to write a message of the form:

$44 LINK ABORTED - reason [FILE n MODULE m]

to the operator's terminal and the similar message:

*** LINK ABORTED - reason [FILE n MODULE m]

to the link map listing as well, providing a listing has been
requested and can be produced. Linkage editing is terminated when the
first such message occurs and control is returned to the monitor.

The reason which appears in the message is a short explanatory text.
The module number, m, will be 1 if the error occurred in the first
module included in the program file, 2 for the second module, and so
on. It will be omitted if the error cannot be localised in this way.
The file number, n, is the input sequence number of the file in error,
counting from one. It is useful in those messages where the module
number does not appear.

In the remainder of this section the reasons for error termination are
explained in detail, and a recovery strategy suggested.

LISTING FILE IS FULL
This error can only occur if the link map listing is being written to
a direct access device rather than a printer. In this case 10K bytes,
enough to hold 126 lines of print-out, are allocated to the file. This
should be more than adequate for all but the very largest linkage-
edits. If the error does occur you must relink, either assigning the
listing unit to the printer or, alternatively, suppressing the link
map.

NOT OVER 10K FREE FOR PROGRAM FILE
If you assign the link map listing and the program file to the same
direct access unit, then the volume must contain at least 10K bytes of
contiguous free space. Either relink using different units, or make
more free space available by using the file utility's DEL and CON
instructions to delete unwanted files and condense the volume.

PROGRAM FILE IS FULL
When a linkage edit begins the program file is allocated the largest
amount of contiguous free space available on the volume to which it is
to be written. This space will be reduced by 10K bytes if the link map
listing is written to the same unit. If this error occurs, either
relink using different units or make more free space available by
deleting unwanted files and condensing the volume.

LINK LIST BEGINS WITH A LIBRARY
The first file specified in a link list used by this linkage edit is a
library. This is clearly an error since $LINK cannot search the
library to resolve outstanding global references because no globals
are yet defined. Reread section 6.1 thoroughly to make sure you
understand the principles involved, then repeat the linkage edit with
the correct list.

Appendix B – Linkage Editor Error Messages

Global Development Cobol User Manual V8.1 Page 147 of 174

TOO MANY INPUT FILES
The maximum number of files you can specify in the link list(s)
employed by a single linkage edit is 100. If this restriction is met
you should use the librarian to place some of your modules in a
compilation library, since a library, although it may contain up to
100 members, still counts only as a single file.

TOO MANY INPUT MODULES
A program created by $LINK can be constructed from a maximum of 100
different modules, whether they are included from individual files or
libraries. In the unlikely event of this limit being met you must
split the program involved into two or more overlays, each of which is
then linked as an independent program, as explained in the example of
6.1.11.

TOO MANY GLOBAL SYMBOLS
A program created by $LINK can employ a maximum of 250 global symbols.
In the unlikely event of this limit being met you must split it into
two or more overlays, each of which is then linked as an independent
program, as explained in example 6.1.11.

PROGRAM NAME SAME AS PREVIOUS GLOBAL
The program name of the indicated module is the same as a global
already defined in another module. This error usually results if you
mistakenly attempt to link the same module twice. Repeat the linkage
edit, taking more care when you specify the input files.

MULTIPLE GLOBAL DEFINITIONS FOUND
One or more global symbols are multiply defined in the program under
construction. In this case detail messages of the form:

REDEFINITION OF xxxxxx FROM ffff TO gggg

appear on the link map listing immediately following the line naming
each module which contains a second or subsequent definition of symbol
xxxxxx. The quantities ffff and gggg are, respectively, the
hexadecimal location at which the symbol was first defined and the
hexadecimal location at which the redefinition would appear were it to
be valid.

If the error is not obvious to you, repeat the link without the module
(or modules) containing a duplicate definition. You will then be able
to find the compilation containing the first definition from the part
of the link map listing which reports on the globals that each module
contains (this part is suppressed if you have multiple definitions).

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 148 of 174

Appendix C - Pre-V6.1 Symbolic Debugging Using
$DEBUG

C.1 Introduction
This appendix describes the V6.0 debugging system that you will have
to use if you are running a V6.0 operating system. The debugging
system in the V5.1 and V5.2 operating systems is essentially the same
as V6.0. The major difference from the post V6.1 systems is that it
runs in the same partition as the program being debugged, overwriting
locations 0 - #500. Therefore, if you want to be able to resume your
program after a trap you must link it to leave this area free by using
the DEBUG link option (see section 6.1.5).

This chapter begins by explaining the concepts underlying the system.
A description of the individual instructions used in debugging
follows, with related instructions grouped together in the same
section so that it is easy to appreciate the scheme on a first
reading.

C.1.1 Entering Debug from an Active Program
When the DBUG customisation instruction has been used to indicate that
the symbolic debugging system rather than the diagnostics facility is
to gain control following an error, the monitor loads debug following
any program check, stop code, exit code, or trap, and one of the
messages:

$91 PGM CHECK number AT location
$91 TERMINATED - STOP code
$91 TERMINATED - EXIT code
$91 TRAP AT location
$91 OVERLAY TRAP ON program-id

is displayed, followed by the debug prompt:

$50 DEBUG:

Debug is also entered when the operator interrupts the program using
<CTRL W> and replies Y to the resulting break prompt:

<CTRL W>
$91 BREAK?:Y
$50 DEBUG:

The debug prompt enables you to key any of the instructions described
later in the chapter. In some circumstances you may eventually be able
to resume the interrupted program.

If DBUG customisation has not been used, then the $91 DIAGNOSTICS?
prompt will be displayed instead of the debug prompt, but you can
still enter the symbolic debugging system by replying D to this
prompt, for example:

$91 DIAGNOSTICS?:D
$50 DEBUG:

Once you have entered $DEBUG in this way, if you resume execution of
the program any subsequent errors or traps in that program will cause

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 149 of 174

the symbolic debugging system to be entered directly, without the
diagnostics prompt appearing.

C.1.2 Running the $DEBUG Command
You can also enter the debugging system by running the debug command
in the normal way from a ready prompt. For example:

GSM READY:$DEBUG
$50 DEBUG:

In this case instructions are provided to allow you to load the
program to be tested, inspect and modify it, and eventually cause it
to be executed. You can also set traps on selected GSM Cobol
statements so that, when a statement is encountered, the debugging
system is re-entered with the message:

$91 TRAP AT location

as described in section C.1.1. This enables you to test a program in a
highly controlled manner since you can determine exactly those points
at which debug is to be re-entered to allow you to inspect or modify
storage, or even set further traps. (You can run a program under debug
in this way even if the DBUG customisation has not been made).

C.1.3 Debug Instructions
Table C.1.3 summarises the format of the debug instructions described
in detail in this chapter. Most of them take one or more operands,
though in some cases these may be optional. When present a single
space must separate the first operand from the instruction letter, and
subsequent operands from each other.

Normally the first operand specifies the GSM Cobol location that is
the target of the instruction. The following notation is used in the
remainder of this section and the table to describe the various
formats a location operand can assume:

hhhh hexadecimal format, i.e. a one, two, three or four
character hexadecimal value such as E, 1A, 1AC, or
22A1.

name symbolic format, i.e. the short name of a symbol

defined in the compilation identified by the previous N
instruction. If the actual name is seven characters or
more in length only the first six characters are
significant during debugging.

xxxx indicates an operand which can assume either

hexadecimal or symbolic format. If you key an operand
which is a valid hexadecimal address and also a symbol
in the named compilation (e.g. AA1), then symbolic
format is assumed, and the message:

SYMBOL ASSUMED

is output on the same line as the instruction. Subject
to the limitation that hexadecimal operands can consist
of a maximum of four characters, a 0 prefix can be used

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 150 of 174

to indicate hexadecimal format (e.g. AA1 may be a
symbol, but 0AA1 must be hexadecimal).

C.1.4 To Quit
To quit and return control to the monitor, when the problem that
caused the error is fully understood, key Q to the debug prompt.
Normally <ESCAPE> will return you to the monitor as well, but this
will be treated as though you keyed <CR> (resulting in $06 INPUT
REQUIRED), if the program under test has disabled ESCAPE key handling
by setting system variable $$ESC to 1.

C.1.5 Debugging in Formatted Display Mode
When you are testing a program which is using a formatted display all
messages and prompts used by GSM appear on the base line, including
those from debug. A comma prompt is output so that you can read
consecutive messages. This is so that you do not corrupt the formatted
area of the screen and can resume the program should this prove
possible.

If you do not mind overwriting the formatted area you can avoid the
rather inconvenient base line working by keying the S instruction in
response to the debug prompt:

$50 DEBUG:S

This will cause a SCROLL statement to be executed so that subsequent
debug information can make full use of the screen by scrolling upwards
and thus eventually pushing the formatted area off the top of the
display. If you wish to resume the program under test you must key the
S instruction again. This causes debug to execute a CLEAR statement to
resume formatted working. The dialogue is thus of the form:

$50 DEBUG:S (restore scrolling)
$50 DEBUG:etc
.......... (debugging using entire screen)
..........
$50 DEBUG:S (restores formatted working)

$50 DEBUG:R (resume execution of program)

C.1.6 The Debug Area
$DEBUG and the other commands of the debugging system all execute in
the first 1280 (#500) bytes of the user area, which is known as the
debug area. It is recommended that during testing at any rate you link
your programs to avoid this area whenever possible. Indeed, the
linker's default, when you do not supply a start address, is to begin
each program at location #500, the first byte following the debug
area. Even when a failing program occupies the debug area you can
still of course use the D instruction and the others which allow you
to inspect memory to see what went wrong, although the contents of any
variables in the debug area will have been corrupted. There is not
much point, of course, in modifying the program or trying to resume
it, since it will have been corrupted by $DEBUG.

C.2 Establishing the Symbolic Debug Table for a
Compilation
The N instruction described below allows debug to remember the short
names and attributes of all symbols defined in a single compilation in

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 151 of 174

an internal symbolic debug table created temporarily in a free part of
the Cobol memory region. You can then use any such symbol (rather than
a hexadecimal location and attributes) as the location operand of the
instructions which allow you to inspect and modify variables, display
memory, clear and set traps, and so on.

The symbols introduced by the N instruction remain available either
until another N instruction or the F instruction is used, or until
control returns to the monitor, which automatically frees the symbols
as part of the end of job processing.

The F instruction, which frees the space occupied by the current
symbol table, must be used before running the program under test if it
is likely to load an overlay or use the FREE$ system routine to
dynamically acquire free storage, as described in the Global Cobol
System Subroutines Manual.

Only the first six characters of each symbol are retained in the
symbolic debug table so if you are testing a program which has been
compiled using the "long names" option and several of its names begin
with the six characters you key, this will be interpreted as a
reference to the very first such name appearing in the compilation. If
you supply a symbol as an operand and it is not present in the debug
table the warning message:

INVALID - REINPUT

is output, followed by the debug prompt.

Global symbols only appear for the compilation in which they are
defined, not for every compilation which references them.

C.2.1 N - Name the Compilation for Symbolic Debugging
To name the compilation in which any symbols to be used in subsequent
B, C, H, I, M, P, R and T instructions are defined, you must key the
instruction:

N name

where the name you supply is that used in the compilation's PROGRAM
statement.

Following this instruction GSM will prompt you for the program-id of
the program which contains the compilation. You may reply <CR> if this
was the program last loaded.

You may omit the name in the N instruction, in which case debug uses
the first six characters of the program-id. (This default option is
useful when you wish to work with the main program of a program
constructed according to the recommended naming conventions, under
which the program-id and main program name are identical.)

C.2.2 N - Examples
The sales invoicing program (program-id SA100) is under test and you
wish to examine data within its main program (program name SA100).
This was the last program loaded (either by you running it from the

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 152 of 174

ready prompt or using the L instruction to bring it into memory under
the control of debug).

You need only key:

$50 DEBUG:N PROGRAM-ID:<CR>
$50 DEBUG:

to establish its symbols in the symbolic debug table because in this,
the most usual case, all the default conditions prevail.

Next you need to examine data within one of this program's subroutines
(program name SASUBR). You key:

$50 DEBUG:N SASUBR PROGRAM-ID:<CR>
$50 DEBUG:

The symbols of SA100 are replaced in the symbolic debug table by those
of SASUBR.

You now wish to continue execution of the program, and expect that it
will load an overlay. Accordingly you key the F instruction to release
the symbolic debug table space to ensure room to load the overlay. You
use debug's E or R instruction (explained later) to continue executing
the program and it loads the overlay SALESOVL, which terminates in
error with a program check. SA100 is no longer the last program loaded
- that is SALESOVL - so if you wish to look at data within SASUBR
again you must key:

$91 PGM CHECK 11 AT 1E4C
$50 DEBUG:N SASUBR PROGRAM-ID:SA100
$50 DEBUG:

The very act of using the N instruction makes the program-id to which
it refers count as the last loaded program-id, so if you now wanted to
return to your examination of the main program (program name SA100 in
program-id SA100) you would simply need to key:

$50 DEBUG:N PROGRAM-ID:<CR>
$50 DEBUG:

C.2.3 N - Operating Notes
When the N instruction is successful your reply to the PROGRAM-ID:
prompt is immediately followed by a debug prompt to allow you to key
the next instruction. In some cases, however, the N instruction will
fail and one of the following warning messages will precede the debug
prompt:

NO SYMBOLS
NO ROOM
LOAD ERROR

The first message means that no symbolic information was present for
the compilation in the program specified. Either you have used the N
instruction incorrectly, and the wrong program is being searched for
the compilation, or no symbols are present in the program file. The
latter will be the case if the module was compiled or linked using the
NSD option, or if the symbols were eliminated later during library
maintenance by using $LIB's NSD instruction.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 153 of 174

The second message indicates that symbols are available, but there is
insufficient free storage within the GSM memory region to hold the
necessary symbolic debug table.

The third message is output if debug is unable to access the file
containing the program for some reason. It will usually be preceded by
the retry prompt or the program required prompt.

C.2.4 F - Free the Symbolic Debug Table
To release the symbolic debug table from memory, to enable you to
resume or execute a program which uses overlays or dynamically
acquires storage, simply key:

F

in response to the debug prompt:

$50 DEBUG:F
$50 DEBUG:

C.2.5 F - Operating Notes
If you fail to use the F instruction when it is required the program
under test will be terminated with stop code 103 if it attempts to
load an overlay. The results are unpredictable if it uses FREE$ to
manage memory dynamically.

C.3 Setting the Program Base
When you successfully use the N instruction to name the compilation
whose symbolic debug tables are to be loaded, GSM automatically
establishes the program base to be the start address of the
compilation thus identified. The first effect is to cause location
information appearing in the diagnostic report, and the messages:

$91 TRAP AT location
$91 PGM CHECK nn AT location

$91 ADVANCED TO location

to be displayed in the form:

address (base + offset)

For example, if program SAPROG has been linked to start at location
#500, and the base has been set to #500, then if an overflow program
check takes place at location #0648, the message:

$91 PGM CHECK 11 AT 0648 (0500+0148)

appears. The importance of the offset, 0148 in this example, is that
it relates to the location printed on the compilation listing and
saves you having to perform hexadecimal subtractions to convert the
addresses used at run-time to listing locations.

Whenever a base is established it is automatically added to any
hexadecimal operand you may supply to the instructions which allow you
to display or print memory, clear and set traps, inspect and modify
variables, and so on. This allows you to use listing locations in
place of addresses in these instructions once the correct base is

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 154 of 174

established, avoiding your having to perform hexadecimal additions to
convert listing locations to GSM Cobol addresses.

In the instruction descriptions which follow we append the comment:

(relativised)
or:

(not relativised)

to any hexadecimal operands involved to indicate whether or not they
are relativised by the addition of the current program base.

As well as the N instruction, the B, P and Z instructions described
below can also be used to set the program base. Once established it
remains in force until another instruction changes it, or it is reset
to zero as part of the processing that precedes the monitor's
displaying of the ready prompt or foreground terminated message.

The ? instruction which concludes this section calculates the offset
relative to the current base of the symbol or hexadecimal value
supplied as its operand.

C.3.1 B - Set Base Explicitly
To set the base explicitly you must key the instruction:

B

or:
B xxxx (not relativised)

in response to the debug prompt. The first form is only used to
restore the base when temporarily overridden by a P instruction, as
explained in section C.3.5 below.

In the second form xxxx is either a symbol or a hexadecimal value. The
address of the symbol or the absolute hexadecimal value supplied will
become the new program base. For example, to set the base to location
#500, the address of the byte immediately following the debug area,
the following dialogue is all that is necessary:

$50 DEBUG:B 500
$50 DEBUG:

C.3.2 B - Operating Notes
The B instruction is most useful when you are debugging programs where
symbolic information is not available, because it allows you to work
with the locations printed on the compilation listing rather than
absolute addresses, which require hexadecimal conversion. Before you
use the other debug instructions you should determine from your
linkage edit map listing the starting location of the compilation in
which you are interested. This is the value that appears in the LOCN
column next to the program name in the PROGRAM column. The value is
always hexadecimal 500 for main programs linkage edited to start at
the first byte past the debug area.

You can avoid having to use the link map in this way by exploiting the
symbolic debugging facility and relying on the N instruction to set
the program base.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 155 of 174

C.3.3 Z - Set Base to Partition Address
To set the base to a particular partition address you must key
the instruction:

Z

or:
Z hhhh (not relativised)

in response to the debug prompt. The first form sets the base to
partition address 0, and is in fact equivalent to a special case of
the second form, namely Z 0. In the second form, hhhh is of course the
hexadecimal partition address which is to become the new base.

This instruction is provided for programmers responsible for
developing machine code routines to run under GSM, using the technique
described in the Global Interface Manual, which defines the term
"partition address" in the programming notes to Appendix C.6. These
programmers should note that following the Z instruction, in
subsequent location information of the form:

address (base + offset)

the base is the two's complement of the partition address of GSM Cobol
location zero and the address is the GSM Cobol location corresponding
to the partition address given by offset.

C.3.4 P - Use a Pointer Value as Temporary Base
To use the value of a pointer variable as a temporary base for
subsequent instructions you key:

P xxxx (relativised)

in response to the debug prompt. The temporary base is then set to the
value contained in the two-byte pointer beginning at the hexadecimal
location supplied or, if a symbol was keyed, beginning at the location
of that symbol.

C.3.5 P - Operating Notes
The P instruction is provided to allow you swift access to data
structures which are linked by pointers. It is also useful for
handling linkage section or system area data if you are unable to
refer to it symbolically. Any number of P instructions can be issued
without destroying the permanent base established by the previous B, N
or Z instruction. The permanent base is remembered by debug following
a P instruction, although it is not used in subsequent relativisation.
It can be restored at any time by simply keying B in response to the
debug prompt.

C.3.6 P - Examples
The H instruction, explained in detail later, is keyed as:

H xxxx (relativised)

and can be used to display an area of memory addressed by its operand
as a string of hexadecimal words preceded by location information. We
have introduced it here in order to provide a realistic example of the
P instruction in use.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 156 of 174

Subroutine SASUBR, linkage edited to begin at location 1CE4, is passed
a parameter area which contains the field PAPTR. This in turn
addresses a 16-byte data area which you wish to examine. The parameter
area is, of course, defined in the linkage section.

If the symbols in SASUBR have been introduced by a previous N
instruction, proceed as follows:

$50 DEBUG:P PAPTR
$50 DEBUG:H 0 :<CR> (display 16 bytes)
0648 (0648+0000) 4141 5320 0000 0102 0001 FFFF FFFF 00FF
$50 DEBUG:

Alternatively, when no symbolic information is available you will have
to consult the compilation listing's symbol table for PAPTR. It
appears as:

PAPTR 02 P 001A(01E4)

This indicates that the pointer to the linkage section group is at
location 1E4 relative to the start of SASUBR and PAPTR is offset 1A
bytes from the origin of that group. You can now examine the data area
as follows:

$50 DEBUG:B 1CE4 (base SASUBR)
$50 DEBUG:P 1E4 (base group)
$50 DEBUG:P 1A (base data area)
$50 DEBUG:H 0 :<CR> (display 16 bytes)

0648 (0648+0000) 4141 5320 0000 0102 0001 FFFF FFFF 00FF
$50 DEBUG:B (restore permanent base)
$50 DEBUG:

These examples show that when you have symbolic information available
there is no need to use the P instruction before accessing fields in
the linkage section. This is because the debug table contains each
linkage section field's pointer and offset, and GSM can therefore
calculate its address without requiring you to key these attributes
unnecessarily.

You should note that linkage section group pointers are set up at run-
time by ENTRY or BASE statements, and therefore a linkage section item
cannot be accessed using the P instruction until one of these
statements has been executed for the linkage group which is to be
examined. Similarly, a based area should not be referenced before its
pointer has been initialised.

C.3.7 ? - Display Relative Address
To display the address of a symbol, or relativise a value, you key the
instruction:

? xxxx (not relativised)

in response to the debug prompt. The required location is then
displayed. For example:

$50 DEBUG:N PROGRAM-ID:<CR>

$50 DEBUG:? DIVISO 1248 (0500+D48)
$50 DEBUG:? C3E 0C3E (0500+073E)

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 157 of 174

The instruction provides you with a very easy way of relating symbols
and values to listing locations.

C.4 The Diagnostic Report
The D instruction described in this section allows you to display a
concise diagnostic report on the console, which is often sufficient to
pin-point the cause of the error without further investigation.
Alternatively, you can print the diagnostic report, together with
selected dumps of main memory. The diagnostics facility, entered
following a program check if the DBUG customisation has not been used,
also produces a diagnostic report, and this can be followed by a dump
of the whole of memory.

Figure C.4 describes the format of the diagnostic report and the
photograph shows a report produced following an error in program
SAPROG, which was deliberately constructed to fail by dividing by
zero.

C.4.1 D - Produce Diagnostic Report and Dumps
To produce a diagnostic report (and possibly follow this by printing
memory dumps) you must key the instruction:

D

or:
D unit-id

in response to the debug prompt. The first form simply causes the
diagnostic report to be displayed, followed by a new debug prompt.

The second form of the instruction causes the diagnostic report to be
written as a print file to the unit-id you have specified. For
example, to write the report to the standard printer:

$50 DEBUG:D $PR
$50 DUMP:

The dump prompt that now appears allows you to specify the start
address of the memory area you require to output, together with its
length:

$50 DUMP:xxxx (relativised) LENGTH:length

For example:

$50 DUMP:SAREC LENGTH:100
$50 DUMP:

or:
$50 DUMP:EC0 LENGTH:#3C0
$50 DUMP:

These examples show how the first input you supply, xxxx, is either a
symbol, or a relativised hexadecimal value, and the second input, the
length, may be either specified as a decimal number, or a hexadecimal
value introduced by a #-character. The printout below shows the dump
produced as a result of the second example, when the program base is
#500:

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 158 of 174

Once the information has been written a new dump prompt appears to
output another area, should you so wish. This happens over and over
again until you reply <CR> to the final dump prompt to close the print
file and obtain a new debug prompt. For example:

$50 DEBUG:D $PR
$50 DUMP:SAREC LENGTH:100
$50 DUMP:EC0 LENGTH:#3C0
$50 DUMP:CB-DAT LENGTH:#8E
$50 DUMP:<CR>

$50 DEBUG:

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 159 of 174

Figure C.4 - The Diagnostic Report

check-type [CODE code] AT location-1
LAST PROGRAM LOADED program
LAST TRANSFER FROM location-2
[LAST FILE ACCESS operation ON file-id]
GSM version CALLED RETURN ADDRESS
[name] location-3 location-4
......
......

......

......

......

......

......

......

......

SYSTEM STACK MODULE TYP USER ENTRY SIZE

 module typ user address size

nnnn MODULES IN STACK space BYTES SPARE
SYSTEM STACK MODULE TYP USER ENTRY SIZE

 module typ user address size

nnnn MODULES IN STACK space BYTES SPARE

Where:

check-type is the type of program check that occurred, for

example EXIT or OVERFLOW. See UM-C.

code is the exit or stop code, and is only present following

a $91 TERMINATED message. See UM-B or UM-C.

location-1 is the address of the Cobol instruction at which
the error was detected.

program is the program-id or command name of the last module
loaded.

location-2 is the address of the last transfer of control

instruction to have been executed before the error
occurred.

operation file-id indicates the last file processing statement

executed (e.g. OPEN OLD, READ NEXT, CLOSE...TRUNCATE).
The line is omitted if no such statement has been
executed since the previous ready prompt or main menu
display.

version specifies the GSM version and release number.

name is the first five characters of a CALLed entry name or

PERFORMed section name appearing in the control path.

One such line for
each level of control
in the calling
sequence at the point
of failure. The
deeper the level, the
later it is listed.

One such line for each
module in the system
stack.

One such line for each
module in the user
stack.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 160 of 174

This will be blank if the module containing the entry
name or section name was compiled with the NTR option.

location-3 is the address of an EXECed or CALLed entry point,

or a PERFORMed section or paragraph.

location-4 is the address to which control would return were

an EXIT statement issued at this level. That is it is
the address of the statement following the EXEC, CALL
or PERFORM that passed control to location-3.

module is the program-id of a module loaded onto a stack,

either by the GSM LOAD customisation instruction, or by
the LOAD$ system routine described in the Global Cobol
Assembler Interface Manual. Modules on the user stack
with names $JOBhhhh indicate that the program is
running under job management.

typ is P for program modules, or D for data modules.

user is the number of the user who loaded the module onto

the stack. Temporary entries on the user stack have the
user number suffixed with [T]. If the module was loaded
on the system stack as a result of LOAD customisation
the word SYSTEM will appear. If the module has been
unloaded, but the space cannot be released due to a
subsequently loaded module, the word FREE will appear.

address is the address of the entry point of a module on a
stack.

size is the size of a module on a stack.

space is the free space in bytes remaining on the user

or system stack. For the user stack, this free space
represents the currently unused part of the user area.

C.4.2 Operating Notes
Usually the dump is written to the standard printer, but it may be
produced on a direct access device. In the latter case it is output to
a file named D.$DEBUG.

When you key the D unit-id instruction any existing file named
D.$DEBUG is deleted, and a new file with that name created. The file
is allocated the maximum amount of contiguous space available on the
volume. Any unused space is returned to the system for re-allocation
when you reply <CR> to the dump prompt to obtain a new debug prompt.

The prompt:

$50 RESET?:

appears if an I/O error occurs when debug attempts to open the dump
file in response to a D unit-id instruction. If you reply Y this will
cause all files currently in use by the program under test to be
closed, and the open operation to be retried. This may allow the dump
to be produced successfully if the original error arose because the
program under test already had the maximum allowable number of files

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 161 of 174

open for the type of unit in question. Typically, the problem is that
you require to write a dump to the printer, which can only handle one
file at a time, but it is already being used by the program under
test. If you reply Y you may be able to produce the dump, but it will
then not be possible to resume the program using debug's R
instruction.

There are, of course, other possibilities for error if you attempt to
write the dump to printer in a multi-user environment. You are likely
to find it is in use by another program. You should normally try to
produce the dump on a direct access spool unit or work unit, or your
own private work unit.

If you reply N, <CR> (or any single character apart from Y), the dump
request will be abandoned and the debug prompt will re-appear.

C.4.3 Notes on the Diagnostic Report
The last file access may be one performed using a system routine, for
example CONV$.

The final part of the report, the stack listings, will normally only
be of interest if you are loading modules onto one of the stacks, as
described in the Global Cobol Assembler Interface Manual. It may also
contain modules loaded by GSM. In particular, job management, $REMOTE,
$TAPE and the shared memory system all involve the loading of modules
onto the stack. If a stack is empty, then the listing is compressed
into a single line of the form

SYSTEM STACK EMPTY nnnnn BYTES SPARE

as shown in the photograph.

C.5 Inspecting and Modifying Variables
The I and M instructions described in this section allow you to
inspect and modify variables using their defined GSM Cobol format
rather than a hexadecimal translation of their value. If you are using
symbolic debugging you need only refer to a variable by name for debug
to display it, and allow you to modify it, according to the picture
clause information you supplied when the program containing it was
compiled. In the case of groups, subgroups, file and map definitions,
which have no picture clause, debug treats them as PIC X items whose
length is the sum of their constituent fields. However, it is normally
better to use the H instruction, also described in this section, to
display the fields of such a group in hexadecimal.

If you attempt to inspect or modify a computational field containing
too large a value to be displayed according to its picture clause,
then instead of the value the word OVERFLOW is displayed. You will
then have to use the H instruction to examine the hexadecimal contents
of the field.

Items in the linkage section can be referred to symbolically, but
since they are based dynamically it is essential that the base has
been set up previously. For example, the operands of the USING clause
of an ENTRY statement cannot be inspected until the ENTRY statement
has been executed.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 162 of 174

If you inspect an entry name, section name or paragraph name, then the
first two bytes of the statement at that location are output (in
hexadecimal). The first byte will be odd if the trap flag is set on
the statement, and even otherwise.

C.5.1 I - Inspect a Variable
To inspect a variable you key the I instruction in response to the
debug prompt. If you have established a symbolic debug table by
identifying the relevant compilation in a previous N instruction, you
need only key the short name of the variable you wish to examine in an
instruction of the form:

I name

However, if symbolic debug information is not available you must
choose one of the four different forms of the I instruction listed
below depending on the type of variable involved:

I hhhh pointer
I hhhh Xnn character or display numeric
I hhhh Cpp integral computational
I hhhh Cpp,q fixed-point computational

In the non-symbolic instruction format:

hhhh specifies the hexadecimal location of the variable to
be examined;

nn is a 1 or 2 digit decimal number giving the length in
bytes of the character or display numeric variable to
be inspected;

pp is a 1 or 2 digit decimal number giving the number of

digits before the decimal point of the computational
variable to be inspected;

q is a digit giving the number of places following the

decimal point of a computational variable.

The symbol table of a Cobol compilation listing contains, in addition
to the location, hhhh, of each symbol, a compressed form of picture
clause which can be used to deduce nn, pp and q.

C.5.2 Examples
The base address of program SA100, linkage-edited to begin at the
location immediately following the debug area, is #500. The
compilation listing shows that:

 PNTR, a PIC PTR variable is at location 10;

 STRNG, a PIC X(8) variable is at location 12A;

 TOTAL, a PIC 9(6) COMP variable is at location 156;

 RATE, a PIC 9(4,2) COMP variable is at location 2AE.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 163 of 174

If the symbols of SA100 have been established in the debug table by a
previous N instruction, these variables can be examined using the
following dialogue:

$50 DEBUG:I PNTR
132A (0500+0E2A)
$50 DEBUG:I STRNG
ABCDEFGH
$50 DEBUG:I TOTAL
 181204

$50 DEBUG:I RATE
23.09

Alternatively, when no symbolic information is available, you have to
supply the hexadecimal locations and attributes:

$50 DEBUG:B 500
$50 DEBUG:I 10
132A (0500+0E2A) (pointer)
$50 DEBUG:I 12A X8

ABCDEFGH (string)
$50 DEBUG:I 156 C6
181204 (integer)
$50 DEBUG:I 2AE C4,2
23.09 (fixed point)

Note how, whenever a pointer is inspected, its hexadecimal value is
displayed followed by base and offset information in brackets.

C.5.3 M - To Modify a Variable
To modify a variable you key the M instruction in response to the
debug prompt. If you have established a symbolic debug table by
identifying the relevant compilation in a previous N instruction, you
need only key the short name of the variable you wish to modify in an
instruction of the form:

M name

However, if symbolic debug information is not available you must
choose one of the four different forms of the M instruction listed
below, depending on the type of variable involved:

M hhhh pointer
M hhhh Xnn character or display numeric
M hhhh Cpp integral computational
M hhhh Cpp,q fixed-point computational

The instruction operates exactly as Inspect, described above, except
that once the value has been displayed you are prompted with the
modify prompt (a single colon):

:

You must then respond either by supplying a new value for the
variable, as described below, or by keying <CR> to indicate that the
existing, displayed value is to remain unchanged. Following your reply
either the debug prompt is redisplayed, if all is well, or the modify
prompt is repeated if the value you supplied is unacceptable.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 164 of 174

To modify a pointer, simply key one to four hexadecimal digits giving
the desired new value. (This facility can be used to set any two
adjacent bytes of storage to any specific value).

To modify a character or display numeric variable simply key the ASCII
characters required. If you key less characters than displayed
previously, your input will be padded with rightmost blanks.

To modify a computational variable, key the new number as you require:
It can be signed and have a maximum of 12 digits before the decimal
point and up to 6 digits following it.

C.5.4 M - Example
Program SA100 has failed with a numeric conversion program check at
location 1C62. It was linkage edited to start at location #500, the
first byte following the area used by debug.

Examining the listing you find that a MOVE statement at listing
location #1762 has failed. This is because of an erroneous value in
the PIC 9(4) display numeric variable ALPHA whose listing location is
8E.

If the symbols in SA100 have been established in the debug table by a
previous N instruction (which has the side effect of setting the base
at #500) then the following dialogue shows how you might correct
ALPHA:

$50 DEBUG:M ALPHA
AA**:1111 (spurious AA** set to 1111)
$50 DEBUG:

Alternatively, when no symbolic information is available, you have to
supply the hexadecimal locations and attributes of APLHA after having
established the base:

$50 DEBUG:B 500
$50 DEBUG:M 8E X4

AA**:1111 (spurious AA** set to 1111)
$50 DEBUG:

C.5.5 X - Index the Next I or M Instruction
The X instruction is provided to help you use the I and M instructions
to operate on variables within tables or repeating groups established
by means of the GSM Cobol OCCURS clause.

Note, however, that you cannot use the X instruction in conjunction
with the symbolic form of the I and M instructions to index a variable
which is greater than 255 bytes in length, or index a field within a
repeating group whose entries are more than 255 bytes long. This
limitation is due to symbolic debug table size restrictions. If you
mistakenly attempt an X instruction in these circumstances the result
will be unpredictable.

To select a particular occurrence of a variable, key the instruction:

X index

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 165 of 174

in response to the debug prompt. The index should be a decimal integer
between 1 to 9999 inclusive. This will cause the next I or M
instruction, which should define the first occurrence of the variable,
to actually process the occurrence specified by the index. To select a
range of occurrences, key the instruction:

X index1 index2

in response to the debug prompt. Both the indices specified must be
decimal integers between 1 and 9999 inclusive, and index2 must be
greater than index1. The next I or M instruction, which should define
the next occurrence of the variable, will actually process the
occurrences in the range defined by the indices.

In the case of an inspect instruction each entry value will be output
on a new line and only when the entire range has been displayed will
the next debug prompt appear.

In the case of the modify instruction each entry value will be
displayed on a new line followed by a modify prompt. You can then
either change the value as described in section C.5.3 or key <CR> to
leave the value unaltered and proceed to the next entry. You will
obtain the next debug prompt only when the entire range of values has
been processed in this way.

The X instruction only affects the very next inspect or modify
instruction. A new X instruction must therefore be keyed for every I
or M that is to be indexed.

C.5.6 X - Example
A table within program SA100 is defined as follows:

01 TABLE OCCURS 20
 02 TANAME PIC X(8)
 02 TACOUNT PIC S9(4) COMP

The compilation listing shows that the first occurrence of TACOUNT is
at location 8E relative to the start of the program. SA100 has been
linkage-edited to begin at location #500, the byte immediately
following the debug area.

The following examples show you how the index instruction might be
used to assist you in modifying the 3rd, 5th and 6th occurrences of
TACOUNT.

If the symbols in SA100 have been established in the debug table by
the previous N instruction, proceed as follows:

$50 DEBUG:X 3 6 (select items 3 to 6)
$50 DEBUG:M TACOUNT
-1104:108 (3rd entry changed)
208:<CR> (4th entry unchanged)
13:0 (5th entry changed)
1287:1 (6th entry changed)
$50 DEBUG: (range processed)

C.5.7 Y - Establish Length of Repeating Group
The Y instruction is provided to allow you to inspect variables inside
a repeating group when no symbols are available.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 166 of 174

To establish the length of a repeating group, key the instruction:

Y length

in response to the debug prompt. The length should be a decimal
integer in the range 1 to 9999. The instruction must be keyed
immediately following an X instruction, and immediately before an I or
M instruction which specifies a hexadecimal (not symbolic) address. If
used under any other circumstances it has no effect.

For example, if you wished to inspect TACOUNT in the example in C.5.6,
but symbolic information was not available, you would have to use the
following sequence of instructions:

$50 DEBUG:X 3 6
$50 DEBUG:Y 20
$50 DEBUG:M 8E C4
etc, etc.

Note that if you do not use the Y instruction in the above example,
$DEBUG will have no way a telling the length of the group, and you
will get erroneous results.

C.5.8 H - Display Memory in Hexadecimal and ASCII
To display an area of memory in hexadecimal, together with an ASCII
character interpretation, you key the instruction:

H xxxx

in response to the debug prompt, to specify the starting location

of the area. You will then be prompted for the number of bytes to be
displayed with a single colon:

:

to which you must reply with a decimal integer or <CR>. If <CR> is
keyed 16 bytes will be displayed in hexadecimal, otherwise the number
of bytes specified will be rounded up to a multiple of 16. 16 bytes
are displayed on each line preceded by the location of the first byte
(relativised according to the current base, in the normal way), and
followed by the ASCII character equivalents of the bytes, with
unprintable characters represented by periods.

C.5.9 H - Example
Program SA100 has suffered a program check whilst processing a record,
and you suspect that the record read was not in the correct format and
wish to examine the contents of the record area.

The record area is defined by a level 01 data item named SAREC. It is
24 bytes long and starts at location 114 relative to the start of
SALES, which has been linkage edited to begin at location #500, the
first byte after the debug area.

If the symbols in SA100 have been established in the debug table by a
previous N instruction, proceed as follows:

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 167 of 174

$50 DEBUG:H SAREC :24
0614 (0500+0114) 4141 5320 0000 0102 0001 FFFF FFFF 00FF *AAS.............*
0624 (0500+0124) FFFF 3931 3232 FFFF 0000 0000 0000 0000 *..9122..........*
$50 DEBUG:

Alternatively, when no symbolic information is available, you have to
supply the necessary starting location in hexadecimal, having
established the base:

$50 DEBUG:B 500

$50 DEBUG:H 114 :24
0614 (0500+0114) 4141 5320 0000 0102 0001 FFFF FFFF 00FF *AAS.............*
0624 (0500+0124) FFFF 3931 3232 FFFF 0000 0000 0000 0000 *..9122..........*
$50 DEBUG:

The high values (FFFF) in the output probably indicate data
corruption.

C.5.10 G - Get Location of String
To find the location of a particular string in memory, you key the
instruction:

G hexadecimal-string

where the string may be any even number of hexadecimal digits from 2
to 18 inclusive. The whole of the partition, except for the user stack
and debug area, is then searched for occurrences of the string,
starting at the top of memory. Each time the string is found, its
start address is displayed on a new line. For example, to find
occurrences of the ASCII character string "123":

$50 DEBUG:G 313233
9316 (0500+8E16)
3121 (0500+2C21)
2AB5 (0500+25B5)
$50 DEBUG:

The instruction is particularly useful if you do not have an up-to-
date listing of the program, or if you want to locate a data item
allocated from free memory.

C.6 Executing and Resuming Programs from Debug
The load, execute and resume instructions allow you to use debug to
bring a program into memory, modify or inspect it, and then cause it
to be executed. If a break, trap, exit or program check occurs debug
will be re-entered. You can then examine or alter the program again,
and possibly restart it using the resume instruction. A typical
sequence might be:

 Run $DEBUG;
 Load subject program using the L instruction;
 Use N to obtain symbolic information;
 Set traps at significant points using T;
 Modify data for testing purposes using M;
 Execute program using E;

(Debug is re-entered when a trapped instruction is encountered)
 Inspect variables using I, H etc.;
 Set additional traps using T;

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 168 of 174

 Resume subject program using A or R.

The L and E instructions are therefore used to allow you to change the
code and data of a program to be tested before it is first executed. A
and R are employed to resume the program which was active when debug
was entered. You should note, however, that these instructions can
only be used successfully if the program involved has been linkage
edited to reserve the first 1280 bytes of the user area for debug
itself.

C.6.1 L - Load a Program from Debug
To load a program from debug you must key the instruction:

L program-id

in response to the debug prompt, which will be redisplayed once the
program identified by program-id has been satisfactorily loaded. For
example:

GSM READY:$DEBUG
$50 DEBUG:L SA100
$50 DEBUG:

causes the program named SA100 to be loaded as the subject program for
debug.

C.6.2 L - Operating Notes
The L instruction should not be issued if a symbolic debug table
introduced by the N instruction is present in memory. In this case the
table must be freed by the F instruction before L can be used. If you
use L wrongly in this way the loader will terminate with stop code 103
and debug will be re-entered:

$91 TERMINATED - STOP 103
$50 DEBUG:

The L instruction also fails and the warning message:

LOAD ERROR

is output if there is an irrecoverable I/O error loading the program
you have specified; or it cannot be found; or it is too large for the
space available. In all but the last case other explanatory prompts
(e.g. the retry or program required prompt) will be displayed before
the load error warning appears.

C.6.3 E - Execute a Program from Debug
To execute the program which has been previously loaded by the L
instruction you must key the instruction:

E

in response to the debug prompt. Execution of the program will then
commence at its entry point. For example, the following dialogue loads
SA100 as the subject program, modifies SA100, and then executes it:

GSM READY:$DEBUG
$50 DEBUG:L SA100

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 169 of 174

$50 DEBUG:etc (instructions to modify, set traps and so on in SA100)
$50 DEBUG:etc
$50 DEBUG:E
(dialogue from SA100 which now receives control)

C.6.4 E - Operating Notes
If you key the E instruction by mistake, when there was no previous L
instruction, your request will simply be ignored and the debug prompt
will be redisplayed. You must use either the A or R instructions to
resume a program following a break, trap or program check.

C.6.5 R - Resume a Program from Debug
To resume a program which has entered debug for any reason you must
key the instruction:

R

or:
R xxxx (relativised)

in response to the debug prompt. The first format, R, is used to
continue at the interrupted instruction following a trap or break.

The second format will normally only succeed in resuming the program
successfully if a program check occurred because of invalid data and
it is possible to correct this using the M (modify) instruction. If
this is possible you must resume by specifying xxxx as the location of
the failing statement. This location may not correspond exactly to the
program check location because a single statement often expands into a
number of internal instructions, any of which might fail. You must
resume the program on a statement boundary at the same level of
control as the failing instruction or unpredictable errors may arise.

C.6.6 R - Operating Notes
If you have removed an application volume to mount SYSRES so that
debug itself can be loaded, you must replace your disk before
executing the R instruction, or there is a risk that the system volume
will be corrupted if the application writes records to the device
occupied by the volume in question.

C.6.7 R - Examples
The following dialogue takes place when you set a trap at location
104E of program SA100 in order to inspect certain variables before
continuing the program:

GSM READY:$DEBUG
$50 DEBUG:L SA100

$50 DEBUG:B 500
$50 DEBUG:T B4E (set trap, explained later)
$50 DEBUG:E (execute program previously loaded)
.........
......... (dialogue from SA100)
.........
$91 TRAP AT 104E (0500+0B4E)
$50 DEBUG: etc etc (instructions to inspect data)
$50 DEBUG:R
.........
......... (more dialogue from SA100)

.........
$91 PGM CHECK 11 AT 218C (0500+1C8C)
$50 DEBUG:

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 170 of 174

At the end of this you have unexpectedly entered debug again with
program check 11 (overflow). If you can determine the cause of the
problem you may be able to patch data fields and continue testing the
program. For example, the following dialogue resumes program execution
at location 2184 (listing offset 1C84) which you have determined to be
the location of the failing statement, 8 bytes earlier than the
instruction which caused the program check:

$50 DEBUG:R 1C84

Note that if the symbols in SA100 have been established in the debug
table by a previous N instruction, then you can use a symbol as the
operand of the R instruction. This would allow you to resume at a
particular section or paragraph. For example:

$50 DEBUG:R BA-OPE

resumes the program at the beginning of the section named BA-OPEN-
FILES.

C.6.8 A - Advance to a Transfer of Control Instruction
When a program has entered debug for any reason, you may advance its
execution up to a subsequent transfer of control instruction by keying
the instruction:

A

in response to the debug prompt. You will then receive a colon prompt,
to which you may reply in one of four ways:

A :<CR> means that execution is to proceed to the next transfer
of control instruction at the current level of nesting,
or at the higher level following execution of an EXIT
statement;

A :nnnn (1 < nnnn < 9999) means that execution is to proceed to

the nnnn'th transfer of control instruction at the
current, or a higher, level of nesting;

A :A means that execution is to proceed to the next transfer

of control instruction at any level of nesting;

A :Annnn (1 < nnnn < 9999) means that execution is to proceed to
the nnnn'th transfer of control instruction at any
level of nesting.

When the appropriate transfer of control instruction is reached, this
is confirmed by a message of the form:

$91 ADVANCED TO location

For example:

$50 DEBUG:A :<CR>
$91 ADVANCED TO 0536 (0500 + 0036)

$50 DEBUG:

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 171 of 174

C.6.9 A - Operating Notes
Transfer of control instructions are generated by the following GSM
Cobol statements:

AND CALL CHAIN DO
ELSE ENDDO EXEC EXIT
GO TO IF ON EXCEPTION ON OVERFLOW
OR PERFORM RUN STOP RUN

although not always as the first instruction of the statement. The
location reported by debug identifies an address within the statement.
The CALL, EXEC and PERFORM statements pass control to a lower nesting
level, while the EXIT statement passes control to a higher level. The
CHAIN and RUN statements pass control to a program executing at the
current, or a higher, level of nesting. The STOP RUN statement returns
control to the monitor, so if you advance past a STOP RUN statement
you will receive a ready prompt. The other statements listed leave the
nesting level unchanged.

Note that the conditional statements, AND, DO, IF, ON EXCEPTION, ON
OVERFLOW and OR, are always treated as transfers of control even if
program flow proceeds to the next sequential statement.

The following statements are equivalent to CALL statements as far as
the debug A instruction is concerned:

ACCEPT CLEAR CLOSE DISPLAY
EDIT LOAD LOCK MAPCLEAR
MAPIN MAPOUT OPEN READ
READ NEXT RELEASE RETURN REWRITE
SCAN SCROLL SEARCH SORT
SUSPEND UNLOCK WRITE WRITE NEXT

Note however that some of these statements call monitor facilities and
the A instruction ignores all transfer of control instructions within
the monitor. Note also that the ACCEPT...NULL variant of the ACCEPT
statement generates two transfer of control instructions.

C.6.10 A - Example
Your program contains a DO-loop and you wish to examine the twentieth
iteration of the loop in detail. The start of the DO-loop is labelled
START, and the loop count is held in COUNT. You proceed as follows:

GSM READY:$DEBUG
$50 DEBUG:L PROG (load program)
$50 DEBUG:N PROGRAM-ID:<CR> (introduce symbols)

$50 DEBUG:T START (set trap at start of loop)
$50 DEBUG:E
$91 TRAP AT 0536 (0500 + 0036) (trap at start of loop)
$50 DEBUG:I COUNT
1 (check first iteration)
$50 DEBUG:A :<CR>
$91 ADVANCED TO 053A (0500 + 003A)
$50 DEBUG:A :<CR>
$91 ADVANCED TO 0560 (0500 + 0060)
$50 DEBUG:A :<CR>
$91 ADVANCED TO 0536 (0500 + 0036)

$50 DEBUG:I COUNT
2 (check second iteration)
(You now know that three A instruction steps are needed

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 172 of 174

to advance one iteration of this DO-loop. Therefore a
further 54 steps are needed to advance to the start of
the twentieth iteration)
$50 DEBUG:A :54
$91 ADVANCED TO 0536 (0500 + 0036)
$50 DEBUG:I COUNT
20 (check 20th iteration)
$50 DEBUG:

Now you are at the start of the twentieth iteration and can start
detailed debugging.

C.7 Traps
Debug's T and C instructions, explained below, may be used to set or
clear the trap flag associated with any GSM Cobol procedure division
statement. The trap flag may be set on any number of statements within
the subject program.

The interpreter detects when a program attempts to execute an
instruction with the trap flag set, and causes GSM to interrupt it
with:

$91 TRAP AT location
$50 DEBUG:

You can then use whatever debug instructions you require, and normally
resume the program at the indicated location, by means of the R
instruction. A trap remains in force until either the subject program
is reloaded, or it is explicitly cleared using the C instruction.

The O instruction described at the end of this section extends the
concept of a trap by allowing you to request that debug is entered
whenever a named overlay is loaded.

C.7.1 T - Trap a Statement
To set a trap on a statement you must key the instruction:

T xxxx (relativised)

in response to the debug prompt. The trap flag is then set and the
debug prompt redisplayed.

By using the T instruction repeatedly, any number of traps may be set.
For example, the dialogue:

$50 DEBUG:N PROGRAM-ID:<CR>
$50 DEBUG:T BA-OPE

$50 DEBUG:T 171A
$50 DEBUG:T 1C20
$50 DEBUG:

firstly names the currently loaded main program as the compilation
whose symbols are to be used, and then sets a trap on BA-OPE, so that
the first statement of the section named BA-OPEN-FILES is trapped.
Subsequent T instructions are used to trap the statements at listing
locations 171A and 1C20.

C.7.2 T - Operating Notes

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 173 of 174

If you set a trap on an ON OVERFLOW or ON EXCEPTION statement and the
exception or overflow condition arises, then the message:

$91 PGM CHECK 11 AT location

or:
$91 TERMINATED - EXIT code

corresponding to that condition, rather than the normal $91 TRAP
message, will appear immediately before entry to debug.

This indicates that the overflow or exception condition has been
cleared which means that if you attempt to resume a program terminated
in this way it will execute as though the condition had never
occurred. However, if the ON OVERFLOW or ON EXCEPTION statement is met
and no overflow or exception condition prevails, then the trap is
handled in the normal way.

C.7.3 C - Clear the Trap Flag
To clear a trap on a statement you must key the instruction:

C

or:
C xxxx (relativised)

in response to the debug prompt. The trap flag is then cleared and the
debug prompt redisplayed.

The first form of the instruction, C, clears the trap flag of the
statement which last caused debug to be entered. The second form
clears the trap on the statement at the location specified. By using
the C instruction repeatedly, any number of traps may be cleared. For
example, the following dialogue might take place after the traps
introduced in the description of the T instruction in section C.7.1
had been set, and would have the effect of removing all of them:

$50 DEBUG:R (resume program with traps set)
$91 TRAP AT 1C1A (0500+171A)
$50 DEBUG:C BA-OPE (clears T BA-OPE)

$50 DEBUG:C (clears T 171A)
$50 DEBUG:C 1C20 (clears T 1C20)

C.7.4 C - Operating Notes
When you use the R instruction to resume execution of the subject
program following a trap, it will not cause the trap to be immediately
repeated because the interpreter always ignores the trap flag when it
is set on the very first instruction following a resume. This prevents
you having to use the C instruction unnecessarily simply to proceed
with your program.

C.7.5 O - Trap the Loading of an Overlay
To force a trap whenever a particular overlay is loaded (by CHAIN,
EXEC, LOAD, RUN, CALL QLOAD$ or CALL LOAD$ statement) you key the
instruction:

O program-id

in response to the debug prompt. Once the overlay trap has been set
the debug prompt is redisplayed.

Appendix C – Pre-V6.1 Symbolic Debugging Using $DEBUG

Global Development Cobol User Manual V8.1 Page 174 of 174

Only one program at a time can have an overlay trap set for it, and
the latest O instruction determines the program affected. You may key
the instruction:

O

with no parameter to clear the overlay trap. The trap is also
automatically cleared by the monitor whenever the ready prompt
appears.

The trap takes place as soon as the program identified by the O
instruction has been loaded but before it is entered. This enables you
to set additional traps using the T instruction. When you have
finished setting traps, or otherwise modifying the program, you can
resume execution by using the R instruction.

C.7.6 O - Example
Program SA100 invokes overlay SA103 by means of an EXEC statement. You
wish to set traps in this overlay before it is executed. The following
dialogue takes place:

GSM READY:$DEBUG
$50 DEBUG:O SA103
$50 DEBUG:L SA100
$50 DEBUG:E
$91 OVERLAY TRAP ON SA103
$50 DEBUG:

The L and E instructions are necessary because if you run SA100
normally from the ready prompt, the load trap you established on SA103
will have been cleared by the time the ready prompt appears.

