
 

Global Development Data Management Manual V8.1  Page 1 of 72 

 
 
 
 
 

Global 16-bit Development System 
 Data Management (DMAM) Manual 
 Version 8.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Global Development Data Management Manual V8.1  Page 2 of 72 

 
 

All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system or 

 transmitted, in any form or by any means, 
electrical, mechanical, photocopying, 

recording or otherwise, without 
the prior permission of 
TIS Software Limited. 

 
 

Copyright 1994 -2001 Global Software 
 
 

MS-DOS is a registered trademark of Microsoft, Inc. 
 

Windows NT is a registered trademark of Microsoft, Inc. 
 

Unix is a registered trademark of AT & T. 
 

C-ISAM is a registered trademark of Informix Software Inc. 
 

D-ISAM is a registered trademark of Byte Designs Inc. 
 

Btrieve is a registered trademark of Pervasive Technologies, Inc. 
 
 

 



 

Global Development Data Management Manual V8.1  Page 3 of 72 

TABLE OF CONTENTS 
 
Section Description Page Number 
 
1. Introduction ....................................................  ??? 
1.1 The Global Cobol Data Management System ........................  ??? 
1.2 Data Management Programming Support ............................  ??? 
1.3 Extensions for V8.1 Programming Software .......................  ??? 
 
2. Concepts Underlying Data Management .............................  ??? 
2.1 The Database File ...............................................  ??? 
2.2 The Record Set ..................................................  ??? 
2.3 Keys and Indexes ................................................  ??? 
2.4 The Structure of Keys ...........................................  ??? 
2.5 Key Segments ....................................................  ??? 
2.6 Translation Segments ............................................  ??? 
2.7 Data Allocation .................................................  ??? 
2.8 File Recovery ...................................................  ??? 
 
3. Data Management File Organisation ...............................  ??? 
3.1 Data Management Database Files .................................  ??? 
3.2 The File Definition .............................................  ??? 
3.3 The OPEN Statement ..............................................  ??? 
3.4 The WRITE Statement .............................................  ??? 
3.5 The REWRITE Statement ...........................................  ??? 
3.6 The DELETE Statement ............................................  ??? 
3.7 The READ Statement ..............................................  ??? 
3.8 The READ NEXT & READ PRIOR Statements ..........................  ??? 
3.9 The READ FIRST & READ LAST Statements ..........................  ??? 
3.10 ......................................... The READ PHYSICAL Statement  ??? 
3.11 ................................................ The UNLOCK Statement  ??? 
3.12 ................................................. The CLOSE Statement  ??? 
3.13 .................................................. ISAM Compatibility  ??? 
3.14 ........................... Data Management Access Method Variations  ??? 
 
4. Further Data Management File Handling ...........................  ??? 
4.1 Set up for use of DMAM, DBSET$ .................................  ??? 
4.2 DMAM index rebuild routine, IRBLD$ .............................  ??? 
4.3 The Database Statistics routines, DBSTA$ & DBCLC$ ..............  ??? 
4.4 The Index Key Segment routine, DBKES$ ..........................  ??? 
4.5 The Data Take-on routines, DTOPN$, DTWRT$ & DTCLS$ .............  ??? 
4.6 The Key Read routines, DBREK$, DBRFK$, DBRLK$, DBRNK$ & DBRPK$  ??? 
4.7 The Read Translation Table routine, DBRTT$ .....................  ??? 
 
5. Data Management Utility Programs ................................  ??? 
5.1 Database Creation and Maintenance using DBMAIN .................  ??? 
5.2 Index Reorganisation using DBREORG .............................  ??? 
5.3 Data Take-on using DBTAKE .......................................  ??? 
5.4 Database Rebuild and Reorganisation using DBRBLD ...............  ??? 
5.5 Inspecting and Amending a Database using DBDUMP ................  ??? 
5.6 Producing a Structured Dump of a Database using DMSDUMP ........  ??? 
 
 



 

Global Development Data Management Manual V8.1  Page 4 of 72 

APPENDICES 
 
Appendix Description Page Number 
 
A DMAM STOP and EXIT Codes.......................................  ??? 
A.1 Stop Codes ......................................................  ??? 
A.2 Exit Codes ......................................................  ??? 
 
B Included Routines ...............................................  ??? 
 
C DMAM Database Structure .........................................  ??? 
C.1 Global format DMAM databases ...................................  ??? 
C.2 C-ISAM format DMAM databases ...................................  ??? 
C.3 Btrieve format DMAM databases ..................................  ??? 
 
D DMAM Translation Tables .........................................  ??? 
D.1 Translation Types ...............................................  ??? 
D.2 The Default Translation Table ..................................  ??? 
D.3 Setting up your own Translation Table ..........................  ??? 
 



Chapter 1 - Introduction 

 

 

Global Development Data Management Manual V8.1  Page 5 of 72 

1. Introduction 
 

1.1 The Global Cobol Data Management System 
Designed as an extension to the Index-Sequential file structure (ISAM) 
available within Global System Manager, the Global Cobol Data 
Management system permits ISAM-like access to a number of sets of 
records contained within a single database file. 
 
Each Data Management database file (also called a DMAM file) may 
contain up to 50 different sets of records. Each set of records may 
have up to 16 indexes, each of which will have its own method of 
constructing a key for the record. All the records of a set have the 
same length, and the same indexes apply to them, but distinct types of 
records may be used within a single record set. 
 
Unlike earlier versions of the Global Cobol Data Management system, 
which only allowed DMAM databases to be held entirely within the 
Global System Manager directory structure (i.e. Global format DMAM 
databases), the V8.1 Global Cobol Data Management system allows DMAM 
databases to be held in any of the following formats: 
 
● Global format DMAM database - held entirely within the Global 

System Manager directory structure and compatible with the pre-V8.1 
Global Cobol Data Management system. This option is available on 
all Global System Manager implementations; 

 
● C-ISAM format DMAM database - a single DMAM database is emulated by 

a series of Informix C-ISAM files. This option is only available on 
some Global System Manager (Unix) implementations - please consult 
your Configuration Notes for further information; 

 
● Btrieve format DMAM database - a single DMAM database is emulated 

by a series of Btrieve files. This option is only available on 
Global System Manager (MS-DOS and Windows) and Global System 
Manager (Novell NetWare). 

 
In addition to multiple indexes on records, Global format DMAM 
databases also have dynamically updated B*-tree indexes to hold the 
record keys. This means that the problems associated with long 
overflow chains in ISAM do not occur with DMAM. 
 
A description of the concepts underlying the Global Cobol Data 
Management system can be found in chapter 2, and a detailed 
description of the internal structure of a DMAM database can be found 
in Appendix C. 
 

1.2 Data Management Programming Support 
The programming support for the Global Cobol Data Management system 
consists of the Data Management Access Method (DMAM), which permits 
you to read and write records to the database file, along with a 
number of system routines to obtain statistical information and 
perform certain kinds of special processing, such as rebuilding an 
index in the file. The Data Management Access Method (DMAM) itself is 
documented in chapter 3, and the various system routines are covered 
in chapter 4. 
 
Creating new DMAM database files is achieved using the DBMAIN utility, 
which allows you to define record types and set up the various keys by 



Chapter 1 - Introduction 

 

 

Global Development Data Management Manual V8.1  Page 6 of 72 

which they are to be accessed. You may also use DBMAIN to amend the 
key set-up on a DMAM database after it has been in use for a time. 
DBMAIN, together with other system utility programs, is documented in 
chapter 5. 
 

1.3 Extensions for V8.1 Programming Software 
Extensions to the Global Cobol Data Management system have been made 
as part of the V8.1 release of the Global Cobol Development software. 
The extensions have been made to optimise performance or to provide 
wholly new facilities for managing DMAM database files. The changes 
for V8.1 are as follows: 
 
● A Memory Page version of DMAM is available (see chapter 3); 
 
● A version of DMAM is now available which holds the data in either a 

series of Informix C-ISAM files (i.e. a C-ISAM format DMAM 
database), or a series of Btrieve files (i.e. a Btrieve format DMAM 
database) or as a Global format DMAM database (see chapter 3); 

 
● A new routine DBKES$ is provided, to return index key segment data 

from a DMAM database so that the key structure can be examined by 
an application program (see chapter 4); 

 
● A database structured dump and diagnostics utility, DMSDUMP, is 

available (see chapter 5). 
 
Programs written to use the facilities of the V6.1 or V6.2 Global 
Cobol Data Management system will continue to work unchanged with the 
V8.1 Global Cobol Data Management system. However, programs using any 
new features of the V8.1 Global Cobol Data Management system must only 
be used with the V8.1 support utility programs documented in chapter 
5, and with the V8.1 subroutines (documented in chapter 4), otherwise 
data corruption may occur. 
 
In addition, programs using the Memory Page version of DMAM or if the 
database is held as a C-ISAM format DMAM database, or a Btrieve format 
DMAM database, may only be run under Global System Manager V8.1, or 
later. 
 



Chapter 2 - Concepts Underlying Data Management 

 

 

Global Development Data Management Manual V8.1  Page 7 of 72 

2. Concepts Underlying Data Management 
 

2.1 The Database File 
Each Data Management file, conventionally termed a database, may 
contain a maximum of 50 separate record sets. A Global format DMAM 
database is allocated as a single file so far as ordinary Global 
System Manager directory handling processes are concerned. A C-ISAM 
format DMAM database is held as a single Global format schema file 
describing the C-ISAM file format together with a series of C-ISAM 
databases held in a Unix directory (see appendix C). A Btrieve format 
DMAM database is held as a single Global format schema file describing 
the Btrieve file format together with a series of Btrieve databases 
held in an MS-DOS (or Novell NetWare) directory (see appendix C). 

 
2.2 The Record Set 
A record set is a collection of records which all have the same 
fundamental structure, that is to say all have the same record length 
and key fields, even though they may have different record types, and 
may contain different kinds of information. A DMAM record set may be 
regarded as a logical data file contained within the DMAM database. 
 
Although the maximum number of record sets which can be contained 
within a DMAM database is 50, when the database is created the actual 
maximum for that database may be set to a lower number. Each potential 
record set that a database may contain occupies about 400 bytes of 
space in the database header (about 3000 bytes for a schema file), so 
some space may be saved by reducing the number of record sets allowed. 

 
2.3 Keys and Indexes 
For each record set up to 16 different keys may be defined. Each key 
is built from a selection of fields within a data record, and is 
present in an index. Each index therefore permits access to the record 
set, ordering the records in a way dependent on how the key has been 
structured. 
 
Each index has an identifying eight-character name which must be 
unique within the database, and it is this index name which is used by 
an application program to gain access to a record set for processing 
purposes. A maximum of 150 indexes may be defined in total in a single 
DMAM database, regardless of how many record sets may exist. 
 
An index may be unique, in which case duplicate values of keys are not 
permitted, or non-unique where duplicates are allowed. For a non-
unique index, keys which consist of all low-values, or all spaces, can 
be omitted from the index. This would normally be done to save index 
space and improve access speed where only a small proportion of 
records have other values, and only these records are of interest when 
processing the index. For C-ISAM format DMAM databases and Btrieve 
format DMAM databases, these records will be part of the C-ISAM, or 
Btrieve, index but will be omitted by DMAM when reading records. 
 
Each unique index to a record set is functionally similar to an ISAM 
file with that key. DMAM is arranged in this way so as to facilitate 
the conversion of existing ISAM-based applications. 
 
Important note: In the V6.2, and later, Global Cobol Data Management 
system the handling of ignored key values has been extended, so that a 
key may be ignored based on its entire value (as described above), or 



Chapter 2 - Concepts Underlying Data Management 

 

 

Global Development Data Management Manual V8.1  Page 8 of 72 

on the value of either the first or last segment of the key. This 
extra facility is extremely useful when dealing with complex key 
structures. If this extended facility is used it is vital that keys 
are rebuilt using the V8.1, or later, IRBLD$ routine (or the V8.1, or 
later, DBREORG) otherwise data corruption may occur. 
 

2.4 The Structure of Keys 
Each key on a record may consist of up to 8 segments. A segment is a 
contiguous area of data within the record, and will typically be a 
single data field from the record. Each segment is concatenated with 
the other segments to form the total key. 
 
All segments of a key must lie wholly within the first 255 bytes of 
the record. The total length of the key may not exceed 99 bytes. For 
Global format DMAM databases, the access method optimises REWRITE 
performance by avoiding any key checking if the record is unchanged up 
to the last byte used as a segment of any key. Thus, it is recommended 
that, so far as possible, fields to be used as part of keys are 
grouped at the start of the record, with any non-keyed data at the 
end. 

 
2.5 Key Segments 
Each segment of a key may be either a character field (collated in 
true ASCII sequence), a computational field (collated from negative 
numbers, through zero to positive numbers) or as a translation field. 
The segment may also be collated in normal (ascending) sequence, or 
reverse (descending) sequence. 

 
2.6 Translation Segments 
A translation segment is one which is translated via the character 
translation table set up in the database header before inclusion in 
the key. The translation mechanism, which is covered in more detail in 
Appendix D, permits foreign language keys to be collated in the 
correct sequence, and allows compressed, case and punctuation 
insensitive alpha keys for fields such as a customer name. 
 
By default a database is set up with a translation table which ignores 
all characters in the field except the ASCII digits (0-9) and the 
upper and lower case letters (A-Z and a-z). The letters are collated 
without regard to case, and three characters are compacted into every 
2 bytes used in the key. 
 
This default table is intended to be used to create alpha index keys 
on long character fields within the record. In addition to the 
compression and compaction which occurs, the translation keys also 
truncate if the deduced key would be longer than the specified 
translation length (which may be shorter than the length of the 
original field) so that the key space used in the index may be kept to 
a manageable size. 
 
Important note: Each translation segment specified as part of a key 
counts as two segments against the limit of eight segments from which 
a key may be constructed. 

 
2.7 Data Allocation 
Within a Global format DMAM database are a file header, the records 
belonging to each record set, and the index data blocks used to hold 



Chapter 2 - Concepts Underlying Data Management 

 

 

Global Development Data Management Manual V8.1  Page 9 of 72 

the indexing information. File space is allocated dynamically between 
records and index data as records are added to the database. 
 
For each record set, and for the index blocks, the database header 
contains an allocation extent which is set up using the database 
maintenance program, DBMAIN, documented in chapter 5. A new extent is 
allocated whenever a new record or index block needs to be added to 
the file, and the current extent is full. The database will therefore 
contain blocks of records, interspersed with blocks of index data, 
during normal operation. 
 
When a record or index block is deleted it is added to a chain of such 
deleted elements. Elements from the deleted chain are reused in 
preference to allocating a new extent. 
 
For a C-ISAM format DMAM database, the data is held in a series of C-
ISAM files. A Global schema file is produced which holds the Global 
index data and the C-ISAM file information (e.g. Unix file and path 
name) and index data. The Global schema file and C-ISAM files are set 
up using the database maintenance program, DBMAIN, as documented in 
chapter 5. 
 
For a Btrieve format DMAM database, the data is held in a series of 
Btrieve files. A Global schema file is produced which holds the Global 
index data and the Btrieve file information (e.g. MS-DOS file and path 
name) and index data. The Global schema file and Btrieve files are set 
up using the database maintenance program, DBMAIN, as documented in 
chapter 5. 
  
 For a more detailed description of the internal allocation mechanism 
refer to Appendix C. 

 
2.8 File Recovery 
One of the most important initial design criteria of the Global Cobol 
Data Management system was to ensure, so far as possible, that DMAM 
database files were robust to machine failure. To achieve this end an 
automatic recovery mechanism has been built into the Global Cobol DMAM 
access method (for Global format DMAM databases only). 
 
Whenever a program WRITEs, REWRITEs or DELETEs a record, a copy of the 
pre-existing situation is preserved in the file header. Whenever the 
file is OPENed, this header area is checked, to see if a WRITE, 
REWRITE or DELETE had been in progress but not completed when the file 
was last used. If this is the case then the operation is completed by 
the OPEN process before control is returned to the user program. 
 
The effect of this recovery processing is to guarantee data integrity 
even over machine failure at the record level. It is still the 
responsibility of the application program to deal with any cross-
record data integrity checking which might need to be performed. 
 
Any recovery processing for C-ISAM format DMAM databases, where the 
data is held in C-ISAM files will depend on the recovery processing 
available in C-ISAM. Similarly, any recovery processing for Btrieve 
format DMAM databases, where the data is held in Btrieve files will 
depend on the recovery processing available in Btrieve. 
 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 10 of 72 

3. The Data Management File Organisation 
 

3.1 Data Management Database Files 
The general concepts used with DMAM database file management are 
explained in chapter 2. It is recommended that you familiarise 
yourself with the terminology used before reading the rest of the 
manual in detail. Additionally, Appendix C contains a detailed 
specification of the structure of a DMAM database file, which may be 
of interest to systems analysts and designers. 
 
3.1.1 File Processing Statements 
The file processing statements OPEN, READ, READ NEXT, READ PRIOR, READ 
FIRST, READ LAST, READ PHYSICAL, WRITE, REWRITE, DELETE, UNLOCK and 
CLOSE are used in conjunction with a file definition with ORGANISATION 
DMAM to process an existing DMAM database file: 
 

OPEN   must be executed prior to any other statement 
affecting the file; 
 

READ   is used to retrieve a record at random, given its 
record key; 
 

READ NEXT  retrieves the record whose key is next in 
collating sequence compared with the key last 
accessed. The operation can be used to process all 
or part of the record set in record key sequence; 

 
READ PRIOR  retrieves the record whose key immediately 

precedes in collating sequence the key last 
accessed. The operation can be used to process all 
or part of the record set in reverse record key 
sequence; 

 
READ FIRST  retrieves the first record whose key matches 

the partial key specified, or the first record in 
the record set if no partial key is specified; 

 
READ LAST  retrieves the last record whose key matches the 

partial key specified, or the last record in the 
record set if no partial key is specified; 

 
READ PHYSICAL retrieves the record whose physical file address 

has been specified; 
 

WRITE   is used to add a new record and insert 
suitable keys into the appropriate indexes. It may 
not be used to update an existing record; 

 
REWRITE  is used to update the record last accessed; 

 
DELETE  is used to delete the record last accessed; 

 
UNLOCK  is used to release a lock obtained by a previous 

READ operation; 
 

CLOSE  must be issued to terminate file processing. 
 
DMAM files can only be created and maintained on direct access 
devices. 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 11 of 72 

 
When any of the statements is executed a file condition, returned by 
exception condition 2, may arise as explained in chapter 1 of the 
Global Development File Management Manual. In addition, if OPTION 
ERROR is specified in the FD, exception condition 1 will be generated 
should an irrecoverable I/O error occur on an OPEN statement. 
Therefore it is usual to follow each file processing statement with an 
ON EXCEPTION statement. If you do not, and an exception condition 
arises, your program will be terminated in error. Due to the 
complexity of processing within DMAM it is not generally possible to 
pass back exceptions for serious error conditions which may arise 
during database processing. For this reason a centralised failure 
routine may be set up using the ON FAILURE statement documented in 
3.2.10. 
 
If an error occurs when accessing a C-ISAM format DMAM database or a 
Btrieve format DMAM database, a file condition will be returned and 
the C-ISAM UCI (or Btrieve UCI) error code will be returned in the 
system variable $$CRES. The UCI error codes are fully described in the 
Global File Converters Manual. 
 
Note that DMAM is functionally similar to the IS access method 
(described in chapter 3 of the Global Development File Management 
Manual) when used to access a record set with a single unique key. 
Section 3.13 summarises the principle differences between DMAM and 
ISAM as an aid to upgrading existing programs. 
 
3.1.2 Data Record Format 
The data records of a DMAM database file consist of a two-character 
type code followed by a two-byte back-up data field and then any 
remaining user data, the key being built from within the first 256 
bytes of the Global record: 
 

 
Type (2 
bytes) 

 
Backup (2 
bytes) 

 
User Data (variable 
length) 

 
The type is similar to that used by Global AutoClerk, where it 
distinguishes the different sorts of records that make up the record 
set. The first type character must not be an asterisk, since this is 
used to denote record deletion using REWRITE explained in 3.5.3. It is 
important not to confuse the record type field, which may vary from 
record to record within the record set, with the record-id used to 
identify the record set itself. 
 
The back-up field is used to hold the back-up sequence of records in 
the database, and is reserved for future use for a database back-up 
utility. This field should not be used by the application programmer. 
 
The back-up field is followed by any amount of user data. The first 
256 bytes of the record are used to build the record keys for the 
various indexes defined for the record set. For Global format DMAM 
databases only, REWRITE handling is optimised to avoid any key 
checking if the record is unchanged up to the last byte of data used 
as part of any index. It is good practice, therefore, to group data 
fields which are to be part of any key at the start of the user data, 
and to follow them by non-key relevant data. 
 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 12 of 72 

3.1.3 Creating a DMAM Database File 
To create a DMAM database file you use the Database Maintenance 
utility (DBMAIN) which is documented in chapter 5. If you are 
converting data from existing RS or IS files, or copying data records 
from one DMAM file to another, you can use the data take-on utility to 
add the records to the database. Alternatively, you can add them 
yourself under program control using either conventional file 
processing statements, or the special data take-on routines documented 
in chapter 4. 
 
When an empty file is created it consists of a header area defining 
the records and indexes used in the database and, for a Global format 
DMAM database, a series of empty indexes for the record types 
concerned. If any translation keys are used the database header will 
contain the translation table used to build them. 
 
As records are added, they too are written to the file (Global, C-ISAM 
or Btrieve format, as appropriate) and the keys for them are inserted 
into the appropriate indexes. 
 
You may convert an existing IS file directly to be one of the record 
sets of a DMAM database. If you wish to convert from an RS file it 
must contain records of the form described above. The contents of the 
back-up field are immaterial, but will be overwritten when the records 
are added to the database. 
 
3.1.4 Specifying File Attributes 
To process an existing DMAM database file you specify attributes such 
as its unit-id, volume-id and file-id in a file definition (FD) coded 
in the data division. Section 3.2 below describes those parts of the 
FD which are specific to the DMAM database file organisation, but the 
statements that are common to all organisations are defined in chapter 
1 of the Global Development File Management Manual. 
 
3.1.5 Deletion of Records 
The DELETE statement is provided to allow you to delete records from a 
DMAM database file. However for consistency with ISAM the convention 
is adopted that records whose type code begins with an asterisk when 
they are REWRITTEN (or WRITTEN) are also deleted. Deleted records are 
reused by DMAM, and so they are not accessible to the user program. 
They are processed as if the ISAM OPTION IGNORE statement had been 
coded in the file definition. 
 
3.1.6 Reorganising a DMAM Database File 
As records are added to a DMAM database the indexes are updated in 
place, so that large numbers of updates can take place without causing 
significant performance degradation. However if deletions have taken 
place deleted records and index blocks may still physically occupy 
valuable file space. In such an eventuality, or if very large numbers 
of records have been added, it may prove necessary to reorganise the 
database to release the space occupied by such records and index 
blocks. 
 
Reorganisation is accomplished either by using the database index 
reorganisation command (DBREORG) interactively, or by developing an 
application program to do part of the job. An application program can 
use the IRBLD$ system routine described in chapter 4 to rebuild either 
a single index or all the indexes for a record set, compacting the 
index blocks and freeing unused index space, but it may not remove 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 13 of 72 

space occupied by deleted records. The DBRBLD utility creates a new 
Global format DMAM database if record compaction or conversion is 
required. DBRBLD cannot be used on C-ISAM format or Btrieve format 
DMAM databases. 
 
Note that if you want to extend the space available for adding records 
and index blocks to Global format DMAM databases, this can be 
accomplished either by simply copying the file to a larger area - 
using either the file utility ($F) interactively, or by developing an 
application program using the COPY$ routine described in the Global 
Development File Management Manual - or by extending the database size 
using the $REORG utility documented in the Global Utilities Manual. 
 
3.1.7 Programming Notes 
The DMAM database access method described in this chapter is quite 
complex, to enable you to hold a variety of related data with the 
appropriate access keys defined on it. For Global format DMAM 
databases, there are no problems with insertions of keys into an 
index, but there is only a limited amount of recovery of index space 
freed by deleting records as this is an infrequent requirement for 
most applications. You are therefore advised either not to use DMAM 
for an application where the records have a very high volatility and a 
large range of possible keys, or to rebuild the indexes periodically 
on such records (e.g. after about every 3000 updates). 
 
The maximum size key is 99 bytes. Normally keys should be made as 
small as is practical since this reduces the size and number of levels 
of the index, and hence the space it occupies. 
 
For Global format DMAM databases, the index contains a number of 512-
byte blocks arranged in levels. Each block contains a 500-byte key 
table capable of holding a number of key values. Call this number, 
which depends of course on the key length, n. Then the first level 
index contains one index block for every n records in the prime data 
area. The second level index contains one block for every n blocks of 
the first level index. Index levels are constructed one after another 
until the highest level index, consisting of just a single index 
block, is developed. 
 
During processing the addition of records and the insertion of keys 
may cause an index block to become over full. In such a case it is 
split evenly and an extra entry is placed in the index block at the 
next higher level. This splitting propagates up the index tree as far 
as necessary, and it may cause a split of the highest level index 
block, causing the number of levels of index to be increased by one. 
 
The structure of a Global format DMAM database is described in detail 
in Appendix C of this manual. For index allocation in C-ISAM format or 
Btrieve format DMAM databases please refer to the appropriate Informix 
C-ISAM or Btrieve manual. 
 
3.1.8 Performance Guidelines 
 
3.1.8.1 Global format DMAM databases 
READ, READ FIRST and READ LAST need to access one index block from 
each level and then at least one data record. 
 
READ NEXT and READ PRIOR retrieve a single data record using 
information saved in the access method or in a save area supplied in 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 14 of 72 

an OPEN statement, and may need to read a single index block as well. 
If there is no information saved (which can occur immediately after an 
OPEN, after a WRITE, REWRITE or DELETE, or after a DMAM access on a 
separate FD) then READ NEXT and READ PRIOR require the same processing 
as a READ. 
 
READ PHYSICAL retrieves a single data record from the file address 
supplied, but the address must have been determined from some other 
database operation previously. 
 
WRITE adds a new record to the file, and then updates every index on 
that record. Each index update involves accessing one index block from 
each level, and then writing back one index block. If the updated 
index block overflows there is a further requirement to write a new 
index block, and to update a further existing index block (which may 
possibly in turn overflow). 
 
REWRITE writes the data record previously accessed. Since the address 
of this record is remembered there is no need for REWRITE to search 
the index to find the record. It also needs to update the index for 
each non-unique key on the record (it is not permissible to change the 
unique keys). To optimise performance any index whose key is unchanged 
from its previous value is not updated. 
 
DELETE deletes the data record previously accessed, and avoids the 
need to search the index in the same way as REWRITE. It does however 
need to update an index for each key on the record, removing the key 
from the index. 
 
READ PHYSICAL is the most efficient operation, then READ NEXT and READ 
PRIOR, then READ, READ FIRST and READ LAST, then REWRITE and DELETE 
and finally WRITE. WRITE and REWRITE performance will be degraded if 
large amounts of index block splitting are required. The performance 
of READ NEXT and READ PRIOR can be improved by keeping the last index 
block used resident in memory. This will happen automatically if only 
a single FD is using DMAM for reading a database within a program. Any 
WRITE, REWRITE or DELETE operation may cause the index block to be 
lost, and any DMAM operation on a separate FD will certainly have such 
an effect. To avoid the performance impact of these situations the 
program can supply a 516-byte storage area for the index block in the 
OPEN statement. 
 
3.1.8.2 C-ISAM format DMAM databases 
For C-ISAM format DMAM databases the performance will depend almost 
entirely on the performance of the C-ISAM Access Method. You should be 
aware that a single DMAM operation may be mapped into several C-ISAM 
operations by the C-ISAM Universal Channel Interface (UCI). 
 
3.1.8.3 Btrieve format DMAM databases 
For Btrieve format DMAM databases the performance will depend almost 
entirely on the performance of the Btrieve Access Method. You should 
be aware that a single DMAM operation may be mapped into several 
Btrieve operations by the Btrieve Universal Channel Interface (UCI). 
 
3.1.9 Bulk Additions 
At times you will need to add large numbers of new records to a DMAM 
database file. In particular, this will occur during initial data 
take-on. If you simply add these records directly to the file, 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 15 of 72 

performance will be degraded by the need to split index blocks at 
frequent intervals. 
 
If you need to add many thousands of records to the database file you 
may benefit by writing the records using the DTWRT$ routine, and then 
rebuilding all the indexes on those records using the IRBLD$ routine. 
There is no performance benefit from the order in which the records 
are added. 
 
3.1.10 File Locking 
The DMAM database access method provides three forms of locking on the 
database records. The locks are specified by appending a lock-type 
(one of LOCK, PROTECT or DELETE-LOCK) to any of the READ, READ NEXT, 
READ PRIOR, READ FIRST, READ LAST, READ PHYSICAL statements. The 
effect of the various locking options for Global format DMAM databases 
is as follows: 
 
LOCK   obtains an exclusive lock on the record (region = 

record address). This is intended to serve the purpose 
of an update lock, held on a record while it is in the 
process of being updated; 

 
PROTECT  obtains a shared lock on the record, independent of the 

LOCK (region = record address + 1). This is intended to 
protect the record locked against deletion or some 
other major update, while some subordinate record is 
processed, and is provided to permit the application 
program to utilise its own master/servant record 
structures; 

 
DELETE-LOCK obtains an exclusive lock on the record which precludes 

all other locks (regions of record address and record 
address + 1). It is intended to secure a record while 
some catastrophic update is performed upon it, such as 
deleting it. Note that it is mandatory to obtain a 
DELETE-LOCK on a record before using the DELETE 
statement, but that this is not currently a requirement 
of the REWRITE deletion processing (in order to 
maintain consistency with ISAM). 

 
Any further READ type operation on the FD will release any outstanding 
locks, and will of course obtain a new lock option if such is 
specified. A REWRITE or DELETE will also release any outstanding locks 
on the FD after processing is completed, and an UNLOCK or CLOSE will 
release any locks outstanding. Note that a WRITE leaves the locks 
unaffected, so that you may lock a header record and then write a 
series of subordinate records with security. 
 
For C-ISAM format DMAM databases, all locking is performed on the 
Global schema file, within the Global System Manager directory 
structure, and no locking is attempted on the actual C-ISAM data 
files. Therefore, no other non-Global application should attempt to 
access the C-ISAM data files while they are being accessed by an 
application that has been developed using the Global Cobol Data 
Management system. 
 
For LOCK and PROTECT LOCK operations the 4-byte lock region for the C-
ISAM format DMAM database schema files is used as follows: 
 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 16 of 72 

 1st byte of lock region 2nd, 3rd & 4th bytes of lock region 
 

record set   (record number * 2) - 1 
 
For DELETE LOCK operations the 4-byte lock region for the C-ISAM 
format DMAM database schema files is used as follows: 
 
 1st byte of lock region 2nd, 3rd & 4th bytes of lock region 
 

record set   record number * 2 
 
Important note: If locking is to be used then the number of records in 
a single C-ISAM file must not exceed 8388607 (8Mb-1). 
 
For Btrieve format DMAM databases, all locking is performed on the 
Global schema file, within the Global System Manager directory 
structure, and no locking is attempted on the actual Btrieve data 
files. Therefore, no other non-Global application should attempt to 
access the Btrieve data files while they are being accessed by an 
application that has been developed using the Global Cobol Data 
Management system. 
 
For LOCK and PROTECT LOCK operations the 4-byte lock region for the 
Btrieve format DMAM database schema files is used as follows: 
 
 1st byte of lock region 2nd, 3rd & 4th bytes of lock region 
 

record set   ((record address / Global record number) 
* 2) - 1 

 
For DELETE LOCK operations the 4-byte lock region for the Btrieve 
format DMAM database schema files is used as follows: 
 
 1st byte of lock region 2nd, 3rd & 4th bytes of lock region 
 

record set   (record address / Global record number) 
* 2 

 
Important note: If locking is to be used then the record address of 
records must not be such that record address/Global record length 
exceeds 8388607 (i.e. 8Mb-1). 
 
3.2 The File Definition 
The file definition for a DMAM database file is coded in either 
working storage or the linkage section as follows: 
 

FD filename ORGANISATION DMAM 
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]] 
[INDEX NAME IS index-name] 
[RECORD ADDRESS IS record-address] 
[RECORD LENGTH IS length] 
[SIZE IS size] 
[OPTION ERROR] 
[ON ERROR intercept] 
[ON FAILURE fail-intercept] 

 
The FD establishes a special group data item, 248 bytes in length, 
whose name is filename. The quantities unit-id, file-id, volume-id, 
index-name, record-address, length, size, intercept, and fail-



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 17 of 72 

intercept appear as subordinate items within this group and can, if 
need be, be referred to by the application program. 
 
If it is possible to specify unit-id, file-id, volume-id or index-name 
before the program executes then the quantity should be coded as a 
character string in quotes. If any of these quantities is not known 
until run-time then a symbol must be coded for the quantity. This 
symbol will then label a level 02 item which the user program is 
responsible for initialising. 
 
3.2.1 The Filename 
The filename must be a symbol. It serves to label the file definition, 
as explained in chapter 1 of the Global Development File Management 
Manual. 
 
3.2.2 The ORGANISATION Clause 
The organisation clause must be coded as shown, except that you may 
use the abbreviation ORG instead of ORGANISATION. It indicates that 
the file is a DMAM database. 
 
3.2.3 The ASSIGN Statement 
Use of the ASSIGN statement, which is the same for any file 
organisation, is explained in chapter 1 of the Global Development File 
Management Manual. 
 
3.2.4 Optional Statement Placement 
The INDEX NAME, RECORD ADDRESS, RECORD LENGTH, SIZE, ON ERROR and 
OPTION statements are optional and may appear in any order following 
the ASSIGN statement. 
 
3.2.5 The INDEX NAME Statement 
The INDEX NAME statement is required to identify the index used to 
read the DMAM database file. The index-name is coded either as a 
character string in quotes, or as a symbol. When a symbol is used the 
statement: 
 

02 index-name PIC X(8) 
 
is generated within the FD. The program must then place the index name 
to be used in the field before the file is opened. 
 
3.2.6 The RECORD ADDRESS Statement 
The RECORD ADDRESS statement is only required if you wish to use the 
READ PHYSICAL operation on the database. You code: 
 

RECORD ADDRESS IS symbol 
 
causing the statement: 
 

02 symbol PIC 9(9) COMP 
 
to be generated within the file definition. After any successful file 
processing statement (other than OPEN, CLOSE or UNLOCK) the record 
address of the record last processed will be returned to you in 
symbol. You must establish the correct record address in symbol before 
executing a READ PHYSICAL operation. 
 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 18 of 72 

Important note: For C-ISAM format DMAM databases only, the value 
returned in the record address field will be the record number. 
 
3.2.7 The RECORD LENGTH Statement 
The RECORD LENGTH statement need only be supplied if you want to 
determine the record length of the record set at run-time. You code: 
 

RECORD LENGTH IS symbol 
 
causing the statement: 
 

02 symbol PIC 9(4) COMP 
 
to be generated within the file definition. When the OPEN operation 
terminates successfully the record length will be returned to you in 
the field named symbol. 
 
3.2.8 The SIZE Statement 
The SIZE statement is required only when you wish to determine the 
actual number of bytes allocated to the Global format DMAM database 
file. The size is coded as a symbol, causing the statement: 
 

02 symbol PIC 9(9) COMP 
 
to be generated within the FD. When the OPEN statement completes 
satisfactorily the actual number of bytes allocated to the file will 
be returned in the generated field. 
 
For C-ISAM format and Btrieve format DMAM databases, the size is the 
number of bytes allocated to the schema file. 
 
3.2.9 The OPTION and ON ERROR Statements 
OPTION ERROR should be coded only if you wish your program to regain 
control following an irrecoverable I/O error. ON ERROR should be coded 
if you wish to handle certain I/O errors specially. The processing of 
these statements is common to all file organisations, and is described 
in the Global Development File Management Manual. 
 
3.2.10 The ON FAILURE Statement 
The ON FAILURE statement should be used if you wish to build a 
centralised failure handling routine into your program. Due to the 
complexity of database processing it is not practical to reflect 
irrecoverable I/O errors which arise during index updating back to the 
calling program. Instead, when such an error does arise the failure 
routine will be called, to permit your program to display a helpful 
message and to fail in a controlled way. 
 
If you do not establish a failure routine, and a serious error arises, 
then your program will be terminated with a STOP CODE. 
 
When the failure routine is called the accumulator contains the STOP 
CODE number (from Appendix A) which identifies the reason for the 
failure. If you wish to use this information to display an explanatory 
message to the operator, possibly suggesting a suitable course of 
recovery, then you should begin your failure routine with the 
statement: 
 

$STORE fail-code 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 19 of 72 

 
to store the failure code in the PIC 9(4) COMP variable fail-code. 
 
For C-ISAM format DMAM databases, if a C-ISAM error is the primary 
cause of a STOP CODE then the C-ISAM UCI error code will be returned 
in the $$CRES PIC 9(9) COMP system variable. The C-ISAM UCI error 
codes are fully documented in the Global File Converters Manual. 
 
For Btrieve format DMAM databases, if a Btrieve error is the primary 
cause of a STOP CODE then the Btrieve UCI error code will be returned 
in the $$CRES PIC 9(9) COMP system variable. The Btrieve UCI error 
codes are fully documented in the Global File Converters Manual. 
 
Important note 1: Under no circumstances should control be returned 
from your failure routine to the Access Method. Your failure routine 
must terminate by issuing either a STOP RUN, CHAIN or RUN statement. 
 
Important note 2: If your program is running as a user system request, 
where failing with a STOP CODE may damage the underlying application 
program, a special technique is available which may be used to return 
control to the system request handler in a controlled way after a DMAM 
failure has been returned. This technique is described in the Global 
Development System Subroutines Manual. 

 
3.3 The OPEN Statement 
The OPEN statement is coded: 
 

OPEN type filename [index-area] 
 
where type is the word OLD or SHARED and filename identifies the DMAM 
database file definition. The index-area is optional. When specified 
it is the name of a 516-byte work area in which the last index block 
used will be held. You supply this parameter if you wish to improve 
the performance of READ NEXT and READ PRIOR operations by eliminating 
index searching. The index area may be shared between several DMAM 
FDs, although it will only serve to optimise performance for the last 
FD used at any stage. It may not be used for any other purpose whilst 
the files using it remain open, otherwise unpredictable errors may 
occur. 
 
The index area is only of use for Global format DMAM databases. It is 
of no value for C-ISAM format and Btrieve format DMAM databases. 
 
An OPEN statement must be executed before any other file processing 
statement. If an OPEN is attempted but the FD is already open your 
program will be terminated in error. 
 
OPEN NEW is not supported, because a DMAM database file is always 
created using DBMAIN as explained in 3.1.3. OPEN OLD obtains exclusive 
access to the file (allowing only one index to be used at a time) 
whilst OPEN SHARED allows co-operating jobs running under a multi-user 
system to share a DMAM database file. The features of the open 
operation which are common to all file organisations, such as volume-
id checking, are described in detail in the Global Development File 
Management Manual. 
 
3.3.1 File Conditions 
The file not found ($$RES = "3") or wrong type ($$RES = "1") condition 
is returned if a file with DMAM database organisation and the same 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 20 of 72 

file-id as that specified in the FD is not present on the direct 
access volume. The index not present ($$RES = "2") condition is 
returned if the index whose name was specified is not defined in the 
database file. 
 
3.3.2 Exception Conditions 
The index needs rebuild exception ($$COND = 3) is returned if any 
index associated with the selected record set needs to be rebuilt. 
 
3.3.3 Successful Completion 
Providing no file condition or irrecoverable I/O error occurs, the 
OPEN operation completes successfully. The index specified in the 
INDEX statement is found, and access to the record set to which it 
applies is made possible via the appropriate key. The file size and 
record length are returned in the FD and made available to the user 
program if SIZE and RECORD LENGTH statements with the symbol option 
were coded. 
 
3.3.4 Programming Notes 
For C-ISAM format DMAM databases, the Global schema file is opened as 
described above. The C-ISAM file for the specified record set will 
also be opened (or marked as opened) by the C-ISAM Universal Channel 
Interface (UCI). The C-ISAM file will not be opened exclusively even 
if an OPEN OLD is issued. 
 
For Btrieve format DMAM databases, the Global schema file is opened as 
described above. The Btrieve file for the specified record set will 
also be opened (or marked as opened) by the Btrieve Universal Channel 
interface (UCI). The Btrieve file will not be opened exclusively even 
if an OPEN OLD is issued. 

 
3.4 The WRITE Statement 
WRITE is used to add a new record. It is coded: 
 

WRITE filename FROM A 
 
Here filename identifies the file definition and A is a simple or 
indexed variable, or a literal. If WRITE is attempted on an FD which 
is not already open the program will be terminated in error. 
 
3.4.1 File Conditions 
DMAM attempts to add the new record to the file and to insert entries 
for the various keys into the appropriate indexes. The key already 
exists condition ($$RES = "4") will be returned if any unique key on 
the record already exists in its index. Either a STOP CODE (see 
Appendix A) or the file space exhausted condition ($$RES = 5) will be 
returned if there is insufficient space in the file to contain the new 
record. 
 
3.4.2 Successful Completion 
Providing that no file condition or irrecoverable I/O error occurs, 
WRITE will add the new record to the database. The number of bytes 
transferred from the record at A to direct access storage will not 
depend on the picture clause of A but will be equal to the record 
length of the record set, defined when it was created. 
 
3.4.3 Programming Notes 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 21 of 72 

When a record which already exists is to be updated the REWRITE 
statement must be used. If some unique key has been changed then it 
must instead be deleted using the DELETE statement and then added 
using WRITE. 
 
If a record to be added has a record type which begins with an 
asterisk, then the WRITE operation will complete successfully but no 
activity will take place on the database (the deleted record is 
ignored). 
 
If the database becomes full when attempting to create a new index 
block, due to an index split having occurred, the failure routine will 
be entered if one has been established, otherwise the program will be 
terminated with a stop code. 

 
3.5 The REWRITE Statement 
REWRITE is used to update the record last accessed from a file. It is 
coded: 
 

REWRITE filename FROM A 
 
Here filename identifies the DMAM database file definition and A is a 
simple or indexed variable or literal. If REWRITE is attempted on an 
FD which is not already open the program will be terminated in error. 
 
3.5.1 Key Value Checking 
DMAM checks that the values of any unique keys supplied in A are the 
same as those of the record to be updated. If this is not the case the 
file operation will be suppressed and the unique key changed condition 
($$COND = 4) is generated. Unique keys cannot be changed by a REWRITE 
operation: to modify unique keys the record must be DELETED, and then 
added with a WRITE operation. 
 
3.5.2 Successful Completion 
Providing no unique keys have been modified, and no irrecoverable I/O 
error occurs, REWRITE will update the record last accessed. The number 
of bytes transferred from the record at A to direct access storage 
will not depend on the picture clause of A but will be equal to the 
record length of the file, defined when it was created. 
 
3.5.3 Programming Notes 
REWRITE avoids updating any indexes whose keys have not been changed 
on the record processed. It also performs a quick check to determine 
if the record is unchanged up to the end of the last field used in any 
index, and avoids rebuilding all the key information if this is the 
case. Therefore in the interests of efficiency you are advised to 
group all fields used as part of keys at the start of the record data 
area, and to place the variable data after all such key information, 
wherever possible. 
 
To maintain compatibility with ISAM, if the first character of the 
record type field is set to an asterisk (*) before issuing the REWRITE 
operation, then this is treated as if a DELETE operation had been 
issued as documented in section 3.6, except that it is not absolutely 
necessary to have obtained a DELETE-LOCK first. Nevertheless you are 
always advised to obtain a DELETE-LOCK before deleting a record, to 
ensure consistency of information in the database. 

 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 22 of 72 

3.6 The DELETE Statement 
The DELETE statement is used to delete the last record processed. You 
code: 
 

DELETE filename 
 
where filename identifies the DMAM database file definition. If the 
record you are deleting has not been locked with a DELETE-LOCK by a 
preceding READ type statement or if the FD is not already open then 
your program will be terminated in error. 
 
3.6.1 File conditions 
No file conditions can arise as a result of a DELETE statement. As the 
statement also requires that a DELETE-LOCK has been obtained on the 
record being deleted there should be no possibility of the record 
having been changed, but if this should occur then your program will 
be terminated in error. Such an error is only likely to arise if some 
program is deleting records using the ISAM compatible function of 
REWRITE (placing an asterisk in the first character of the record 
type) without any locking protecting the operation. 
 
3.6.2 Successful completion 
Providing that no irrecoverable I/O error occurs the record will be 
deleted from the database file, and the DELETE-LOCK will be released. 

 
3.7 The READ Statement 
READ is used to retrieve a record with a given key from the file. If 
the key is not present the operation attempts to retrieve the record 
whose key is immediately higher than the one specified. 
 
The READ statement is coded: 
 

READ filename INTO A [lock-type] 
 
Here filename identifies the DMAM database file definition, A is a 
simple or indexed variable and lock-type is one of LOCK, PROTECT or 
DELETE-LOCK as specified in section 3.1.10. If READ is attempted on an 
FD which is not already open the program will be terminated in error. 
 
3.7.1 Establishing the Key 
The key is established by setting up the various elements of the key 
within the record area before the READ statement is executed. The key 
elements will be replaced by different values if the record not found 
file condition occurs. 
 
3.7.2 File Conditions 
The record not found file condition will be returned if a record with 
the key you have specified is not present on the file. In this case 
DMAM will retrieve the record whose key is next higher in collating 
sequence than the one you specified, if such a record exists. 
 
If the key you supplied was greater than any key currently stored, the 
file condition will again be returned and the record area will be 
filled with high-values (to simulate ISAM dummy high record handling). 
Note that if the key you supply is present on the file, DMAM simply 
returns the appropriate record to you without returning a file 
condition. 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 23 of 72 

 
If the lock-type clause was coded DMAM will attempt to obtain the 
appropriate lock for you (see section 3.1.10). If this is not 
possible, for example due to some other user already having a 
competing lock, then the lock unavailable condition ($$COND = 3) is 
returned. The record will still be retrieved, but will not have been 
locked. 
 
Note that if the record not found condition has been returned then the 
record will not be locked, regardless of any lock option which might 
have been specified. 
 
3.7.3 Successful Completion 
Providing no permanent I/O error occurs and a key greater than or 
equal to the one you specified exists on the file, READ will transfer 
bytes from the record thus identified to A. The number of bytes 
transferred does not depend on the picture clause associated with A, 
but will be equal to the record length of the file defined when it was 
created. 

 
3.8 The READ NEXT and READ PRIOR Statements 
READ NEXT and READ PRIOR are used to process part or all of a file 
sequentially. READ NEXT processes keys in ascending sequence, and READ 
PRIOR processes keys in descending sequence. They are coded: 
 

READ NEXT filename [KEY LENGTH length] INTO A [lock-type] 
and: 

READ PRIOR filename [KEY LENGTH length] INTO A [lock-type] 
 
Here filename identifies the DMAM database file definition, length is 
an integer literal in the range 1 to 63, A is a simple or indexed 
variable and lock-type is one of LOCK, PROTECT or DELETE-LOCK as 
specified in section 3.1.10. If a READ NEXT or READ PRIOR is attempted 
on an FD which is not already open the program will be terminated in 
error. 
 
3.8.1 The Record Retrieved 
The record retrieved by READ NEXT or READ PRIOR depends on the 
previous file operation: 
 
● A READ NEXT following OPEN will retrieve the first record of the 

record set. If there are no records in the record set end of file 
will be returned; 

 
● A READ NEXT following a READ, READ NEXT, READ FIRST, READ LAST, 

READ PHYSICAL, WRITE, REWRITE or DELETE will retrieve the record 
immediately higher in collating sequence than the one just read 
processed. If there is no such record end of file will be returned; 

 
● A READ PRIOR following a READ, READ NEXT, READ FIRST, READ LAST, 

READ PHYSICAL, WRITE, REWRITE or DELETE will retrieve the record 
immediately lower in collating sequence than the one just 
processed. If there is no such record start of file will be 
returned; 

 
● A READ PRIOR following an OPEN will return start of file 

immediately. 
 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 24 of 72 

Where a KEY LENGTH clause was specified, the partial key established 
serves to delimit the range of the READ NEXT or READ PRIOR operation. 
If the key of the record retrieved does not match the partial key 
established in the record area the key match condition will be 
returned. 
 
Note that if the key length specified by the KEY LENGTH clause 
includes only part of a numeric key as the last segment addressed by 
the key length, then the record returned will be unpredictable. 
 
3.8.2 File Conditions 
The end of file condition ($$COND = 2) will be returned in response to 
READ NEXT if the record last accessed was the record with the highest 
key, or if the last file operation encountered end of file. When this 
condition occurs the record area is filled with high-values. The start 
of file condition ($$COND = 2) will be returned in response to READ 
PRIOR if the last record accessed was the record with the lowest key, 
or if the last file operation encountered start of file. Additionally, 
the key check condition ($$COND = 2) will be returned if a partial key 
was specified by the KEY LENGTH clause and the partial key established 
in the record area prior to the READ NEXT or READ PRIOR did not match 
the start of the key of the record retrieved. In this latter case the 
next record (in the case of READ NEXT) or previous record (in the case 
of READ PRIOR) will be retrieved. 
 
If the lock-type clause was coded DMAM will attempt to obtain the 
appropriate lock for you (see section 3.1.10). If this is not 
possible, for example due to some other user already having a 
competing lock, then the lock unavailable condition ($$COND = 3) is 
returned. The record will still be retrieved, but will not have been 
locked. 
 
Note that if the key match condition has been returned then the record 
will not be locked, regardless of any lock option which might have 
been specified. 
 
3.8.3 Successful Completion 
Providing no irrecoverable I/O error occurs, bytes will be transferred 
from the file to A. The number of bytes transferred will not depend on 
the picture clause associated with A, but will be equal to the record 
length of the file, defined when it was created. 

 
3.9 The READ FIRST and READ LAST Statements 
READ FIRST and READ LAST are used to retrieve the first or last record 
of a record set. They are coded: 
 

READ FIRST filename [KEY LENGTH length] INTO A [lock-type] 
and: 
 READ LAST filename [KEY LENGTH length] INTO A [lock-type] 
 
Here filename identifies the DMAM database file definition, length is 
a numeric literal in the range 1 to 63, A is a simple or indexed 
variable and lock-type is one of LOCK, PROTECT or DELETE-LOCK as 
specified in section 3.1.10. If a READ FIRST or READ LAST is attempted 
on an FD which is not already open the program will be terminated in 
error. 
 
3.9.1 The Record Retrieved 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 25 of 72 

The record retrieved by READ FIRST or READ LAST depends on partial key 
specified by the KEY LENGTH clause. If no partial key is specified 
either the very first, or very last, record of the record set is 
retrieved. If a partial key is specified the first, or last, record in 
the record set whose key start matches the partial key is retrieved. 
 
Note that if the key length specified by the KEY LENGTH clause 
includes only part of a numeric key as the last segment addressed by 
the key length, then the record returned will be unpredictable. 
 
3.9.2 File Conditions 
The end of file condition ($$COND = 2) will be returned in response to 
READ FIRST if there are no records in the record set. In this case the 
record area will be filled with high-values to simulate the dummy high 
record handling of ISAM. The start of file condition ($$COND = 2) will 
be returned in response to READ LAST if there are no records in the 
record set. Additionally the key check condition ($$COND = 2) will be 
returned if there is no record in the record set whose key start 
matches the partial key specified in the record area. In this case the 
record will not be returned, and the record area will remain 
unaffected by the operation. 
 
If the lock-type clause was coded DMAM will attempt to obtain the 
appropriate lock for you (see section 3.1.10). If this is not 
possible, for example due to some other user already having a 
competing lock, then the lock unavailable condition ($$COND = 3) is 
returned. The record will still be retrieved, but will not have been 
locked. 
 
3.9.3 Successful Completion 
Providing no irrecoverable I/O error or key match condition occurs, 
bytes will be transferred from the file to A. The number of bytes 
transferred will not depend on the picture clause associated with A, 
but will be equal to the record length of the file, defined when it 
was created. 

 
3.10 The READ PHYSICAL Statement 
READ PHYSICAL is used to retrieve a record with a given record address 
(for Global format DMAM databases) or a record with a given record 
number (for C-ISAM format and Btrieve format DMAM databases) from the 
file. You code: 
 

READ PHYSICAL filename INTO A [lock-type] 
 
Here filename identifies the DMAM database file definition, A is a 
simple or indexed variable and lock-type is one of LOCK, PROTECT or 
DELETE-LOCK as specified in section 3.1.10. The record address (or 
record number) must have been established in the area defined in the 
RECORD ADDRESS clause prior to the READ PHYSICAL operation being 
issued. If READ PHYSICAL is attempted on an FD which is not already 
open the program will be terminated in error. 
 
3.10.1 File conditions 
If the READ PHYSICAL attempts to return a deleted record then the 
record deleted condition ($$COND = 2) is returned. 
 
If the lock-type clause was coded DMAM will attempt to obtain the 
appropriate lock for you (see section 3.1.10). If this is not 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 26 of 72 

possible, for example due to some other user already having a 
competing lock, then the lock unavailable condition ($$COND = 3) is 
returned. The record will still be retrieved, but will not have been 
locked. 
 
3.10.2 Successful completion 
Providing no irrecoverable I/O error occurs, bytes will be transferred 
from the file to A. The number of bytes transferred will not depend on 
the picture clause associated with A, but will be equal to the record 
length of the file, defined when it was created. 
 
3.10.3 Programming notes 
When a READ PHYSICAL operation is performed, the data is transferred 
from the physical record address established by the calling program. 
No checking is performed to ensure that this is in fact a record 
boundary, it being assumed that the calling program has saved a record 
address correctly. It is also the responsibility of the calling 
program to perform suitable validation checks on the record retrieved 
before processing it, as it may have been deleted, reused or updated 
since its address was saved. 
 
Normally after a file processing statement has completed the RECORD 
ADDRESS field will contain the address (or record number) of the 
record last processed. However after a start of file condition has 
been returned (and immediately after an OPEN operation) the RECORD 
ADDRESS field will be zero, and after an end of file condition the 
RECORD ADDRESS field will contain -1. Programs should not attempt a 
READ PHYSICAL with either of these record addresses. 
 
It is generally inappropriate to keep a physical record address from 
one run of a program to another, as any reorganisation of the database 
which might be performed between the two program runs would certainly 
invalidate the address. 
 
An example of a situation where a READ PHYSICAL might be useful is in 
a sort. Records would be read from the database using READ NEXT, and 
the sort key constructed from them, with the record address appended 
as in a tag sort. When the sorted records are returned READ PHYSICAL 
is used to retrieve the records, thereby avoiding any index processing 
and speeding the whole process considerably. 
 
It should be noted that a record may have been updated between these 
two accesses, or deleted, or even deleted and reused for a completely 
different record. It is therefore essential that either the entire 
process is carried out so that no such interference can occur (by 
having the file OPENed OLD, for example), or that the returned record 
is checked to ensure its validity (the sort ensuring that it still 
matches the selection criteria, and that the sort key in the record 
matches that in the tag sort, i.e. that none of the sort fields have 
been updated). In practice the former solution is normally impractical 
for various reasons. If a record has been updated so as to no longer 
be valid, you will probably have to ignore it. 

 
3.11 The UNLOCK Statement 
The UNLOCK statement is used to release any locks outstanding from a 
previous READ type operation using a lock-type clause. You code: 
 

UNLOCK filename 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 27 of 72 

 
where filename identifies the DMAM database file definition. If an 
UNLOCK is attempted on an FD which is not already open the program 
will be terminated in error. 
 
3.11.1 Successful completion 
Any outstanding lock on the file due to a previous READ type operation 
on the FD passed to the UNLOCK is released. 
 
Note particularly that any lock gained through use of the LOCK verb is 
not released by this UNLOCK statement, but must be released by using 
an UNLOCK filename region statement as documented in the Global 
Development File Management Manual. 

 
3.12 The CLOSE Statement 
CLOSE must be used to terminate the processing of a file. It is coded: 
 

CLOSE filename [TRUNCATE|DELETE] 
 
where filename identifies the DMAM database file definition. If a 
CLOSE is attempted on an FD which is not already open the program will 
be terminated in error. 
 
3.12.1 Standard Processing 
CLOSE always completes any outstanding I/O operations on the file and 
returns the FD to the status it possessed prior to being opened. 
Following CLOSE, the FD can be re-opened for the same, or a different, 
DMAM database file using the same, or a different, index by a 
subsequent OPEN statement. 
 
3.12.2 Truncation 
If the TRUNCATE phrase is coded, DMAM will return the unused part of 
the overflow area, if any, to the volume so that it can be re-
allocated. 
 
3.12.3 Deletion 
If the DELETE phrase is coded all the space the file occupies is 
returned to the volume and its file-id is erased from the directory. 
Following a CLOSE DELETE the file no longer exists. 
 
Warning: A CLOSE DELETE will delete the entire database file. This 
option should be used with extreme caution. 
 
3.12.4 Programming Note 
WRITE, REWRITE and DELETE operations on a DMAM database file are 
effected immediately. Should a computer fail whilst attempting one of 
these operations a subsequent OPEN will notice this, and will 
undertake suitable recovery action to ensure data integrity and 
consistency. This feature, which is only available with Global format 
DMAM databases, is intended to protect files which are updated 
interactively from damage in event of machine failure. 
 
The CLOSE statement on a DMAM database releases any locks outstanding 
on the particular FD which were gained through use of the DMAM LOCK 
option (see section 3.1.10) on a READ type statement. CLOSE does not 
release any other locks (including locks on other FDs, or locks gained 
through the use of the LOCK verb), unless the CLOSE releases the last 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 28 of 72 

active channel on the database file. In practice this means you should 
exercise extreme caution in using the LOCK verb with a DMAM database. 
Always ensure that any locks you obtain using the LOCK verb are 
explicitly released using an UNLOCK verb. 

 
3.13 ISAM Compatibility 
One of the aims of the DMAM file organisation is to provide a 
straightforward upgrade path for an existing program using ISAM files. 
To this end the processing of a record set which has only a single 
unique key is as close as practical to that of ISAM. The following 
differences in the interface exist, and should be noted by program 
developers who are planning such an upgrade: 
 
● The structure of the DMAM FD is quite different to that of ISAM. 

Most notably the index name is what would have been the file name 
with ISAM (and the database file name is probably the same for a 
whole program suite), so this must be set up differently. The DMAM 
FD is also larger than the ISAM FD (248 bytes compared to 96). 

 
● The syntax of the OPEN operation is different, as the index area 

passed to optimise READ NEXT and PRIOR processing is 516 bytes long 
(rather than 256), and there is no particular advantage to passing 
this area for random READ and REWRITE processing. 

 
● The WRITE statement cannot be used to update an existing record 

with DMAM, as it could with ISAM. This could be a problem with 
create/amend type programs which use common code to write the new 
or updated record to the file, but such processing is often the 
cause of serious program errors, and the decision to restrict the 
WRITE handling in DMAM has been taken to eliminate such problems. 

 
● There is a new DELETE statement which ideally should be used to 

delete records, although the ISAM compatible REWRITE with asterisk 
in the record type is still supported. However, deleted records 
cannot be processed by the application. This is no problem if 
OPTION IGNORE or some similar processing was already being 
performed, but any program which was relying on its ability to read 
a deleted record will need to be redesigned. 

 
● READ and READ NEXT operations which encounter end of file simulate 

the ISAM dummy high record processing by filling the record area 
with high-values. Although this is not precisely the same 
processing, it should be sufficiently close not to cause any 
serious problems. 

 
● The DMAM access method is considerably larger than ISAM. Refer to 

Appendix B for details concerning the size of DMAM. 
 
In practice anyone upgrading a program will almost certainly wish to 
take advantage of the extra file processing statements available with 
DMAM (READ PRIOR, READ FIRST, READ LAST and the lock options), and 
will very likely add extra non-unique keys to the records. 
Nevertheless the basic structure of existing programs can be easily 
modified to utilise DMAM. 

 
3.14 Data Management Access Method Variations 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 29 of 72 

The V8.1 Global Cobol Data Management system includes three variations 
of the Data Management Access Method (DMAM): 
 
● Non Memory Page sub-routines for Global format DMAM databases only 

(see 3.14.1); 
 
● Memory Page sub-routines for Global format DMAM databases only (see 

3.14.2); 
 
● Memory Page sub-routines for Global format, C-ISAM format and 

Btrieve format DMAM databases (see 3.14.3). 
 
The variation of DMAM used by an application is determined at link-
time. 
 
3.14.1 Default DMAM 
The version of DMAM linked by default into an application will be the 
non-Memory Page sub-routine AM$A which is only capable of accessing 
Global format DMAM databases. 
 
This version includes all the DMAM code within the subroutine and will 
operate on all versions of Global System Manager from V7.0 onwards. If 
you wish to use any other variation of DMAM the subroutine must be 
linked explicitly (see sections 3.14.2 and 3.14.3). 
 
3.14.2 Memory Page Global-only DMAM 
Memory Page Global-only DMAM will only operate on Global System 
Manager V8.1, or later. 
 
When this DMAM variation is linked into an application most of the 
access method code is held within a Global System Manager memory-page. 
Thus, the effective size of the sub-routine is very much reduced (see 
appendix B). 
 
This DMAM variation is only capable of accessing Global format DMAM 
databases. 
 
In order for your application to use Memory Page Global DMAM you must 
explicitly link module AM$Z into your code. This is simply achieved by 
specifying library C.$PAGES when linkage editing using $LINK. For 
example: 
 

$44 LINK:DMAPPN  UNIT:210 
$44 LINK:C.$PAGES  UNIT:202 
$44 LINK:<CR> 

 
If the additional libraries C.$MCOB or C.$APF are included in the 
linkage edit, they must be specified AFTER C.$PAGES. The C.$PAGES 
compilation library is distributed as part of the Global Cobol 
Development system. 
 
3.14.3 Memory Page Open DMAM 
Memory Page Open DMAM will only operate on Global System Manager V8.1, 
or later. 
 
When this DMAM variation is linked into an application most of the 
access method code is held within a Global System Manager memory-page. 
Thus, the effective size of the sub-routine is very much reduced (see 
appendix B). 



Chapter 3 - The Data Management File Organisation 

 

 

Global Development Data Management Manual V8.1  Page 30 of 72 

 
This version of DMAM can be used to access Global format, C-ISAM 
format and Btrieve format DMAM databases. This is the only DMAM 
variation that is capable of accessing C-ISAM format or Btrieve format 
DMAM databases. 
 
C-ISAM format DMAM databases are only supported on Global System 
Manager (Unix) (i.e. if the "Machine family code" as displayed by $S 
is "C2"). However, not all Global System Manager (Unix) configurations 
include the C-ISAM UCI. The Global Configuration Notes indicate 
whether the C-ISAM UCI is supported on a particular configuration. 
 
Btrieve format DMAM databases are only supported on Global System 
Manager (MS-DOS and Windows) and Global System Manager (Novell 
NetWare) (i.e. if the "Machine family code" as displayed by $S is 
"JW"). However, not all Global System Manager (MS-DOS and Windows) or 
Global System Manager (Novell NetWare) configurations include the 
Btrieve UCI. The Global Configuration Notes indicate whether the 
Btrieve UCI is supported on a particular configuration. 
 
All file access statements are as described earlier in this chapter. 
The creation and maintenance of C-ISAM format and Btrieve format DMAM 
databases is described in chapter 5. 
 
In order for your application to use Memory Page Global DMAM you must 
explicitly link module AX$Z into your code. This is simply achieved by 
specifying module AX$Z in library C.$PAGES when linkage editing using 
$LINK. For example: 
 

$44 LINK:DMAPPN  UNIT:210 
$44 LINK:C.$PAGES/AX$Z  UNIT:202 
$44 LINK:C.$PAGES  UNIT:202 
$44 LINK:<CR> 

 
If the additional libraries C.$MCOB or C.$APF are included in the 
linkage edit, they must be specified AFTER C.$PAGES. The C.$PAGES 
compilation library is distributed as part of the Global Cobol 
Development system. 
 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 31 of 72 

4. Further Data Management File Handling 
 
This chapter describes the various system routines which are available 
as part of the Global Cobol Data Management system. 
 
Each system routine performs a specific function. If the functionality 
of a DMAM system routine is analogous to that of an ISAM system 
routine, the programming notes will explain the similarities. 

 
4.1 Set up for use of DMAM, DBSET$ 
For Global System Manager V6.0, it is absolutely essential that the 
DBSET$ routine is called by a program, or suite of programs, before 
DMAM itself is used. It is responsible for ensuring that a suitable 
key build routine, which is used to create all keys used by DMAM, is 
established with its entry point in the Global System Manager SVC 63 
pointer field. 
 
4.1.1 Invocation 
To set up for use of DMAM you code: 
 

CALL DBSET$ 
 
4.1.2 Exceptions 
Exception condition 1 is returned if DBSET$ is unable to attach a 
suitable key build routine. This will always occur on a V5.0 or 
earlier system. It will also occur on a V5.1, V5.2 or V6.0 system if 
DBSET$ is unable to load the assist file containing the key build 
routine. This file is conventionally named "%.a0V63 ", where a is the 
computer architecture code, and should be located on SYSRES. An 
attempt to load a Global Cobol version of the routine (named "%.00V63 
") is made if no assembler-specific component can be found. Failure to 
load the key build routine can occur either because it cannot be 
found, or because there is insufficient space in the user stack for it 
to be loaded. 
 
4.1.3 Programming Notes 
It is unnecessary to call DBSET$ on Global System Manager V6.1, or 
later, ($$VERS > 3) as the key build routine will already be present 
in the loaded nucleus. DBSET$ will however detect this situation and 
avoid loading a second copy of the routine. 
 
If a copy of the key build routine is loaded into the system stack (by 
a Load Customisation for example) then DBSET$ will use this rather 
than loading another copy into the user stack. 
 
Copies of the assist files are present on your Global Cobol 
Development distribution diskette (MKA). You should ensure that 
appropriate assist files are copied to a pre-V6.1 SYSRES before 
attempting to run a program which will use DMAM. Note, in particular, 
this copy procedure is NOT necessary for Global System Manager V8.1. 
 
DMAM will not run on a V5.0, or earlier, system, so DBSET$ will always 
return an exception on such a system. 
 
If you wish to unload the key build routine using UNLO$ you must first 
call it with no parameters to cause it to detach itself from Global 
System Manager. 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 32 of 72 

 
4.2 The DMAM index rebuild routine, IRBLD$ 
The IRBLD$ routine is used to rebuild an index (or a series of indexes 
associated with a single record set) in situ on a DMAM database file. 
 
4.2.1 Invocation 
To rebuild an index, or group of indexes you use a CALL statement of 
the form: 
 

CALL IRBLD$ USING filename sortfile [option] 
 
The filename is the name of a DMAM file definition, which must be 
closed when the routine is called, and will remain closed when it 
returns control. The INDEX NAME must be established in the FD before 
IRBLD$ is called, to identify which index or record set is to be 
processed. 
 
The sortfile is a sort work file suitable for use by the Global Cobol 
MSORT$ routine (documented in the Global Development File Management 
Manual), which is used by IRBLD$ when sorting the keys in the index. 
IRBLD$, when called on Global Cobol files, will pass to the sort a tag 
record consisting of the DMAM key and a 4-byte file address for each 
record in the set which does not contain an ignored key value. $CALC, 
or the algorithm for calculating sort sizes documented in the Global 
Development File Management Manual, may thus be used to estimate the 
memory and file size required for the sort (e.g. if an index contains 
10,000 records with a total key length of 35 bytes, with 5K of free 
memory the sort would require 396K of work file). 
 
The optional third parameter, option, is a PIC 9(4) COMP field or 
integer literal which should be non-zero if IRBLD$ is being used to 
rebuild all the indexes associated with a record set. If it is 1 all 
indexes which are marked as requiring rebuilding are rebuilt (an index 
is marked as requiring rebuilding whenever an index rebuild is 
initiated on it, in case the computer fails whilst it is in progress, 
and whenever the data take-on routines are used to add records without 
updating the index). If it is -1 all indexes are rebuilt. When the 
third parameter is omitted, or set to zero, then the index named in 
the INDEX NAME in the DMAM FD will be rebuilt. 
 
4.2.2 Exception Conditions 
Exception condition 1 will be returned if an irrecoverable I/O error 
occurs when attempting to OPEN the DMAM database file. 
 
Exception condition 2 will be returned if the DMAM file cannot be 
found, or if the index specified by the INDEX NAME statement is not 
defined within the database. 
 
Note that MSORT$ exceptions may also be returned from IRBLD$ (MSORT$ 
is documented in the Global Development File Management Manual). 
 
4.2.3 Processing 
If IRBLD$ is processing more than a single index, then each index is 
processed separately. 
 
For the index being processed IRBLD$ first sets the flag in the index 
area to indicate that the index requires rebuilding, in case the 
reorganise should be interrupted for some reason. 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 33 of 72 

 
For Global format DMAM databases all the index data blocks currently 
in use by the index are deleted. Each allocation extent of the file is 
examined, and if it contains records of the correct record set these 
are scanned and their keys are passed to the SORT. When the whole file 
has been processed the keys are sorted into order, and the index is 
then recreated from the returned key values. The index is rebuilt with 
an amount of spare space as determined from the index usage type set 
up for the index by the database maintenance utility, DBMAIN. 
 
For C-ISAM format and Btrieve format DMAM databases the indexes are 
deleted and added again in effect doing a rebuild. 
 
Once the index has been completely rebuilt, the flag in the index area 
is cleared and IRBLD$ either exits or determines the next index to 
process, as appropriate. 
 
4.2.4 Programming Notes 
Except under exceptional circumstances it should not be necessary to 
call IRBLD$ during normal working with a DMAM database. Large numbers 
of deletions, or extensive record addition may, however, make this 
desirable. 
 
It is essential to call IRBLD$ to rebuild all indexes associated with 
a record after any records are added using the data take-on routines 
documented in section 4.5. If this is neglected, then any attempt to 
use the DMAM database will result in an exception from the OPEN 
statement, indicating that an index rebuild is required. 
 
IRBLD$ provides some of the functions of CONV$ on an ISAM file, in 
that it reorganises the indexes. However IRBLD$ does not recover space 
occupied by deleted records or index data blocks, nor physically 
reorganise the layout of the records themselves. 

 
4.3 The Database Statistics routines, DBSTA$ and 
DBCLC$ 
The database statistics routines are used to gain information about 
the data contained within a DMAM database. They each function on a 
single record set at a time, allowing a program to build up 
information about a series of record sets and hence to determine 
information about the database file as a whole. 
 
Typically a program would begin by calling DBSTA$, to gain information 
about the current state of a record set. Then certain pieces of 
information, such as the number of records in use, would be updated 
and DBCLC$ would be called to determine the effect of the changes. 
This process would be repeated for each record set of interest, 
accumulating data on the effects so as to enable a sensible decision 
to be made at the conclusion of the processing. 
 
4.3.1 The DBSTA$ Routine 
The DBSTA$ routine is used to gain information about a record set 
within a DMAM database. 
 
The DBSTA$ routine is invoked by a CALL statement of the form: 

 
CALL DBSTA$ USING filename si 

 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 34 of 72 

The filename is the name of a DMAM file definition, which must be open 
when the routine is called and will remain open when it returns 
control. The index specified by the INDEX NAME in the FD will 
determine for which record set information is returned. 
 
The second parameter, si, defines a set information area in the format 
shown below, where the data will be returned. 
 
4.3.2 The DBCLC$ Routine 
The DBCLC$ routine is used in conjunction with DBSTA$ to make 
estimates of the amount of space required for a database. DBCLC$ is 
invoked by a similar call, of the form: 
 

CALL DBCLC$ USING filename si 
 
Again filename identifies a DMAM FD, and si a set information area, 
but for DBCLC$ the FD does not have to be open. DBCLC$ will 
recalculate the various file space fields in the SI block on the basis 
of the number of records set up, which will presumably have been 
altered by the calling program. 
 
DBCLC$ makes use of certain fields within the DMAM FD, such as the 
record length, when calculating the file space occupied by a record 
set. 
 
4.3.3 The SI Set Information Block 
The set information block is laid out as follows: 
 

01 SI 
  02 SIFSIZ  PIC 9(9) COMP  * used file size 
  02 SISID  PIC X(2)   * set identifier 
  02 SISNAM PIC X(30)   * set description 
  02 SIALL  PIC 9(9) COMP  * allocation size 
  02 SIRPA  PIC 9(9) COMP  * records/allocation 
  02 SIIALL  PIC 9(9) COMP  * IDB allocation size 
  02 SIIPA  PIC 9(9) COMP  * IDBs/allocation 
  02 SINREC PIC 9(9) COMP  * number/records in use 
  02 SIFREC PIC 9(6) COMP  * number of free records 
  02 SINIDX PIC 9(2) COMP  * number of indexes 
  02 SITRSZ PIC 9(9) COMP  * total record size 
  02 SITNIB PIC 9(6) COMP  * total number of IDBs 
  02 SITISZ  PIC 9(9) COMP  * total index size 
  02 SII OCCURS 16 
    03 SIINAM  PIC X(8)   * index name 
    03 SIITKL  PIC 9(2) COMP  * total key length 
    03 SIIUNI  PIC 9 COMP   * unique flag 
    03 SIIPCU  PIC 9(1,1) COMP  * amount used 
    03 SIILEV  PIC 9(2) COMP  * index levels in use 
    03 SIINIB  PIC 9(6) COMP  * no. IDBs in index 
    03 SIISIZ  PIC 9(9) COMP  * index size 

 
4.3.4 Information returned by DBSTA$ 
When DBSTA$ completes normally the routine returns the information in 
the SI block as indicated below. Fields marked with a 1 are returned 
by DBSTA$, and used by DBCLC$ in its calculations. Fields marked with 
a 2 are always calculated whenever DBSTA$ or DBCLC$ are called. 
Unmarked fields are returned by DBSTA$ and not used by DBCLC$. 
 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 35 of 72 

SIFSIZ  The total used size of the file (i.e. the amount 
actually allocated for use as records and index 
blocks). The free space in the file is therefore the 
total file size (from the SIZE statement in the FD) 
less SIFSIZ. For C-ISAM format and Btrieve format DMAM 
databases, 0 will be returned in this field. 

 
SISID  The set identifier of the currently selected 

record set. 
 

SISNAM The long description of the currently selected record 
set. 

 
SIALL1  The size of the allocation extent of the currently 

selected record set. In conjunction with SIRPA this is 
used to determine the file space occupied by the record 
set. For C-ISAM format and Btrieve format DMAM 
databases, 0 will be returned in this field. 

 
SIRPA2  The number of records which will fit into each 

extent allocation. For C-ISAM format and Btrieve format 
DMAM databases, 0 will be returned in this field. 

 
SIIALL1 The allocation extent used for index data blocks 

(IDBs). For C-ISAM format and Btrieve format DMAM 
databases, 0 will be returned in this field. 

 
SIIPA2  The number of IDBs which will fit into each extent 

allocation. For C-ISAM format and Btrieve format DMAM 
databases, 0 will be returned in this field. 

 
SINREC1 The number of records in use for the currently selected 

record set. 
 

SIFREC1 The number of records in the free record chain for the 
currently selected set, including any unused records 
from the last extent allocated. This many records may 
be added to the record set without requiring any 
further record extents to be allocated. For C-ISAM 
format and Btrieve format DMAM databases, 0 will be 
returned in this field. 

 
SINIDX1 The number of indexes defined for the currently 

selected record set. There will be one occurrence of 
the SII data area for each index defined. 

 
SITRSZ2 The total size occupied by the records in the record 

set. 
 

SITNIB2 The number of IDBs in use by all the indexes on the 
record set if they were fully reorganised (sum of 
SIINIB for all indexes). For C-ISAM format and Btrieve 
format DMAM databases, 0 will be returned in this 
field. 

 
SITISZ2 The total size required by the number of IDBs given in 

SITNIB above. For C-ISAM format and Btrieve format DMAM 
databases, 0 will be returned in this field. 

 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 36 of 72 

The following data fields occur once for each index on the record set, 
as specified in SINIDX. The data in occurrences greater than SINIDX is 
unpredictable. 
 

SIINAM The name of the index. 
 

SIITKL1 The total length of the key which is contained in the 
index. For C-ISAM format and Btrieve format DMAM 
databases, the Global key length will be returned in 
this field. 

 
SIIUNI1 A flag indicating whether keys in the index must be 

unique or not. 0 indicates that keys must be unique. 1 
indicates that keys may be non-unique. 2 indicates that 
keys may be non-unique and that keys of either spaces 
or low-values (or both) are omitted from the index. 

 
SIIPCU1 A field indicating how much of each index block is used 

when the index is reorganised. For C-ISAM format and 
Btrieve format DMAM databases, 0 will be returned in 
this field. 

 
SIILEV  The number of levels in the index (i.e. how many 

IDBs need to be read before a record may be retrieved 
when reading the file). For C-ISAM format and Btrieve 
format DMAM databases, 0 will be returned in this 
field. 

 
SIINIB2 The number of IDBs that would be used by this index if 

it were reorganised. For C-ISAM format and Btrieve 
format DMAM databases, 0 will be returned in this 
field. 

 
SIISIZ2  The amount of file space required to hold the 

number of IDBs indicated by SIINIB. For C-ISAM format 
and Btrieve format DMAM databases, 0 will be returned 
in this field. 

 
4.3.5 Exception Conditions 
Exception condition 1 is returned if an overflow occurs while 
attempting to calculate the various file size fields. If such an 
exception does occur the contents of the SI block are unpredictable. 
 
4.3.6 Programming Notes 
DBSTA$ only returns information for a single record set, so if you are 
attempting to gather information for allocating a complete database 
you will need to call DBSTA$ for each record set to be contained 
within the database. Similar processing is required if you are 
considering a file reallocation using calls of DBCLC$. 
 
Normally you should call DBSTA$ before calling DBCLC$, to establish 
the various parameters which are held within the database file. You 
will typically wish to change the value of SINREC before calling 
DBCLC$. If the value of SIFREC is large you should reduce this field 
by the same amount you increase SINREC by, to avoid overestimating the 
file space occupied by the records. Never set SIFREC to a value less 
than zero. 
 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 37 of 72 

When DBCLC$ is called it assumes that the fields set up by DBSTA$ have 
been correctly established, and proceeds to calculate the other fields 
as detailed above. First the values of SIRPA and SIIPA are deduced 
from the values of SIALL and SIIALL. Then the value of SITRSZ is 
deduced from the values of SINREC and SIFREC, along with SIRPA and 
SIALL and the record length established in the DMAM FD. For each index 
the values of SIINIB and SIISIZ are deduced from SINREC, SIALL, 
SIIALL, SIITKL and SIIPCU, and as a result the value of SITNIB is 
determined. From this the value of SITISZ may be calculated. 
 
When performing the calculation of the size of an index where some key 
values are omitted (SIIUNI = 2), DBCLC$ assumes that 20% of the 
records will appear in the index. If your application has information 
that renders this estimate inaccurate you must compensate by adjusting 
the calculated index size, and the total index size, by a suitable 
amount. 
 
The file space fields returned by a call on DBSTA$ or DBCLC$ are 
idealised values, which would be accurate if the indexes were freshly 
reorganised and the allocation extent sizes had never been altered. It 
is entirely likely that the summation of the various record and index 
sizes for all record sets within a database would yield a different 
value than the total used file size, and any estimate of the current 
used file size for file reallocation purposes should use the greater 
of such a summation and the value of SIFSIZ. 
 
Nevertheless, differences between the current size returned by DBSTA$ 
and the size in some other situation as determined by DBCLC$ should be 
sufficiently accurate to permit sensible estimation of file sizes for 
allocation or reallocation purposes. 
 
When record and index sizes are calculated, they are rounded up to a 
whole number of allocation extents. The size of each individual index 
is rounded, but the total index size is a rounding of the space 
required for the total number of IDBs contained in all the indexes. 
 
If you wish to make similar allowances in any revisions to the 
returned figures that you may make, you should consult Appendix C to 
determine how the values are calculated. 
 
As the figures returned by DBCLC$ are idealised mid-range estimates of 
the file size required to hold the indicated number of estimates, they 
may not be the best basis on which determine the size of a new file 
which is intended to be large enough to hold a given number of records 
(DBCLC$ cannot return worst case estimates, as CALC$ does for ISAM 
files, because the size of file required to hold the data in the worst 
case might be over one hundred times greater than the mid-range 
estimate). To be reasonably sure that a file will be large enough to 
hold a given number of records, you should first calculate the record 
space required using the correct number of records, and then calculate 
the index space required with the number of records increased by 30%. 
The resulting figure will give a file size large enough to hold the 
indicated number of records over 99% of the time. 
 
In any case, when using DBCLC$ to calculate file sizes, you should 
beware of sizes returned which are close to a boundary requiring an 
extra allocation extent for either IDBs or records. If the boundary is 
actually crossed when the file is used, then the resulting file will 
be larger than the estimated value (possibly much larger in the case 
of a file containing only a small number of records). It is generally 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 38 of 72 

a good idea to allow a spare allocation extent for IDBs (at least) 
when estimating the size of a file which will contain less than a 
thousand records, regardless of whether the above estimating 
techniques have been used. For files with larger numbers of records, 
the above technique is recommended in any case, and will yield 
superior results to merely increasing the file size by a fixed amount. 
 

4.4 The Index Key Segment subroutine, DBKES$ 
The DBKES$ subroutine is used to obtain details of the key segment 
structure for the indexes in a database. The subroutine functions on a 
single record set at a time, allowing the program to obtain key 
information about a series of record sets and hence determine the key 
information of the database as a whole. 
 
4.4.1 Invocation 
The DBKES$ routine is invoked by a CALL statement of the form: 
 

CALL DBKES$ USING filename sg 
 
The filename is the name of a DMAM file definition, which must be open 
when the routine is called and will remain open when it returns 
control. The index specified by the INDEX NAME in the FD will 
determine which record set information is returned. 
 
The second parameter, sg, defines the key information area defined as 
follows: 
 

01 SG 
  02 SGNIDX PIC 9(2) COMP * Number of used index in record 

set 
  02 SGINX OCCURS 16   * For each possible index 
    03 SGINAM   PIC X(8)  * Index name 
    03 SGITKL   PIC 9(2) COMP * Total key length 
    03 SGKINX   PIC 9(2) COMP * Index into key table of the 

first key segment 
       * of this index 

  02 SGKSEG OCCURS 64  * Key segment data 
    03 SGKSTY   PIC X(2)  * Segment type 
    03 SGKSOF   PIC 9(4) COMP * Key offset 
    03 SGKSLE   PIC 9(2) COMP * Segment length 
    03 SGKSTL   PIC 9(2) COMP * Translation length; 0 = no 

translation 
 
4.4.2 Information returned by DBKES$ 
When DBKES$ returns without an exception the routine returns the 
information in the sg block as follows: 
 

SGNIDX This is the number of used indexes in the record set, 
and hence the number of used entries in the SGINX 
table. 

 
SGINAM The index name. 

 
SGITKL The total length of the key which is contained in the 

index. 
 

SGKINX The index into the key segment table, SGKSEG, of the 
first segment of this index. 

 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 39 of 72 

SGKSTY The key segment type (e.g. "CA" computational 
ascending). 
 

SFKSOF The offset from the start of the record of this key 
segment. 
 

SGKSLE The length of this key segment. 
 

SGKSTL The translation length of this key segment. This length 
will be 0 if there is no translation for this key 
segment. 

 
4.4.3 Programming notes 
DBKES$ only returns information for a single record set, so if you are 
attempting to gather information about the complete database you will 
need to call DBKES$ for each record set to be contained within the 
database. 
 
Generally the DBKES$ routine will be used in verifying that the 
correct version of a particular database is being processed. This 
subroutine can also be used to check if any unauthorized amendment of 
the database has occurred. 

 
4.5 The Data Take-on routines, DTOPN$, DTWRT$ and 
DTCLS$ 
The data take-on routines are provided to enable a program to load a 
large number of records into a DMAM database without the overhead of 
adding index entries and splitting index blocks. They are principally 
of interest in data conversion programs which transfer large amounts 
of data from an existing system into a DMAM database file. 
 
To use the data take-on routines, you must use DTOPN$ to open the DMAM 
database, followed by repeated calls on DTWRT$ to add the required 
records. When all the records have been written you close the database 
using DTCLS$, and you would then normally use IRBLD$, documented in 
section 4.2 of this manual, to build the various indexes for the 
records added. 
 
4.5.1 Open Database for Data Take-on, DTOPN$ 
The DTOPN$ routine is called to open the DMAM database for data take-
on processing. You code: 
 

CALL DTOPN$ USING filename 
 
The filename is the name of a DMAM file definition, which must be 
closed when the routine is called and will be open when it returns 
successfully. The index specified by the INDEX NAME clause in the FD 
will determine which record set is made available for addition. The 
database is opened as if an OPEN OLD statement had been coded, so no 
other program can use the database file while data take-on is in 
progress. 
 
4.5.2 Writing a record, DTWRT$ 
The DTWRT$ routine is used to write a record to the database without 
updating any indexes. You code: 
 

CALL DTWRT$ USING filename record 
 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 40 of 72 

The filename is the name of a DMAM file definition which must have 
been previously opened by a call of DTOPN$. The record identifies the 
record which is to be written to the database. 
 
4.5.3 Terminating Data Take-on, DTCLS$ 
The DTCLS$ routine is used to indicate that you have finished data 
take-on, and want to close the database file so that it may be used 
for another purpose. You code: 
 

CALL DTCLS$ USING filename 
 
The filename is the name of a DMAM file definition which must have 
previously been opened by a call of DTOPN$, and which will be closed 
when the routine returns control. 
 
4.5.4 Exception Conditions 
DTOPN$ will return exception condition 1 if an irrecoverable I/O error 
occurs while attempting to open the database file. Exception condition 
2 will be returned if the specified file cannot be found, or if it 
does not contain the index specified by the INDEX NAME clause of the 
FD. 
 
DTWRT$ will return exception condition 2 if there is insufficient 
space in the database file to add the new record. Irrecoverable I/O 
errors will be passed to the failure routine defined in the ON FAILURE 
clause if they occur. 
 
4.5.5 Programming Notes 
When the record set is made available for data take-on, by a call on 
DTOPN$, all the indexes associated with it are marked as requiring 
rebuilding. Even if no records are added by calling DTWRT$ it will be 
necessary to call IRBLD$ to rebuild the indexes before the database 
may be used for normal processing. 
 
While a database is open via DTOPN$ the FD may not be used for 
ordinary READ and WRITE statements, and any attempt to perform 
ordinary DMAM I/O statements via the FD will result in your program 
being terminated with a STOP code. Similarly if either DTWRT$ or 
DTCLS$ is attempted on an FD opened using an ordinary OPEN statement 
your program will be terminated with a STOP code. 
 
After adding all the required records you must call IRBLD$ to rebuild 
all the indexes associated with the record set before attempting 
ordinary processing of the records. If you do not then any attempt to 
access the record set will result in an exception from the OPEN 
statement as indicated in section 3.3. 
 
No checking of input key values takes place when DTWRT$ is called, so 
it is possible to write records into the database with conflicting 
unique key values. If this should occur IRBLD$ will terminate with a 
stop code during index rebuild, and it will be necessary to change the 
key definition to make the index non-unique (using DBMAIN), rebuild 
the index, and then delete offending duplicate entries before the 
index can be made unique again and rebuilt correctly. This is clearly 
an undesirable process to follow, so it is very important to ensure 
that new records being written to the database have distinct unique 
key values, both from themselves and from those of any other records 
in the database. Where records are converted from an existing ISAM 
application this will automatically be the case for the ISAM key 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 41 of 72 

field. In other situations you should either take appropriate 
precautions to ensure key clashes do not occur, or not use DTWRT$ at 
all. 

 
4.6 The Key Read routines 
A number of special routines are provided to enable you to perform a 
key read on a DMAM database without retrieving the record identified. 
When the key read routine is called the conventional processing of the 
DMAM index takes place, but instead of passing back the record the 
routines exit leaving the record address in the RECORD ADDRESS field 
within the DMAM FD, so that it may be retrieved by a subsequent READ 
PHYSICAL operation on the DMAM database. 
 
In addition, for Global format DMAM databases, the key read routines 
leave the record key in the extension area of the FD, so that it may 
be examined by the program. 
 
Note that for C-ISAM format and Btrieve format DMAM databases ignore 
keys will not be honoured. 
 
4.6.1 Invocation 
Each key read routine is invoked by a call of the form: 
 

CALL DBREK$ USING filename record 
CALL DBRFK$ USING filename record [key-length] 
CALL DBRLK$ USING filename record [key-length] 
CALL DBRNK$ USING filename record [key-length] 
CALL DBRPK$ USING filename record [key-length] 

 
Where filename identifies an open DMAM FD which will remain open when 
the operation returns control and record identifies a record area from 
which the key value is determined (for DBREK$), or from which a 
partial key value is taken (for DBRFK$, DBRLK$, DBRNK$ and DBRPK$) 
when the optional key-length parameter is specified. The key-length 
(if specified) must be a PIC 9(4) COMP variable or integer literal 
specifying the partial key length. It must not be specified for a call 
on DBREK$. 
 
4.6.2 The Available Routines 
There are five key read routines, each one corresponding to a DMAM 
read operation. They are: 
 

DBREK$ reads the key specified in the record area passed to 
the routine (as in a READ operation); 

 
DBRFK$ reads the first key in the index, or first key matching 

the partial key specified in the record area passed to 
the routine (as in a READ FIRST operation); 

 
DBRLK$ reads the last key in the index, or last key matching 

the partial key specified in the record area passed to 
the routine (as in a READ LAST operation); 

 
DBRNK$ reads the next key in the index (as in a READ NEXT 

operation); 
 

DBRPK$ reads the previous key in the index (as in a READ PRIOR 
operation); 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 42 of 72 

  
All the routines, apart from DBREK$, may be passed a partial key which 
is used in the same way as in the equivalent DMAM read operation. 
 
4.6.3 Exception Conditions 
Each key read operation is capable of returning the same exception 
conditions as the equivalent DMAM read operation, for the same reason, 
and reference should be made to the appropriate sections of Chapter 3 
for details. 
 
Note that the key read routines perform no locking, and hence the lock 
unavailable exceptions cannot be returned by the routines. 
 
The ON FAILURE processing performed by DMAM for conventional DMAM read 
operations also applies to the key read routines. 
 
4.6.4 Programming Notes 
For Global format DMAM databases, the actual key returned by the key 
read routine, can be obtained from the extension area within a DMAM FD 
by a redefinition of the FD as follows: 
 

01 FILLER REDEFINES filename 
  03 FILLER   PIC X(122) 
  03 DBKEYL  PIC 9(2) COMP 
  03 FILLER   PIC X(26) 
  03 DBKEY  PIC X(99) 

 
The DBKEYL field is the actual DMAM key length including the 4 byte 
addition which is appended to non-unique keys. The first 'DBKEYL' 
bytes of DBKEY are the key returned by the key read routine, and the 
remainder of DBKEY is undefined. Note that DBKEY field is returned in 
the format that it is held in the index block of the DMAM database. 
This is of particular relevance for translated and descending-order 
key fields. 
 
There are two common uses of the key read routines. The first of these 
is when the data contained in the key permits the program to make a 
decision as to whether the record requires processing or not. Records 
which do not require processing are thus not read from disk, saving 
the access time involved. When a record is required for processing it 
will be retrieved by a READ PHYSICAL operation. Keys used for such 
processing are often a concatenation of a number of significant record 
flags, which may only be sensible as a record key when used in 
conjunction with the key read routines. 
 
The second use of the key read routines is to permit a record to be 
retrieved with a partial key length which is decided at run-time. In 
such a case the appropriate DMAM read operation is simulated through a 
concatenation of a key read with the correct partial key length and a 
subsequent READ PHYSICAL to obtain the record concerned. Record 
locking is achieved through the use of lock options on the READ 
PHYSICAL itself. If a record locked condition arises, then the whole 
process (key read and READ PHYSICAL) should be repeated if it is 
retried, as the key values of the record may have been changed by the 
process which originally had it locked. 

 
4.7 The Read Translation Table routine, DBRTT$ 



Chapter 4 - Further Data Management File Handling 

 

 

Global Development Data Management Manual V8.1  Page 43 of 72 

The Read Translation table routine is provided to enable you to 
retrieve the translation table from a DMAM database file, either to 
process it for your own purposes or, more likely, to use it in 
conjunction with the multi-phase sort, MSORT$ (documented in the 
Global Development File Management Manual), to govern the processing 
of translation sort keys in a way compatible with their handling in 
the DMAM database concerned. 
 
4.7.1 Invocation 
To retrieve the translation table you code a call of the form: 
 

CALL DBRTT$ USING filename area 
 
Here filename identifies an open DMAM FD which will remain open when 
the routine returns control, and area identifies a 260 byte area into 
which the translation table and its four byte header are to be read. 
 
4.7.2 Exception conditions 
Exception condition 1 will be returned if an irrecoverable I/O error 
occurs while attempting to retrieve the translation table from the 
database file. 
 
If the FD passed to DBRTT$ is not open, or does not identify a DMAM 
database file, then your program will be terminated in error. 
 
4.7.3 Successful completion 
Assuming that no I/O error occurs, the translation table is taken from 
the database file, and placed in the 260 byte area. 
 
4.7.4 Programming Notes 
The structure of a DMAM translation table is described in Appendix D. 
Note that it may be read directly into the 260 byte area provided for 
translation tables inside MSORT$. 
 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 44 of 72 

5. Data Management Utility Programs 
 
This chapter describes in detail how to use each of the utility 
programs provided as part of the Global Cobol Data Management system. 
 
Utility programs are provided to create and maintain DMAM database 
files, as well as to deal with some of the more frequent housekeeping 
activities such as index reorganisation. There are also some special 
purpose utilities associated with data take-on and file conversion. 

 
5.1 Database Creation and Maintenance using DBMAIN 
The DBMAIN utility is used either to create a new DMAM database file, 
or to amend the index arrangement of an existing DMAM database file. 
The database can be held in one of three ways: As a single Global 
format DMAM database, as a Global schema file describing the one or 
more C-ISAM databases that constitute a C-ISAM format DMAM database, 
or as a Global schema file describing the one or more Btrieve 
databases that constitute a Btrieve format DMAM database. 
 
DBMAIN can also be used to obtain some statistical information 
regarding the utilisation of space within a DMAM database. 
 
5.1.1 C-ISAM format and Btrieve format DMAM databases 
Before using DBMAIN to create a C-ISAM format DMAM database or a 
Btrieve format DMAM database, you must first decide the record 
structures to be used. When the record structures have been designed, 
a set of tables which define the conversion of the Global format 
records to the C-ISAM or Btrieve format records must be created. This 
is achieved using the conversion table build utility, RCBUILD, as 
described in the Global Development File Management Manual. The 
conversion tables must be held in a single data library on the same 
unit as the DMAM database schema file. Each record of this data 
library must contain the conversion table for a single record set in 
the DMAM file and must have the same record name or set-id as the 
record set in the DMAM file (see section 5.1.5). 
 
The conversion table from the data library is only used by DBMAIN when 
creating a new record set. When DBMAIN is used to amend an existing 
record set the conversion table is read from the schema file. However, 
the data library must be present whenever DBMAIN is run. It is 
possible to take on conversion tables again after exiting DBMAIN (see 
5.1.11). 
 
The RCBUILD utility is fully documented in the Global Development File 
Management Manual. However, the following points should be observed 
when building conversion tables for DMAM files: 
 
● A single key segment, as defined by DBMAIN, should be equivalent to 

a single conversion field as defined in the conversion table; 
 
● For performance reasons, it is STRONGLY recommended to describe all 

key segment fields first. This convention will also increase the 
"readability" of the conversion table. DBMAIN will pick up the 
first field at the required offset to build the C-ISAM or Btrieve 
key structure; 

 
● For both C-ISAM format DMAM databases and Btrieve format DMAM 

databases, translated key fields must be converted to two separate 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 45 of 72 

C-ISAM (or Btrieve) fields. The first (key) field must have the 
special 'TRANS' key word as described in the Global Development 
File Management Manual. This field will hold the translated key 
value (see appendix C). This field must be immediately followed by 
a second conversion field which will hold the original value of the 
translated key field. 

 
● For C-ISAM format DMAM databases only, descending-order key fields 

must be converted to two separate C-ISAM fields. The first (key) 
field must have the special 'DESC' key word as described in the 
Global Development File Management Manual. This field will hold the 
descending-key Value (see appendix C). This must be immediately 
followed by a second conversion field which will hold the original 
value of the descending-order key field. Note that the requirement 
to hold two separate fields for descending-order keys is not 
necessary for Btrieve format DMAM databases (descending-order keys 
are supported by Btrieve). 

 
5.1.2 Initial Menu 
On entering DBMAIN an initial menu will be displayed which offers you 
the option of either creating or maintaining a Global format DMAM 
database, a C-ISAM format DMAM database or a Btrieve format DMAM 
database. If you select to run DBMAIN on a C-ISAM format DMAM database 
when the C-ISAM Universal Channel Interface (UCI) is not available 
(i.e. if DBMAIN is not being run on a Global System Manager (Unix) 
configuration with the appropriate BACNAT software), a 'NOT AVAILABLE' 
message will appear. If you select to run DBMAIN on a Btrieve format 
DMAM database when the Btrieve Universal Channel Interface (UCI) is 
not available (i.e. if DBMAIN is not being run on a Global System 
Manager (MS-DOS and Windows) or Global System Manager (Novell NetWare) 
configuration with the appropriate BACNAT software), a 'NOT AVAILABLE' 
message will appear. For Global System Manager (BOS) configurations, a 
Global format DMAM database will always be expected. 
  
5.1.3 Initial Dialogue 
When you run the appropriate menu entry you are prompted for the file 
name and unit of the DMAM database file (or schema file) you wish to 
process. If this database cannot be found you are asked to confirm 
that you wish to create a new database file and to specify its initial 
size. You will be asked to specify the name and unit of a template 
database to be used in creating the new file - if you do not wish to 
use one simply key <CR> to the template database prompt. 
 
When a template database is used, details such as the record set and 
index information are copied from the template database into the new 
database (where it may be amended if necessary). No data records are 
transferred, so the newly created database will be empty, but with the 
same record set structure as the template database. 
 
Only a Global format DMAM database file may be used as a template for 
a Global format DMAM database. Only a C-ISAM format DMAM database file 
may be used as a template for a C-ISAM format DMAM database. Only a 
Btrieve format DMAM database file may be used as a template for a 
Btrieve format DMAM database. 
 
You are asked to specify the maximum number of record sets the new 
database may contain. 
 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 46 of 72 

For C-ISAM format DMAM databases and Btrieve format DMAM databases you 
are also asked to specify the directory path for the set of C-ISAM (or 
Btrieve) files which will make up the DMAM database, and the name of 
the Global data library containing the conversion records. 
 
Once the basic database has been created, for Global format DMAM 
databases only, you are shown a screen of statistics about the index 
allocation and used file space of the database. At this point you may 
either alter the extent used for allocating index data blocks (IDBs), 
or key <CR>. 
 
After continuing from the index allocation prompt you are given the 
option to amend the translation table used by the database. 
 
5.1.4 Specifying a Translation Table 
If you choose to amend the translation table, you must specify the 
file-id and unit of a file from which the new translation table may be 
obtained. This should either be an existing DMAM database which 
contains a translation table you wish to copy, or a simple file in the 
form described in Appendix D. You should refer to Appendix D, which 
details the layout of a DMAM translation record and suggests methods 
by which you might set up a table of your own. Note that the 
translation table will have been taken from the template database, if 
one was specified. 
 
Having amended the database translation, all record sets which have 
indexes which use translation will be marked as requiring rebuilding 
before they may be used. 
 
After amending database translation, or if you elect not to do so, you 
will go on to examine the record sets defined for the database file. 
 
5.1.5 Amending and Creating Record Sets 
Each record set within the database file has a unique two-character 
identifier, called the set-id. It also has a 30-character long 
description intended to give a helpful description of the purpose of 
the record set. The record set list will also give further information 
about the set, such as the length of its records, the allocation 
extent associated with it, the number of records present within that 
record set (and the number of free entries available before a further 
extent needs to be allocated) and the number of indexes associated 
with that record set as appropriate. 
 
To amend a record set you key its set-id to the baseline prompt. To 
create a new record set you key C to the baseline prompt, and then 
supply the set-id of the new record set (which must be unique over the 
database). You may also delete a record set from the database and 
print out the database and record set information. For Global format 
DMAM databases, a record set may only be deleted from the database 
providing no records have ever been written to that record set. 
 
5.1.6 Processing a single record set 
When you amend or create a record set a further screen is displayed, 
showing information about the Global index arrangement. 
 
If you are creating a new record set you will be prompted for a record 
length. You will also be asked to supply an initial allocation extent 
for the record set for a Global format DMAM database or for the name 
of the C-ISAM (or Btrieve) file containing the record set for a C-ISAM 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 47 of 72 

(or Btrieve) database. You will then be prompted to define indexes 
associated with the record set. 
 
5.1.7 Allocation Extents 
Allocation extents are only of interest for Global format DMAM 
databases. Associated with each record set, and also with the 
allocation of IDBs, is a value termed the allocation extent. This 
value is used whenever it becomes necessary to add new records or IDBs 
to the database. Rather than make space for a single record or IDB, 
the file is extended by an allocation extent, which will comprise a 
number of records or IDBs. 
 
The principle reason for allocating data space in extents is to 
improve the general performance of record addition, as well as to 
simplify the handling of index rebuilding and recovery. There is a 
small sacrifice in file space utilization, because records and IDBs do 
not span extents. As extents may only be allocated in units of 1K 
(1024 bytes) there will be unused space at the end of each extent. 
Provided that extents are not too small (more than 30 records or IDBs) 
this is not an important factor (a few per cent of file size). 
 
5.1.8 Index Definition 
Each index is identified by its unique index name. To amend an index 
associated with the selected record set you simply key its name (or 
number). To create a new index you key C to the baseline prompt and 
then provide the name of the new index. To avoid problems with 
duplication of index names we recommend that you use the two character 
set-id as the first two characters of the index name. 
 
Having selected an index to maintain, the details of the key segments 
will be displayed on the screen. You may specify whether the index is 
unique or not (i.e. whether duplicate key values are permitted). A 
record may have more than one unique index (or even none at all), but 
all unique indexes for the record must be grouped together at the 
start of the indexes. 
 
For a non-unique index you may specify that certain key values are to 
be omitted from read processing. For Global format DMAM databases it 
will mean that the record will be omitted from the index leaving the 
index smaller. For C-ISAM format DMAM databases and Btrieve format 
DMAM databases the record will still be present in the C-ISAM (or 
Btrieve) file index but will be ignored by a DMAM READ operation. You 
do this by specifying an ignore code for the index. The first 
character of the code indicates which values are to be ignored (N for 
none, S for spaces, L for low-values and B for both spaces and low-
values), and the second character which element of the key is to be 
examined (A for all the key, F for the first segment only and L for 
the last segment only). So a type of LL, for example, would cause keys 
whose last segment was low-values to be omitted from the index. 
 
Important note: Under V6.1 DBMAIN, only the whole key may be selected, 
and two separate prompts ask whether spaces or low-values are to be 
ignored. Database indexes established using V6.1 DBMAIN will thus 
appear as NA, SA, LA or BA under V8.1, depending on which values were 
selected to be ignored. If you set up a database using V8.1 DBMAIN to 
use any ignore code other than these, you must ensure that indexes on 
the database are only rebuilt using V8.1 or later IRBLD$ or DMAM 
utility programs. Using pre-V8.1 index rebuild facilities on such a 
database will lead to data corruption. 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 48 of 72 

 
Finally, for Global format DMAM databases, you are asked to specify 
the index type. You may choose one of the following options: 
 

AS Specifies a key which is almost always added in ascending 
sequence (i.e. new records are added after the last record 
in the index). There is no need for spare space to be left 
in the index blocks, and this is taken into account when 
adding records or reorganising indexes. 

 
DS As above, except the key is added in descending sequence 

(i.e. records are added in front of the first record in the 
index). 

 
AN Specifies a key where records are normally added in 

ascending sequence (i.e. after the last record), but there 
will be occasional out-of-sequence additions. Index blocks 
will be split leaving 20% free space and reorganised to 
leave 10% free space in them to avoid performance 
degradation on non-sequential additions. 

 
DN As above, except that records are normally added in 

descending sequence (i.e. before the first record). 
 

RI Specifies a key where keys are added randomly, but additions 
are infrequent. Index blocks will be split in half, and 
reorganisation will leave 10% free space in the indexes. 

 
RF This is the default, and specifies a key where additions 

will occur at random and with reasonable frequency. Index 
blocks will be split in half and reorganised to leave 20% 
free space in them. 

 
Care must be taken when specifying any index type other than RF, as an 
unwise choice of index type (specifying AS when RI would have been 
more appropriate, for example) can very seriously degrade the 
performance of the database. On the other hand, a sensible choice of 
index type can avoid considerable overheads in index space and depth. 
Index types should only be specified by someone who has a detailed 
knowledge of the internal functions of the software which will be 
using the database. 
 
Index types of AS, DS and DN should only ever be used for unique keys, 
as non-unique keys have the record address appended to the key, and 
will typically not be in true key sequence. 
 
The key length and number of segments are maintained automatically as 
you update the key segment information. 
 
5.1.9 Specifying key segment information 
Each key you define may be made up from up to eight segments of data 
from the record. Typically each segment will correspond to a data item 
in the record definition. There are six types of segments you may 
define: 
 

XA defines a character ascending segment. Keys will be collated 
in strict ASCII sequence. 

 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 49 of 72 

XD defines a character descending segment. Keys will be 
collated in reverse ASCII sequence. 

 
CA defines a computational ascending segment. Keys will be 

collated in binary numeric sequence, starting with the 
largest negative number and passing through zero to end with 
the highest positive number. 

 
CD defines a computational descending segment. Keys will be 

collated in reverse binary numeric sequence. 
 

TA defines a translation ascending segment. Keys will be 
translated via the defined translation table and collated in 
ascending sequence of the result. 

 
TD defines a translation descending segment. Keys will be 

translated and collated in reverse sequence. 
 
When specifying segments remember that PIC DATE fields, containing an 
internal format date, should be treated as PIC 9(6) COMP fields. 
 
For each segment you must supply a start offset within the record 
(which may not be less than 4) and a length. The total length of the 
key may not exceed 99 bytes (and non-unique keys have a four byte 
overhead for Global format DMAM databases, so the total length of the 
segments may not exceed 95 bytes), and no part of the key data may lie 
outside the first 255 bytes of the record (or the record itself if 
this is smaller). 
 
For translation keys, which may permit compaction, the length merely 
serves to define the length of the input data item. You must also 
define a translation key length, which is the maximum number of 
characters which may result from the translation and compaction. This 
latter field is the actual length added to the key, and is subject to 
the restrictions mentioned above. 
 
You may define up to eight segments for each key. Note that each 
translation segment requires two segments' worth of data to be held. 
You are also limited to a maximum of 64 segments' worth of data for 
all the indexes associated with a single record type. 
 
5.1.10 Guide lines for setting up Indexes 
To avoid wasted space you should ensure that keys are no longer than 
necessary for the function they are to provide, and that non-essential 
keys are avoided. Nevertheless it is valuable to define a key which 
will enable records to be read in an appropriate sequence where this 
avoids a frequent sort. 
 
To simulate the current ISAM you should define a single, unique, 
character ascending (XA) key starting at offset 4 with a length equal 
to the ISAM key length. 
 
Where several adjacent character data items comprise part (or all) of 
a key, it is sufficient to define a single character key to cover all 
of them. Similarly if a computational key is followed by a series of 
adjacent character data items a single computational key will serve 
for them all for a Global format DMAM database. For a C-ISAM format 
DMAM database or a Btrieve format DMAM database, computational fields 
should be defined as separate key segments. However, unlike sort keys, 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 50 of 72 

there is little performance benefit in amalgamating segments in this 
way, and so it is probably better avoided (for reasons of clarity) 
unless you are short of segments to specify a key with. 
 
Translation keys are commonly used to create alpha index keys, where 
only letters in the range A to Z are of interest and character case is 
unimportant. These are most efficiently held in a RAD-50 format (three 
characters in two bytes). Where a long character field is being 
compressed into an alpha index, it is not necessary to have the key 
long enough to cater for the longest possible alpha index key, merely 
that it is long enough for typical keys to be distinguishable. Thus, 
for example, a key based on a 30-character customer name would only 
need 15 significant characters typically, and these could be contained 
in 10 bytes of key when compressed (a two-thirds saving on key size). 
 
Translation keys will also be of interest to those non-UK sites where 
the local language uses non-standard ASCII characters which must be 
collated in the correct sequence. 
 
5.1.11 Finishing Database Maintenance 
When you have completed updating the index layout of a record set key 
<ESC> to return to the record set list. From here you may amend or 
create further record set information, or key <ESC> to complete 
database processing. 
 
If you have been updating a C-ISAM format DMAM database or a Btrieve 
format DMAM database you will be asked if you want to take on the 
conversion tables again. This allows the current conversion tables 
held in the schema file to be replaced by new conversion tables from 
the associated data library. If the conversion of key fields have been 
modified, however, it may be preferable to rebuild the database. 
 
When you finish database processing, the updated information you have 
specified is written back to the database header. Any new or altered 
indexes for a record set which has existing records are marked as 
requiring rebuilding, and a rebuild overlay is invoked which will 
rebuild the required indexes one at a time. If, for some reason, the 
index rebuild should fail to complete then you will need to run the 
index reorganisation utility, DBREORG, to complete the index rebuild 
before attempting to use the database with any application. 

 
5.2 Index Reorganisation using DBREORG 
The DBREORG utility is used to reorganise one or more indexes within a 
DMAM database file. You would normally use it if a data take-on 
process had failed before reorganising the indexes, or in a situation 
where investigation had shown that an index had become sparsely 
filled, due to record deletions. 
 
5.2.1 Initial Dialogue 
When you run the DBREORG utility it asks you for the file name and 
unit of the DMAM database file you wish to process. Having selected a 
database you are shown a list of the indexes existing within that 
database, along with the record set on which they are kept and some 
other statistical information. Any indexes which currently require 
reorganisation (due to an incomplete data take-on for example) are 
shown highlighted. 
 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 51 of 72 

You may select further indexes to be reorganised, and may further 
choose to reorganise all indexes on the record set thus identified. 
All reorganisations you specify are also shown highlighted in the 
list. 
 
When you have finished your specification of indexes to be reorganised 
reply <ESC> to the baseline prompt, and DBREORG enters the rebuild 
phase. 
 
5.2.2 The Rebuild Phase 
When you have finished specifying a list of indexes to be rebuilt 
DBREORG enters the index rebuild phase. Each index in turn is rebuilt, 
and a message is displayed on the screen showing the start and end of 
each rebuild so that you may keep track of the progress. 
 
When all the specified indexes have been rebuilt control is returned 
to the Global System Manager READY prompt or the main menu. 

 
5.3 Data Take-on using DBTAKE 
The DBTAKE program is used to transfer all the records of an existing 
ISAM file into a DMAM database. DBTAKE may also be used to transfer 
all the records of a record set in one DMAM database to a record set 
in another DMAM database. Thus, repeated use of DBTAKE (i.e. once per 
record set) will allow the entire contents of a DMAM database to be 
copied into another DMAM database. This technique may be used to 
transfer data, in any direction, between Global format DMAM databases, 
C-ISAM format DMAM databases and Btrieve format DMAM databases. 
 
5.3.1 Specifying the files to be processed 
You are first asked by DBTAKE whether you want to transfer records 
from an ISAM file to a DMAM database or from one DMAM database into 
another DMAM database. Reply with I or D as appropriate. 
 
You are then prompted by DBTAKE for the file-id and unit of the ISAM 
or DMAM file which is to be converted. For a DMAM file you will also 
be asked for an index by which records of the required record set can 
be read. The records in this file or record set must not be longer 
than 4096 bytes. DBTAKE opens the input file, and then prompts you for 
the name, unit and index name of the DMAM database to which the input 
records are to be added file is to be converted. This database must 
have been previously defined using DBMAIN. It should have at least a 
primary key specified which matches the current ISAM key or an index 
for the DMAM record set, and it may have further keys defined to match 
other fields on the record which you wish to process as keys. It is 
not normally safe to define any other unique keys for the record 
unless you are absolutely sure that there are other unique data 
fields, or you are defining keys which are a super-set of the main 
unique key. Again the record length of the DMAM record set must not be 
greater than 4096 bytes. 
 
5.3.2 Consistency Checking 
DBTAKE will perform a number of consistency checks on the file or 
record set to be converted and the record set identified by your 
choice of DMAM file-id and index name. It will warn you if the DMAM 
record set has a record length smaller than that of the input record 
set, or if there are any existing records defined in the record set. 
Both of these situations are probably errors, but if you may choose to 
continue if you have deliberately organised things in this way. 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 52 of 72 

 
If the records in the input file are larger than those in the DMAM 
record set then they will be truncated as they are copied. If they are 
smaller than those in the record set they will be extended with low-
values up to the end of the new records. 
 
If there are already records in the record set then unless you have 
not defined a unique primary key, or have taken care to ensure that 
there are no possible clashes in key value between the existing 
records and the new ones to be added, the data take-on will probably 
fail with an error when the indexes are built on the record set after 
take-on is complete. 
 
5.3.3 Specifying the Sort Work File 
When DBTAKE is satisfied that it is safe to proceed it will ask you 
for the name and unit of a sort work file, which will be used by the 
index rebuild process after the new records have been taken on. 
 
5.3.4 Copying Records 
Having obtained all the information it requires DBTAKE now proceeds to 
copy the records from the input file or record set to the DMAM 
database, using the data take-on routines described in section 4.5. As 
it copies the records it displays a count so that you may see how the 
process is proceeding. 
 
When records are read from an ISAM file OPTION IGNORE is used, so any 
logically deleted records will be removed from the records present in 
the database. 
 
5.3.5 Building Indexes 
Once all the records have been copied from the input file, DBTAKE will 
invoke the index rebuild routine to rebuild all indexes on the record 
set. 
 
When the indexes have been built DBTAKE returns control to the Global 
System Manager READY prompt or the main menu. 

 
5.4 Database Rebuild and Reorganisation using DBRBLD 
The DBRBLD program is used to perform a complete data rebuild of your 
database, removing deleted record and index space, and optionally 
reorganising the physical layout of the records. 
 
Important note: DBRBLD will only operate on Global format DMAM 
databases. 
 
5.4.1 Specifying the files to be processed 
DBRBLD begins by asking you to specify the file name and unit of the 
database to be reorganised. You are shown certain information about 
the database (such as its size and the number of record sets it 
contains), and are then asked to specify the file name, unit and size 
of the output database file to be created. The output file must be 
large enough to contain all the data which will be passed to it (see 
later sections for an explanation of what affects the amount of data 
which will be passed to the output file). 
 
Once input and output files have been specified you are asked to 
confirm that the information is correct before proceeding to record 
set selection. 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 53 of 72 

 
5.4.2 Selecting record sets to be processed 
Once you have chosen the files to be used during the rebuild, you are 
shown a screen with the first few record sets contained in the 
database on it. You may key <CR> to page forward and look at the next 
few record sets, cycling back to the beginning once you reach the end. 
 
Initially all record sets in the file are selected to be copied to the 
output file, ordered in their current physical sequence (which is in 
principle random). You may choose the following options: 
 

A to abandon the update, if you have made some serious mistake 
in record set selection or omission, and wish to go no 
further in case irreparable damage is done to the database. 

 
O to omit a record set from the selection. Record sets which 

are omitted will not be copied to the output file when 
reorganisation is performed (so the entire record set will 
in effect be deleted from the output file). A record set 
which has been omitted is shown with a 'x' character against 
it in the list. If you omit a record set by mistake, and 
wish to re-introduce it, you should key 'O', and then key 
'N' to the subsequent confirm prompt. 

 
S to sequence a record set in a particular order when it is 

copied to the output file. You are asked to identify which 
record set you wish to sequence, and on which index you wish 
to sequence it (a reply of 0 causes the record set to be 
sequenced in its current physical order, the default). 
Sequencing a record set on an index which is frequently used 
to process records sequentially (using READ NEXT or READ 
PRIOR) may yield performance benefits, although the sequence 
will not be maintained if further records are added, or 
existing records are amended so the value of this on 
volatile data is probably slight. 

 
If you select a currently omitted record set to sequence, 
then it will be automatically re-introduced to be copied to 
the output file. A record set selected for sequencing is 
shown with a '*' character against it in the list (unless it 
is still sequenced in physical order). 

 
If an update to the database has failed leaving the index 
you are sequencing on in an inconsistent state, the 
following message will appear: 

 
CANNOT SEQUENCE CORRUPT RECORD SET record-set 

 
T to perform type checking on a record set. This option is 

only available in V8.1 or later. You are asked to identify 
which record set you want to type check and what the record 
type should be. A reply of <CTRL A> to the type will clear 
any checking on the record set. A record set which is to be 
type checked is shown with a '=' character against it in the 
list. DBRBLD will omit all record in the sets to be checked 
which do not have the correct type value in the type field. 

 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 54 of 72 

If an update of the record set has failed leaving the record 
indexes in a corrupt state the following message will 
appear: 

 
CANNOT TYPE CHECK CORRUPT RECORD SET record-set 

 
Once you have sequenced and omitted the required record sets you 
should key <ESC> to proceed to select the reorganisation type. 
 
5.4.3 Selecting the Reorganisation Option 
If you have keyed <ESC> to the previous prompt by mistake, you can key 
<ESC> to the reorganisation option prompt to return to the record 
selection stage. Alternatively you should select one of the 
reorganisation options presented: 
 

E to create an empty database, containing those record sets 
which you have chosen not to omit but none of the data 
records. This option is similar to using a template database 
with DBMAIN, except that record sets may be omitted from the 
new database created. This option is not offered if you have 
chosen any record sets for sequencing (as no record data is 
copied, record set sequencing is incompatible with creating 
an empty database). 

 
R to rebuild the database, copying all record sets except 

those which have been omitted to the output file, sequencing 
appropriately any which have been chosen, and then 
rebuilding all indexes in the output file. The output file 
contains the fully reorganised database, which you might 
wish to copy back over the original input file (using $F for 
example). 

 
D to rebuild the database, copying appropriate record sets in 

the correct sequence to the output file. The output file is 
then copied back over the original input file, deleting it, 
before indexes are rebuilt. This allows you to reorganise a 
database with a smaller work space then the Rebuild option 
allows (the output work file only needs to be large enough 
to contain all the data records without the indexes, which 
typically means it can be half the size), although 
admittedly with the small danger that a serious failure in 
the processing might occur compromising your data integrity. 
If a machine failure occurs it should be possible to 
complete the rebuild process by running DBREORG on the 
incomplete file, and rebuilding all the indexes. 

 
Once you have selected a reorganisation option, the reorganise and 
rebuild you selected will take place. Creation of an empty database 
should only take a few seconds, but the other reorganisation options 
may take some time, especially if there are a large number of records 
involved. 
 
Both rebuild options copy records from successive record sets of the 
input file to the output file (reading via an index if they are to be 
sequenced - this means that records cannot be sequenced on a corrupt 
or incomplete index). Once all records have been copied, each index in 
turn is rebuilt. 

 
5.5 Inspecting and Amending a database using DBDUMP 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 55 of 72 

The DBDUMP program is a programmer's tool, intended to allow you to 
inspect and amend records of a DMAM database file in a partially 
structured way. It enables you to examine records created by a program 
under test (or possibly in a live system), in order to check their 
validity. It uses DMAM to access records, and displays their contents 
on the screen in both hexadecimal and ASCII equivalents where 
appropriate, without regard to the field structure of the record. 
 
5.5.1 Selecting the file and index to inspect 
When you run DBDUMP, it asks you for the name and unit of the database 
to inspect, and the initial index you wish to inspect via. You may 
subsequently change index, even moving to a new record set if desired, 
but in all cases you must know the name of the index to be processed 
(DBDUMP does not provide this information to you, but it may easily be 
obtained from a print of the index structure using DBMAIN). 
 
5.5.2 Inspecting and amending records 
Initially DBDUMP reads and displays the very first record in the index 
selected. From the baseline prompt you may then select the following 
options: 
 

A to amend the record. You are allowed to move through the 
displayed record contents over-typing existing data in 
either hexadecimal or ASCII (use the TAB key to change from 
hex to ASCII and vice versa). When you have finished 
amending data key <ESC>, and you will be asked if you wish 
to REWRITE the record with the altered data. 

 
C to change index. Key the name of the new index you wish to 

use to access records from the file. If the index is on 
another record set you will be placed on the first record in 
that index. If it is on the same record set, then you will 
be placed on the same record within the new index, so that 
you may use Next and Prior to examine records using the new 
index. 

 
D to delete the current record. You will be asked to confirm 

that you wish to do this. 
 

F to move to the first record in the index. 
 

L to move to the last record in the index. 
 

N to move to the next record in the index. 
 

P to move to the previous record in the index. 
 

R to read a specific record from the record set. The various 
segments of the record key are highlighted on the display, 
and you are allowed to amend the record to establish the key 
value you require. When you key <ESC> the record is read (if 
no matching record is found a warning is produced, and when 
you key <CR> the record with the next higher key is read). 

 
Keying <CR> has the same effect as keying 'N' if the last option you 
chose was C, F, N or R, and has the same effect as keying 'P' if the 
last option you chose was L or P. 
 
5.5.3 Notes on using DBDUMP 



Chapter 5 - Data Management Utility Programs 

 

 

Global Development Data Management Manual V8.1  Page 56 of 72 

When a record is displayed the record address is shown on the screen, 
along with the first 256 bytes of the record. If the record is longer 
than this you may examine the remainder of the record by keying A to 
amend the record, and moving the cursor off the bottom of the display 
(or the top to go back). You may also use the F4 key to page forward 
and F5 to page back. 
 
During record amendment the current offset address within the record 
is shown (in hexadecimal), to help you in identifying fields within 
the record. 
 
When you have finished inspecting and amending records, key <ESC> to 
the baseline prompt to exit back to the monitor. 

 
5.6 Producing a Structured Dump of a Database using 
DMSDUMP 
The DMSDUMP program produces a structured dump of a Global format DMAM 
database or the Global schema file for C-ISAM format and Btrieve 
format DMAM databases. This dump is intended as a programmer's tool 
and shows information regarding the present state of the database as 
an aid to program debugging. The report includes: 
 
● Database statistics; 
 
● Translation table information; 
 
● Record set and index information; 
 
● UCI conversion table information (C-ISAM format and Btrieve format 

DMAM database only); 
 
● Information on the database extents (Global format DMAM databases 

only); 
 
● Deleted record chains (Global format DMAM databases only) 
 
DMSDUMP allows you to dump a single record set or all the record sets 
in the DMAM database. 
 
For example, the following dialogue runs DMSDUMP to dump all the 
record sets for the $$MAIL database on unit $ML. The report will be 
created on the $PR unit: 
 

GSM READY:DMSDUMP 

DUMP DMAM FILE:$$MAIL  UNIT:$ML 
PRINT UNIT ($PR):<CR> 
Key record set number, <CR> for all:<CR> 

 



Appendix A - DMAM STOP and EXIT Codes 

 

 

Global Development Data Management Manual V8.1  Page 57 of 72 

Appendix A - DMAM STOP and EXIT Codes 
 
This appendix describes the various stop and exit codes which can be 
produced by the programs and subroutines documented in this manual. 
 
As is normally the case, stop codes identify fatal error conditions 
which prevent the program continuing, and exit codes are terminations 
caused by the absence of an ON EXCEPTION statement immediately 
following the statement which generates the exception condition. 
 
The following notes are referred to, as appropriate, in the following 
pages: 
 
Note 1  When a stop or exit code is generated by a file 

processing statement, the type of file processing statement 
along with the affected file-id can be found from the 
diagnostic report. 

 
Note 2  When a stop or exit code is the result of an I/O error 

during file processing the dialogue preceding the program 
check information will fully explain the events leading up 
to the termination. 

 
Note 3  Some of the codes described here are included for 

completeness only. They should never occur. If they do, 
suspect program corruption or try reloading Global System 
Manager. 

 
Note 4  This stop code will cause a failure routine, set up 

using the ON FAILURE clause of a DMAM file definition, to be 
entered if one has been defined. The value of the indicated 
stop code will be in the accumulator when the failure 
routine is entered, so that it may perform discriminatory 
processing on the stop code. If no failure routine has been 
specified the stop code will appear on the screen as part of 
a TERMINATED - STOP message. 

 

A.1 Stop Codes 
 
STOP 8801 An irrecoverable I/O error has arisen while reading or 

writing data within a DMAM database file during file 
processing. The database will need to be restored from back-
up. See notes 1, 2 and 4. 

 
STOP 8802 An unexpected error condition has arisen whilst processing a 

DMAM file. See notes 1, 3 and 4. 
 
STOP 8804 An attempt to delete a key from an index has failed because 

the old key value cannot be found. The index is corrupt. 
Either rebuild the index or restore the database from back-
up. See notes 1 and 4. 

 
STOP 8805 A READ PHYSICAL has been attempted on an illegal record 

address (most likely the address of 0 or -1 left by a start 
of file or end of file condition). 

 
STOP 8806 An attempt to recover the last operation on a DMAM file has 

failed because of a key clash with a non-unique key. See 
notes 1, 3 and 4. 



Appendix A - DMAM STOP and EXIT Codes 

 

 

Global Development Data Management Manual V8.1  Page 58 of 72 

 
STOP 8807 An illegal operation (e.g. OPEN NEW) was attempted using the 

Data Management access method. See note 1. 
 
STOP 8808 An attempt has been made to open a C-ISAM format DMAM 

database or a Btrieve format DMAM database on a version of 
Global System Manager where a Universal Channel Interface 
(UCI) is not available. 

 
STOP 8809 An attempt has been made to open a DMAM database using a 

read-only version of DMAM, but there was an outstanding 
write operation noted in the header (due to some earlier 
process failing). The database must be opened with a full 
version of DMAM so that the pending operation may be 
completed, before it may be processed with a read-only 
version. See note 4. 

 
STOP 8810 An attempt to recover the last operation on a DMAM database 

has failed because of an illegal key alteration. See notes 
1, 3 and 4. 

 
STOP 8811 An attempt has been made to open an index on a DMAM file, 

but the space available in the FD to hold the key was too 
small. See notes 1, 3 and 4. 

 
STOP 8812 The key of the last record read from a DMAM database does 

not match the key contained in the record on the file when a 
subsequent REWRITE takes place. This is most likely due to 
inadequate security surrounding the updating of records on 
the database. See note 1. 

 
STOP 8813 An attempt has been made to REWRITE or DELETE a record on a 

DMAM database without a successful preceding READ operation. 
See note 1. 

 
STOP 8814 An attempt has been made to DELETE a record from a DMAM 

database without first obtaining a DELETE-LOCK on the 
record. See note 1. 

 
STOP 8820 An attempt has been made to process a DMAM database using a 

conventional file processing statement (READ, WRITE etc.) 
after it was opened by a call of DTOPN$ for data take-on. 

 
STOP 8821 An index block in a DMAM database has become corrupt. The 

database should be restored from back-up. See notes 1 and 4. 
 
STOP 8822 An attempt to add a key to an index has resulted in an index 

split which would cause the index to contain more than 20 
levels. Rebuilding the index might cure this problem. See 
notes 1 and 4. 

 
STOP 8823 A DMAM database has become full when attempting to allocate 

a new index block. Some database indexes may be inconsistent 
as the record has been written but not all the relevant 
indexes have been updated. The database must be increased in 
size and opened again so that data recovery can occur before 
any further processing takes place. See notes 1 and 4. 

 
Because DMAM attempts to update the index after writing the 
data record, on opening the file again recovery will take 



Appendix A - DMAM STOP and EXIT Codes 

 

 

Global Development Data Management Manual V8.1  Page 59 of 72 

place and complete the WRITE operation (cf. STOP 8824, see 
below). 

 
STOP 8824 A DMAM database has become full when attempting to allocate 

a new record. The database must be increased in size before 
any further processing takes place. The last record has not 
been written. See notes 1 and 4. 

 
Because DMAM attempts to write the data record before 
updating the index there is no need for recovery to take 
place when re-opening the file (cf. STOP 8823, see above). 

 
STOP 8825 An invalid deleted chain pointer has been detected during a 

record or IDB addition on a DMAM database file. The database 
is corrupt and must either be rebuilt or restored from back-
up. See note 4. 

 
STOP 8826 An index split during index rebuilding using IRBLD$ has 

cascaded past the root IDB. See note 3. 
 
STOP 8827 The deleted chain index in the DMAM database has been 

corrupted. The database is corrupt and must either be 
rebuilt or restored from back-up. See note 3. 

 
STOP 8830 A duplicate key has been detected when performing an index 

rebuild on a unique index. Either duplicate records have 
been added using data take-on procedures, or the database 
has become corrupt. Before any further processing may be 
performed on the database it will be necessary to re-define 
the offending index as non-unique and to repeat the index 
rebuild process, or to restore from back-up. See note 4. 

 
STOP 8831 The record information was not available in the DMAM 

database when attempting to recover the last DMAM operation. 
The database should be restored from back-up. See note 4. 

 
STOP 8833 The DMAM Access Method is unable to produce a unique lock 

for this record. The C-ISAM or Btrieve file has become too 
large. Try deleting unwanted records and re-organising the 
file. 

 
STOP 8863 The IRBLD$ routine has been called on a Global schema file 

but the Memory Page Open version of DMAM (i.e. AX$Z) has not 
been linked into the program. 

 
STOP 21101 The DBSTA$ routine has been called but the DMAM FD 
passed to it was not open. 
 
STOP 21102 The DBSTA$ or DBCLC$ routine has been called on a 

Global schema file but the Memory Page Open version of DMAM 
(i.e. AX$Z) has not been linked into the program. 

 
STOP 21201 The DTWRT$ or DTCLS$ routine has been called, but the 

FD passed was previously opened using a conventional OPEN 
statement, not a call on DTOPN$. 

 
STOP 21202 The DTOPN$, DTWRT$ or DTCLS$ routine has been called on 

a Global schema file but the Memory Page Open version of 
DMAM (i.e. AX$Z) has not been linked into the program. 

 



Appendix A - DMAM STOP and EXIT Codes 

 

 

Global Development Data Management Manual V8.1  Page 60 of 72 

STOP 21301 An invalid key length (negative or greater than 63) has 
been specified to the DBRFK$, DBRLK$, DBRNK$ or DBRPK$ 
routine. 

 
Alternatively, a third parameter has been specified for the 

DBREK$ routine. 
 
STOP 21302 The DBRFK$, DBRLK$, DBRNK$, DBRPK$ or DBREK$ routine 

has been called on a Global schema file but the Memory Page 
Open version of DMAM (i.e. AX$Z) has not been linked into 
the program. 

 
STOP 21701 The DMAM FD passed to the DBRTT$ routine was not open. 
 
STOP 21702 The FD passed to the DBRTT$ routine was not a DMAM FD. 
 

A.2 Exit Codes 
 
EXIT 8801 An internal error has arisen in the Data Management access 

method during file processing. See notes 1 and 3. 
 
EXIT 8802 A file condition has arisen while processing a DMAM database 

file but the user program has failed to trap the resulting 
exception. See note 1. 

 
EXIT 8803 A file condition has arisen while processing a DMAM database 

file but the user program has failed to trap the resulting 
exception. This will be a key requires rebuild exception 
from an OPEN operation, or a lock unavailable exception from 
a READ. See note 1. 

 
EXIT 8804 A file condition has arisen while processing a DMAM database 

file but the user program has failed to trap the resulting 
exception. If it is a REWRITE operation, an attempt has been 
made to REWRITE a record on a DMAM database having altered a 
unique key which is not permitted. See note 1. 

 
EXIT 8899 An unexpected failure has occurred in a DMAM memory page. 
See notes 1 and 3. 
 
EXIT 21001 The DBSET$ routine has determined that it cannot load 

the key build routine, either because it is running on a 
V5.0 system, or because it cannot find a key build routine 
on SYSRES (routines are named "%.a0V63 ", where a is the 
architecture code for the computer), and the user program 
has failed to trap the resulting exception. 

 
EXIT 21101 Overflow has occurred during the calculations on 

database size performed by DBSTA$ or DBCLC$, and the user 
program has failed to trap the resulting exception. 

 



Appendix B - Included Routines 

 

 

Global Development Data Management Manual V8.1  Page 61 of 72 

Appendix B - Included Routines 
 
Table B below shows the program names of the particular subroutines 
included from the system libraries when various language constructs 
described in this manual are coded. The SIZE column indicates the 
approximate size of each routine in bytes, rounded up to the nearest 
0.1K (K = 1024 bytes). 
 
If you require a more accurate estimate you should compile and link a 
program containing a GLOBAL statement of each of the required routines 
and file organisations. The link map will then give the total size of 
the included routines. 
 

 
Global Cobol 
statement 

 
Program name of the subroutine included 

 
Size (Kb) 

 
CALL IRBLD$ OC$A, AM$A, BZ$A, CA$A, EC$A, EI$A, 

ER$A, IX$A 
16.7 

CALL DBREK$ 
CALL DBRFK$ 
CALL DBRLK$ 
CALL DBRNK$ 
CALL DBRPK$ 

OG$A, AM$A, CA$A, EC$A, ER$A 
 

9.7 

CALL DBRTT$ OH$A 0.1 
CALL DBSET$ OD$A, IE$A, IF$A 3.2 
CALL DBSTA$ 
CALL DBCLC$ 

OE$A, AM$A, CA$A, EC$A, ER$A 10.6 

CALL DTOPN$ 
CALL DTWRT$ 
CALL DTCLS$ 

OF$A, AM$A, CA$A, EC$A, ER$A 9.8 

CALL DBKES$ OP$A, AM$A, CA$A, EC$A, ER$A 10.2 
FD .. ORG DMAM 
(normal) 

AM$A, CA$A, EC$A, ER$A 9.7 

FD .. ORG DMAM 
(memory page 
Global) 

AM$Z, CA$Z, EC$A 3.5 

FD .. ORG DMAM 
(memory page 
open) 

AX$Z, CA$Z, EC$A 5.6 

 
Table B - Included Routines 

 
 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 62 of 72 

Appendix C - DMAM Database Structure 
 

C.1 Global Format DMAM Databases 
A Global format DMAM database is divided into two parts, a header area 
and a data area. The data area is further sub-divided into extents 
each of which contains one or more data records or index blocks. The 
area of the database beyond the last extent is unused, and extents 
will be allocated from it as necessary when records are added to the 
file. 
 
C.1.1 The Header Area 
The header area is always at the start of the database file. It 
consists of the following sections: 
 
● A 256 byte recovery area, for holding the start of an updated 

record for recovery during REWRITE and DELETE processing; 
 
● 768 bytes of recovery and status information used during database 

update and recovery; 
 
● 1024 bytes of static database information, including a list of set-

ids, which is only updated when using DBMAIN to update the data 
layout; 

 
● 512 bytes containing the translation table and various other 

translation information; 
 
● 1536 bytes containing the list of index names, along with 

associated index types and record set numbers; 
 
● For each potential record set which the database may contain, a 372 

byte area defining the index construction and data usage which also 
contains the 30 character set description. 

 
Space is left for a number of record set data blocks equal to the 
maximum number of record sets that the database may contain (as 
specified using DBMAIN). 
 
C.1.2 The Data Area 
The data area starts 8 bytes before a 512 byte boundary in the file, 
as soon as possible after the last record set data block. File space 
between the last record set data block and the start of the data area 
is unused. 
 
The data area consists of a series of extents, each of which contains 
either records from a single record set, or index data blocks (IDBs). 
The size of each extent must be a multiple of 1024 bytes, but extents 
may not all be of the same size (indeed the extent size is specified 
independently for each record set, and for the IDBs, and each extent 
may be altered during the lifetime of the database). 
 
C.1.3 The Extent Areas 
The first 8 bytes of each extent contain information detailing the 
nature of the included records (whether they are IDBs, or to which 
record set they belong). They also contain the length of the extent, 
so that it is possible to read through the file sequentially by 
processing the extent information. The last 3 bytes of the extent 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 63 of 72 

header are a recognisable value which is uncommon in standard data, 
and is used by file recovery in the event of data corruption or an 
irrecoverable I/O error. 
 
As the first 8 bytes of each extent are used by DMAM, and the extents 
are a multiple of 512 bytes long, the part of the extent used for 
holding data records, or IDBs, will always begin on a 512 byte 
boundary in the file. Since an IDB is 512 bytes long this ensures that 
all IDBs begin on a 512 byte boundary in the file. 
 
C.1.4 Data Records 
The first two bytes of each record are a record type. The next two 
bytes of the record contain an incremental backup sequence, and are 
reserved for use by the database backup utility. The remainder of the 
record contains user data. 
 
If the first byte of the record type is an asterisk (*, #2A) then the 
record has been deleted. All deleted records from the same record set 
are chained together so that they may be reused. In the recovery area 
at the start of the file there is a pointer to the last record 
deleted. The four bytes after the backup sequence field of the deleted 
record contain a pointer to the next-to-last record deleted, etc. The 
last record in the deleted chain (or the pointer in the recovery area 
if there are no deleted records) has a negative pointer field. This 
field indicates the next position in the last extent allocated for 
that record set which will be used when a new record is added. 
 
C.1.5 Index Data Blocks (IDBs) 
Each IDB is 512 bytes long. IDBs are allocated in separate extents to 
data records, but IDBs for different indexes may, and indeed normally 
will, occupy the same extent. 
 
The indexes in a DMAM database are organised in a B*-tree structure, 
and are dynamically updated as records are added to and deleted from 
the database. 
 
Each index is arranged conventionally in a number of levels. The 
location of the highest level (root) index block for an index is 
indicated in the 372 byte record set control block. All index levels 
apart from the lowest (leaf) level contain keys and file pointers 
indicating the location of the index blocks for the next lower level 
of the index. The leaf index blocks contain keys and pointers to the 
appropriate records. Leaf index blocks are chained forwards and 
backwards to improve performance on sequential read operations (READ 
NEXT and READ PRIOR). 
 
Deleted IDBs are chained together in the same way as data records. 
 
C.1.6 Structure of an IDB 
The data within an IDB is laid out as follows: 
 
● The first byte of the IDB is a PIC 9(2) COMP field which contains 

the level of this IDB. The root will be the highest level, and the 
leaf IDBs have a level of zero. The level of the root may not be 
greater than 20 due to memory limitations imposed by DMAM. If the 
IDB is deleted then this field is set to 42 (#2A, *); 

 
● The next two bytes of the IDB are used to contain the backup 

sequence information; 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 64 of 72 

 
● The next byte of the IDB is a PIC 9(2) COMP field containing the 

number of used keys in the body of the IDB. This may only be zero 
for a non-leaf IDB (and will only occur in the root of an empty 
index, or when a large proportion of the keys in a part of the 
index have been deleted); 

 
● Following the initial four bytes is a PIC 9(9) COMP field which is 

only used for deleted IDBs and leaf IDBs. In a deleted IDB it is 
the pointer to the next IDB in the deleted chain, as for the 
deleted record chains. In a leaf IDB it is the pointer to the next 
IDB in the leaf chain, or zero if this is the last IDB in the 
index. 

 
● The next four bytes are a PIC 9(9) COMP field, used in a leaf IDB 

as a pointer to the previous IDB in the leaf chain, or zero if this 
is the first IDB in the index. In a non-leaf IDB this is in fact 
the first index pointer to the next lower level of IDBs. 

 
● In a leaf IDB the previous IDB pointer is followed by a series of 

pairs of fields making up the body of the IDB. The first field of 
each pair is a key (of the appropriate length) and the second is a 
PIC 9(9) COMP pointer to the record which has that key value. 

 
● In a non-leaf IDB key values and file pointers are laid out as 

above, but the key values are merely separators used to indicate 
which is the correct IDB from the next lower level of the index. 
Keys up to and including the separator value are located in the IDB 
indicated by the preceding file pointer. Keys greater than the last 
separator value are located in the IDB indicated by the file 
pointer succeeding the last separator in the IDB. 

 
The structure of a DMAM index is illustrated by figure C.1 overleaf. 
This shows a stylised index arrangement, with a maximum of three keys 
per IDB. Note that the separator values in the non-leaf IDBs do not 
have to correspond to any actual key held at the leaf level. 
 
 
Root IDB 
Level 2 
 
 
 
 
Level1 
 
 
 
 
 
 
Leaf IDB's 
Level 0 
 
 
 
 
 
  

 
10 

 
03 

 
30 

 

 
01  02  03 
 

 
12  20  24 
 

 
31  32 

 

 
04  05  06 
 

 
Data records 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 65 of 72 

 
  
 
 

Figure C.1 - Index Layout 
 
When a key is added to an index it is inserted into the correct place 
in a leaf IDB. If there is insufficient room for this, then the leaf 
IDB is split (the precise details of the split depend on the index 
type), the new key is added to the correct leaf IDB, and a new 
separator is placed in the IDB of the next higher level in the index. 
This may result in a further split of this index block, which may 
potentially cascade up to cause a split of the root IDB, and the 
consequent deepening of the index tree. 
 
C.1.7 Key Format 
All keys held in an index are processed by DMAM so that they may be 
held in simple ASCII sequence. This means that various manipulations 
are carried out on the data used as part of computational and 
descending sequence key segments, as well as those done as part of a 
translation key. 
 
Computational key segments have the most significant bit of the field 
inverted, so that collation runs from negative to zero to positive. 
 
Translation key segments will be substituted, byte by byte, as 
indicated by the translation table in the database. They will also be 
compacted as indicated by the table, either by bit shifting or RAD-50 
compression. 
 
Descending key segments have each of the bits in the field flipped 
(after any computational or translation replacement), to reverse the 
collating sequence. 

 
C.2 C-ISAM Format DMAM Databases 
C-ISAM format DMAM databases consist of a Global schema file and one 
or more C-ISAM databases. The schema file, within a Global directory, 
holds information about the C-ISAM databases that contain the data 
records. The C-ISAM databases are held within the Unix filing system. 
A separate C-ISAM database is required for each record set in the C-
ISAM format DMAM database. 
 
C.2.1 The Schema File 
The schema file consists of the following sections: 
 
● A 256 byte area containing the name of the Unix directory which 

holds the C-ISAM database(s), and the name of the data library 
containing the conversion tables; 

 
● 768 bytes of spare space to maintain compatibility with the header 

information in a Global format DMAM database; 
 
● 1024 bytes of static database information, including a list of set-

ids, which is only updated when using DBMAIN to update the data 
layout; 

 
● 512 bytes containing the translation table and various other 

translation information; 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 66 of 72 

 
● 1536 bytes containing the list of index names, along with 

associated index types and record set numbers; 
 
● For each potential record set which the database may contain: A 386 

byte area defining the Global index construction and data usage 
which also contains the 30 character set description as well as the 
14 character Unix file name for the C-ISAM database that holds the 
record set; 

 
● For each potential record set which the database may contain: A 

2642 byte area defining the C-ISAM index construction and the 
conversion record. 

 
Space is left for a number of record set data blocks equal to the 
maximum number of records sets that the database may contain (as 
specified by DBMAIN). 
 
C.2.2 C-ISAM Database Structure 
For details of the C-ISAM database structure please consult your 
Informix C-ISAM documentation. 
 
All fields within the C-ISAM database(s) are processed by the C-ISAM 
Universal Channel Interface (UCI). In addition to providing the raw 
file access to the C-ISAM databases the UCI translates each Global 
record to a C-ISAM record, and vice-versa, using the UCI record 
conversion tables (1 per record type) and DMAM translation table (1 
per DMAM database) held within the schema file. 
 
C.2.3 Key and Field Formats for Translation and Descending 
Keys 
Translation and Descending key fields must each be mapped to two C-
ISAM fields. The first field holds the translated or descending value 
and is used as a C-ISAM key field. The second field holds the 
'unmodified' version of the data which is NOT part of the C-ISAM key 
structure. When the UCI converts from Global record format to C-ISAM 
record format both fields in the C-ISAM record are produced. However, 
when the UCI converts from C-ISAM record format to Global record 
format only the 'unmodified' version is converted. 
 
In the C-ISAM record, translation key segments will be substituted, 
byte by byte, as indicated by the translation table in the database. 
They will also be compacted as indicated by the table, either by bit 
shifting or RAD-50 compression (see appendix D). 
 
To overcome a shortcoming in C-ISAM (i.e. it does not allow descending 
keys), the key-values for DMAM descending sequences are held in a 
special format within the C-ISAM database so that descending key 
fields are ordered in the correct sequence. The value of the data 
within the fields specified as a descending keys is modified. The 
actual modification depends upon the type of field and is described in 
the following sections. 
 
C.2.3.1 Character fields in Descending Keys 
A character string in a descending key is modified by one's 
complementing each byte before storing into the key area of the C-ISAM 
record. 
 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 67 of 72 

Character strings can also be modified via a translation table to 
provide a simple character-to-character substitution, or a more 
complex data compression technique (as described in appendix D). A 
descending key field may also include translation in which case, the 
data is translated and then inverted as described above. 
 
C.2.3.2 Long/Short Integer fields in Descending Keys 
An integer field in a descending key is modified by one's 
complementing each byte of the integer, before storing into the key 
area of the C-ISAM record. 
 
C.2.3.3 Float/Double fields in Descending Keys 
A floating point field in a descending key is converted into an 8-byte 
quantity before being inverted by one's complementing each byte. The 
result is converted back to a floating point number before storing 
into the key area of the C-ISAM record. 
 
C.2.3.4 C-ISAM Decimal fields in Descending Keys 
A C-ISAM decimal field in a descending key is converted into an 8-byte 
quantity before being inverted by one's complementing each byte. The 
result is converted back to a C-ISAM decimal number before storing 
into the key area of the C-ISAM record. 
 
C.2.3.5 Unix Date fields in Descending Keys 
A Unix date field in a descending key is converted into a long integer 
variable (4 bytes) which contains the number of days since 31-Dec-
1899. The result is then subtracted from 0 before storing into the key 
area of the C-ISAM record. 
 
C.2.4 C-ISAM Record Locking 
The C-ISAM databases that hold the data records for a C-ISAM format 
DMAM database may be accessed via the C-ISAM indexes created by DMAM 
or through any other index on the databases. However, DMAM does NOT 
perform any C-ISAM file or record locking on the C-ISAM databases. 
Consequently, these files should not be accessed by non-Global, Unix 
applications while they are being accessed by a Global DMAM 
application otherwise data corruption may occur. 
 
Furthermore, any C-ISAM application that accesses the C-ISAM databases 
that constitute a C-ISAM format DMAM database must be aware of any 
translation and/or descending keys. If a C-ISAM application writes to 
a C-ISAM database that is part of a C-ISAM format DMAM database it 
must produce both the descending and/or translated key values as well 
as the original data where necessary. 

 
C.3 Btrieve Format DMAM Databases 
Btrieve format DMAM databases consist of a Global schema file and one 
or more Btrieve databases. The schema file, within a Global directory, 
holds information about the Btrieve databases that contain the data 
records. The Btrieve databases are held within the MS-DOS filing 
system. A separate Btrieve database is required for each record set in 
the Btrieve format DMAM database. 
 
C.3.1 The Schema File 
The schema file consists of the following sections: 
 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 68 of 72 

● A 256 byte area containing the name of the MS-DOS directory which 
holds the Btrieve database(s), and the name of the data library 
containing the conversion tables; 

 
● 768 bytes of spare space to maintain compatibility with the header 

information in a Global format DMAM database; 
 
● 1024 bytes of static database information, including a list of set-

ids, which is only updated when using DBMAIN to update the data 
layout; 

 
● 512 bytes containing the translation table and various other 

translation information; 
 
● 1536 bytes containing the list of index names, along with 

associated index types and record set numbers; 
 
● For each potential record set which the database may contain: A 386 

byte area defining the Global index construction and data usage 
which also contains the 30 character set description and the 12 
character MS-DOS file name for the Btrieve database that holds the 
record set; 

 
● For each potential record set which the database may contain: A 

2642 byte area defining the Btrieve index construction and the 
conversion record. 

 
Space is left for a number of record set data blocks equal to the 
maximum number of records sets that the database may contain (as 
specified by DBMAIN). 
 
C.3.2 Btrieve Database Structure 
For details of the Btrieve database structure please consult your 
Btrieve documentation. 
 
All fields within the Btrieve database(s) are processed by the Btrieve 
Universal Channel Interface (UCI). In addition to providing the raw 
file access to the Btrieve databases the UCI translates each Global 
record to a Btrieve record, and vice-versa, using the UCI record 
conversion tables (1 per record type) and DMAM translation table (1 
per DMAM database) held within the schema file. 
 
C.3.3 Key and Field Formats for Translation and Descending 
Keys 
Translation key fields must each be mapped to two Btrieve fields. The 
first field holds the translated value and is used as a Btrieve key 
field. The second field holds the 'unmodified' version of the data 
which is NOT part of the Btrieve key structure. When the UCI converts 
from Global record format to Btrieve record format both fields in the 
Btrieve record are produced. However, when the UCI converts from 
Btrieve record format to Global record format only the 'unmodified' 
version is converted. 
 
In the Btrieve record, translation key segments will be substituted, 
byte by byte, as indicated by the translation table in the database. 
They will also be compacted as indicated by the table, either by bit 
shifting or RAD-50 compression (see appendix D). 
 



Appendix C - DMAM Database Structure 

 

 

Global Development Data Management Manual V8.1  Page 69 of 72 

Note that Btrieve, unlike C-ISAM (see section C.2.3, above) allows 
"DMAM-like" descending keys so the special field conversion algorithms 
within the C-ISAM UCI are not required for the Btrieve UCI. 
 
C.3.4 Btrieve Record Locking 
The Btrieve databases that hold the data records for a Btrieve format 
DMAM database may be accessed via the Btrieve indexes created by DMAM 
or through any other index on the databases. However, DMAM does NOT 
perform any Btrieve file or record locking on the Btrieve databases. 
Consequently, these files should not be accessed by non-Global, MS-DOS 
applications while they are being accessed by a Global DMAM 
application otherwise data corruption may occur. 
 
Furthermore, any Btrieve application that accesses the Btrieve 
databases that constitute a Btrieve format DMAM database must be aware 
of any translation keys. If a Btrieve application writes to a Btrieve 
database that is part of a Btrieve format DMAM database it must 
produce both the translated key values as well as the original data 
where necessary. 
 



Appendix D - DMAM Translation Tables 

 

 

Global Development Data Management Manual V8.1  Page 70 of 72 

Appendix D - DMAM Translation Tables 
 
A translation table is held within a DMAM database file (in the 
header) and is used in constructing all translation keys used by any 
index. There is only a single translation table in a DMAM database, so 
if you have a requirement for more than one kind of translation you 
must split the record sets affected between two separate database 
files. 
 
A translation table is laid out as follows: 
 

01 TT     * Translation table 
  03 TTBITS PIC 9 COMP  * type indicator 
  03 FILLER  PIC X(3)  * reserved 

VALUE LOW-VALUES 
  03 TTCHAR OCCURS 256 PIC X  * translated chars 

 

D.1 Translation Types 
The TTBITS field indicates the type of translation to be performed. It 
may have the following values: 
 

-1 which indicates that translation is to be on a byte for byte 
basis, with no special replacement or compaction processing. 
Each character in the original string is replaced by the 
appropriate character from the TTCHAR table (e.g. space, 
#20, is the 33rd element of the table and capital a, #41, is 
the 66th element of the table). This value is used when 
using the translation to re-sequence characters, as for 
example when collating a non-UK character set in the correct 
sequence; 

 
0 which indicates that a form of RAD-50 compaction is to be 

used. Each character in the original string is substituted 
by the appropriate character from the TTCHAR table. A 
substituted value of #FF means that character is to be 
ignored. Otherwise the substituted value must be in the 
range #00 to #27 (0 to 39 decimal). Three substituted values 
are held together in a single word (2 bytes) as a number of 
the form 1600*A + 40*B + C, for substituted values of A, B, 
and C. This form of translation is used by the default table 
established by DBMAIN; 

 
N a positive number, in the range 1 to 8, which indicates that 

bit compression is to be used. Each character in the 
original string is substituted by the appropriate character 
from the TTCHAR table. A substituted value of #FF means that 
character is to be ignored. Otherwise the indicated number 
of bits from the substituted value are appended to the 
values so far substituted. 

 
In the latter two cases special processing is performed for Characters 
substituted as the value #00. Such characters are treated as 
separators, and only the first of a sequence of such characters 
encountered is placed in the output key value. Subsequent separator 
characters are ignored, until after a non-ignored, non-separator 
character is encountered. 
 
In all cases where less than a full 8-bit character value results from 
a substitution (TTBITS is zero, or in the range 1 to 7) the 



Appendix D - DMAM Translation Tables 

 

 

Global Development Data Management Manual V8.1  Page 71 of 72 

substituted characters must be either #FF, to indicate that they are 
to be ignored, or must contain a value no larger than indicated by the 
value of TTBITS (not greater than #27 for RAD-50 compaction, no more 
bits set than the value of TTBITS otherwise). 
 

D.2 The Default Translation Table 
DBMAIN establishes a default translation table in a DMAM database file 
when it is created. This table is laid out as follows: 
 
● The value of TTBITS is zero, indicating RAD-50 compression is to be 

used; 
 
● The TTCHAR characters corresponding to the ASCII numerals (elements 

49 to 58 inclusive) are set to the values from #01 to #0A; 
 
● The TTCHAR characters corresponding to the upper case letters 

(elements 66 to 91 inclusive) are set to the values from #0B to 
#24; 

 
● The TTCHAR characters corresponding to the lower case letters 

(elements 98 to 123 inclusive) are also set to the values from #0B 
to #24; 

 
● All other characters are set to #FF. 
 
The effect of this table is that only ASCII letters (A-Z, a-z) and 
numerics (0-9) are significant in the translated key. There are no 
special separator characters, and letters are collated without regard 
to case. The collating sequence for those characters which 
significance is the same as it is in ASCII (i.e. 0-9 and then A-Z in 
increasing order). 
 
As an example, suppose the string "14-17 Salston Av., Herts" were 
translated via this table. The final key value would be determined as 
if the string were in fact "1417SALSTONAVHERTS" (i.e. with all letters 
in upper case and non-significant characters removed). The key would 
also only occupy 12 bytes, as each three adjacent characters are 
compressed into a 2-byte word. 
 
The default translation table is used by the Global 2000 applications 
when constructing case-insensitive 'alpha match' keys for use in name 
searching. 
 

D.3 Setting up your own Translation Table 
If you wish to set up your own translation table, you must arrange to 
create an RS file, containing a single record of length 260 bytes 
which is a translation table as defined above. You might wish to do 
this by writing a small program to create the table, or alternatively 
by using $PATCH on a suitable file to establish the correct values. 
 
Before establishing a translation table you should consider what 
function you wish it to perform. Typically you will either wish to 
create some special compressed key format, or to reorder the collating 
sequence of characters for some non-UK language. 
 
In the former case you must identify the subset of the character range 
in which you are interested. Consider carefully the question of 
separators, and whether any are required. The number of discrete 



Appendix D - DMAM Translation Tables 

 

 

Global Development Data Management Manual V8.1  Page 72 of 72 

values required will indicate the value which should go into TTBITS, 
and hence the range of values which the substituted characters in 
TTCHAR will have. For example, if you required 25 discrete values 
(with or without separators) then the minimum value for TTBITS would 
be 5 (5 bits permits 31 values and a separator). You might wish to use 
a larger value of TTBITS to increase the number of possible values in 
the table and enable future expansion of the valid characters. 
 
In the case of reordering the collating sequence, for a non-UK 
language for example, then you would arrange substitution to achieve 
this. You might also wish to compact the resulting keys, using the 
same analysis of discrete values as above. 
 
Note that it is quite permissible for two (or more) different 
characters to translate to the same value (as is the case in the 
default table) and hence although there is only one separator value a 
number of characters may all translate to it. 
 
Note also the difference between a value of 8 and -1 in TTBITS. A 
value of -1 does byte for byte substitution, translating all 
characters. A value of 8 also does byte for byte translation, but any 
characters translating to #00 are treated as separators and any 
characters translating to #FF are ignored. 
 


