

Global Development File Management Manual V8.1 Page 1 of 244

 Global Development 16-bit
 File Management Manual
 Version 8.1

Global Development File Management Manual V8.1 Page 2 of 244

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,
electrical, mechanical, photocopying,

recording or otherwise, without
the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development File Management Manual V8.1 Page 3 of 244

TABLE OF CONTENTS

Section Description Page Number

1. Introduction to File Management ???
1.1 Basic Concepts .. ???
1.2 The File Definition ... ???
1.3 File Processing Statements...................................... ???
1.4 Processing Shared Files ... ???
1.5 Print Files ... ???
1.6 Special I/O Error Handling...................................... ???

2. The Relative Sequential File Organisation ???
2.1 Relative Sequential Files ???
2.2 The File Definition ... ???
2.3 The OPEN Statement .. ???
2.4 The WRITE NEXT Statement .. ???
2.5 The WRITE Statement ... ???
2.6 The READ FIRST and READ LAST Statements ???
2.7 The READ NEXT and READ PRIOR Statements ???
2.8 The READ Statement .. ???
2.9 The CLOSE Statement ... ???
2.10 ... Memory Paged RSAM ???
2.11 RSAM with Data in Global or C-ISAM Files ???

3. Indexed Sequential File Organisation ???
3.1 Indexed Sequential Files .. ???
3.2 The File Definition ... ???
3.3 The OPEN Statement .. ???
3.4 The WRITE Statement ... ???
3.5 The REWRITE Statement ... ???
3.6 The READ Statement .. ???
3.7 The READ NEXT Statement ... ???
3.8 The CLOSE Statement ... ???
3.9 Memory Paged ISAM ... ???
3.10 ISAM with Data in Global or C-ISAM Files ???

4. Variable Length Record File Organisation ???
4.1 Variable Length Record Files ???
4.2 The File Definition ... ???
4.3 The OPEN Statement .. ???
4.4 The WRITE NEXT Statement .. ???
4.5 The WRITE Statement ... ???
4.6 The READ FIRST Statement .. ???
4.7 The READ NEXT Statement ... ???
4.8 The READ Statement .. ???
4.9 The CLOSE Statement ... ???

5. Text File Organisation .. ???
5.1 Text Files .. ???
5.2 The File Definition ... ???
5.3 The OPEN Statement .. ???
5.4 The WRITE NEXT Statement .. ???
5.5 The READ FIRST Statement .. ???
5.6 The READ NEXT Statement ... ???
5.7 The READ Statement .. ???
5.8 The CLOSE Statement ... ???

6. Basic Direct File Organisation ???
6.1 Basic Direct Files .. ???
6.2 The File Definition ... ???
6.3 The OPEN Statement .. ???

Global Development File Management Manual V8.1 Page 4 of 244

6.4 The WRITE NEXT Statement .. ???
6.5 The WRITE Statement ... ???
6.6 The READ FIRST and READ LAST Statements ???
6.7 The READ NEXT and READ PRIOR Statements ???
6.8 The READ Statement .. ???
6.9 The CLOSE Statement ... ???

7. Data Library File Organisation ???
7.1 Data Library Files .. ???
7.2 The File Definition ... ???
7.3 The OPEN Statement .. ???
7.4 The WRITE Statement ... ???
7.5 The REWRITE Statement ... ???
7.6 The DELETE Statement .. ???
7.7 The READ Statement .. ???
7.8 The READ FIRST and READ LAST Statements ???
7.9 The READ NEXT and READ PRIOR Statements ???
7.10 ... The CLOSE Statement ???

8. Physical Sector Access Method ???
8.1 Specifying Volume Attributes ???
8.2 The File Definition ... ???
8.3 The OPEN OLD Statement .. ???
8.4 The READ Statement .. ???
8.5 The WRITE Statement ... ???
8.6 The CLOSE Statement ... ???

9. Speedbase Access Method ... ???
9.1 Speedbase files ... ???
9.2 The file definition ... ???
9.3 The OPEN Statement .. ???
9.4 The READ Statement .. ???
9.5 The READ NEXT and READ PRIOR Statements ???
9.6 The READ FIRST and READ LAST Statements ???
9.7 The READ PHYSICAL Statement ???
9.8 The UNLOCK Statement .. ???
9.9 The CLOSE Statement ... ???
9.10 ... Speedbase Compatibility ???
9.11 ... Memory Paged SPAM ???
9.12 .. SPAM for Speedbase in C-ISAM ???

10. C-ISAM Indexed Sequential Access Method ???
10.1C-ISAM Indexed Sequential Files ???
10.2 ... The File Definition ???
10.3 .. The OPEN Statement ???
10.4 ... The WRITE Statement ???
10.5 ... The REWRITE Statement ???
10.6 .. The DELETE Statement ???
10.7 .. The READ Statement ???
10.8 The READ NEXT and READ PRIOR Statements ???
10.9 The READ FIRST and READ LAST Statements ???
10.10 The READ PHYSICAL Statement ???
10.11 The UNLOCK Statement .. ???
10.12 The CLOSE Statement ... ???

11. Direct Unix Access Method ???
11.1 .. File Structure ???
11.2 ... The File Definition ???
11.3 .. The OPEN Statement ???
11.4 .. The WRITE NEXT Statement ???
11.5 ... The WRITE Statement ???
11.6 The READ FIRST and READ LAST Statements ???

Global Development File Management Manual V8.1 Page 5 of 244

11.7 The READ NEXT and READ PRIOR Statements ???
11.8 .. The READ Statement ???
11.9 ... The CLOSE Statement ???

12. Direct MS-DOS Access Method ???
12.1 .. File Structure ???
12.2 ... The File Definition ???
12.3 .. The OPEN Statement ???
12.4 .. The WRITE NEXT Statement ???
12.5 ... The WRITE Statement ???
12.6 The READ FIRST and READ LAST Statements ???
12.7 The READ NEXT and READ PRIOR Statements ???
12.8 .. The READ Statement ???
12.9 ... The CLOSE Statement ???

13. Direct Windows Access Method ???
13.1 .. File Structure ???
13.2 ... The File Definition ???
13.3 .. The OPEN Statement ???
13.4 .. The WRITE NEXT Statement ???
13.5 ... The WRITE Statement ???
13.6 The READ FIRST and READ LAST Statements ???
13.7 The READ NEXT and READ PRIOR Statements ???
13.8 .. The READ Statement ???
13.9 ... The CLOSE Statement ???

14. Open Direct Access Method ???
14.1 .. File Structure ???
14.2 ... The File Definition ???
14.3 .. The OPEN Statement ???
14.4 .. The WRITE NEXT Statement ???
14.5 ... The WRITE Statement ???
14.6 The READ FIRST and READ LAST Statements ???
14.7 The READ NEXT and READ PRIOR Statements ???
14.8 .. The READ Statement ???
14.9 ... The CLOSE Statement ???

15. File Management Subroutines ???
15.1 The File Conversion Routine, CONV$???
15.2 .. The File Copy Routine, COPY$???
15.3 .. The Catalogue Routine, CATA$???
15.4 ... The Delete Routine, DELE$???
15.5 ... The Rename Routine, RENA$???
15.6 The File Information Routine, FILE$???
15.7 The Volume Identification Routine, VOLID$???
15.8 The Assignment Routine, ASSIG$???
15.9 The Directory Routines, OPEN$, OPENS$, LIST$ and CLOSE$???
15.10 The File Status Routine, FSTAT$???
15.11 The Set Password Routine, SET$???
15.12 The Secure File Routine, SECUR$???
15.13 The ISAM File Size Calculation Routine, CALC$???
15.14 Fix Product Serial Number and Expiry Date, FIX$???
15.15 The Scratch Volume Routine, SCR$???
15.16 The Device Information Routine, DEVIN$???
15.17 The ISAM Records In Use Routine, ISUSE$???
15.18 The Shared Lock Routines SLOCK/SULOC$???
15.19 The Lock Work Unit Routines, LWORK$/UWORK$???
15.20 The Open File with Optional Delete Routine, OPDE$???
15.21 The Copy Library Index Routine, LIBR$???
15.22 The Volume Description Routines, GTDES$ and PTDES$???
15.23 The Subvolume Size Routine, SUBS$???

Global Development File Management Manual V8.1 Page 6 of 244

16. Data Security System Routine ???
16.1 Save Files on Backup Cycle Routines, SAVE$ and SAVEN$???
16.2 Restore Files from Backup Cycle Routine, REST$???

17. The Multi-Key Sort .. ???
17.1 ... Invoking the Sort ???
17.2 .. Programming and Design Notes ???
17.3 .. Examples ???
17.4 Using the multi-phase sort, MSORT$???

Global Development File Management Manual V8.1 Page 7 of 244

APPENDICES

Appendix Description Page Number

A Indexed Sequential File Structure.............................. ???

B Catalogue File Structure .. ???

C Using BDAM to Copy Files .. ???

D Sizes of Included Routines...................................... ???

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 8 of 244

1. Introduction to File Management

1.1 Basic Concepts
Global Cobol provides a number of different language statements to
allow you to define and manipulate files on different devices such as
printers and direct access devices. The file definition statements,
coded in the data division, include FD, ASSIGN, RECORD LENGTH, SIZE,
OPTION, KEY, KEY LENGTH and BLOCK CONTAINS. They are used to specify
the attributes of a file. The file processing statements, coded in the
procedure division, allow you to manipulate data records. The
statements are OPEN, WRITE NEXT, WRITE, REWRITE, READ and CLOSE. In
addition a number of system routines are provided to perform other
useful functions necessary in a complete file management system.

File handling is always the most difficult area of programming to
understand since you have to be familiar with a large variety of
concepts, most of which are peculiar to the particular operating
system under which your program is to run, rather than the language
you are writing in. Thus before examining the Global Cobol statements
involved in more detail, a number of important underlying concepts
must be explained. This is the purpose of this introduction.

1.1.1 Documentation Structure
Global file management features are documented to reflect the way in
which the System Manager file processing is to some extent independent
of the particular physical medium and file organisation involved.

Obviously it is not possible to read records at random from a printer,
for example, but you can write a program to output a print file and
then decide at run-time whether the file is to be assigned to a real
printer or to a direct access device. Similarly, if your program only
reads or writes a data file sequentially, you can assign it to any
kind of direct access storage. The conventions for writing print files
and files which can be assigned to direct access storage are described
later in this chapter (in section 1.5), so as not to complicate the
rest of the documentation with a lot of device-dependent detail.

Files may be structured in a number of different ways. For example, a
file may be made up of consecutive fixed length records which can be
accessed either sequentially, or at random, by supplying the record
number as a key. Alternatively, an indexed sequential file consists of
a data area, an index area and an overflow area. Each record contains
a key, which might be a part code or a customer number for example,
and a chaining technique is used to maintain the file in ascending key
sequence. The file can be either scanned sequentially, or records can
be retrieved at random according to their key. Records with new keys
can be added to the overflow area and chained into the existing file
so the correct sequence is maintained.

Entry

point(s)

Subroutine

Name
(reference)

Function

CONV$ File
Conversion
(15.1)

Converts relative sequential files to
indexed sequential format, and vice
versa; re-organises indexed sequential
files, removes logically deleted
records.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 9 of 244

COPY$ File copy
(15.2)

Copies direct access files.

CATA$ Catalogue
(15.3)

Allows programs to be essentially device
independent by completing volume and
unit information in a list of file
definitions from data held in a
catalogue file.

DELE$	Delete	Deletes a named file from a direct
	(15.4)	access volume.
RENA$	Rename	Renames a file on a direct access
	(15.5)	volume.
FILE$	File	Prompts the operator to supply the file
	information	and unit information for a particular
	(15.6)	file definition.
VOLID$	Volume	Supplies the volume-id of the volume
	identification	currently mounted on a direct access
	(15.7)	unit.
ASSIG$	Assignment	Allows unit assignments to be made under
	(15.8)	program control, and the assignments
		currently in force to be examined. The
		routine can be used to determine the
		type of device to which a file is
		actually assigned.
OPEN$	Directory	Scans the directory of a direct access
OPENS$	(15.9)	volume and returns details of the file
LIST$		or files that it contains one by one.
CLOSE$		
FSTAT$	File Status	Allows the program to determine the
	(15.10)	used file size.
SET$	Set Password	Allows you to alter or set up the
	(15.11)	current password.
SECUR$	Secure File	Secures a file on a direct access
	(15.12)	volume with the current password.

 Table 1.1.1 - System Routines used for File Management

| | | |
| ENTRY | ROUTINE NAME | FUNCTION |
 +++++ ++++++++++++ ++++++++
| POINT(S) | (REFERENCE) | |
 ++++++++ +++++++++++
| | | |

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 10 of 244

CALC$	ISAM File	Calculates the size required for an
	size (15.13)	indexed sequential file
FIX$	Fix number &	Fixes the Product Serial Number and the
	date (15.4)	Expiry date for a file
SCR$	Scratch	Deletes all files from a diskette,
	Volume	direct access volume or subvolume.
	(15.15)	
DEVIN$	Device	Provides complete information about a
	Information	physical device (sector size, number of
	(15.16)	cylinders, etc etc).
ISUSE$	ISAM record	Determines the number of records in
	in use	use on an ISAM file.
	(15.17)	
SLOCK$	Shared Lock	Obtains a shared lock on a particular
SULOC$	(15.18)	file, used in master/servant record
		updating.
LWORK$	Lock Work	Obtains an exclusive lock on a work
UWORK$	Unit (15.19)	unit to avoid interference from
		competing processes.
OPDE$	Open file	Opens a file prompting the operator
	with optional	for deletion if required.
	delete	
	(15.20)	
LIBR$	Build copy	Build an index for the supplied copy
	library	library.
	(15.21)	
GTDES$	Get volume	Retrieves the volume description for
PTDES$	description	the specified volume.
	(15.22)	
SUBS$	Get sub-	Retrieves the size of a domain sub-
	volume size	volume and the maximum space available
	(15.23)	to allocate a new subvolume.

Table 1.1.1 - System Routines used for File Management (cont.)

The way in which a file is structured is known as the file
organisation. The System Manager supports a number of different
organisations.

To make file handling as simple as possible, Global Cobol uses common
file processing statements, such as OPEN, READ, WRITE and CLOSE, to
manipulate a file, irrespective of its organisation. (The particular
organisation involved is actually indicated by information supplied in
the file definition.) The normal way in which file definition and file
processing statements are used is described in 1.2 and 1.3. However,
there may be minor differences according to the actual file
organisation you are using so each statement is documented again

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 11 of 244

independently in the chapter devoted to the organisation in question.
To avoid too much unnecessary repetition, these detail chapters refer
back to any relevant parts of the general description which follows.

Several organisations are available to allow you to access DOS or Unix
files from within the System Manager environment. However the File
Converters package is available to allow you to access these files
more directly.

There are, in addition to the language statements, a number of system
routines involved in file management. They are documented in detail in
Chapter 9 of this manual. Table 1.1.1 summarises their functions.

1.1.2 Device-independent Programming
When the System Manager is installed the devices supported by a
configuration are allocated unique 3 character unit addresses. For
systems which are not networked and are not separated systems, all
three characters are numeric. Thus by convention:

● units 100 - 199 are diskette drives (but 109 is always reserved for

local RAM disk, if present);

● units 200 - 299 are hard disk subunits (see below);

● units 500 - 599 are printers;

● units 800 - 999 are direct access devices on another computer

linked to your own computer via $REMOTE.

On networks local units are addressed in the same way, but additional
addresses are available for accessing direct access units on other
computers, each such file server being identified by a letter A - Z:

● units 600 - 699 are hard disk subunits on the master computer;

these can also be accessed by means of the network address, e.g.
X00 - X99 if X identifies the master computer;

● a00 - a99 are diskette drives on computer A (a09 being reserved for

the RAM disk on computer A, if present);

● A00 - A99 are hard disk subunits on computer A.

Note that there are no network addresses for printers, which can only
be accessed directly from the computer to which they are attached. If
it is necessary to share printers on a network this must be done by
means of a spool unit. Note in addition that the network form of
address can also be used to access local units.

On separated systems the units are addressed in a similar way to
networked systems but there are no local units and all units for each
file server system are identified by a letter A - Z:

● units 600 - 699 are subunits on the master system; these can also

be accessed by means of the system address, e.g. A00 - A99 if A
where A is assumed to be the master system;

● a00 - a99 are diskette drives referred to by system A ;

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 12 of 244

● A00 - A99 are hard disk subunits referred to on system A.

Usually there is a single unit address corresponding to each physical
device, but sometimes a single device may be described by a number of
different addresses. For example, it may be decided to subdivide a
large hard disk into a number of different subunits, each with their
own unique unit address, in order to make it easier to allocate
different applications their own private file space. Sometimes when
the same diskette drive can hold different media (e.g. single or
double density diskettes) the same device is given a specific unit
address for each medium.

A Global Cobol program should normally be written to be independent of
the actual physical unit addresses supported by a particular
configuration, in order that it can run, unchanged, at a number of
sites. This is achieved by associating each file used by the
application with a "logical" unit-id rather than an actual unit
address. The relationship between unit-ids and unit addresses is only
fixed when the program comes to be run, by which time, of course, the
addresses to be used are known. The unit-ids consist of up to three
ASCII characters which, to prevent them being confused with unit
addresses, should be neither entirely numeric nor an alphabetic
character followed by 2 digits.

The process of associating unit-ids with unit addresses is known as
assignment and is discussed in detail in the Global Operating Manual.
The latest time at which an assignment can be made is when the file
involved is opened, at which stage the operator will be prompted to
supply the unit address corresponding to the unit-id if this is not
already known. The assignment command program ($A) can be used to
preset assignments at the start of the session to prevent prompts
appearing when files are opened. In addition the $CUS Permanent Unit
Assignments option can be used to fix those assignments which are
permanently required at an installation, and programs to be run from
the menu established by customising the menu file using the MN utility
can have any necessary assignments made as part of that customisation.

The unit-ids that you employ in coding an application should consist
of one, two or three ASCII characters, the first of which should be
alphabetic, and must not be the $ sign. For example:

DA1 DA2 DA3 PR

Do not use unit-ids which consist of an alphabetic character followed
by 2 digits, to avoid confusion with LAN unit addresses.

Unit-ids beginning with a $ sign are used by the System Manager
itself. For example, $CP identifies the unit from which command
programs are loaded, $P the unit for application programs, and $PR the
logical printer. There is a list of the most commonly used System
Manager unit-ids in the Operating Manual.

The unit-id consisting of a single ? character, followed by two
blanks, has a special meaning when the CATA$ and FILE$ system routines
are employed. You must not attempt to use it as a normal unit-id.

1.1.3 Volumes
A volume is a storage medium, such a diskette, hard disk or RAM disk,
or a volume file in a separated system, which may occupy a unit and

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 13 of 244

hold one or more files. Each volume is identified by means of its
volume-id, a six character ASCII code and may also have an associated
fifty character volume description. Before a volume can be used for
data storage you must run the System Manager volume maintenance
command program ($V) to initialise it and write its volume-id (and
possibly a volume description) to a magnetic label stored in a special
part of the volume known as the directory.

The volume concept applies only to direct access devices. It does not
apply to printers because there is no means of holding machine
readable label information on these devices.

When you initialise a volume you should not normally give it a volume-
id beginning with the characters SYS or BAC, since such volume-ids are
used for the System Manager itself or by the Data Security System.

Volumes may be either fixed (e.g. hard disks) or exchangeable (e.g.
diskettes). By careful choice of volume-ids you can guarantee that all
exchangeable volumes are uniquely labelled. You can supply an optional
clause in the file definition to instruct the System Manager to ensure
that the correct volume is mounted before you use it.

1.1.4 Files
Before you access a file from your program you must "open" it using
the Global Cobol OPEN statement. Each open file is expensive in terms
of the System Manager resources and there are always limitations on
the number of files which can be open simultaneously. These
restrictions are either a characteristic of the physical device
involved, or the System Manager software itself.

For example, only one file can be open at any one time on each printer
because of the sequential nature of the medium. However, a direct
access volume can contain a number of files and in theory all of them
might be open simultaneously. Since each open file consumes buffer
space within the System Manager nucleus, there is a limit on the
number of direct access files that can be open at any one time. In
practice, however, application programs which are to run on the
largest possible number of different configurations are normally coded
to require no more than 7 direct access files to be open at any one
time. The restrictions you should bear in mind when coding portable
programs are summarised in Appendix C of the Global Cobol Language
Manual.

When you have finished working with a file you should "close" it using
the Global Cobol CLOSE statement. This completes any outstanding I/O
operations and frees any System Manager resources used in accessing
the file. The file definition can then be re-used to process another
file, should you so wish.

Each file is identified by means of its file-id, an 8 character ASCII
code which is saved in a magnetic label when a direct access file is
created. The file-id is ignored in the case of print files.

You should avoid creating application file-ids whose names contain the
$ character, or which start with a prefix (a letter followed by a full
stop), since such names are used by the System Manager itself.

Spool units are used for storing print-image and text files to be
printed, and then finally deleted, by the $SP command. Any file

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 14 of 244

written to such a unit is automatically renamed by the System Manager
so that the new file-id consists of the originating operator-id
concatenated with a unique sequence number, in order that file name
clashes cannot occur. Existing files on a spool unit are under the
control of the System Manager Spooler and cannot be opened by ordinary
programs.

A direct access device can hold a number of files, distinguished by
their different file-ids. The maximum number of files that can be held
on a direct access volume depends on the size of its directory. At
least 50 files can be held on all devices supported under System
Manager V6.0 and later systems, and most subunits (on hard disk) are
capable of holding 99 files. To find the number of directory entries
available for files on any particular type of volume you need only
list it using the file utility ($F) LIS command described in the
Operating and Utilities Manuals.

1.1.5 Records
A file is considered to be made up of a number of records. A record is
created or replaced whenever the program executes a WRITE NEXT, WRITE,
REWRITE or DELETE statement to output an area of memory to the file.
Later a READ FIRST, READ LAST, READ NEXT, READ PRIOR or READ statement
is used to retrieve a record from the file and bring its contents into
memory for the program to work with.

The format and content of a particular record is mainly determined by
application requirements. However, there are certain restrictions,
normally affecting header information at the start of the record,
which apply to print records, indexed sequential, text file, and
variable length file records. There are also additional conventions to
obey if records are to be processed by AutoClerk. Record formats are
discussed in the chapters dealing with the particular file
organisations affected, except for print file records, which are
described in 1.5 below.

1.1.6 File Space Allocation
When a new direct access file is opened information supplied in the
file definition tells the System Manager the amount of space to
allocate to it. You may either make a specific request for, say, 20000
bytes, or alternatively ask that you be allocated the maximum
contiguous space available. In either case if the open succeeds the
file will be allocated a fixed contiguous area of storage termed its
extent. Once the initial allocation has been made the file's extent
cannot be increased by your program: if a larger extent is required
you will need to copy the data to a new file which has been allocated
more space, or use $REORG (described in the Utilities Manual) if the
file is on hard disk.

--
| | | |
| I/O ERROR CONDITION | STATEMENT | POSSIBLE RECOVERY ACTION |
 +++++++++++++++++++ +++++++++ ++++++++++++++++++++++++
| | | |

Attempted to access an	OPEN	None. The error is
unsupported device due		irrecoverable
to an error in unit		
assignment		

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 15 of 244

Attempted to open a file	OPEN	Wait for the other user(s)
which is already open		to finish with the file,
and cannot be shared		then retry.
Attempted to open more	OPEN	None. The error is
files simultaneously		irrecoverable.
than the device is		
capable of supporting		
Attempted to allocate	OPEN NEW	Either exchange the volume
a new file on a volume		for another containing less
with insufficient		files or more contiguous
directory or data space		free space, or delete some
		file or files from the
		volume using another
		terminal. Then retry.
Attempted an operation	READ	None. The error is
which is inappropriate	READ NEXT	irrecoverable.
for the physical device	WRITE	
involved: e.g. a direct	WRITE NEXT	
access READ, WRITE,		
READ NEXT or REWRITE		
on a printer		
Attempted to write to a	REWRITE	Release the file from
protected file	WRITE	protection using another
	WRITE NEXT	terminal. Then retry.
Attempted to write to a	REWRITE	Release the volume from
drive or volume which	WRITE	protection as documented in
is hardware write	WRITE NEXT	your hardware manual. Then
protected		retry.
Printer low on paper	WRITE NEXT	Mount and align new
		stationery, then retry to
		continue.
Hardware read or write	all	Retry a number of times in
error		the hope the error will
		prove intermittent.

Table 1.1.7 - I/O Error Conditions and Possible Recovery Actions

For volumes which have been initialised as spool or work volumes,
there is a nominal maximum allocation size, usually much less than the
true capacity of the volume. This nominal maximum determines the
greatest amount of free space actually allocated when a program makes
a non-specific space request for a new file. This means that a number
of "maximum" size files can be open simultaneously, which is not
generally possible on an ordinary unit where the first non-specific
space request is liable to obtain all the free storage available. Note
that files larger than the nominal maximum can still be allocated by
making specific space requests. For files on spool volumes, if the
initial allocation of space is used up, a further extension file is
allocated automatically.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 16 of 244

Files are typically created by writing records to consecutive storage
at the beginning of the extent, so the extent contents can be pictured
diagramatically as follows:

USED AREA	
	extent
	size
	determined
	when file
	created

SPARE SPACE	
(may not be present)	

Figure 1.1.6 - File Space Allocation

The same diagram can be considered to apply to printers as well. The
extent size may be determined from a specific request coded in the
file definition, or may be defaulted to a maximum determined by the
System Manager. In the case of a printer this is the largest positive
number that can be held in a PIC 9(9) COMP field (more than 2 billion
bytes) so that the default maximum is for all practical purposes
infinite.

For direct access devices a special field, the write next pointer, is
saved in the file label to address the current end of the file. The
presence of this pointer allows an existing file with spare space
available at the end of its extent to be extended with new records
output by WRITE NEXT (hence the name given to the pointer).

The System Manager prevents the WRITE NEXT statement from creating
records outside the file extent. The random access READ and WRITE
statements and the sequential READ NEXT and READ PRIOR are normally
only allowed to access records within the used area of the file.

For direct access files only, a special option of the CLOSE statement
allows you to "truncate" the extent in order to eliminate the spare
space, if any, and make the storage thus freed available for re-
allocation.

1.1.7 I/O Error Handling
Normally, if an I/O error occurs on a printer or direct access device,
The System Manager displays an explanatory console message together
with the retry prompt, which gives the user the opportunity of either
abandoning or retrying the current operation. Sometimes one or more
retries will result in the problem being overcome and in this case the
application will continue as though the error had never taken place.
Table 1.1.7 shows the typical I/O error conditions that may affect the
various file processing statements, and the possible recovery actions,
if any. A program may, by means of the ON ERROR statement in the FD,

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 17 of 244

intercept I/O errors before any message is displayed by the System
Manager, and if desired suppress the System Manager message.

The operator can usually retry a failing operation any number of
times, or abandon the attempt at any stage by replying appropriately
to the prompt. The System Manager will then signal that an
irrecoverable I/O error has occurred. The affected job will then be
terminated immediately unless a special option has been coded in the
file definition to indicate that the program itself is prepared to
handle irrecoverable I/O errors on that file.

There are three other conditions that are treated as irrecoverable I/O
errors, since their effect is essentially the same as far as the
application program is concerned, in as much as it is prevented from
accessing data it requires. These conditions arise if the operator is
unable to assign the file's logical unit-id to an appropriate physical
unit address, or if he is unable to mount a volume with a specified
volume-id, or if he is unable to supply the correct password for a
password protected file. Only the OPEN statement can be affected.

For print files an irrecoverable I/O error is signalled if the
operator is unable to supply special stationery when requested to do
so by the forms control prompt output as a result of a WRITE NEXT
statement, as explained in 1.5.

1.2 The File Definition
You must code a file definition (FD) in your program's data division
for each file that is to be open at the same time. A number of
different Global Cobol statements are used in constructing the file
definition, which is a data area shared by the application program and
the access method, the Global Cobol routine entered whenever a file
processing statement - such as OPEN, READ, WRITE or CLOSE - is
executed.

The file definition is normally coded in working storage. However, it
is possible to pass a file definition as a parameter to a routine
entered by means of a CALL or EXEC statement, and in such a routine
the passed FD would be coded in the linkage section.

Some of the statements employed in creating a file definition vary
according to the file's organisation and the access method used to
process it. However, those described in detail below are common to all
organisations and are explained here to prevent duplication in the
chapters dealing with the organisations individually.

The general format of a file definition is:

FD filename ORGANISATION organisation
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
[other optional statements, depending on the organisation]

The FD statement must always begin the construct, and be followed by
an ASSIGN statement if one is present. The other optional statements
can be coded in any order.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 18 of 244

The construct establishes a special group data item whose name is
filename. The quantities unit-id, file-id, volume-id, length and size
appear as subordinate elementary items within the group and can, if
need be, be referred to by the application program.

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in double quotes. If you can specify the size or length before
the program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

1.2.1 The Filename
The filename must be a symbol, as defined in 2.1.2. It labels the file
definition and must appear as the first operand of any file processing
statement accessing it.

1.2.2 The Organisation
The ORGANISATION (or ORGANIZATION) clause determines which access
method routine is to be included from the system library in order to
process the file. The first two bytes of a file definition coded in
working storage are set to address the entry point of the access
method, so that file processing statements which reference the FD pass
control to the appropriate routine. The American spelling ORGANIZATION
is accepted as an alternative to the UK spelling ORGANISATION, but for
consistency the UK spelling is used throughout the rest of this
manual.

The different file organisations supported by the System Manager and
Global Cobol are: relative sequential (RS); indexed sequential (IS);
text file (TF); variable length record (VL); basic direct (BD); data
library (DL) and physical sector (PS). Also described here is the
Global Cobol access method for Speedbase files. Some other file
organisations exist which are outside the scope of this manual, most
notably DMAM (covered in the Data Management Manual) and the Finder
and Planner access methods.

Relative sequential and indexed sequential files are most frequently
used in commercial applications, and are described in the next two
chapters of this manual. For them the ORGANISATION clause is coded as
either:

ORGANISATION RELATIVE-SEQUENTIAL
or:

ORGANISATION INDEXED-SEQUENTIAL

For the other organisations, which are covered in subsequent chapters,
you must code an ORGANISATION (or ORGANIZATION) statement whenever
your program wishes to make use of them. You code:

ORGANISATION name TYPE type EXTENSION size
or:

ORGANIZATION name TYPE type EXTENSION size

where name is the name of the access method routine (and is
automatically made a global symbol), type is an integer between 0 and
99 inclusive, and size is an integer between 0 and 1016 inclusive. The
size must be a multiple of 8. The ORGANISATION statement can be coded

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 19 of 244

anywhere within the data division, provided it precedes any file
definitions which specify it.

The American spelling, ORGANIZATION, may be used in place of the
British form, ORGANISATION, as in the case of the ORGANISATION clause.
You may also use the abbreviation ORG.

The ORGANISATION statement is a directive to the compiler which
occupies no storage itself, but affects the way in which file
definitions (FDs) are generated. The compiler relates an FD to a
particular ORGANISATION statement by the name that appears both in the
statement and the file definition's ORGANISATION clause.

For example, the ORGANISATION statement required for the variable
length record access method is:

ORGANISATION OR$84 TYPE 4 EXTENSION 8

A typical variable length record file definition might then be:

FD VLFIL ORGANISATION OR$84
ASSIGN TO UNIT "DSK" FILE "OUTPUT"

Every FD generated contains a common prefix which is 80 bytes in
length. The size specified in the EXTENSION clause is the length of
the access method dependent part which follows the prefix.

The type field is generated within the FD prefix and stored in the
file label whenever the access method creates a new file. Then
whenever an existing file is opened the access method can check that
it is of the right type. If not, the file not found condition is
generated.

Note that although a number of ORGANISATION statements may be coded in
the same program no two of them must have the same name. The
documentation of each of the special access methods defined later in
this manual includes a description of the particular ORGANISATION
statement (and ORGANISATION clause) which must be coded whenever the
access method is used.

You may also code the ORGANISATION clause as:

ORGANISATION UNDEFINED

in order to set up a file definition for use by certain system
routines which process files without requiring an access method to be
present. The result will be that an FD, 80 bytes in length, is
expanded for the system routine to use, but no access method is
included. The pointer at the start of the FD will then be set to -1 so
that if a file processing statement is erroneously attempted your
program will be terminated with an illegal jump program check. The
documentation of the individual system routines indicates where
ORGANISATION UNDEFINED may be used.

Only direct access devices support all types of file organisation.
The restrictions applying to printers are summarised in section 1.5.

1.2.3 The ASSIGN Statement - General
The ASSIGN statement is required for every file definition coded in
working storage and, in this case, it must be the statement

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 20 of 244

immediately following the FD statement. The ASSIGN statement may be
omitted for file definitions appearing in the linkage section.

1.2.4 The ASSIGN Statement - UNIT Clause
The unit-id in the UNIT clause is coded as either "uuu", where uuu is
one to three ASCII characters, or as a symbol. When a symbol is used
the following statement is generated in the FD:

02 symbol PIC X(3)

The application program must place the unit-id in this field before
opening the file.

Note that the System Manager treats a unit-id of ?, i.e. a question
mark followed by two blanks, specially. Although you may code such a
unit-id in the ASSIGN statement, you must have replaced it with a true
identifier (by using the CATA$ routine or FILE$ routine described in
Chapter 9) before attempting to open the FD. The System Manager will
terminate any program which attempts to open a file assigned to unit ?
with an error.

1.2.5 The ASSIGN Statement - FILE Clause
The file-id in the FILE clause is coded either as "ffffffff", where
ffffffff is one to eight ASCII characters, or as a symbol. When a
symbol is used the statement:

02 symbol PIC X(8)

is generated within the FD. The application program must place the
file-id in this field before opening the file.

The file-id is ignored in the case of a printer. When an existing file
is opened on a direct access device, a file condition (explained
later) is signalled if a file with the specified file-id is not
present on the unit. A file condition is also generated if you attempt
to open a new file on a direct access volume which already contains a
file with the same file-id as that coded in your FILE clause.

1.2.6 The ASSIGN Statement - VOLUME Clause
The VOLUME clause is optional. When present volume-id checking will be
performed when the file is opened to ensure that the volume-id of the
volume currently online matches that specified in the VOLUME clause.
If there is a mismatch the System Manager will prompt the operator to
mount the correct volume before returning control to the statement
following the OPEN. The VOLUME clause is ignored in the case of a
printer.

When a VOLUME clause is coded the volume-id must be specified as
"vvvvvv", where vvvvvv is one to six ASCII characters, or as a symbol.
When a symbol is used the statement:

02 symbol PIC X(6)

is generated within the FD. The application program must place the
volume-id in this field before opening the file. By moving LOW-VALUES
to the field the program is able to suppress volume-id checking as
though the VOLUME clause had never been coded in the first place.

1.2.7 The RECORD LENGTH Statement

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 21 of 244

Although the RECORD LENGTH statement may be used in any file
definition its precise meaning differs according to the file
organisation involved.

For RS, IS and DL files it must be coded when a new file is being
created, and specifies the size in bytes of the fixed length records
that make up the file.

For VL, TF and some other organisations, which deal with files
containing variable length records, the statement is only needed when
processing an existing file. It indicates the largest record that the
program is capable of handling.

For BD files, the length of each record is determined by the user
program, rather than by information held on the file. The symbol form
of the statement is normally used so that the program can supply the
record length, and thus control the number of bytes actually read or
written.

The length must be coded either as an integer between 1 and 32767
inclusive, or as a symbol. When a symbol is used the statement:

02 symbol PIC 9(4) COMP

is generated within the FD. The program must then place the record
length in bytes in this field before executing a file processing
statement which requires it.

Because of the different ways in which the RECORD LENGTH statement may
be used, it is documented independently as part of the description of
each individual file organisation.

1.2.8 The SIZE Statement
The SIZE statement is required only when creating a new file. The size
is coded either as an integer between 0 and 999999999 inclusive, or a
symbol. When a symbol is used the statement:

02 symbol PIC 9(9) COMP

is generated within the FD. The program must then place the size to
use in this field before opening the file.

The size is the number of bytes to be allocated to the file extent by
the OPEN NEW statement. If a value of 0 is specified, or the SIZE
statement is omitted, the extent will be allocated the maximum
contiguous space available, otherwise an attempt will be made to
allocate the exact number of bytes requested and, if this is not
available, the program will be terminated in error.

If 0 is used, together with the symbol option, the actual number of
bytes allocated will be returned in the generated field.

The SIZE statement with the symbol option can also be used for an
existing file. In this case when the OPEN statement completes
satisfactorily the actual number of bytes allocated to the extent will
be returned in the generated field.

The "SIZE" of a printer, ie the value returned if 0 is used together
with the symbol option, is 231-1 bytes, the largest number which can
be stored in a PIC 9(9) COMP field.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 22 of 244

Note that if you are creating a number of files on the same direct
access unit simultaneously, you should generally make at most one size
0 request for the maximum contiguous space available. Furthermore,
this maximum size file should be opened last, otherwise it is likely
that the System Manager will allocate it all the space on the volume,
and there will be none remaining for the other files.

For this reason you should normally avoid making non-specific size
requests for new files on direct access units shared by competing
multi-user jobs. This problem can be avoided by making the unit a work
or spool unit using the $F SWV instruction. This allows a nominal
maximum file size to be established for the unit, and requests for the
maximum contiguous space will never allocate more than this size.

1.2.9 The OPTION ERROR and ON ERROR Statements
OPTION ERROR must be coded if you wish your program to regain control
following an irrecoverable I/O error on the file. If the ERROR option
is in force and an irrecoverable I/O error occurs, exception condition
1 will be signalled in response to the affected file processing
statement and your exception handling logic will then gain control.
(Normally when OPTION ERROR is not coded your job is immediately
terminated following an irrecoverable I/O error.) An ON ERROR
statement establishes an intercept routine, which will gain control
whenever an I/O error occurs, before the System Manager displays the
error message.

1.2.10 Organisation-dependent Statements
Some of the following statements may be required in the FD but they
are not explained in detail here, either because they only apply to a
single file organisation, or because their meaning varies from
organisation to organisation. The statements are:

OPTION RESET | OPTION IGNORE

BLOCK CONTAINS number CHARACTERS

KEY IS keyname

KEY LENGTH IS keylength

The first two are only used in processing relative sequential files.
OPTION RESET allows the file to be re-created by WRITE NEXT
statements, so that is can be used, over and over again, as a work
file. BLOCK CONTAINS provides conventional double buffering or multi
buffering to increase the performance of sequential READ NEXT or WRITE
NEXT operations.

The KEY and KEY LENGTH statements are mutually exclusive, KEY LENGTH
only being coded for files of indexed sequential organisation. Both
statements are used to define the key field employed by random access
READ and WRITE statements. The OPTION IGNORE statement is only used
with indexed sequential files, and causes logically deleted records to
be ignored.

1.3 File Processing Statements
Files are created, input and updated by means of file processing
statements coded in the procedure divisions of Global Cobol programs.
The syntax of the file processing statements is as follows:

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 23 of 244

OPEN type filename [index area]

WRITE NEXT filename FROM area

WRITE filename FROM area

DELETE filename

REWRITE filename FROM area

READ FIRST filename INTO area

READ LAST filename INTO area

READ NEXT filename INTO area

READ PRIOR filename INTO area

READ filename INTO area

READ PHYSICAL filename INTO area

CLOSE filename [TRUNCATE/DELETE]

The type coded in the OPEN statement is either the word NEW, OLD or
SHARED. It indicates whether the open operation is attempting to
create a new file, obtain exclusive access to a file which already
exists, or share the processing of an existing file with other users.

The filename, which appears in every statement, labels the file
definition upon which the statement operates.

The index area is an ISAM or DMAM option which is included for
completeness only, and will not be discussed further in this general
introduction.

The area labels a contiguous area of main storage to be output as a
record of the file by WRITE NEXT, WRITE or REWRITE, or input by READ,
READ NEXT, READ PRIOR, READ FIRST, READ LAST or READ PHYSICAL.

Table 1.3 shows each file processing statement together with the
device types for which it can be used. If you mistakenly execute an
inappropriate statement your program will be terminated in error if it
is not supported by the file organisation you are using: if the
organisation supports it, but it is inappropriate for the device (e.g.
a READ on a printer) an irrecoverable I/O error will occur.

1.3.1 Exception Conditions
Most of the statements listed in Table 1.3 can suffer a file operation
exception if some abnormal circumstance arises which should be handled
specially by the program. File operation exceptions are signalled by
$$COND being set equal to 2, and the logic introduced by the ON
EXCEPTION statement immediately following the affected file processing
statement being activated. If the ON EXCEPTION statement is missing,
your program will be terminated in error should an exception occur.

The various circumstances which can lead to a file operation exception
are known as file conditions, and are referred to by means of a short

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 24 of 244

title such as "file not found", "end of file" and so on. The possible
file conditions are summarised in the rightmost column of Table 1.3
and are explained in more detail in the subsequent discussion of the
particular file processing statement affected.

In addition to a possible file condition, a file processing statement
may suffer exception condition 1 if an irrecoverable I/O error occurs
and OPTION ERROR has been coded in the FD to indicate that the program
is prepared to handle such an eventuality. If OPTION ERROR is not
specified the program will be immediately terminated on an
irrecoverable I/O error, and need contain no logic to process such a
condition.

Note that whenever an exception affects any file processing statement
apart from CLOSE, the file definition usually remains unchanged, so
that fields that would normally be updated by the operation are
undisturbed. This means that an OPEN operation which suffers a
exception does not actually change the status of the FD to "open".
This is so that corrective action can be taken and the operation
retried, if necessary.

A CLOSE operation can only suffer an irrecoverable I/O error if OPTION
ERROR is coded. If this occurs, although the status of the file may be
unpredictable (if the exception was due to an irrecoverable hardware
error, for example) the FD itself is returned to closed status just as
if the operation had completed successfully.

Because of the likelihood of an exception being signalled, each file
processing statement (apart from perhaps REWRITE and CLOSE) is
normally followed by an ON EXCEPTION statement to handle the
condition. An error intercept routine, established by an ON ERROR
statement in the FD, can be used to treat certain I/O errors on OPEN
statements as additional file conditions. This is described in section
1.6 below.

1.3.2 The OPEN Statement
An OPEN statement must be executed before any other file processing
statement operating upon the file definition. If an attempt is made to
read, write or close a file definition which has not been opened your
program will be terminated in error. Similarly it is illegal to
attempt to open an FD which is already open.

| | | |
| FILE | DEVICE | POSSIBLE FILE |
 ++++ ++++++ +++++++++++++
| PROCESSING | TYPE | CONDITIONS |
 ++++++++++ +++++ ++++++++++
| STATEMENT | | (exceptions with |
 +++++++++
| | | $$COND = 2) |
| | | |

OPEN NEW	direct access	already exists
	printer	none
OPEN OLD	direct access	file not found or
or		wrong type*

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 25 of 244

 //
OPEN SHARED	printer	none
WRITE NEXT	direct access	file space exhausted
	printer	alignment
WRITE	direct access	file boundary violation
		or file space exhausted
 --
DELETE	direct access	none
REWRITE	direct access	none
READ FIRST	direct access	end of file
READ LAST	direct access	start of file
READ NEXT	direct access	end of file
READ PRIOR	direct access	start of file
READ	direct access	file boundary violation
		or record not found
 --
READ PHYSICAL	direct access	file boundary violation
CLOSE	direct access	file not open
	printer	file not open

* In these cases the value of system variable $$RES can be used to
 distinguish between the different causes of the exception:

 $$RES = "1" ... wrong type
 $$RES = "3" ... file not found

Table 1.3 File Processing Statement Summary

OPEN begins by checking whether the unit-id you specified in your FD's
UNIT clause is actually assigned to a physical unit address. If this
is not yet the case the operator will be asked to make the assignment.
If he cannot do so, he will reply appropriately to the assignment
prompt and the System Manager will signal an irrecoverable I/O error.

When unit assignment has completed satisfactorily, volume-id checking
takes place providing it is specified by VOLUME clause information in
the FD, and the unit involved is a direct access device. The operator
will be asked to mount the required volume if it is not already
online. If he cannot do so, he may reply appropriately to the mount
prompt, and the System Manager will signal an irrecoverable I/O error.

When unit assignment and volume-id checking, if specified, have taken
place and all is well, the common part of the open operation is
complete. The remaining processing depends on the type of open taking
place, ie whether the file is NEW, OLD or SHARED.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 26 of 244

A successful OPEN NEW creates a new file with an extent size
determined by the FD's size statement. However, the file already
exists condition will be signalled, and the open will not take place,
if the volume involved is a direct access volume already possessing a
file with the same file-id as the one specified in the FD's ASSIGN
statement. This file condition prevents you mistakenly creating
duplicate file-ids on a direct access volume. Your exception handling
logic should determine whether the file is genuinely unwanted and, if
it is, delete it using the DELE$ system routine and re-issue the OPEN
NEW. (For some situations, the OPDE$ routine might be appropriate to
perform such activity with operator control over the deletion.)

If you call an OPEN NEW operation having set the last two bytes of the
file-id to LOW-VALUES, the System Manager will create a new file
substituting the last two bytes with the file label number, returning
the full file name. This is especially useful when creating work files
which require a unique filename on the unit.

OPEN OLD is used to obtain exclusive access to a file which already
exists. The file not found or wrong type condition will be signalled
if a direct access volume does not contain a file with the specified
file-id or organisation respectively. These file conditions cannot
arise on a printer.

OPEN SHARED is employed in multi-user working when a direct access
file may be simultaneously open by a number of competing yet co-
operating jobs. An OPEN SHARED statement issued for a printer, which
by its very nature cannot be shared, is treated in exactly the same
manner as OPEN OLD. The file not found or wrong type condition is
signalled in the normal way if a direct access volume does not contain
a file with the specified file-id or organisation.

An I/O error will be signalled if OPEN SHARED is issued for a direct
access file which is currently open as NEW or OLD. To share a file it
is necessary that all its users acquire access to it by means of an
OPEN SHARED statement. A program executing an OPEN OLD will suffer an
I/O error if the file currently has any other users. Otherwise it will
obtain exclusive access to the file during the time it is open, and
during this period other users attempting to open the file will suffer
I/O errors.

The unshareable nature of printers means that in a multi-user system
such devices are allocated in a first come, first served fashion. To
allow a number of print jobs to operate at the same time the System
Manager provides a spooling facility. Each real printer is allocated
to the $SP command program which can be run as a background job. Each
copy of $SP is responsible for spooling print files from a specified
direct access device to the printer it services. Programs producing
print files simply write them to the direct access unit associated
with a particular $SP, from which they will be printed in due course.
(For more detail see the documentation of $SP in the Operating and
Utilities Manuals.)

1.3.3 The WRITE NEXT Statement
The WRITE NEXT statement is provided to allow you to create the
records of a file sequentially or, in the case of direct access files
only, extend the file with new records. The file space exhausted
condition is signalled if the WRITE NEXT statement would, were it

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 27 of 244

attempted, cause part or all of its record to be written outside the
extent.

In the case of a printer the alignment condition is signalled if the
operator replies N to the prompt generated as a result of WRITE NEXT
outputting a forms control record to control the alignment of special
stationery.

1.3.4 The WRITE Statement
The WRITE statement is employed to write a record at random to a
direct access file according to a key field you establish in either
the file definition or the record area itself. A WRITE statement
cannot be used on a printer.

The file boundary violation condition is signalled, for organisations
other than indexed sequential, if the key you establish addresses a
record wholly or partially outside the used part of the file. For
indexed sequential the WRITE statement will cause a new record to be
added to the file if one with the indicated key does not exist. In
this case the file space exhausted condition occurs if there is
insufficient space in the overflow area to hold the new record.

1.3.5 The DELETE Statement
The DELETE statement can only be employed on certain file
organisations and only applies to direct access devices. It is used to
delete the last record input by means of any READ type statement.

1.3.6 The REWRITE Statement
The REWRITE statement can only be employed on certain file
organisations, and only applies to direct access devices. It is used
to update the record last input by means of any READ type statement.

1.3.7 The READ FIRST and READ LAST Statements
The READ FIRST statement is used to input the very first record in the
file, and will signal end of file if no records are present on the
file. Similarly READ LAST is used to input the very last record on the
file, and will signal start of file if no records are present on the
file. Both READ FIRST and READ LAST may only be used on direct access
files, and they are only supported for certain file organisations.

1.3.8 The READ NEXT and READ PRIOR Statements
The READ NEXT and READ PRIOR statements allow you to read the records
of a file sequentially. They can be used on direct access devices, but
not on printers. READ NEXT returns the next record on the file. Once
the last record has been input a subsequent READ NEXT will not cause
further information to be retrieved from the file, but will result in
the end of file condition being signalled. READ PRIOR returns the
previous record on the file. Once the first record has been input a
subsequent READ PRIOR will not cause further information to be
retrieved from the file, but will result in the start of file
condition being signalled. READ PRIOR can only be used with certain
file organisations.

1.3.9 The READ Statement
The READ statement is employed to read a record at random from a
direct access file according to a key field you establish in either
the file definition or record area itself. A READ statement cannot be
used on a printer.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 28 of 244

The file boundary violation condition is signalled, for most
organisations, if the key you establish addresses a record wholly or
partially outside the used part of the file. For Indexed Sequential,
Data Library and DMAM files, access is controlled by means of a
symbolic key and the equivalent file condition is record not found,
indicating that there is no record on the file with the key you have
specified.

1.3.10 The READ PHYSICAL Statement
The READ PHYSICAL statement is only available for certain file
organisations, and only on direct access devices. It is used to read a
record at random from a file bypassing some of the normal file
handling and going directly to an identified location within the file.

The file boundary violation condition is signalled if the identified
location addresses a record which lies wholly or partially outside the
used part of the file.

1.3.11 The CLOSE Statement
The CLOSE statement is used to terminate the processing of a file.
There are three options: CLOSE, CLOSE...DELETE and CLOSE...TRUNCATE.

CLOSE by itself is always valid, for all device types and
organisations. It will complete any outstanding I/O operations and
return the file definition to closed status so that it can be used
again, should you so wish. The file you have just processed will
remain in existence.

CLOSE...DELETE is used to close the file definition and delete the
file itself from its direct access volume. The option has no meaning
for printers, where it defaults to a normal CLOSE. The CLOSE...DELETE
statement should not be issued for a direct access file open by more
than one user, since none of the sharing users has the right to delete
the common file. An attempt to do so will lead to the offending
program being terminated in error.

CLOSE...TRUNCATE closes the file definition and, in the case of a
direct access device only, frees any spare space at the end of the
extent so that it can be subsequently re-allocated. The TRUNCATE
option is ignored when issued for a printer, where the effect of the
statement is the same as a normal CLOSE.

Very often when you create a new file you specify a zero size, or omit
the FD's SIZE statement, in order that OPEN NEW will allocate it the
maximum amount of contiguous space available on a direct access
volume. When you have finished outputting the file, providing you do
not require to extend it later, you will normally issue a
CLOSE...TRUNCATE to release all the unused space for subsequent
reallocation. This prevents you having to specify a file size before
you begin, and normally leads to the most efficient use of the direct
access storage available. (See also the notes on maximum size files in
section 1.2.8.) Note that when you CLOSE a file where the size
established in the SIZE clause at OPEN time was zero, then the SIZE
field is reset to zero to enable your program to easily repeat its
processing. Consequently if you wish subsequently to examine the size
of the file, you should save a copy of the SIZE field after it is
opened, and before it is closed.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 29 of 244

The CLOSE...TRUNCATE option can be used on a file originally opened by
an OPEN OLD or OPEN SHARED statement. However, if the file is open by
more than one user, none of the sharing users has the right to
truncate it, and a program attempting to do so will be terminated in
error.

If you attempt a CLOSE on an FD which has not previously been opened
(during a common close-down routine for example) then the file not
open condition will be signalled, and the FD will remain undisturbed.

1.4 Processing Shared Files
Under the System Manager several users may have the same file open
simultaneously, by using the OPEN SHARED statement. A shared file can
be accessed by READ, READ NEXT, READ PRIOR, READ FIRST, READ LAST or
WRITE NEXT statements without any consistency problems arising. If,
however, two users are updating the same file using WRITE, DELETE or
REWRITE statements and if both attempt to update the same record, one
of the updates may be lost. For example, in the simplest case, a
program reads, modifies and rewrites a record, but between reading the
record and rewriting it the record has been updated by another user.
Then the updates performed by the second user will be overwritten by
those performed by the first user, and hence will be lost.

The LOCK and UNLOCK statements described below are provided to help
you overcome these problems. LOCK enables you to acquire exclusive
access to a specified region of a shared file, so that you can make
updates without the risk of interference from other users. UNLOCK
releases the exclusive access obtained by a previous LOCK.

1.4.1 The LOCK Statement
You use the LOCK statement to obtain exclusive access to a specified
region of a shared file. You code:

LOCK filename region [WAIT]

Here filename identifies the file definition of a file which must have
been opened previously, otherwise the program will be terminated in
error. If the file was not OPEN SHARED the operation will be ignored.
The second parameter is the name of a 4-byte region code used to
define the part of the file to which exclusive access is required.
Typically, the region code might be:

● The PIC 9(9) COMP record key of the file record that you require to

update. The effect of the LOCK statement will then be a record-
level lock;

● A PIC X(4) subset of a longer indexed sequential key field. The

LOCK statement will then grant exclusive access to records whose
keys contain the subset value you have specified.

Providing the region is not locked by another program the statement
signals normal completion and grants you exclusive access to it. The
region then appears locked as far as other users are concerned.

If the region is locked by another user when your LOCK statement is
executed, then, providing the optional WAIT phrase has not been coded
the statement signals exception condition 2. If all locks are in use,
and the WAIT phrase is omitted, exception condition 1 is signalled.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 30 of 244

You can then take appropriate action, such as informing the operator
that the account he requires to update is busy, and that he should try
again later.

If WAIT is coded and the region is locked by another user, your
program is suspended until the region is unlocked. LOCK...WAIT
therefore always eventually acquires exclusive access to the region,
whereas an ordinary lock can fail with an exception. However, you
should take care only to use the WAIT phrase in situations where the
updating technique has been designed so that locks are only in force
for very short periods, otherwise LOCK...WAIT may cause your program
to be suspended for a very long time.

1.4.2 The UNLOCK Statement
You use the UNLOCK statement to relinquish the exclusive access you
obtained by a previous LOCK statement. You code:

UNLOCK filename region

The filename and region must be the same as those specified in a
previously successful LOCK statement, and the file definition
identified by the filename must still be open, otherwise your program
will be terminated in error. If the file was not OPEN SHARED the
operation will be ignored. Note also that if a file is locked more
than once at the same region it must be unlocked the same number of
times to release all the locks.

Normally you should UNLOCK regions as soon as you no longer require
exclusive access, in order not to lock other users out unnecessarily.
Any locks still in force when a file is closed are automatically
unlocked. Therefore, if you use two or more FDs to access the same
shared file you should take care that you do not close any one of them
during a period when you require exclusive access. There will be no
problem if you close all the FDs involved at the same time, once your
program is finished with the file.

Note that any locks still in force when your program terminates are
automatically unlocked by the System Manager.

1.4.3 Updating and Extending Shared Files
When you need to update existing records on a shared file, or extend
it with one or more records, it is essential that you use LOCK and
UNLOCK statements to ensure consistency. You should note that the LOCK
statement does not, in itself, stop other programs from reading and
writing records of the affected region. It simply prevents a LOCK
statement for the same file and region succeeding until you have
unlocked it. The System Manager therefore has no knowledge of the
intrinsic meaning of the region code: it treats it simply as a 4-byte
identifier.

The exclusive access mechanism provided by the LOCK statement relies
on the same region code convention being adopted by each group of
programs which can simultaneously amend the file. Each must determine
the region code, LOCK, amend and UNLOCK. Should any program write to
the file without doing this, inconsistent updating will result.

It is up to you whether you use the LOCK mechanism to prevent users
making enquiries on a region which is being updated. If you want to
restrict read access in this way, you must code your programs so that

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 31 of 244

the region is locked before any file operation takes place on it. More
normally, you would only lock immediately before reading the first
record to be updated.

The choice of region coding for a particular file updating scheme
depends on your application, although if you intend to modify shared
files used by other Global software products, you will have to conform
to the conventions they use. These are described in the relevant user
manuals.

For RS files the usual technique is to use the record number which
has to be stored in the PIC 9(9) COMP key field of the FD before a
random read takes place. A typical update sequence for FD SALES, key
SALESKEY, would then conform to the pattern:

LOCK SALES SALESKEY
ON EXCEPTION
DISPLAY "RECORD BUSY, TRY AGAIN LATER"
GO TO etc, etc.
END
READ SALES INTO RECAREA

Display the record, and interrogate the operator to determine the
necessary amendments.
WRITE SALES FROM RECAREA
UNLOCK SALES SALESKEY

If you need to extend the file, you use WRITE NEXT statements which do
not rely on a record number key. In this case you impose the
convention that the region whose code is four bytes of HIGH-VALUES
must be acquired before extending the file. Assuming extension to be a
rapid process requiring locks of only brief duration, the typical
updating sequence might be:

LOCK SALES #FFFFFFFF WAIT
WRITE NEXT SALES FROM REC1
WRITE NEXT SALES FROM REC2
UNLOCK SALES #FFFFFFFF

When you require to update an IS file, then providing the key is four
bytes or less, you can make the region code the same, and thus achieve
record level locking. If the key is longer, you can only employ a
subset of it to be the region code, and in this case a single LOCK
statement will grant exclusive write access to a multi-record region.
This can be an advantage. For example, supposing the key is a four-
byte customer number followed by a transaction number.

If there are operations which involve updating or inserting a number
of transactions for the same customer, then by using the customer
number as the region code, you ensure that a single LOCK statement
grants exclusive access to all the records relevant to a particular
customer.

When you require to lock a single record of an IS file with a key
longer than 4 bytes there are several strategies available to you. For
instance, you can select four bytes of the key which are known to
differ between records, or you can employ some type of hashing
technique to convert the long key into a PIC 9(9) COMP number to use
for the region code. Providing you choose the encoding technique

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 32 of 244

carefully it will be extremely unlikely that you will accidentally
lock a second record that another program wishes to update.

Sometimes you wish to implement a scheme in which, for a short period,
only one operator is allowed to update a file, but any number are
allowed to read it. In this case you should treat the entire file as a
single region, named "FILE" in the example which follows. When an
operator attempts to enter update mode the program in control executes
a sequence such as:

LOCK CUSTOMER "FILE"
ON EXCEPTION
DISPLAY "ANOTHER OPERATOR IS UPDATING THE CUSTOMER FILE"
etc, etc.
END

When the updates are complete, exclusive control of the process is
relinquished by means of:

UNLOCK CUSTOMER "FILE"

The programs used by enquiries only READ the file and do not LOCK it.

1.4.4 Programming Notes
It is vital that all groups of programs which can update a particular
file at the same time use the same region convention. Thus, for
example, errors would result if you tried to mix the "FILE" locking
technique with programs which updated regions identified by a customer
number.

If you need to update several regions at the same time you will have a
number of LOCK statements outstanding at once. In this case you must
be careful to avoid the "deadly embrace" situation which can come
about if program 1 attempts to lock regions A and B, in that order,
when program 2 is trying to lock B and then A. There is a danger of an
impasse: program 1 may acquire region A, and program 2 region B, and,
if LOCK...WAIT has been used, both will be suspended indefinitely.

The deadly embrace can be avoided if you impose a convention that
locks must always be acquired in a particular order - e.g. lower
region codes before higher ones, and all locks on file A before any
locks on file B. Another technique, which does not rely on ordering,
is to avoid use of the WAIT phrase and insist that whenever a program
fails to obtain a desired lock it unlocks any other regions it has
previously locked, suspends itself temporarily, and then tries again
to obtain all the locks required.

Internal table size limitations restrict the maximum number of locks
outstanding at any one time. If you attempt to lock a region, and all
locks are currently in use, your request will not be successful and
the LOCK statement will be treated just as though the region were in
use by another program: an exception will be signalled, or LOCK...WAIT
will be suspended until an UNLOCK issued by another user cancels one
of the existing locks.

A typical System Manager system is configured with 100 locks
available, but this figure may be increased by using Global
Configurator.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 33 of 244

As well as the exclusive locks documented here there are also shared
locks, used in master/servant record updating, which are documented in
section 9.18.

1.5 Print Files
Information to be printed must be written to a print file using the
relative sequential organisation. Whether the data is actually printed
immediately or stored on a direct access device or magnetic tape for
subsequent spooling depends on the unit address assigned to the file
when your program comes to be run.

1.5.1 Record Format
A print file is made up of fixed length print line records or forms
control records, of the format pictured below:

PRINT LINE RECORD
 +++++++++++++++++

 | | |
 --
PRINT	ASCII CHARACTERS TO BE PRINTED
CONTROL	
BYTE	
1	?
 --

 FORMS CONTROL RECORD
 ++++++++++++++++++++

 | | | |
 --
	PAGE	
-2	SIZE	FORMS CONTROL MESSAGE TO BE DISPLAYED
	CONTROL	
1	BYTE 1	?
 --

The print control byte is a PIC S9(2) COMP field normally containing a
value between -1 and 31. The value -1 causes a skip to a new page. A
value of 0 means that the ASCII characters in the rest of the record
will be output on the current line, overprinting the line previously
printed. A value, p, between 1 and 31 signifies that the paper is to
be advanced by p lines before printing the information in the record.
Note that some printers cannot support overprinting, and for these
printers overprint lines will be printed on the next line instead.

If the size of the print line record indicates that there are more
ASCII characters to be printed than there are character positions on
the printer, the rightmost characters of each record will be lost. If
there are more character positions available than characters to be
printed, the rightmost character positions will remain blank.

A print control byte with value -2 is used to denote a forms control
record. Print control bytes with values of -3, -4 , -5, -8, -9, -11
and -12 have special meanings, and are covered at the end of this
section. Values not in the range -14 to 31 cause a single line advance

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 34 of 244

(i.e. are treated as though a 1 had appeared). This is to prevent
unwanted erroneous paper throws during program testing.

In the forms control record the page size control byte is a PIC S9(2)
COMP field containing either the values -1, or 0, or the number of
lines per page of special stationery, which must be no greater than
99. The value -1 is used to indicate a stationery alignment message to
which the operator may reply N to cause an alignment pattern page to
be reprinted. The non-negative values indicate a stationery mount
message, which requests special stationery to be loaded, and specify
the number of lines per page of the paper in question. A zero value
indicates that the size is standard and that the normal installation
page size (contained in the system variable $$PAGE, normally 66 lines
per page) is to be used.

The forms control message is used to inform the operator of the
stationery or alignment requirements. If the record length of the
print file is less than 52 bytes, the forms control message length
will be correspondingly reduced. If the record length is 52 bytes or
more, the message length is exactly 50 bytes with rightmost blanks if
necessary.

Under System Manager V6.2 and later the first two characters of a
stationery mount message can have a special meaning. If the first
character is an upper case letter (A-Z) and the second (separator)
character is a slash (/) or equals sign (=), then the letter is taken
to identify the format letter which will be used in printing the
report. The setting up of format letters is described under the $CUS
documentation in the Operating Manual. The format letter will
condition the response of the printer to requests for Bold characters,
and other emphases. If no format letter is specified then the default
letter (set up using $CUS) will be used. The slash separator is used
to indicate that there is no alignment pattern following this record
in the print file (this case is assumed when no format letter is
specified in V6.2 and later systems), and the equals separator
indicates that there is an alignment pattern following. The System
Manager uses this information to suppress alignment pattern printing
when no stationery mount is in fact required (see later sections on
pagination and special stationery for more details).

There are options in the spooler and $CUS which can directly affect
the printing of special stationery. These are fully documented under
$CUS and $SP.

1.5.2 The File Definition
The file definition for a print file forms a subset of the full
relative sequential definition described in Chapter 2, and should be
coded as follows:

FD filename ORGANISATION RELATIVE-SEQUENTIAL
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
RECORD LENGTH IS length
[SIZE IS size]
[BLOCK CONTAINS number CHARACTERS]
[OPTION ERROR [RESET]] | [OPTION RESET [ERROR]]
[ON ERROR intercept]

The length is the number of ASCII characters to be printed per line,
plus one byte (to leave space for the print control byte). It must be

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 35 of 244

between 2 and 255 inclusive. The value normally coded is 133, for
printing full width 132 character reports.

Normally the SIZE statement should be omitted, and in this case a file
assigned to a printer will be allocated a very large extent so that
the file space exhausted condition can never occur. (If the file can
in some cases be assigned to a direct access device you may, of
course, need to make a specific request.)

OPTION ERROR should be coded only if you require your program to
regain control (with exception condition 1) following an irrecoverable
I/O error. Similarly the ON ERROR statement should only be coded if
you wish to process certain I/O error conditions specially.

The VOLUME clause, BLOCK CONTAINS statement and OPTION RESET are not
used when the file is written to a real printer, but may be present if
in some circumstances it is to be assigned to a direct access device.

If the print file is assigned to a spool unit then a number of special
effects may be produced by placing particular characters into the
file-id:

● If the seventh character of the file-id is ";" and the eighth a

digit, this digit indicates the priority to be given to the file
when it is printed by the spooler (1 = high, 9 = low). If the
eighth character is "H" this will instead cause the file to be Held
by the spooler, requiring an operator to release it before it will
be printed;

● If the sixth character of the file-id is ";" and the seventh and

eighth characters are a valid number (such as " 1" or "34"), then
the number indicates how many copies of the file are to be printed
(from 1 to 99). This can be used to save time when printing
multiple copies of a report via the spooler;

● If the fifth character of the file-id is ";" then the sixth and

seventh characters indicate a number of copies, and the eighth
character a priority or held status, in a similar way.

For example, a file named SAPRIN;3 will be given priority 3, a file
named SAPRI;22 will have 22 copies printed, and a file named SAPR; 35
will have 3 copies printed at priority 5.

If the file name is not in this format, the file is given the default
priority, usually 5, and one copy will be printed.

1.5.3 Opening the Print File
To open the print file it is recommended you code:

OPEN NEW filename

The file already exists condition may be signalled if the print file
is assigned to a direct access unit which is not a spool unit. It
cannot occur for a real printer or spool unit. An I/O error will be
signalled if the file is assigned to a real printer which is already
in use.

(An OPEN OLD or OPEN SHARED issued for a print file will succeed if
the file is assigned to a real printer not already in use, signal file

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 36 of 244

not found if assigned to a spool unit, and succeed or signal file not
found as appropriate if assigned to a direct access device which is
not a spool unit.)

1.5.4 Writing Print Lines
Print lines are output using the WRITE NEXT (not WRITE) statement to
transfer a print line record from main storage to the device:

WRITE NEXT filename FROM area

The first such record to be output should contain a print control byte
of -1 so that the report begins at the top of a new page.

If the FD makes a specific request for file space (as may be the case
if the file is sometimes written to a direct access device) it is
possible that the WRITE NEXT operation may suffer the file space
exhausted condition. If you require to handle this eventuality code an
ON EXCEPTION statement following the WRITE NEXT: if you do not your
program will be terminated in error should the condition arise.

1.5.5 Forms Control Prompts
The WRITE NEXT statement can also be used to output a forms control
record. When the print file is assigned to a direct access device the
record is simply stored normally. However, when it is directed to a
real printer the record is intercepted and is not actually printed but
is used to modify the behaviour of the printer.

A stationery mount request (page size 0 or positive) causes a
temporary adjustment to the current page size (as explained below) and
to displays a forms control prompt:

PLEASE MOUNT forms-control format-extension ON UNIT address:

The forms-control element comes from your forms control record, and
the format-extension is provided by the format letter you chose (or
the default if you did not choose one explicitly), for example:

PLEASE MOUNT A4 Letterhead with cartridge A ON UNIT 502:

The paper is aligned at the top of the page and then your program is
stopped, awaiting the operator's reply. If he or she responds with Y,
<CR> (or any single character apart from N) the WRITE NEXT statement
completes normally and the program continues. A reply of N indicates
that the printer or paper is unavailable for some reason and causes
the System Manager to signal an irrecoverable I/O error condition.
Your program will only regain control, with exception condition 1, if
OPTION ERROR has been coded in the FD.

On V6.2 and later systems, if the format of the stationery is
unchanged from the previous stationery then the mount message will not
appear.

If the forms control message indicates an alignment check (page length
of -1) then the System Manager displays a message of the form:

forms-control ON UNIT address:

which might appear as

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 37 of 244

IS ALIGNMENT CORRECT ON UNIT 502:

Again a reply of Y or <CR> causes the program to continue normally,
but a reply of N indicates that the paper is not yet positioned
satisfactorily. It causes an alignment file condition, exception
condition 2 (rather than an irrecoverable I/O error). Your program
must honour this by reprinting the alignment pattern and rewriting the
forms control record so that the process of paper positioning can be
repeated, over and over again if necessary, until the stationery is
eventually aligned satisfactorily.

The use of forms control records, and the reaction of the operating
system to them, is described in more detail in the sections below on
pagination and the handling of special stationery.

1.5.6 Closing the Print File
A CLOSE statement of the form:

CLOSE filename [DELETE | TRUNCATE]

must be executed to close the print file once the report is complete.
The DELETE and TRUNCATE options are ignored when the file is written
to a real printer.

When the device is a printer, CLOSE causes a skip to a new page, to
make it easier to remove a completed report. However, if the next
record written to the printer itself requests a page advance, The
System Manager will remember that the previous CLOSE has actually
positioned the paper correctly, and the stationery will not be moved.
This prevents unnecessary blank pages appearing between reports.

1.5.7 Pagination
When a print file is opened on a real printer the System Manager
assumes that the stationery and page size to be used are the default
values defined in the printer control file for the device in question
(if there is no printer control file, on a pre-V6.2 system for
example, then the System Manager assumes 'standard' stationery and
page size). Usually the number of lines per normal page is the value
given in the system variable $$PAGE, but it is possible for a
configuration to support one or more special printers whose normal
page size is different from the installation's standard $$PAGE size.

It is important to realise that the pagination of a report is entirely
under the control of the application program. Every time a print line
record with a -1 control byte is output, a new page begins. The System
Manager will not automatically skip to a new page if you write more
lines than the page size, and in this case you are liable to print
over the stationery perforations. The first print line record of each
print file should start with a -1 control byte so that the line it
contains begins on a new page, and from then on your program must
ensure that only the correct number of lines are printed on each page.

When you need to use special stationery you may temporarily override
the printer's normal page size by specifying the value you require in
the page size control byte of a forms control record written to handle
the loading of the paper, as explained in 1.5.8. Part of the
processing of such a record involves the temporary updating of an
internal current page size field associated with the printer.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 38 of 244

The current page size field is used when the System Manager is
handling stationery with a special page size so that the appropriate
number of line feeds can be output to honour a request to advance to
new page. Usually, when normal paper is loaded, the printer hardware
operates a form feed mechanism which is able to position at the top of
a new page somewhat faster than can be achieved by multiple line
feeds. However, this feature is not present on all printers.

When the System Manager needs to use multiple line feeds for page
advancement it maintains an internal counter for each printer to
remember how much of the current page has been used. To set the
counter initially the System Manager assumes that the printer is
positioned at the top of a new page at the start of a session, and
whenever the operator replies to a forms control prompt.

System Manager V6.2, and later, keeps track of the last stationery
(and format letter) used on a particular printer provided that a print
control file (even an empty one) has been set up for the printer.
Therefore if the stationery has not changed between two reports the
mount message on the second report will be suppressed. A stationery
change is signalled by either a change in the stationery mount message
in the forms control record or by a change in the mount message
extension in the printer control file. If these two messages are the
same as that of the previous file printed then a mount message will
not be displayed even if the format letter has changed. However, for
V8.1 System Manager and later you can force a mount message to be
displayed by using a print control byte of -12 rather than -2 for the
forms control line.

For V8.1 and later systems it is possible to set a printer so that no
mount messages are produced using $CUS. This option in $CUS will
override the force mount message print line and will also mean that
any stationery changes will not be recognised and the printer will
continue printing. Therefore this option must be used with great care.
(See $CUS documentation).

When a report is printed using standard stationery (that is with no
special stationery record or with a special stationery record that
does not contain a format letter and separator), the System Manager
substitutes the values established in the printer control file to
create its own stationery mount message. If the spooler is running,
and that has a default printer letter set up, then this letter will be
taken in preference to the default letter. The separator for these
default stationery records is taken as "/".

If a report indicates to System Manager that it has an alignment
pattern, by use of the '=' separator in the forms control message,
then System Manager also suppresses printing of the alignment pattern
when the stationery mount message is suppressed. When System Manager
suppresses an alignment pattern it ignores all print lines following
the initial forms control record until the alignment check forms
control record is encountered. Care must be taken to ensure that there
is an alignment check record printed as the absence of one will mean
that none of the file will be printed. If this would cause problems
with your report printing then you must not use this feature. If you
use a slash separator rather than equals, and you do have an alignment
pattern then System Manager will then print the alignment pattern
always, but will still suppress the alignment check prompt when it
arises).

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 39 of 244

If you are using stationery with pre-V6.2 stationery mount messages,
the default format type will be taken and the default separator will
be set to "/". For V8.1 and later systems there is an option in the
spooler which allows the default separator for pre-V6.2 stationery
mount messages to be "=" instead or "/". Care should be taken when
using this option as the absence of an alignment check record may mean
that none of the file will be printed. (See spooler documentation)

If you are using special stationery you should always set up a printer
control file using $CUS even if there are no special sequences to set
up. If you do not, then the mount stationery messages will always
appear on the screen.

 | | | |

 | | | |
 | -2 | 33 |"A/INVOICE STATIONERY" | forms control record
 | | |or | requesting that special
 | | |"A=INVOICE STATIONERY" | stationery be loaded
 | | | |
 --
 |

| | |
--
-1	top line of alignment pattern		
--
 | |
| | | | |
--
			print line records
	next line of alignment pattern		for the alignment
			pattern page
--
 | |
 | |
| | | | |
--
| | | | These optional records
| | last line of alignment pattern | | are only required if
| | | | an alignment pattern
| | | | is used. |
--
 |
| | | | |
--
			forms control record
-2	-1	"IS ALIGNMENT SATISFACTORY?"	asking the operator
			to confirm alignment
			satisfactory
--
 |

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 40 of 244

-1	First line of report body, on a	
	new page	
--
. |the report to be printed
. |using the special
. |stationery
| | | |
--
	last line of report body	
--

Figure 1.5.8 - A Print File using Special Stationery

1.5.8 Print Files using Special Stationery
If a program requires to use special stationery it should write the
whole report involved to a single print file beginning with a forms
control record containing the page size of the special paper and a
message requesting the operator to load it.

For example, if the record is described in working storage by:

01 LOAD * LOAD INVOICES
 03 FILLER PIC S9(2) COMP
 VALUE -2
 03 LO-SIZE PIC S9(2) COMP
 VALUE 33 * 33 LINES/PAGE
 03 LO-FORM PIC X * FORMAT LETTER
 VALUE "A"
 03 LO-SLAS PIC X * "/"
 VALUE "/"
 03 LO-MSG PIC X(129)
 VALUE "INVOICE STATIONERY"

then, if the print file is output to a real printer at unit address
500, the current page size will be set to 33, format letter A will be
selected and the following prompt will be displayed at the console
(assuming format A has the extension "WITH CARTRIDGE A" set up in its
definition):

PLEASE MOUNT INVOICE STATIONERY WITH CARTRIDGE A ON UNIT 500:

The operator will load the required stationery and then key Y, <CR>
(or any single character apart from N) to continue. If he or she
replies N, The System Manager will signal an irrecoverable I/O error,
indicating the special paper is not available. You may wish to replace
the "/" with "=" (see 1.5.7 - pagination).

It is usual (although not obligatory) to print an initial alignment
pattern page to check that the fields of the report which follows will
be registered correctly. The pattern, normally made up of groups of Xs
or asterisks, can be repeated over and over again if necessary, until
the paper is positioned correctly. A print file starting with an
alignment pattern should be structured as shown in Figure 1.5.8.
Providing this is done the file may initially be written to direct
access storage knowing that the System Manager $PRINT or $SP utilities

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 41 of 244

will handle the forms control and alignment correctly when the file
eventually comes to be printed.

The initial forms control record requesting the special stationery to
be loaded should be followed by the print line records which make up
the alignment pattern page itself. Then comes a second forms control
record used to prompt the operator to confirm that the alignment is
satisfactory. For example, if the record is described in working
storage by:

01 ALIGN * ALIGN INVOICES
 03 FILLER PIC 9(2) COMP
 VALUE -2
 03 AL-SIZE PIC S9(2) COMP
 VALUE -1 * SPECIAL ALIGNMENT
 * PROMPT
 03 AL-MSG PIC X(131)
 VALUE "IS ALIGNMENT SATISFACTORY?"

then, when it is written to unit 500, the following prompt appears:

IS ALIGNMENT SATISFACTORY? ON UNIT 500:

If the operator replies Y, <CR> (or any single character apart from N)
the program will continue by outputting the report which follows.
However, if he responds N, then since a special forms control record
containing a page size of -1 has been used, the System Manager will
signal the alignment file condition. The program will then reprint the
alignment pattern page and output the second forms control record once
more. This processing will be repeated over and over again if
necessary, until the operator responds positively to the prompt,
indicating that the paper has been positioned correctly.

Any print file which causes special stationery to be mounted should be
terminated with a forms control record requesting that standard
stationery be reloaded if the program is to run on pre-V6.2 systems.
For compatibility with pre-V6.2 systems - System Manager V6.2 and
later will suppress such forms control records and perform its own
handling of the stationery mounts required via the printer control
file. However, if the program is not to be run on pre-V6.2 System
Manager, this last mount standard stationery should be omitted. If
more than one type of special paper is required by a program, separate
print files should be written for each type of stationery, to ensure
that the files will be handled correctly if written to a spool unit.

Mount stationery records must not appear in the middle of print files
on V6.2 or later versions of System Manager. However, it may be that
some pre-V6.2 applications may contain forms control messages in the
middle of files which they expect to be honoured. There is a special
$CUS option on V8.1 or later systems for a particular printer which
allows mount messages in the middle of files to be honoured but it
must be noted that any change in format letter within forms control
lines in the middle of files will not be done. (see $CUS
documentation)

1.5.9 Special Print Control Values
Values of -3, -4, -5, -8 and -9 in the print control byte have the
following special meanings:

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 42 of 244

● A value of -3 indicates that the record contains a start sequence.
The record is sent to the printer but no line-feed takes place, and
no attempt is made to translate any of the characters. Any data set
up by a previous record with a print control byte of -4 is
forgotten;

● A value of -4 indicates a special set up record. This contains data

about character translations which will be remembered by the
executive for this printer until it is superseded, or removed by a
start sequence record. The set up record should always be 133
characters long in the following format:

01 SET-UP-RECORD
 02 SEPCB PIC 9 COMP * print control byte
 VALUE -4
 02 SETR OCCURS 16 * up to 16
 * translations
 03 SETCH PIC X * char. to translate
 03 SETSQ PIC X(4) * translation
 * sequence
 *
 02 SEGR * graphics data
 03 SEGONL PIC 9 COMP * length of graphics
 * on
 03 SEGON PIC X(5) * graphics on
 * sequence
 03 SEGOFL PIC 9 COMP * length of graphics
 * off
 03 SEGOF PIC X(5) * graphics off
 * sequence
 03 SEGCH OCCURS 16 PIC X * line and box
 * characters
 *
 02 SEBO * bold data
 03 SEBONL PIC 9 COMP * length of bold on
 03 SEBON PIC X(5) * bold on sequence
 03 SEBOFL PIC 9 COMP * length of bold off
 03 SEBOF PIC X(5) * bold off sequence
 *
 02 FILLER PIC X(12) * RESERVED for
 VALUE LOW-VALUES * expansion

The character translations replace the character indicated in
SETCH by up to four characters from SETSQ - characters are copied
from SETSQ until a #00 (low-values) character is encountered. Any
translation with spaces in SETCH is ignored. The graphics
information provides a list of characters to replace the standard
Global graphic characters (#80 to #8F) along with optional
graphics on and off sequences if an alternate character set
selection is required. The bold information specifies a bold on
and bold off sequence which will replace the characters #90 and
#91 respectively if they are encountered in a print line (see
1.5.11 for more details);

Note: use of records with -3 or -4 print control bytes is not
recommended under System Manager V6.2 and later systems. All
handling performed by such records (and a great deal more) is
performed by the V6.2 printer control file handling, and if
records with print control bytes of -3 and -4 are encountered in

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 43 of 244

a file they will cause the V6.2 printer control file handling to
be temporarily disabled.

The System Manager will set the control file to a special
undefined state, which will cause the next print file to request
a stationery mount regardless of the forms control information
used.

● A value of -5 indicates a line which is to be sent to the printer

without appending a carriage return. This can be useful either when
sending a long programming sequence to a printer, where you do not
wish carriage return characters to become embedded into the
sequence, or if you need to send a single line to the printer which
is wider than the internal System Manager buffer (normally because
you have embedded special escape sequences into the line to produce
special characters or emphases).

Bear in mind that a record with a control byte of -5 does not cause
any line advance before it is printed, so you would normally need
to print a blank line with the correct line advance in its print
control byte first.

● Values of -8 and -9 behave as -5 except that for records with print

control bytes of -8 no printer translation is applied and for
records with print control bytes of -9 no translation is applied to
the record and any trailing spaces in the record will be ignored.

These special print control bytes provide facilities which are used by
the System Manager itself, and should not normally be needed by
programs unless they are performing very complex printer handling (as
for example GLOBAL Writer does).

Note that the information contained in a set up record (print control
byte of -4) is only sent to the printer when required by other print
records. The actual set up record is intercepted by the executive and
held in an internal table until it is required.

1.5.10 Opening an Old File on a Spool Unit
Normally, if you attempt an OPEN on a file residing on a spool unit,
the OPEN will fail with the file not found condition. The most obvious
reason for this is that the System Manager renames files opened on a
spool unit with a file-id which consists of a three digit sequence
number, the originating operator-id, and the partition number. However
even if you were to construct the correct file-id, the OPEN would
still fail as there is special processing within the System Manager to
prevent re-use of files on the spool unit and avoid interference with
the spooler.

If for some reason you need to open a file on the spool unit, you need
to construct the appropriate file-id, and then set a special flag
within the FD to indicate to the System Manager that it is to allow
the OPEN to proceed. You must redefine the FD as follows:

01 FILLER REDEFINES filename
 03 FILLER PIC X(4)
 03 FDERF PIC 9 COMP

Before you issue the OPEN, you must set FDERF to the value -1. Note
that this will also cause the FD to be treated as if you had specified

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 44 of 244

OPTION ERROR, so you will need to be prepared to handle exceptions
returned from irrecoverable I/O errors in your program.

1.5.11 Using different emphases and typefaces in printing
Under System Manager V6.2 and later systems there are a number of
special characters which may be embedded into a print file to enable
the uses of various types of emphasis. An emphasis will usually be a
different style of character (italics or bold), or perhaps even a
completely different typeface.

There are eight combinations of characters which can be used to enable
and disable the various emphases set up in the printer control file
for the format letter you are using. These are:

#90 and #91 For Bold on and off, taking up a space in the
print line (and hence compatible with thepre-V6.2
usage).

#92 and #93 For Underline on and off, again taking up a

space in the print line.

#94 and #95 For Bold on and off which does not take a
space in the print line.

#96 and #97 For Underline on and off which does not take
a space in the print line.

#98 and #99 For Italics on and off which does not take a
space in the print line.

#9A and #9B For Heading on and off which does not take a
space in the print line.

#9C and #9D For Superscript on and off which does not
take a space in the print line.

#9E and #9F For Subscript on and off which does not take

a space in the print line.

The actual emphasis used (Bold, Underline, Italics, Heading,
Superscript or Subscript) is only so named by default. You may
establish any convention you wish as to the use of the six emphasis
sequences, provided you set up your printer control files in an
appropriate way, but these are the default uses made of the sequences
by System Manager and related GLOBAL products (such as Writer).

The two emphasis pairs which take up a space in the print line are
provided so that they may easily be inserted into existing reports
without affecting line layout. The non-space taking emphases will more
commonly be used by new programs (as they are by Writer).

1.5.12 Printer Hopper and Line Spacing
Under System Manager V8.1 or later it is possible to select a hopper
or to change a particular line spacing as defined by the current
format letter in the printer control file. This is done by writing the
special hopper or line spacing selection line to the print file.

The format of this selection line is as follows follows:

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 45 of 244

01 HP
 02 HPCB PIC 9(2) COMP * PRINT CONTROL BYTE
 VALUE -11
 02 HPHPSP PIC 9(2) COMP * SELECTION TYPE
 * 1 - HOPPER 1
 * 2 - HOPPER 2
 * 3 - O LINE SPACING
 * 4 - HALF LINE SPACING
 * 5 - 1 LINE SPACING
 * 6 - 1 AND A HALF LINE
 * SPACING
 * 7 - DOUBLE LINE SPACING

The lines following the selection line will then be printed according
to the selection type.

--
| | | | | |
| $$RES | ERROR DESCRIPTION | DEVICES | FILE | NOTES |
 +++++ +++++++++++++++++ +++++++ ++++ +++++
| | | | PROCESSING | |
 ++++++++++
| | | | STATEMENTS | |
 ++++++++++
| | | | | |

A	Invalid Access Option	D	OPEN	
B	Error Purging Buffer	D	not OPEN	1
C	Subvolume not allocated	D	OPEN	
D	Invalid Unit Number	D P	OPEN	
E	Out of Paper	P	WRITE NEXT	
F	File in Use	D P	OPEN	
G	Ribbon Out	P	WRITE NEXT	
H	Hardware Error	D P	any	2
I	Interface Error	D P	any	4
J	Hardware Write Protect	D	WRITE (NEXT)	
K	Wrong Record Length	P	READ NEXT	
	or LAN Buffer Error			
L	Network Error	D P	any	3
M	Mount Error or	D	OPEN	
	Stationery Not Available	P	WRITE NEXT	
N	Operation Sequence Error	D P	any	
O	Invalid Operation	D P	any	
P	Write Protected	D	WRITE (NEXT)	
	or Password Protected	D	OPEN	
Q	Computer Not Available	D	any	5
R	Read Error	D	any	2
S	Insufficient Space	D	OPEN NEW	
T	Too Many Open Files	D	OPEN	
U	Not Ready	D P	any	
V	Incorrect Volume Format	D	OPEN	
W	Write Error	D P	most	
X	Directory Full	D	OPEN NEW	
Y	Invalid Directory	D	OPEN NEW	
Z	Internal Error	D P	any	4

DEVICES: D = Direct Access P = Printer

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 46 of 244

NOTES

1. Error B indicates that the previous WRITE NEXT statement suffered

an I/O error, and has not been correctly completed. This occurs
because records output using WRITE NEXT are normally buffered,
rather than written immediately, for performance reasons. If the
failing operation is retried it may succeed, but the previous WRITE
NEXT will have been partially or totally lost.

2. These errors may occur on an OPEN if the wrong format volume has

been mounted, for example double-density instead of single-density
diskette.

3. Remote units only ($REMOTE or network).

4. These errors normally indicate that the program or FD has been

corrupted due to a programming error. The job should be terminated
immediately, rather than attempting to recover.

5. This error will only occur when accessing files on another computer

on a System Manager/LAN network.

Table 1.6.1 - I/O Error Result Codes

1.6 Special I/O Error Handling
Normally an irrecoverable I/O error on a file simply terminates
execution of the program. This section describes how advanced
applications can handle certain types of I/O error themselves, either
by attempting to recover from the condition or by performing
additional processing to ensure that the system is not left in an
inconsistent state.

1.6.1 I/O Error Result Codes
The result code, system variable $$RES PIC X, is set to a value in the
range "A" to "Z" whenever an I/O (or similar) error occurs on a file.
Table 1.6.1 lists these result codes and their meanings. Two extra
conditions are treated like I/O errors and can occur at OPEN time: the
result code is set to "M" if the operator replies N to a mount prompt
or stationery load request; and the code is set to "P" if he or she
fails to satisfy a password prompt.

Note that the result code is also set to values in the range "1" to
"6" when a file condition occurs, or when exception condition 2 is
signalled by certain system routines, as shown in the table below. The
code can therefore be analysed in the exception handling logic
following I/O operations and certain system routine calls to determine
the precise cause of an error.

 | | | |

 | | | |
 | $$RES | MEANING | STATEMENTS/ROUTINES |
 +++++ +++++++ +++++++++++++++++++
 | | | |

"1"	Wrong type	OPEN OLD, OPEN SHARED,
		CONV$, PROG$

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 47 of 244

"2"	Key out of sequence	CONV$
"3"	File not found	OPEN OLD, OPEN SHARED,
		CONV$, COPY$, CATA$, PROG$,
		RENA$
"4"	File already exists	OPEN NEW, RENA$
"5"	File capacity exceeded	WRITE NEXT, CONV$, COPY$
	Spool unit (cannot list)	OPEN$
"6"	Alignment	WRITE NEXT
	No System Manager	OPEN$
	directory	

Table 1.6.1A - File Condition Result Codes

1.6.2 The OPTION ERROR Statement
The OPTION ERROR statement may be included in any working storage file
definition. If OPTION ERROR is in force and an irrecover able I/O
error occurs, exception condition 1 will be signalled in response to
the affected file processing statement and your exception handling
logic will gain control. (Normally, when OPTION ERROR is not coded,
your job is immediately terminated following an irrecoverable I/O
error.) The result code, $$RES, can be tested to determine the type of
error that occurred. You would normally use OPTION ERROR in programs
that take special recovery action when I/O errors are detected, for
example to use a backup copy of the record causing the I/O error.

When OPTION ERROR is specified the exception handling logic must
distinguish between an I/O error and the normal file exception, for
example by coding:

READ NEXT MASTER INTO PAYREC
ON EXCEPTION

GO TO DEPENDING ON $$COND
TO ERROR * EXCEPTION 1
TO ENDFILE * EXCEPTION 2

END

1.6.3 The ON ERROR Statement
The ON ERROR statement may be included in any file definition in order
to establish an error intercept routine for the file. It is coded:

ON ERROR intercept

When the name of the routine is known before the program executes you
code intercept as the section name in quotes, for example:

ON ERROR "F1-ERR"

Normally this will identify a section within the same compilation, but
it is possible for the section to reside in some other module
participating in the linkage edit, providing its name is defined as a
global symbol by using the GLOBAL statement.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 48 of 244

If the address of the routine is to be determined at run-time then
code intercept as a symbol. This causes the statement:

02 symbol PIC PTR

to be generated within the FD. The program using the file is
responsible for initialising this field to address the start of the
intercept routine. If it is not initialised, or if it is set to LOW-
VALUES, then there is no intercept routine associated with the file.

1.6.4 Intercept Routines
An intercept routine, established using the ON ERROR statement in an
FD, is executed whenever an I/O error occurs on the associated file,
before any error messages are displayed by the System Manager. It must
therefore be resident whenever the file is accessed.

An intercept routine can test the result code, $$RES, to determine the
type of error, as described in section 1.6.1. The routine should then
either return to the System Manager normally, or signal one of two
possible exception conditions, as shown in the following table:

| | |

 | | |
 | STATEMENT | EFFECT |
 +++++++++ ++++++
 | | |

EXIT	the System Manager displays its normal
	error message and retry prompt, as if
	there were no intercept routine.
	routine.
EXIT WITH 1	The System Manager signals an
	irrecoverable I/O error immediately,
	without displaying any error message
	or prompt. If OPTION ERROR is in
	force then the controlling file processing
	statement will be suppressed with exception
	1; otherwise the job will be terminated
	immediately.
EXIT WITH 2	Provided the controlling file processing
	statement is an OPEN, the System Manager
	suppresses it with exception 2, to signal
	a file condition, without displaying any
	error message. Otherwise, if the
	statement was not an OPEN, the usual error
	message and retry prompt is displayed.

Table 1.6.4 - Exit from an Intercept Routine

The EXIT WITH 1 statement is normally used in conjunction with OPTION
ERROR to suppress unwanted error messages. For example, you may wish
to process a file ignoring any records which cause I/O errors when
accessed.

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 49 of 244

The EXIT WITH 2 statement is used to provide special handling of I/O
errors occurring at open time. Figure 1.6.4 shows an example program
which intercepts error "F", file already in use, and rather than the
program being terminated allows the operator to specify a different
file to be processed. Similarly a program might intercept error "D",
invalid unit address, and allow the operator to input the correct unit
address. Note that the exception handling logic following the OPEN
statement should test for an alphabetic value of the result code,
$$RES, to distinguish the special exception generated by the intercept
routine from the normal file already exists, file not found and wrong
type exceptions.

An intercept routine must not start with an ENTRY statement, and may
only contain the following types of statement:

● arithmetic statements;

● conditional and iterative statements;

● MOVE, EXIT and GO TO statements.

● DISPLAY and DISPLAY...LINE statements.

 .
 .
 FD F1 ORGANISATION RELATIVE-SEQUENTIAL
 ASSIGN TO UNIT "DSK" FILE F1-NAME
 ON ERROR "F1-ERR"
 .
 .
 .
 PROCEDURE DIVISION
 AA100.
 DISPLAY "INPUT FILE"
 ACCEPT F1-NAME
 OPEN OLD F1
 ON EXCEPTION
 IF $$RES = "F"
 DISPLAY "FILE IN USE" SAMELINE
 GO TO AA100
 END
 DISPLAY "FILE NOT FOUND" SAMELINE
 GOTO AA100
 END
 .
 .
 .

 SECTION F1-ERR * INTERCEPT
 IF $$RES = "F" EXIT WITH 2 * ERROR F SPECIAL
 EXIT * ALL OTHERS NORMAL
 ENDPROG

Figure 1.6.4 - Example Program using an intercept routine

1.6.5 Exceptions Signalled by System Routines
A system routine always signals exception condition 1 if an I/O error
is detected irrespective of whether the OPTION ERROR statement has

Chapter 1 - Introduction to File Management

Global Development File Management Manual V8.1 Page 50 of 244

been coded in any FD supplied to the routine by the calling program.
Different alphabetic settings of the result code, $$RES, distinguish
the different types of I/O errors, as summarised in Table 1.6.1. The
numeric settings of the code, shown in Table 1.6.1A, indicate the
different circumstances in which the routines may signal exception
condition 2. These circumstances are described in more detail,
together with the $$RES values involved, in the documentation of each
routine.

If the ON ERROR statement is coded in an FD supplied to a system
routine, then the intercept routine involved will be called in the
usual way if an I/O error is detected. If the intercept routine
signals exception condition 2 to change an I/O error on an OPEN into a
file condition, then the system routine will treat this as though file
already exists (OPEN NEW) or file not found (OPEN OLD or SHARED) had
been detected, although the alphabetic error code in $$RES will remain
unchanged.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 51 of 244

2. The Relative Sequential File Organisation

2.1 Relative Sequential Files
The records of an RS file can be output sequentially to the printer or
accessed either at random or sequentially when the file is assigned to
a direct access device. The records are fixed length and are numbered
consecutively from 1 so that random access operations can retrieve
data by record number.

2.1.1 Record Formats
Print files must be made up of print line records and, optionally,
forms control records, as described in 1.5. The format of records
appearing on any other type of RS file is totally under the control of
the application program, except that the records of a file to be
processed by Global AutoClerk should all begin with a two character
type code. The first type character should not normally be an
asterisk, since this is used to denote a logically deleted record:

| | |
 --
TYPE	
2	?
 --

Figure 2.1.1 - AutoClerk Relative Sequential File Record Format

2.1.2 Specifying File Attributes
The attributes of an RS file, such as its unit-id, volume-id and file-
id, are specified in its file definition (FD), coded in the data
division. When creating a new file you supply the record length and
the space to be allocated in the FD. You can also define a key area to
contain the record number for use in random access READ and WRITE
statements. Section 2.2 describes those parts of the file definition
which are specific to the relative sequential file organisation, but
the statements which are common to all organisations are defined in
1.2.

2.1.3 File Processing Statements
Nine procedure division statements are provided to enable an RS file
to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

WRITE NEXT to create the file initially or, in the case
of a direct access file only, extend it by adding
records at the end;

WRITE to update an existing record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record sequentially;

READ PRIOR to read the previous record sequentially;

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 52 of 244

READ to read a record at random;

CLOSE to terminate processing of a file and, optionally,

either delete it, or release any spare space it
has for subsequent re-allocation.

Record 1
 - - - - - - - - - - - -
 | | |
 | | |
READ, READ FIRST, | | |
READ LAST, READ NEXT, | | |
READ PRIOR and WRITE | | |
can access records | | |
1 to n | n records | |
 / /
 | used | |
 | | File size
 | | specified
 | | in the FD
 | | when the
 - - - - - - - - - - - -
 | | file was
Write next pointer---->| Record n | created
 /
(This pointer will | | |

be incremented to | | |
address record n+1 | | |
 /
immediately prior | | |
to WRITE NEXT | spare* | |
outputting a | | |
record.) | | |
 | | |

* The spare space following the used part of the file can be
 returned to the volume and made available for re-allocation by
 CLOSE TRUNCATE.

Figure 2.1.4 - A Direct Access Relative Sequential File

Only OPEN, CLOSE and WRITE NEXT statements may be used on printer
files.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in 1.3.1. In addition,
if OPTION ERROR is specified in the FD exception condition 1 will be
generated should an irrecoverable I/O error occur. Therefore it is
usual to follow each file processing statement with an ON EXCEPTION
statement. If you do not, and an exception condition arises, your
program will be terminated in error.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 53 of 244

2.1.4 The Write Next Pointer
Throughout the life of a direct access relative sequential file the
access method maintains a file pointer, the write next pointer, which
determines the record affected by the WRITE NEXT operation and serves
to delimit the used part of the file.

When an OPEN NEW statement completes satisfactorily the write next
pointer is set to address an imaginary record immediately preceding
the very first record of the file. Thereafter, whenever a WRITE NEXT
operation takes place, the pointer is incremented to address the next
record, and then that record is written. The write next pointer
therefore addresses the last record of the file when there are any
records at all. It is this pointer's value which is used in checking
whether a READ or WRITE operation is within bounds.

The write next pointer is saved amongst other information retained on
the volume whenever the file is closed so that it can be made
available when the file is subsequently opened using OPEN OLD. Note
that this means that if you fail to close a file, because of a
programming error or machine failure, for example, then any new
records created by WRITE NEXT since the file was opened will be lost,
because the new value of the pointer will not have been saved.

Normally the write next pointer, incremented by WRITE NEXT, and
indicating the used part of the file, is never reset. However, an
option is provided so that you can re-use a work file by specifying
that the write next pointer is to be reset to address the imaginary
record preceding the very first record of the file when the file is
opened by OPEN OLD. This allows work files to be allocated once by an
initiation program and then used over and over again.

Figure 2.1.4 shows a relative sequential file after n records have
been written using WRITE NEXT. The size specified in the file
definition when the file was created allowed for more than n records
so the used part of the file is followed by spare space. The spare
space can be reserved for new records to be added to the end of the
file by WRITE NEXT or it can be returned to the volume for re-
allocation by a CLOSE statement using the TRUNCATE option.

READ, READ FIRST, READ LAST, READ NEXT, READ PRIOR and WRITE
operations can access only the n records so far created.

2.2 The File Definition
The file definition for a relative sequential file is coded in either
working storage or the linkage section as follows:

FD filename ORGANISATION RELATIVE-SEQUENTIAL
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[KEY IS keyname]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR [RESET]] | [OPTION RESET [ERROR]]
[ON ERROR intercept]
[BLOCK CONTAINS number CHARACTERS]

The FD establishes a special group data item, whose name is filename.
The length of the item is 86 bytes, or 98 bytes if the BLOCK CONTAINS
statement is coded. The quantities unit-id, file-id, volume-id,

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 54 of 244

keyname, length and size appear as subordinate items within this group
and can, if need be, be referred to by the application program.

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in double quotes. If you can specify the size or length before
the program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

2.2.1 The Filename
The filename must be a symbol. It serves to label the file definition
as explained in 1.2.1.

2.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown, but you may use the
abbreviations ORG and R-S instead of ORGANISATION and RELATIVE-
SEQUENTIAL if you wish. It indicates that the file is relative
sequential.

2.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

2.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION, ON ERROR and BLOCK statements
are optional and may appear in any order following the ASSIGN
statement.

2.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD. The access method maintains the key field
to contain the record number of the record last accessed: the field is
set to zero when the file is opened.

The program must place the record number of the record it requires to
access in the keyname field before executing a random READ or WRITE
operation.

A successful READ NEXT operation increments the key field by one and
then retrieves the record thus identified.

A successful READ PRIOR operation decrements the key field by one and
then retrieves the record thus identified.

A successful READ FIRST or READ LAST operation returns the very first
or very last record of the file respectively, and the key field is set
appropriately.

A successful WRITE NEXT operation returns the record number of the
record written in the key field.

2.2.6 The RECORD LENGTH Statement

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 55 of 244

The RECORD LENGTH statement is required only when creating a new file.
The length is coded either as a positive integer between 1 and 32767
inclusive or as a symbol. When a symbol is used the statement:

02 symbol PIC 9(4) COMP

is generated within the FD. The program must place the record length
in bytes in this field before executing an OPEN NEW statement.

A RECORD LENGTH statement supplying a symbol for the length may be
used for an existing file. In this case when the OPEN statement
completes satisfactorily the record length will be made available to
the program in the generated field.

2.2.7 The SIZE Statement
The SIZE statement is required only when creating a new file. Its use,
which is common to all file organisations, is explained in 1.2.8.

2.2.8 The OPTION and ON ERROR Statements
The OPTION statement allows you to specify one or more processing
options according to the phrases you include following the OPTION
verb. The phrases may be coded in any order and in any combination.

OPTION RESET is only used for an existing direct access file. It
causes the open operation to reset the write next pointer to address
an imaginary record immediately before the beginning of the file so
that the file can be re-used. If RESET is not specified as an option
OPEN OLD will restore the pointer from the value remembered when the
file was last closed.

Note that you should not code OPTION RESET for a file which is opened
to be shared by a number of co-operating multi-user jobs. If you issue
an OPEN SHARED and there are already existing users of the file, the
access method will not allow you to unilaterally reset it, and your
program will be terminated in error.

OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR processing
should be coded if you wish to handle certain I/O errors specially.
The processing of these statements is common to all file
organisations, and is described in section 1.6 of this manual.

2.2.9 The BLOCK CONTAINS Statement
The BLOCK CONTAINS statement allows you to buffer sequential READ NEXT
or WRITE NEXT operations on a direct access file, providing you have
exclusive access to the file. This means you must have opened the file
using OPEN NEW or OPEN OLD: buffering is inoperative on shared files
although BLOCK CONTAINS still reserves buffer space following the file
definitions. Note that WRITE NEXT should only be used with files
opened for exclusive use, whereas READ NEXT can be used both for files
opened exclusively and for those opened shared.

The block size you specify must be an integer between 1 and 32766
inclusive. It causes an uninitialised area of the size specified
(rounded up, if necessary, to the nearest multiple of two bytes) to be
reserved immediately following the file definition. The statement must
therefore be used with care in environments where main storage is
scarce. Buffering is not used when a file is written to a real
printer, so the BLOCK CONTAINS statement should only be coded in the

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 56 of 244

FD for such a file if it is necessary to optimise performance in those
cases where the file is assigned to a direct access device.

In the remainder of this discussion we assume that you are considering
using the statement to improve performance. In this case the block
size specified should always be at least twice the record size, as
otherwise no blocking will be possible and it would be better to omit
the statement altogether. Normally the number should be a multiple of
the record length, but this is not essential and it may not be
possible if the record length is not known until run-time.

Buffering is only performed for successive READ NEXT or successive
WRITE NEXT operations. Other operations can be performed on a blocked
file but these will not benefit from the blocking: indeed specifying
blocking for a file which is accessed mainly at random might possibly
degrade performance slightly. Hence you are recommended only to use
the BLOCK CONTAINS statement on files which are mainly accessed
sequentially.

Note that the block size is a property of the program accessing the
file, and not of the file itself. The same file may be accessed with
different block sizes in different programs, or accessed without
blocking in others.

Note also that RSAM blocking is not available for the memory page
version of RSAM.

2.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW, OLD or SHARED and filename identifies the
relative sequential file definition. An OPEN statement must be
executed before any other operation affecting the file. If an OPEN is
attempted but the FD is already open your program will be terminated
in error.

OPEN NEW is used to create an RS file. OPEN OLD obtains exclusive
access to an existing file and OPEN SHARED allows co-operating jobs
running under multi-user System Manager to share a direct access RS
file. (The features of the open operation which are common to all file
organisations, such as volume-id checking, are described in detail in
section 1.3.2.)

2.3.1 File Conditions
When OPEN NEW is used to access a direct access device, the System
Manager checks to see whether a file with the same file-id as that
specified in the FD is already present on the volume, and signals file
already exists should this be the case.

When an OPEN OLD or OPEN SHARED operation accesses a direct access
device, the System Manager checks to see whether a file with relative
sequential organisation and the same file-id as that specified by the
FD is present on the volume. If this is not the case file not found
($$RES = "3") or wrong type ($$RES = "1") is signalled.

A file condition cannot arise when opening a file assigned to a
printer.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 57 of 244

2.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, an OPEN
NEW results in the System Manager allocating the amount of space
indicated by the FD's SIZE statement (or its absence). For a direct
access file the write next pointer will be set to address an imaginary
record immediately preceding the very first record of the file so that
a subsequent WRITE NEXT operation will create the first record.

When an OPEN OLD or OPEN SHARED statement completes successfully the
file size and record length are returned in the FD and can be accessed
by the user program if SIZE and RECORD LENGTH statements with the
symbol option were coded. For direct access files, the write next
pointer is restored from the value saved in the file label, except if
OPTION RESET is coded, in which case the pointer is set to address
an imaginary record immediately preceding the first record of the
file, so that the file can be re-used.

2.4 The WRITE NEXT Statement
WRITE NEXT is used to create a new RS file, or extend an existing
direct access file by writing a new record at its end. It is coded:

WRITE NEXT filename FROM A

Here filename identifies the relative sequential file definition and A
is a simple or indexed variable, or a literal. If a WRITE NEXT is
attempted on an FD which is not already open the program will be
terminated in error.

2.4.1 File Conditions
The file space exhausted condition will be signalled if there is
insufficient space remaining in the file to write the new record. When
outputting to a printer an alignment condition will occur if the
record written was a forms control record asking the operator to
confirm whether or not the paper was aligned satisfactorily, and he or
she replied N to the resulting prompt, indicating that the alignment
pattern is to be reprinted (see 1.5.5).

2.4.2 Successful Completion
If no file condition or irrecoverable I/O error occurs WRITE NEXT will
increment the write next pointer and transfer bytes from A to the
record so identified. The number of bytes transferred will not depend
on the picture clause associated with A, but will be equal to the
record length of the file as defined by the FD's RECORD LENGTH
statement when the file was created.

The record number of the record written will be returned in the key
field and can be accessed by the user program if the KEY statement was
coded in the file definition.

2.5 The WRITE Statement
WRITE is used to replace a record initially created by WRITE NEXT. It
is coded:

WRITE filename FROM A

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 58 of 244

Here filename identifies the relative sequential file definition and A
is a simple or indexed variable, or a literal. If WRITE is attempted
on an FD which is not already open the program will be terminated in
error.

Do not use WRITE to send records to a printer.

2.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the record number of the
record it is required to replace into this field before executing the
WRITE statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT. In this case the WRITE statement
can be used to update the record previously retrieved by READ NEXT.

2.5.2 File Conditions
The file boundary violation condition will be signalled if the record
number supplied in the key field lies outside the used part of the
file delimited by the write next pointer.

2.5.3 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, WRITE
will transfer bytes from A to the specified record. The number of
bytes transferred does not depend on the picture clause associated
with A, but will be equal to the record length of the file as defined
by the FD's RECORD LENGTH statement when the file was created.

2.6 The READ FIRST and READ LAST Statements
READ FIRST is used to retrieve the very first record in a file. It is
coded:

READ FIRST filename INTO A

READ LAST is used to retrieve the very last record in a file. It is
coded:

READ LAST filename INTO A

Here filename identifies the relative sequential file definition and A
is a simple or indexed variable. If a READ FIRST or READ LAST is
attempted on an FD which is not already open the program will be
terminated in error.

2.6.1 File Conditions
The end of file condition will be signalled by READ FIRST if there are
no records in the file, as delimited by the write next pointer. The

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 59 of 244

start of file condition will be signalled by READ LAST if there are no
records in the file.

2.6.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the key
field will be set to address the appropriate record (record 1 for READ
FIRST, the last record number for READ LAST) and bytes will then be
transferred from the record thus identified to A. The number of bytes
transferred will not depend on the picture clause associated with A,
but will be equal to the record length of the file, as defined by the
FD's RECORD LENGTH statement when the file was created.

2.7 The READ NEXT and READ PRIOR Statements
READ NEXT is used to process part or all of a file sequentially in the
order of the records. It is coded:

READ NEXT filename INTO A

READ PRIOR is used to process part or all of a file sequentially in
reverse order of the records. It is coded:

READ PRIOR filename INTO A

Here filename identifies the relative sequential file definition and A
is a simple or indexed variable. If a READ NEXT is attempted on an FD
which is not already open the program will be terminated in error.

2.7.1 File Conditions
The end of file condition will be signalled on attempting to read past
of the used part of the file using READ NEXT. For a direct access file
this is delimited by the write next pointer. The start of file
condition will be signalled on attempting to read the record before
the first record on the file using READ PRIOR.

2.7.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
NEXT will increment the record number in the key field by one, and
READ PRIOR will decrement the record number in the key field by one.
Bytes will then be transferred from the record thus identified to A.
The number of bytes transferred will not depend on the picture clause
associated with A, but will be equal to the record length of the file,
as defined by the FD's RECORD LENGTH statement when the file was
created.

2.7.3 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file; WRITE updates the last record thus retrieved;
and READ rereads it. READ PRIOR used immediately after opening such a
file would return the start of file condition, although it could be
used after READ NEXT to retrieve a preceding record.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ PRIOR will continue sequential processing
from the preceding record.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 60 of 244

The WRITE NEXT statement updates the key field to address the last
record of the file, so a READ NEXT following WRITE NEXT will be
suppressed with a file operation exception indicating end of file.

2.8 The READ Statement
READ is used to retrieve a record at random or reread a record
retrieved by READ NEXT. It is coded:

READ filename INTO A

Here filename identifies the relative sequential file definition and A
is a simple or indexed variable. If READ is attempted on an FD which
is not already open the program will be terminated in error.

2.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the record number of the
record it is required to retrieve to this field before executing the
READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT or set by WRITE NEXT. In this case
the only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

2.8.2 File Conditions
The file boundary violation condition will be signalled if the record
number supplied in the key field lies outside the used part of the
file delimited by the write next pointer.

2.8.3 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer bytes from the specified record to A. The number of
bytes transferred does not depend on the picture clause associated
with A, but will be equal to the record length of the file as defined
by the FD's RECORD LENGTH statement when the file was created.

2.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE|DELETE]

where filename identifies the relative sequential file definition.

2.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 61 of 244

Following CLOSE, the FD can be re-opened for the same, or a different,
relative sequential file by a subsequent OPEN statement.

2.9.2 File Conditions
If a CLOSE is attempted on an FD which is not already open then the
file not open condition will be signalled.

2.9.3 Truncation
The TRUNCATE phrase is ignored if the file is assigned to a printer.
For direct access files it instructs the System Manager to return any
spare space at the end of the extent to the volume so that it can be
re-allocated.

2.9.4 Deletion
The DELETE phrase causes all the space occupied by a direct access
file to be returned to the volume and its file-id to be erased from
the directory. Thus following a CLOSE DELETE the affected direct
access file no longer exists. However, the DELETE option has no effect
on a printer.

2.9.5 Programming Notes
If you forget to close a print file in some circumstances the last few
lines written by the program will not be output.

If you fail to close a direct access file any new records created by
WRITE NEXT since the time it was opened may be lost. This is because
the updated write next pointer is only preserved on the volume by the
CLOSE or CLOSE TRUNCATE operations. If you are using WRITE NEXT to
infrequently add records to the end of a relative sequential file
during interactive working you should consider "checkpointing" the
file by closing and re-opening it following each addition.

A WRITE operation, used to replace an existing record, is effected
immediately so that a file which is only updated by WRITE's should
normally remain consistent, even if it is not closed. This feature is
intended to protect files which are updated interactively from damage
in the event of machine failure: programs should always close the
files they use.

2.10 Memory paged RSAM
This version of RSAM has most of the RSAM code within a System Manager
memory page and therefore requires less space within a program. It
cannot be used under pre-V6.2 Global System Manager.

Paged RSAM operates in exactly the same way as non-paged RSAM except
that blocking is not allowed. No changes are required to any code
using standard RSAM, all that is needed is that C.$PAGES is linked
into your program before C.$APF and C.$MCOB ensuring that module AR$Z
is linked in preference to module AR$B (see the section on memory
paged subroutines in the System Subroutines manual).

2.11 The Relative Sequential Access Method for C-
ISAM or Global files
This version of the Relative Sequential Access Method is only
available under V8.1 or later System Manager and can be used to access
both standard Global RSAM files and C-ISAM files. It is advised that
you have a C-ISAM programmers manual available.

Chapter 2 - The Relative Sequential File Organisation

Global Development File Management Manual V8.1 Page 62 of 244

An RSAM file for C-ISAM consists of a Global schema file, containing
various information about the C-ISAM file and created using RCBUILD
and $SETIRU (see chapters 13 and 14), and a C-ISAM database.

2.11.1 Record Format
The record format expected is as described in section 2.1.1. The
record format and fields must be in the Global. If a C-ISAM database
is being accessed records will be converted to the C-ISAM format
required, as specified within the schema file by the record conversion
table, by the access method.

2.11.2 Specifying File Attributes
The attributes for the RS file, such as its unit-id, volume-id and
file-id is specified in its file definition (FD), coded in the data
division. These attributes must be either those of the Global
relative-sequential file or for the C-ISAM schema file.

2.11.3 The File Definition
The file definition is as described in section 2.2 but the BLOCK
contains statement is not allowed and buffer handling is not
supported.

2.11.4 The File Processing Statements
The file processing statements are as described in section 2.1.3 and
section 2.5 to 2.10 with the exception that OPEN NEW operations are
not supported for C-ISAM files. If the access method receives a call
for an OPEN NEW operation it will assume a System Manager relative
sequential file is required and create a new Global RSAM file if
possible.

If an I/O error occurs on the C-ISAM file the Unix error code will be
returned in the system variable $$CRES, a PIC 9(9) COMP field. For
information about the Unix error code see your C-ISAM manual from
INFORMIX or Unix Manuals from your operating system supplier.

2.11.5 Programming Notes
The RSAM for Global or C-ISAM access method is a pageable routine (See
System Subroutines manual for details) and its interface routine must
be linked specially. You must include the following line in the $LINK
dialogue before linking either C.$PAGES, C.$APF or C.$MCOB:

$44 LINK:C.$PAGES/AY$Z UNIT:$S

The routine will appear on the link map with program name AY$Z. Note
that if you do not specifically link this routine but just link in
C.$PAGES, then the pageable version of RSAM for System Manager files
only, will be included (AR$Z) instead.

All locking of the relative sequential file must be done on the stub
file within System Manager. This does mean that the C-ISAM database
will not be locked from other Unix applications and therefore the C-
ISAM file must not be accessed by other Unix application at the same
time as it is being accessed by Global System Manager applications.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 63 of 244

3. The Indexed Sequential File Organisation

3.1 Indexed Sequential Files
A Global IS file consists of fixed length data records and an index.
Each data record contains a unique, fixed length, record key located
in byte 5 onwards. The file processing statements OPEN, READ, READ
NEXT, WRITE, REWRITE and CLOSE are used in conjunction with a file
definition with ORGANISATION INDEXED-SEQUENTIAL to process an existing
indexed sequential file:

OPEN must be executed prior to any other statement
affecting the file;

READ is used to retrieve a record at random, given its
record key;

READ NEXT retrieves the record whose key is next in
collating sequence compared with the key last
accessed. The operation can be used to process all
or part of the file in record key sequence;

WRITE is used to either update an existing record

or insert a new record in sequence;

REWRITE is used to update the record last accessed. It is
more efficient than WRITE;

CLOSE must be issued to terminate file processing.

IS files can only be created and maintained on direct access devices.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in 1.3.1. In addition,
if OPTION ERROR is specified in the FD, exception condition 1 will be
generated should an irrecoverable I/O error occur. Therefore it is
usual to follow each file processing statement with an ON EXCEPTION
statement. If you do not, and an exception condition arises, your
program will be terminated in error.

3.1.1 Data Record Format
The data records of an indexed sequential file consist of a two-
character type code followed by a two-byte link field, the key and
then any remaining user data:

 | | | | |
 --
TYPE	LINK	RECORD KEY	USER DATA
2	2	?	?
 --

The type may be used by AutoClerk, where it distinguishes the
different sorts of records that make up the file. The first type
character should not normally be an asterisk, since this used to
denote a logically deleted record as explained in 3.1.4.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 64 of 244

The link field is used for chaining new records which have been
inserted into the correct sequence in the file. This field should not
be used by the application programmer.

The record key is the value upon which the file is sequenced and
indexed. For sequencing purposes it is treated by the access method as
a character variable. The first byte of the key must not be high
values. In practice record keys are normally defined to be character
or positive computational items, or are contiguous groups of such
items.

The record key, which must always begin in the fifth byte of each
record, is followed by any amount of user data.

3.1.2 Creating a Global Indexed Sequential File
There are two ways of creating a Global indexed sequential file.
Either you can start by building an empty file and then add to it, or
you can convert a Global RS file to Global indexed sequential form. In
both cases you create the IS file either by using the file conversion
command ($CONV) interactively or by invoking the CONV$ conversion
routine, described in section 9.1, under program control.

When an empty file is used it consists of a small prime data area and
index (since the only data is one dummy record) and a much larger
overflow area in which all the additions will be chained together.
Unless you can arrange to add the records in descending key sequence,
you will have to re-organise the file frequently, as explained in
3.1.5, to achieve acceptable performance. In any case you must re-
organise before using random access operations on the file.

If you decide to create your IS file from an existing relative
sequential file, you may avoid the need for early reorganisations. The
RS file must contain records of the form described above. The contents
of the link field are immaterial, but the records must be arranged in
ascending collating sequence of record key, with no duplicates. When
CONV$ or $CONV is used to produce an indexed sequential file from it
the new file will consist of:

● A prime data area containing the original records;

● an index area, which immediately follows the prime data;

● an overflow area, following the index area and occupying the

remainder of the space allocated to the file.

The index is read-only as far as the file operations are concerned.
The overflow area is initially empty. A record is written to it
whenever a WRITE for a record with a key not already present in the
file takes place.

The space required for the index depends on the number of prime data
records and the key length. The overflow area size depends on the
maximum number of insertions expected before the file is next
reorganised. The calculation command ($CALC) and system routine
(CALC$) allow you to calculate the space requirements given these
parameters.

The original relative sequential file is not modified in any way by
the conversion process.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 65 of 244

3.1.3 Specifying File Attributes
To process an existing indexed sequential file you specify attributes
such as its unit-id, volume-id and file-id in a file definition (FD)
coded in the data division. Section 3.2 below describes those parts of
the FD which are specific to the indexed sequential file organisation,
but the statements that are common to all organisations are defined in
5.2.

3.1.4 Logical Deletion of Records
No processing statements are provided to allow you to delete records
from an indexed sequential file. Instead the convention is adopted
that records whose type code begins with an asterisk, called logically
deleted records, will be removed from the file when it is reorganised
(with the exception of records with type code "*!", special deleted
records used for pre-allocation, as explained in 3.1.9).

If you code the OPTION IGNORE statement in the file definition, then
any deleted records will be ignored, as if they were not present. If
you omit OPTION IGNORE then the deleted records are treated as normal
records, and will be returned by READ and READ NEXT statements. This
may be useful if you wish to reinstate an accidentally deleted record.

3.1.5 Reorganising a Global Indexed Sequential File
As more and more records are added to an indexed sequential file,
overflow chains become longer, degrading performance, and the overflow
area fills up. If logical deletions have taken place, unwanted records
will still be physically occupying valuable file space. It may
eventually become necessary to rearrange the file so that all records
which have not been logically deleted occupy a new prime data area and
the overflow area is empty. This process is termed reorganisation.

Reorganisation is accomplished either by using the file conversion
command ($CONV) interactively, or by developing an application program
to do the job, in which case it must use the CONV$ conversion routine
as described in 9.1. In either case a new indexed sequential file is
produced from the old one. The new file's prime data area contains all
non-deleted records from the old file and its overflow area is empty.

The original indexed sequential file is not modified in any way by
this conversion process.

Note that if you simply require to extend the overflow area and are
not concerned with restructuring the prime data area or removing
logically deleted records, this can be accomplished by simply copying
the file to a larger area using either the file utility command
program ($F) interactively, or by developing an application program
using the COPY$ routine described in 9.2. A copy operation is much
faster than a conversion since the file transfer proceeds using very
large blocks rather than record by record.

3.1.6 Programming Notes
The indexed sequential access method described in this chapter is
designed to be simple, so as to minimise the amount of main storage
required by the access method itself, and to use compact files. The
method (using Global files) is most suitable for files with a small
percentage of evenly distributed insertions. This is because if A and
B are two adjacent keys in the prime data area of the file then all

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 66 of 244

insertions with a key value between A and B are chained onto the B
record. A dummy high key record is added to the end of the file to
control the chain of records with keys greater than the original
highest.

For high performance (for Global files) try not to use updating
strategies involving large numbers of insertions at the same point
within a file. In particular, avoid inserting multiple records at one
point for a single transaction. As a rule of thumb try to limit the
longest overflow chain to about 10 records before reorganising. If new
additions tend to be allocated sequential keys you may need to pre-
allocate records as described in 3.1.9 below.

The maximum number of overflow records in a Global ISAM file is 32,767
and the maximum size key is 99 bytes. Normally keys should be made as
small as is practical since this reduces the size and number of levels
of the index.

The Global ISAM file index contains a number of 256-byte blocks
arranged in levels. Each block contains a 252-byte key table capable
of holding a number of key values. Call this number, which depends of
course on the key length, n. Then the first level index contains one
index block for every n records in the prime data area. The second
level index contains one block for every n blocks of the first level
index. Index levels are constructed one after another until the
highest level index, consisting of just a single index block, is
developed.

The structure of a Global ISAM file is fully described in Appendix A.

3.1.7 Performance Guidelines for Global files
A READ requires to access one index block from each level and then at
least one data record. More accesses will take place if the required
record is on an overflow chain.

WRITE is even more expensive than READ because even if the data record
already exists it has to be both read and written. If the record is
new it has to be written to the end of the overflow area and the
relevant overflow chain maintained, which requires an additional read
and write. When adding a large number of new records consider
inserting them in reverse key sequence in the interests of greater
efficiency, since by doing so you reduce the amount of overlay chain
scanning to a minimum. Always reorganise an IS file following a
substantial number of insertions.

REWRITE writes the data record previously accessed. Since the address
of this record is remembered there is no need for REWRITE to search
the index to find the record.

READ NEXT retrieves a single data record using information saved in
the file definition.

READ NEXT is the most efficient operation, then REWRITE, then READ and
finally WRITE. READ and WRITE performance will be severely degraded if
long overflow chains develop. The performance of READ and WRITE can be
improved by making the highest level index block resident by supplying
a 256-byte storage area for it in the OPEN OLD statement.

3.1.8 Bulk Additions

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 67 of 244

At times you will need to add large numbers of new records to an
indexed sequential file. In particular, this will occur during initial
data take-on. If you simply add these records directly to the file,
performance will rapidly degrade and you will need to reorganise at
frequent intervals.

It is better to write all the new records to a relative sequential
file. When creating a new indexed file, simply sort the records into
key sequence and convert the file to indexed sequential format. If the
records are to be added to an existing file, then they should be
sorted into reverse key order, and then inserted using WRITE
statements. When they have all been added, the indexed file must be
reorganised. (Inserting new records in reverse key order avoids long
scans through overflow chains which degrade performance.)

Note that if the number of additions is manageably small it may be
simpler to sort the records into reverse key order manually and then
insert them directly into the file using your normal update procedure.

3.1.9 Pre-allocating Keys
When files are keyed on some form of reference code, such as a policy
or account number, new records are normally allocated sequential
codes. This causes them to be inserted at the same point in the file,
and so if more than 20 or 30 additions are made between
reorganisations, access to the new records will become very slow.

The problems caused by sequential additions can be overcome by adding
special deleted records to the file immediately before it is
reorganised. The keys used for the records should be in the range next
to be allocated. The record type should be set to the two characters
"*!". This special value causes the access method to consider the
record to be logically deleted but instructs the reorganisation
process to copy it to the output file rather than discard it. This
means that following reorganisation the IS file will already contain
the new keys expected in the next batch of additions. As a result
these insertions become updates of the existing special deleted
records and the performance overhead associated with long overflow
chains is avoided.

In practice, it is not necessary to preallocate every key, and we
would recommend you add a special deleted record only for every fifth
or tenth key. o ensure the pre-allocation program itself runs as fast
as possible insert the *! records themselves in reverse key order.

3.2 The File Definition
The file definition for an indexed sequential file is coded in either
working storage or the linkage section as follows:

FD filename ORGANISATION INDEXED-SEQUENTIAL
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[KEY LENGTH IS keylength]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR [IGNORE] | OPTION IGNORE [ERROR]]
[ON ERROR intercept]

The FD establishes a special group data item, 94 bytes in length,
whose name is filename. The quantities unit-id, file-id, volume-id,

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 68 of 244

keylength, length and size appear as subordinate items within this
group and can, if need be, be referred to by the application program.

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in quotes. If you can specify keylength, size or length before
the program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

3.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in 1.2.1.

3.2.2 The ORGANISATION Clause
The organisation clause must be coded as shown, except that you may
use the abbreviations ORG and I-S instead of ORGANISATION and INDEXED-
SEQUENTIAL. It indicates that the file is indexed sequential.

3.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

3.2.4 Optional Statement Placement
The KEY LENGTH, RECORD LENGTH, SIZE, ON ERROR and OPTION statements
are optional and may appear in any order following the ASSIGN
statement.

3.2.5 The KEY LENGTH Statement
The KEY LENGTH statement is required only when creating a new indexed
sequential file using the conversion utility. The keylength is coded
either as an integer between 1 and 99, or as a symbol. When a symbol
is used the statement:

02 symbol PIC 9(2) COMP

is generated within the FD. The program must then place the key length
to be used in the field before the conversion utility is invoked.

The KEY LENGTH statement with the symbol option can also be used for
an existing file. In this case when the OPEN statement completes
satisfactorily the actual length of the key will be returned in this
field.

3.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement need only be supplied if you require to
determine the file's record length at run-time. You code:

RECORD LENGTH IS symbol

causing the statement:

02 symbol PIC 9(4) COMP

to be generated within the file definition. When the OPEN operation
terminates successfully the file's record length will be returned to
you in the field named symbol.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 69 of 244

3.2.7 The SIZE Statement
The SIZE statement is required only when creating a new indexed
sequential file. The size is coded either as an integer between 0 and
999999999 inclusive, or as a symbol. When a symbol is used the
statement:

02 symbol PIC 9(9) COMP

is generated within the FD. The program must then place the size to be
used in this field before the conversion routine is invoked. If the
size is specified as zero, or the SIZE statement is omitted, the
routine will allocate the new indexed sequential file exactly as much
space as that occupied by the originating relative sequential file
extent.

The SIZE statement with the symbol option can also be used for an
existing file. In this case when the OPEN OLD statement completes
satisfactorily the actual number of bytes allocated to the file will
be returned in the generated field.

3.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is covered
in section 1.6 of this manual.

OPTION IGNORE should be coded if you want deleted records to be
ignored. If it is, deleted records will never be returned by a READ or
READ NEXT statement, but will be treated as if they were not present
on the file.

3.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename [index-area]

where type is the word OLD or SHARED and filename identifies the
indexed sequential file definition. The index-area is optional. When
specified it is the name of a 256-byte work area in which the highest
level index will be held whilst the file is open. You supply this
parameter if you wish to improve the performance of READ and WRITE
operations by eliminating one index level access. The index area
cannot be used for any other purpose whilst the file using it remains
open, otherwise unpredictable errors will occur.

An OPEN statement must be executed before any other file processing
statement. If an OPEN is attempted but the FD is already open your
program will be terminated in error.

OPEN NEW is not supported, because an indexed sequential file is
always created using CONV$ or $CONV, as explained in 3.1.2. OPEN OLD
obtains exclusive access to the file whilst OPEN SHARED allows co-
operating jobs running under multi-user System Manager to share an
indexed sequential file. (The features of the open operation which are
common to all file organisations, such as volume-id checking, are
described in detail in section 1.3.2).

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 70 of 244

3.3.1 File Conditions
The file not found ($$RES = "3") or wrong type ($$RES = "1") condition
is signalled if a file with indexed sequential organisation and the
same file-id as that specified in the FD is not present on the direct
access volume.

3.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the
OPEN OLD operation completes successfully. The file size, record
length and key length are returned in the FD and made available to the
user program if SIZE, RECORD LENGTH and KEY LENGTH statements with the
symbol option were coded.

3.4 The WRITE Statement
WRITE is used to update a record whose key is already present on the
file or to add a record with a new key. It is coded:

WRITE filename FROM A

Here filename identifies the file definition and A is a simple or
indexed variable, or a literal. If WRITE is attempted on an FD which
is not already open the program will be terminated in error.

3.4.1 File Conditions
If a record with the specified key is not already present on the file,
ISAM attempts to write a new record at the end of the overflow area,
and then chains it into the existing file to maintain the key
sequence. The file space exhausted condition will be signalled if
there is insufficient space in the overflow area to contain the new
record. This condition can never occur when the record key is already
present on the file since in this case the WRITE operation simply
causes an existing record to be updated.

3.4.2 Successful Completion
Providing that no file condition or irrecoverable I/O error occurs,
WRITE will either cause an overflow record to be created or an
existing record to be modified. The number of bytes transferred from
the record at A to direct access storage will not depend on the
picture clause of A but will be equal to the record length of the
file, defined when it was created.

3.4.3 Programming Notes
When the record to be written is the one last accessed from the file,
the REWRITE statement can, and normally should, be coded instead of
WRITE since it is much more efficient.

3.5 The REWRITE Statement
REWRITE is used to update the record last accessed from a file. It is
coded:

REWRITE filename FROM A

Here filename identifies the indexed sequential file definition and A
is a simple or indexed variable or literal. If REWRITE is attempted on
an FD which is not already open the program will be terminated in
error.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 71 of 244

3.5.1 Key Value Checking
ISAM checks that the key value supplied in A is the same as the key
value of the record to be updated. If this is not the case the file
operation will be suppressed and the program terminated in error. The
key cannot be changed by a REWRITE operation: to modify the key a
WRITE must be used.

3.5.2 Successful Completion
Providing the key has not been erroneously modified, and no
irrecoverable I/O error occurs, REWRITE will update the record last
accessed. The number of bytes transferred from the record at A to
direct access storage will not depend on the picture clause of A but
will be equal to the record length of the file, defined when it was
created.

3.5.3 Programming Notes
Although a WRITE can be used to update an existing record, REWRITE
should normally be employed when the record to be updated is the one
last accessed, since it is more efficient. This is because ISAM
remembers the address of the record last accessed and it is
unnecessary for REWRITE to search the index to find the record.

3.6 The READ Statement
READ is used to retrieve a record with a given key from the file. If
the key is not present the operation attempts to retrieve the record
whose key is immediately higher than the one specified.

The READ statement is coded:

READ filename INTO A

Here filename identifies the indexed sequential file definition and A
is a simple or indexed variable. If READ is attempted on an FD which
is not already open the program will be terminated in error.

3.6.1 Establishing the Key
The key must be placed in the standard position of the record area
(the fifth byte onwards) before the READ statement is executed. The
key value will be replaced by a different value if the record not
found file condition occurs.

3.6.2 File Conditions
The record not found file condition will be signalled if a record with
the key you have specified is not present on the file. In this case
ISAM will retrieve the record whose key is next higher in collating
sequence than the one you specified, if such a record exists.

If the key you supplied was greater than any key currently stored, the
file condition will again be signalled but the dummy high record will
be returned to you. This dummy record contains a type code of ASCII
blanks, a key of high values, and low-values for data. Note that if
the key you supply is present on the file, the System Manager simply
returns the appropriate record to you without signalling a file
condition.

3.6.3 Successful Completion

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 72 of 244

Providing no permanent I/O error occurs and a key greater than or
equal to the one you specified exists on the file, READ will transfer
bytes from the record thus identified to A. The number of bytes
transferred does not depend on the picture clause associated with A,
but will be equal to the record length of the file defined when it was
created.

3.7 The READ NEXT Statement
READ NEXT is used to process part or all of a file sequentially. It is
coded:

READ NEXT filename INTO A

Here filename identifies the indexed sequential file definition and A
is a simple or indexed variable. If a READ NEXT is attempted on an FD
which is not already open the program will be terminated in error.

3.7.1 The Record Retrieved
The record retrieved by READ NEXT depends on the previous file
operation:

● A READ NEXT following OPEN will retrieve the first record of the

file.

● A READ NEXT following a READ, READ NEXT, WRITE or REWRITE will

retrieve the record immediately higher in collating sequence than
the one just read or written. If there is no such record end of
file will be signalled.

3.7.2 File Conditions
The end of file condition will be signalled in response to READ NEXT
if the record last accessed was the record with the highest key, or if
the last file operation was a READ which was returned the dummy record
because the key it required was greater than any held on the file.
When this condition occurs the dummy high record is returned. This
dummy record contains a type code of ASCII blanks, a key of high
values, and low-values for data.

3.7.3 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, bytes
will be transferred from the file to A. The number of bytes
transferred will not depend on the picture clause associated with A,
but will be equal to the record length of the file, defined when it
was created.

3.8 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE|DELETE]

where filename identifies the indexed sequential file definition.

3.8.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same, or a different,
indexed sequential file by a subsequent OPEN statement.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 73 of 244

3.8.2 File Conditions
If the CLOSE is attempted on an FD which is not already open the file
not open condition will be signalled, and no processing will take
place.

3.8.3 Truncation
If the TRUNCATE phrase is coded, ISAM will return the unused part of
the overflow area, if any, to the volume so that it can be re-
allocated.

3.8.4 Deletion
If the DELETE phrase is coded all the space the file occupies is
returned to the volume and its file-id is erased from the directory.
Following a CLOSE DELETE the file no longer exists.

3.8.5 Programming Note
WRITE and REWRITE operations on an indexed sequential file are
effected immediately and at open time the access method is able to
determine the true end of the overflow area. This means that an
indexed sequential file should remain consistent, even if you fail to
close it. This feature is intended to protect files which are updated
interactively from damage in event of machine failure: programs should
always close the files they use.

3.9 Memory Paged ISAM
This version of ISAM has most of the access method code within a
System Manager memory page and therefore requires less spaces within a
program. It cannot be used on pre-V6.2 Global System Manager.

Paged ISAM operates in exactly the same way as non-paged ISAM. No
changes are required to any code using standard ISAM. All that is
needed is that the compilation library C.$PAGES found on the SYSDEV
unit is linked into your program before libraries C.$APF and C.$MCOB,
ensuring that module AI$Z is linked in preference to module AI$A (see
section on memory pages in the Systems Subroutines Manual).

3.10 The Indexed Sequential Access Method for
Global or C-ISAM files
This version of ISAM can only be run on V8.1 or later of Global System
Manager. It can be used to access data records in standard Global ISAM
files or records whose data is held in a C-ISAM database. If using C-
ISAM files you should refer to your C-ISAM programmer's manual.

An ISAM file for C-ISAM consists of a Global schema file, containing
various information about the C-ISAM file and created using RCBUILD
and $SETIRU (see Chapter 13 and 14), and a C-ISAM database containing
at least the index by which the file is to be accessed using ISAM.

3.10.1 Record Format
The record format expected is as described for the indexed sequential
file organisation in section 3.1.1. The record format and fields must
be in the System Manager format. If a C-ISAM database is being
accessed they will be converted by the access method to the C-ISAM
format required as specified within the schema files by the record
conversion table.

Chapter 3 - The Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 74 of 244

3.10.2 Specifying File Attributes
The attributes for the IS file, such as its unit-id, volume-id and
file-id is specified in its file definition (FD), coded in the data
division. These attributes must be those of the Global indexed
sequential file or for the C-ISAM schema file.

3.10.3 The File Definition
The file definition is as described in section 3.2.

3.10.4 The File Processing Statements
The file processing statements are as described in section 3.3 to 3.8.

If an I/O error occurs on the C-ISAM file the Unix error code will be
returned in the system variable $$CRES, a PIC 9(9) COMP field. For
information about the Unix error code see your C-ISAM manual from
INFORMIX or Unix Manuals from your operating system supplier.

3.10.5 Programming Notes
The ISAM for C-ISAM files is a pageable routine (see System
Subroutines manual for details) and its interface routine must be
linked specially. You must include the following line in the $LINK
dialogue:

$44 LINK:C.$PAGES/AY$Z UNIT:$S

The routine will appear on the link map with program name AY$Z. Note
that if you do not specifically link this routine but just link in
C.$PAGES then the pageable version of RSAM for System Manager files
will be included (AI$Z) in preference.

Unlike Global ISAM, C-ISAM will only support a single record key
structure. Provision has therefore been made for a header and a
trailer (first and last) record, which may be logically part of the
indexed sequential file, to be held in a separate C-ISAM file. You can
specify the separate header and trailer when creating the stub file
using $SETIRU.

All locking of the indexed sequential file must be done on the stub
file within System Manager. This does mean that the C-ISAM file will
not be locked from other Unix applications and therefore the C-ISAM
file must no be accessed by other Unix application at the same time as
it is being accessed by Global applications.

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 75 of 244

4. The Variable Length Record File
Organisation

4.1 Variable Length Record Files
The records of a VL file can be accessed either at random or
sequentially when the file resides on direct access storage. The bytes
of a VL file are numbered consecutively, starting at zero, and records
can be accessed at random by supplying their starting byte number as a
key.

4.1.1 Record Format
Each record of a VL file begins with a two-character type code and a
two-byte PIC 9(4) COMP field containing the length of the total record
(including the type field). User data, which can be of any format,
follows the length field:

 | | | |
 --
TYPE	LENGTH	USER DATA
2	2	?
 --

4.1.2 Specifying File Attributes
The attributes of a variable length record file, such as its unit-id,
volume-id and file-id, are specified in its file definition (FD),
coded in the data division. When creating a new file you supply the
space to be allocated in the FD. You can also define a key area to
contain the starting byte number for use in random access READ and
WRITE statements. Section 4.2 below describes those parts of the file
definition which are specific to the variable length record file
organisation, but the statements which are common to all organisations
are defined in section 1.2.

4.1.3 File Processing Statements
Seven procedure division statements are provided to enable a VL file
to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random (or READ PHYSICAL);

READ FIRST to read the very first record in the file;

READ NEXT to read a record during sequential processing;

WRITE to update an existing record at random;

WRITE NEXT to create the file or extend it by writing a
new record at its end;

CLOSE to terminate processing of a file.

| | | | | |

 | | | | | | |

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 76 of 244

 |TYPE | length | data 1 | TYPE | length | |
 READ, READ | | | | | | |
 -
 FIRST, READ | | | |
 NEXT and | data 2 | | |
 WRITE can | | | |
 - - - - - - - - - --
 access | | |
 records 1 | n records used | extent
 /
 to n | | size,
 /
 | | specified
 | | | | | in the FD
 -- - - - - - - - - - - - - - - - -
 | | | | | when the
 | | TYPE | length | data n | file was
 /
 Write next | | | | | created

 pointer----->| | |
 (incremented | | |
 by record | spare* | |
 length after | | |
 a WRITE NEXT)| | |

 * the spare space can be returned to the volume and made
 available for reallocation by CLOSE TRUNCATE.

Figure 4.1.4 - A Direct Access Variable Length Record File

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur. Therefore it is usual to follow each file processing
statement with an ON EXCEPTION statement. If you do not, and an
exception condition arises, your program will be terminated in error.

4.1.4 The Write Next Pointer
Throughout the life of a direct access variable length record file
VLAM maintains a file pointer, the write next pointer, which
determines the record affected by the WRITE NEXT operation and serves
to delimit the used part of the file.

When an OPEN NEW statement completes satisfactorily the write next
pointer is set to zero. Thereafter, whenever a WRITE NEXT operation is
successfully completed the write next pointer is incremented by the
length of the record written. The write next pointer therefore always
addresses the first unused byte on the file. It is this pointer's
value which is used in checking whether a READ, READ FIRST, READ NEXT
or WRITE operation is within bounds.

The write next pointer is saved amongst other information retained on
the volume whenever the file is closed, so that it can be made
available when the file is subsequently opened using OPEN OLD. Note
that this means that if you fail to close a file, because of a
programming error or machine failure, for example, then any new

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 77 of 244

records created by WRITE NEXT since the file was opened will be lost,
because the new value of the pointer will not have been saved.

Figure 4.1.4 shows a variable length record file after n records have
been written using WRITE NEXT. The size specified in the file
definition when the file was created allowed for more records so the
used part of the file is followed by spare space. The spare space can
be reserved for new records to be added to the end of the file by
WRITE NEXT or it can be returned to the volume for re-allocation by a
CLOSE statement using the TRUNCATE option.

READ, READ FIRST, READ NEXT and WRITE operations can access only the n
records so far created.

4.1.5 The ORGANISATION Statement
If a program uses a variable length record file, then the statement:

ORGANISATION OR$84 TYPE 4 EXTENSION 8

must be coded in the data division before the first FD or data
declaration.

4.2 The File Definition
The file definition for a variable length record file is coded in
either working storage or the linkage section as follows:

FD filename ORGANISATION OR$84
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[KEY IS keyname]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]

The FD establishes a special group data item, 88 bytes in length,
whose name is filename. The quantities unit-id, file-id, volume-id,
keyname, length and size appear as subordinate items within this group
and can, if need be, be referred to by the application program.

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in quotes. If you can specify the size or length before the
program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

4.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1.2.1.

4.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
file contains variable length records.

4.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 78 of 244

4.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements are
optional and may appear in any order following the ASSIGN statement.

4.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

VLAM maintains in the keyname field the byte number of the start of
the record last accessed.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT operation increments the keyname field by the
length of the previous record accessed and then retrieves the record
thus identified: if the previous operation on the file was an OPEN
then the first record is read.

A successful WRITE NEXT operation returns the byte number of the start
of the record written in the keyname field.

4.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is only required when reading records from
a file. It specifies the length of the area into which the record is
being read, ie the maximum length record which can be read. If this
length is fixed then it can be specified as an integer between 4 and
32767 inclusive, otherwise the RECORD LENGTH statement should specify
a symbol and the length must be set up before a READ or READ NEXT
statement is executed.

4.2.7 The SIZE Statement
The SIZE statement is required only when creating a new file. Its use,
which is common to all file organisations, is explained in Section
1.2.8.

4.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is covered
in section 1.6 of this manual.

4.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW, OLD or SHARED and filename identifies the
variable length record file definition. An OPEN statement must be
executed before any other operation affecting the file. If an OPEN is

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 79 of 244

attempted but the FD is already open your program will be terminated
in error.

OPEN NEW is used to create a VL file. OPEN OLD obtains exclusive
access to an existing file and OPEN SHARED allows co-operating jobs
running under multi-user System Manager to share a direct access VL
file. (The features of the open operation which are common to all file
organisations, such as volume-id checking, are described in detail in
Section 1.3.2.)

4.3.1 File Conditions
When an OPEN NEW is used to access a direct access device the System
Manager will signal file already exists if a file with the same file-
id as that specified in the FD is present.

When an OPEN OLD or OPEN SHARED statement is executed the System
Manager checks to see whether a file with variable length record
organisation and the same file-id as that specified by the FD is
present on the volume. If this is not the case wrong type ($$RES =
"1") or file not found ($$RES = "3") is signalled.

4.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in the System Manager allocating the amount of space
indicated by the FD's SIZE statement (or its absence). For a direct
access file the write next pointer will be set to address the first
byte so that a subsequent WRITE NEXT operation will create the first
record.

When an OPEN OLD or OPEN SHARED statement completes successfully the
file size is returned in the FD and can be accessed by the user
program if a SIZE statement with the symbol option was coded.

4.4 The WRITE NEXT Statement
WRITE NEXT is used to create the records of a new VL file, or extend
an existing direct access VL file by writing a new record at its end.
It is coded:

WRITE NEXT filename FROM A

Here filename identifies the variable length record file definition
and A is a simple or indexed variable. If a WRITE NEXT is attempted on
an FD which is not already open, the program will be terminated in
error.

4.4.1 File Conditions
The file space exhausted condition will be signalled if there is
insufficient space remaining in the extent to write the new record.

4.4.2 Record Length Checking
The length of the record to be written, given by bytes 3 and 4 of the
record, must be in the range 4 to 32767 otherwise the program will be
terminated in error.

4.4.3 Successful Completion
Providing a valid record length is supplied and no file condition or
irrecoverable I/O error occurs, WRITE NEXT will transfer the number of

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 80 of 244

bytes given by the length field in A from the record area A to the
file address given by the write next pointer. The write next pointer
will then be incremented by the length of the record written.

The starting byte number of the record written will be returned in the
keyname field and can be accessed by the user program if the KEY
statement was coded in the file definition.

4.5 The WRITE Statement
WRITE is used to replace a record initially created by WRITE NEXT. It
is coded:

WRITE filename FROM A

Here filename identifies the variable length record file definition
and A is a simple or indexed variable. If WRITE is attempted on an FD
which is not already open the program will be terminated in error.

4.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to replace into this field before
executing the WRITE statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT. In this case the WRITE statement
can be used to update the record previously retrieved by READ NEXT.

4.5.2 File Conditions
The file boundary violation condition will be signalled if the byte
number supplied in the keyname field lies outside the used part of the
file delimited by the write next pointer.

4.5.3 Record Length Checking
If the length of the record to be written is not the same as the
length of the record it is to replace then the program will be
terminated in error.

4.5.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs and the
record lengths are the same then the existing record will be replaced
in its entirety by the new record. The length of the record does not
depend on the picture clause of A, only on the length in bytes 3 and 4
of A.

4.5.5 Programming Note

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 81 of 244

A WRITE operation will always complete the updating of the file before
returning control, so that even if the program subsequently fails the
file will have been updated.

4.6 The READ FIRST Statement
READ FIRST is used to read the very first record in the file. It is
coded:

READ FIRST filename INTO A

Here filename identifies the variable length record file definition,
and A is a simple or indexed variable. If READ FIRST is attempted on
an FD which is not already open the program will be terminated in
error.

4.6.1 File Conditions
The end of file condition will be signalled if the file is empty
(contains no records).

4.6.2 Record Length Checking
If the length of the record to be read, given by bytes 3 and 4 of the
record, is greater than the maximum length of A, given by the record
length specified in the FD, then the program will be terminated in
error.

4.6.3 Successful Completion
Provided no file condition or irrecoverable I/O error occurs, and the
record is not longer than the record length in the FD, then READ FIRST
will set the key to address the very first record in the file (a value
of zero) and transfer this record to A. The number of bytes
transferred is given by the length field in bytes 3 and 4 of the
record area.

4.7 The READ NEXT Statement
READ NEXT is used to process part or all of a file sequentially. It is
coded:

READ NEXT filename INTO A

Here filename identifies the variable length record file definition
and A is a simple or indexed variable. If a READ NEXT is attempted on
an FD which is not already open the program will be terminated in
error.

4.7.1 File Conditions
The end of file condition will be signalled on attempting to read past
the used part of the file. For a direct access file this is delimited
by the write next pointer.

4.7.2 Record Length Checking
If the length of the record to be read, given by bytes 3 and 4 of the
record, is greater than the maximum length of A, given by the record
length specified in the FD, then the program will be terminated in
error.

4.7.3 Successful Completion

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 82 of 244

Provided no file condition or irrecoverable I/O error occurs, and the
record is not longer than the record length in the FD, then READ NEXT
will increment the key by the length of the previous record accessed
(if any) and transfer the record thus identified to A. The number of
bytes transferred is given by the length field in bytes 3 and 4 of the
record area.

4.7.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file; WRITE updates the last record thus retrieved;
and READ rereads it.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE.

The WRITE NEXT statement updates the key field to address the last
record of the file, so a READ NEXT following WRITE NEXT will be
suppressed with a file operation exception indicating end of file.

4.8 The READ Statement
READ is used to retrieve a record at random or reread a record
retrieved by READ NEXT. It is coded:

READ filename INTO A

Here filename identifies the variable length record file definition
and A is a simple or indexed variable. If READ is attempted on an FD
which is not already open the program will be terminated in error.

4.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT or set by WRITE NEXT. In this case
the only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

4.8.2 File Conditions
The file boundary violation condition will be signalled if the byte
number supplied in the keyname field lies outside the used part of the
file delimited by the write next pointer.

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 83 of 244

4.8.3 Record Length Checking
If the length of the record to be read, given by bytes 3 and 4 of the
record, is greater than the length of A, given by the record length
specified in the FD, then the program will be terminated in error.

4.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs and the
record is not longer than the record length in the FD, then READ will
transfer to A the number of bytes given by bytes 3 and 4 of the record
identified by the key.

4.8.5 The READ PHYSICAL Statement
As the key of a variable length record file is the byte offset of the
record, the READ PHYSICAL statement is identical in function to the
READ statement.

4.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE|DELETE]

where filename identifies the variable length record file definition.

4.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same, or a different,
variable length record file by a subsequent OPEN NEW or OPEN OLD
statement.

4.9.2 File Conditions
If the FD is not open then CLOSE will signal the file not open
condition, and the FD will not be processed.

4.9.3 Truncation
If the file is assigned to a direct access device the TRUNCATE phrase
instructs the System Manager to return any spare space at the end of
the extent to the volume so that it can be re-allocated.

4.9.4 Deletion
The DELETE phrase causes all the space occupied by a direct access
file to be returned to the volume and its file-id to be erased from
the directory. Thus following a CLOSE DELETE the affected file no
longer exists.

4.9.5 Programming Notes
If you fail to close a direct access file any new records created by
WRITE NEXT since the time it was opened will be lost. This is because
the updated write next pointer is only preserved on the volume by the
CLOSE or CLOSE TRUNCATE operations. If you are using WRITE NEXT to
infrequently add records to the end of a variable length record file
during interactive working you should consider "checkpointing" the
file by closing and re-opening it following each addition.

A WRITE operation, used to replace an existing record, is effected
immediately so that a file which is only updated by WRITE operations
should normally remain consistent, even if it is not closed. This

Chapter 4 - The Variable Length Record File Organisation

Global Development File Management Manual V8.1 Page 84 of 244

feature is intended to protect files which are updated interactively
from damage in the event of machine failure: programs should always
close the files they use.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 85 of 244

5. The Text File Organisation

5.1 Text Files
The records of a TF file can be written or read sequentially when the
file is assigned to a direct access device. It is also possible to
read a record at random by supplying its starting character number.
The file is treated as a contiguous string of ASCII characters
numbered from zero.

5.1.1 Notation
In describing the non-graphic ASCII characters such as form-feed,
vertical-tab and so on, in the examples within this chapter we use the
short codes normally associated with those characters, as listed in
Appendix A of the Global Cobol Language Manual. In particular:

NUL null, the character with a byte value of binary zero;

HT horizontal tab (the character normally referred to simply as
tab, when the context distinguishes it from vertical tab);

VT vertical tab;

FF form feed;

CR carriage return;

LF line feed;

SP space.

5.1.2 File Format
A text file consists of a string of ASCII characters not including
NUL. Each character occupies a single byte in which the senior,
parity, bit is set to zero. End of file is indicated when a
terminating NUL character is detected, or in the case of direct access
text files only, at the end of the extent occupied by the file if no
preceding NUL was found.

5.1.3 Line Format
A text file is considered to be made up of a number of contiguous
lines of information. Each line except the first is separated from its
predecessor by the newline sequence with which it begins. The newline
sequence at the start of the very first line of the file may be
omitted in some cases, but in every other case it must assume one of
the following formats:

● a single VT character;

● a single FF character;

● CR or LF, or any combination of these two characters.

The line body consists of those characters following the newline
sequence (if present). The body is delimited by the first character of
the next line, or by end of file in the case of the last line. The
body may be empty, in which case the line consists merely of a newline
sequence.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 86 of 244

The first significant character within a line is the first one which
is neither VT, FF, CR, LF, HT or SP. It must obviously be within the
line body, and it is possible that a line possesses no first
significant character.

5.1.4 Record Format
When a program performs a normal text file read operation the
information returned by the access method in its record area consists
of a line immediately followed by a NUL character, which serves as a
delimiter. When the program wishes to write a line it must set up the
record area in the same way, providing the line information first, and
then the NUL terminator.

Note that the PRIN$ system routine, described in section 15.1, can be
used to convert a record read from a text file to a format which is
suitable for printing or displaying on the screen. The routine
converts the newline sequence into the appropriate print control byte
(or eliminates it in the case of a display) and expands any horizontal
tabs appearing within the line body.

5.1.5 Example
The following ASCII character string forms a text file, which is
terminated by the NUL character:

A B FF LF SP SP X Y CR LF LF R S T NUL

Table 5.1.5 below shows the four records which would be required to
create this file. Identical records would be returned, in the order
listed, were the file subsequently to be read sequentially.

 | | | |

 | | | |
 | | RECORD AREA CONTENTS | |
 ++++++++++++++++++++
 | | | FIRST |
 ----------------------------------- +++++
 | RECORD | | | | SIGNIFICANT|
 ++++++ +++++++++++
 | NUMBER | NEWLINE | LINE | TERMINATOR | CHARACTER |
 ++++++ +++++++ ++++ ++++++++++ +++++++++
 | | SEQUENCE| BODY | | |
 ++++++++ ++++
 | | | | | |

1	none	A B	NUL	A
2	FF	none	NUL	none
3	LF	SP SP X Y	NUL	X
4	CR LF LF	R S T	NUL	R

 Table 5.1.5 - Sample Text File Records

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 87 of 244

5.1.6 Specifying File Attributes
The attributes of a text file, such as its unit-id, volume-id and
file-id, are specified in its file definition (FD), coded in the data
division. When creating a new file you supply the space to be
allocated in the FD. You can also define a key area to contain the
character number for use by the random access READ operations. Section
5.2 below describes those parts of the file definition which are
specific to the text file organisation, but the statements which are
common to all organisations are described in section 1.2.

5.1.7 File Processing Statements
Six procedure division statements are provided to enable a TF file to
be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record of the file;

READ NEXT to read a record during sequential processing;

WRITE NEXT to create the file or extend it by writing a
new record at its end;

CLOSE to terminate processing of a file.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition a READ, READ FIRST or READ NEXT can suffer a record length
exception, peculiar to text file handling. This exception, which sets
$$COND to 3, indicates that the record the operation attempted to
retrieve was longer than the record area reserved for it. Finally, of
course, if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 8.2. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

5.1.8 The Write Next Pointer
Throughout the life of a direct access text file TFAM maintains a file
pointer, the write next pointer, which serves to delimit the used part
of the file.

The write next pointer contains the character number of the null
character terminating the file, unless the file completely fills the
extent, in which case it addresses an imaginary byte following the
file extent. When an OPEN NEW statement completes satisfactorily the
write next pointer is set to zero. It is incremented by the length of
the record written whenever a WRITE NEXT takes place.

The write next pointer is saved amongst other information retained on
the volume whenever the file is closed so that it can be made
available when the file is subsequently opened.

Note that this means that if you fail to close a file, because of a
programming error or machine failure for example, then any new records

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 88 of 244

created by WRITE NEXT since the file was opened will be lost, because
the new value of the pointer will not have been saved.

5.1.9 The ORGANISATION Statement
If a program uses text files which are write-only, then the following
statement must be coded in the data division before the first FD or
data declaration:

ORGANISATION OR$83 TYPE 3 EXTENSION 16

However, if READ, READ FIRST or READ NEXT statements are used on a
text file, then the access method requires the standard 16-byte
extension to be followed by an additional 512-byte buffer. If every
text file FD used by the program is subject to READ, READ FIRST or
READ NEXT statements then the simplest way of generating the extra
buffer is to request a larger extension in the ORGANISATION statement
by coding:

ORGANISATION OR$83 TYPE 3 EXTENSION 528

However, this method is wasteful on storage when some text file FDs
are write-only, since these FDs are expanded with a 512-byte buffer
which they do not require. For this reason, when some, but not all,
text file FDs are write-only we recommend that you code an
ORGANISATION statement requesting a 16-byte extension, and then
explicitly declare a 512-byte buffer immediately following each text
file FD supporting read operations. For example:

PROGRAM TEXTP
DATA DIVISION
ORGANISATION OR$83 TYPE 3 EXTENSION 16
.
.
FD INFIL ORGANISATION OR$83
ASSIGN TO UNIT "DSK" FILE "TXINFIL"
01 FILLER
02 FILLER PIC X(512) ** BUFFER
.
.
FD OUTFIL ORGANISATION OR$83
ASSIGN TO UNIT "DSK" FILE "TXOUTFIL"
RECORD LENGTH IS 72
** NO BUFFER

Here the INFIL FD, together with the buffer which immediately follows
it, occupies 608 bytes whereas the OUTFIL FD only requires 96 bytes.

Note that if the CATA$ system routine is used to determine the volume-
id and unit-id of a text file for which you have declared an explicit
buffer, then the FD involved should either be the only file definition
in the list passed to CATA$, or the last FD in the list.

This is because CATA$ uses the EXTENSION information supplied by the
ORGANISATION clause to deduce the length of each file definition when
scanning its list. If you have declared an explicit buffer the length
used by CATA$ will be inaccurate, and the routine will be unable to
find the next FD. This problem will not, of course, arise if the file
definition in question is the last, or only, member of its list.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 89 of 244

5.2 The File Definition
The file definition for a text file is coded in either working storage
or the linkage section as follows:

FD filename ORGANISATION OR$83
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[KEY IS keyname]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]

The FD establishes a special group data item whose name is filename.
The quantities unit-id, file-id, volume-id, keyname, length and size
appear as subordinate items within this group and can, if need be, be
referred to by the application program. The size of the FD is either
96 or 608 bytes, depending on whether it is used for output only, and
how the ORGANISATION statement has been coded. (See 1.1.9.)

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in quotes. If you can specify the size or length before the
program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

5.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1.2.1.

5.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
file is a text file.

5.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

5.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements are
optional and may appear in any order following the ASSIGN statement.

5.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

TFAM maintains the keyname field to contain the character number of
the start of the line last accessed: the field is set to zero when the
file is opened.

The program must place the character number of the start of the line
it requires to access in the keyname field before executing a random
READ operation.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 90 of 244

A successful READ NEXT operation increments the keyname field by the
length of the previous line read and then retrieves the record thus
identified.

A successful WRITE NEXT operation returns the starting character
number of the line written in the keyname field.

5.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is only required when reading records from
a text file. It specifies the length of the area into which the line
is being read, ie the maximum length line, including the terminating
NUL, which can be read. If this length is fixed then it can be
specified as an integer between 2 and 257 inclusive, otherwise the
RECORD LENGTH statement should specify a symbol and the length must be
set up before a read statement is executed.

5.2.7 The SIZE Statement
The SIZE statement is required only when creating a new file. Its use,
which is common to all file organisations, is explained in section
1.2.8.

5.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6 of this manual.

5.2.9 Additional Fields in the FD
A text file FD contains three additional fields which your program can
access by including a redefinition of the FD of the following form:

01 TX REDEFINES filename
03 FILLER PIC X(86)
03 TXLLN PIC 9(4) COMP * LINE LENGTH READ
03 TXSIG PIC 9(4) COMP * SIGNIFICANT INDEX
03 FILLER PIC X(4)
03 TXNCH PIC 9(4) COMP * CHARACTERS IN BODY

These three fields are established by a READ, READ FIRST or READ NEXT
operation which is successful, or which suffers a record length
exception.

TXLLN contains the total length of the line read. This excludes the
terminating NUL character supplied by the access method but includes
the new-line sequence that precedes the body of the line. If a record
length exception occurs TXLLN will indicate the length of the line
before it was truncated.

TXSIG indexes the first significant character of the line. If there is
none TXSIG will index the NUL character supplied as a terminator.

TXNCH contains the number of characters in the body of the line. If a
record length exception occurs TXNCH will indicate the length of the
body before the line was truncated.
For example, suppose the record last returned by the access method
was:

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 91 of 244

CR LF HT SP SP A B C NUL

and no record length exception was signalled. Then TXLLN would contain
8, TXSIG 6 (indexing the letter A) and TXNCH 6.

5.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW, OLD or SHARED and filename identifies the
text file definition. An OPEN statement must be executed before any
other operation affecting the file. If an OPEN is attempted but the FD
is already open your program will be terminated in error.

OPEN NEW is used to create a TF file. OPEN OLD obtains exclusive
access to an existing file and OPEN SHARED allows co-operating jobs
running under multi-user System Manager to share a direct access TF
file. (The features of the open operations which are common to all
file organisations, such as volume-id checking, are described in
detail in section 1.3.2.)

5.3.1 File Conditions
When an OPEN NEW is used to access a direct access volume the System
Manager will signal file already exists if a file with the same file-
id as that specified in the FD is present.

When an OPEN OLD or OPEN SHARED statement is executed the System
Manager checks to see whether a file with text file organisation and
the same file-id as that specified by the FD is present on the volume.
If this is not the case wrong type ($$RES = "1") or file not found
($$RES = "3") is signalled.

5.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in the System Manager allocating the amount of space
indicated by the FD's SIZE statement (or its absence). For a direct
access file the write next pointer will be set to address the first
character so that a subsequent WRITE NEXT operation will create the
first record.

When an OPEN OLD or OPEN SHARED statement completes successfully the
file size is returned in the FD and can be accessed by the user
program if a SIZE statement with the symbol option was coded.

5.4 The WRITE NEXT Statement
WRITE NEXT is used to create the records of a new TF file, or extend
an existing direct access TF file by writing a new record at its end.
It is coded:

WRITE NEXT filename FROM A

Here filename identifies the text file definition and A is a simple or
indexed variable. If a WRITE NEXT is attempted on an FD which is not
already open the program will be terminated in error.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 92 of 244

5.4.1 File Conditions
The file space exhausted condition will be signalled if there is
insufficient space remaining in the extent to write the new record.

5.4.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs WRITE
NEXT will transfer characters byte by byte from A to the file,
starting at the character addressed by the write next pointer. All
characters up to and including the terminating NUL within A will be
transferred. The write next pointer will be incremented to address the
next record.

The starting character number of the line written will be returned in
the keyname field and can be accessed by the user program if the KEY
statement was coded in the file definition.

5.4.3 Programming Notes
The record written by a WRITE NEXT statement may contain a number of
lines, separated by newline sequences. The record can be up to 32766
bytes in length, although individual lines within the record should be
no longer than 256 bytes so that they can be accessed using READ or
READ NEXT. If you are adding a number of lines to a text file it is
advisable to combine them together into larger records, as this
reduces the number of disk accesses required, and hence improves
performance.

5.5 The READ FIRST Statement
READ FIRST is used to read the very first record in the file. It is
coded :

READ FIRST filename INTO A

Here filename identifies the text file definition and A is a simple or
indexed variable. If a READ FIRST is attempted on an FD which is not
open the program will be terminated in error.

5.5.1 File Conditions
The end of file condition will be signalled if the file is empty
(contains no records).

5.5.2 The Record Length Exception
Providing no file condition or irrecoverable I/O error occurs, READ
FIRST sets the key to address the very first record on the file (a
value of zero), and reads the line.

If the line is longer than 256 characters then the program will be
terminated in error. If the length is less than 256, but greater than
or equal to the record length specified in the FD, then although the
line can be handled, it will be truncated before being supplied to
your program. In this case the first (record length - 1) characters
are transferred to A, followed by the NUL character, then exception 3
is signalled. The extra characters are ignored, and a subsequent READ
NEXT will read the next line on the file.

5.5.3 Successful Completion
Providing no file condition, record length exception or irrecoverable
I/O error occurs READ FIRST will transfer the first line of the file

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 93 of 244

to A, and then place a NUL character in A following the end of the
line.

5.6 The READ NEXT Statement
READ NEXT is used to process part or all of a file sequentially. It is
coded:

READ NEXT filename INTO A

Here filename identifies the text file definition and A is a simple or
indexed variable. If a READ NEXT is attempted on an FD which is not
open the program will be terminated in error.

5.6.1 File Conditions
The end of file condition will be signalled on attempting to read past
the used part of the file. For a direct access file this is delimited
by the write next pointer.

5.6.2 The Record Length Exception
Providing no file condition or irrecoverable I/O error occurs, READ
NEXT increments the key by the length of the previous line accessed
and then reads the line thus identified.

If the line read is longer than 256 characters then the program will
normally be terminated in error. However, if the length is less than
256 but greater than or equal to the record length specified in the
FD, then although the line can be handled, it will be truncated before
being supplied to your program. In this case the first (record length
- 1) characters are transferred to A, followed by a NUL character,
then exception 3 is signalled. The extra characters are ignored, and a
subsequent READ NEXT will read the next line on the file.

5.6.3 Successful Completion
Providing no file condition, record length exception, or irrecoverable
I/O error occurs READ NEXT will transfer the line read to the input
area A, and then place a NUL character in A following the end of the
line.

5.6.4 Programming Notes
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file and READ rereads the last record thus
retrieved.

When a KEY statement is specified a READ can be used to position the
file at any point. READ NEXT will continue sequential processing from
the record following the one retrieved by READ.

The WRITE NEXT statement updates the key field to address the last
record of the file, so a READ NEXT following WRITE NEXT will be
suppressed with an end of file condition.

Following a successful READ NEXT, or one which suffered a record
length exception, three special fields are returned to the program in
the FD. These indicate the length of the current line, the position of
its first significant character, and the size of its body (the part
following the newline sequence). For more details refer to 1.2.10.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 94 of 244

5.7 The READ Statement
READ is used to retrieve a line at random or reread a record retrieved
by READ NEXT. It is coded:

READ filename INTO A

Here filename identifies the text file definition and A is a simple or
indexed variable. If READ is attempted on an FD which is not already
open the program will be terminated in error.

5.7.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the character number of
the start of the line it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT or set by WRITE NEXT. In this case
the only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

5.7.2 File Conditions
The file boundary violation condition will be signalled if the record
number supplied in the keyname field lies outside the used part of the
file delimited by the write next pointer.

5.7.3 The Record Length Exception
Providing that no file condition or irrecoverable I/O error occurs a
line is read from the file. If the line is longer than 256 characters
the program will normally be terminated in error. However, if the
length is less than 256 but greater than or equal to the record length
specified in FD, then although the line can be handled, it will be
truncated before being supplied to your program. In this case the
first (record length - 1) characters are transferred to A, followed by
a NUL character, then exception 3 is signalled. The extra characters
are ignored, and a subsequent READ NEXT will read the next line of the
file.

5.7.4 Successful Completion
Providing no file condition, record length exception, or irrecoverable
I/O error occurs then READ will transfer the line identified by the
key from the file to area A, and then place a NUL character in A
following the end of the line.

5.7.5 Programming Notes
Following a successful READ, or one which suffered a record length
exception, three special fields are returned to the program in the FD.

Chapter 5 - The Text File Organisation

Global Development File Management Manual V8.1 Page 95 of 244

These indicate the length of the current line, the position of its
first significant character, and the size of its body (the part
following the newline sequence).

5.8 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE|DELETE]

where filename identifies the text file definition.

5.8.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same, or a different,
text file by a subsequent OPEN NEW or OPEN OLD statement.

5.8.2 File Conditions
If the file is not open the file not open condition will be signalled.

5.8.3 Truncation
The TRUNCATE phrase instructs the System Manager to return any spare
space at the end of the extent to the volume so it can be re-
allocated.

5.8.4 Deletion
The DELETE phrase causes all the space occupied by a direct access
file to be returned to the volume and its file-id to be erased from
the directory. Thus following a CLOSE DELETE the affected file no
longer exists.

5.8.5 Programming Notes
If you fail to close a direct access file any new records created by
WRITE NEXT since the time it was opened will be lost. This is because
the updated write next pointer is only preserved on the volume by the
CLOSE or CLOSE TRUNCATE operations. If you are using a WRITE NEXT to
infrequently add records to the end of a text file during interactive
working you should consider "check-pointing" the file by closing and
re-opening it following each addition.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 96 of 244

6. The Basic Direct File Organisation

6.1 Basic Direct Files
A BD file must always be assigned to a direct access device, and is
treated as a string of bytes numbered sequentially from zero upwards.
Records are accessed by supplying the starting byte number as key,
together with the number of bytes to be read or written.

6.1.1 Record Format
The format of BD records is entirely under program control since you
determine the length and starting byte of each record. This makes the
basic direct file organisation particularly suitable for handling
special file structures such as databases.

6.1.2 Specifying File Attributes
The attributes of a file, such as its unit-id, volume-id and file-id,
are specified in its file definition (FD), coded in the data division.
When creating a new file you specify the space to be allocated in the
FD.

You must specify the name of the area which contains the record
length. You can also define a key area to contain the starting byte
number for use in random access READ and WRITE statements. Section 6.2
below describes those parts of the file definition which are specific
to the basic direct file organisation, but the statements which are
common to all organisations are defined in section 1.2.

6.1.3 File Processing Statements
Nine procedure division statements are provided to enable a BD file to
be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record during sequential
processing;

READ PRIOR to read the previous record during sequential
processing;

WRITE to update an existing record at random;

WRITE NEXT to write a record during sequential
processing;

CLOSE to terminate processing of a file.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 97 of 244

follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

6.1.4 Extent Boundary Checking
A write next pointer is not maintained for a basic direct file, and
you may use WRITE NEXT, WRITE, READ FIRST, READ LAST, READ NEXT, READ
PRIOR and READ statements to access information anywhere within the
allocated file extent. However, should any of these statements attempt
to read or write a record which is partially or wholly outside the
file extent, the file boundary violation file condition will be
signalled.

6.1.5 The ORGANISATION Statement
If a program uses the basic direct access method then the statement:

ORGANISATION OR$85 TYPE x EXTENSION 8

must be coded in the data division before the first FD or data
declaration. The type, x, may be any value in the range 0 to 99. It is
the organisation type that will be given to any files created by OPEN
NEW, and which will appear in a directory listing. We recommend that
users avoid using organisations 0 to 9 as these are reserved for use
by the System Manager. (For a more detailed explanation of the
ORGANISATION statement, refer to section 1.2.)

6.2 The File Definition
The file definition for a basic direct file is coded in either working
storage or the linkage section as follows:

FD filename ORGANISATION OR$85
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[KEY IS keyname]
RECORD LENGTH IS length
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]

The FD establishes a special group data item, 88 bytes in length,
whose name is filename. The quantities unit-id, file-id, volume-id,
keyname, length and size appear as subordinate items within this group
and can, if need be, be referred to by the application program.

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in quotes. If you can specify the size or length before the
program executes, code the quantity as a numeric string. If any of
these quantities is not known until run-time then a symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

6.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1.2.1.

6.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
basic direct access method is to be used.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 98 of 244

6.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

6.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements may
appear in any order following the ASSIGN statement. The RECORD LENGTH
statement must be coded: the others are optional.

6.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

BDAM maintains the keyname field to contain the byte number of the
start of the record last accessed. The byte number of the very first
byte of the file counts as byte number zero.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT or WRITE NEXT operation increments the keyname
field by the length of the previous record accessed and then accesses
the record thus identified: if the previous operation on the file was
an OPEN then the first record is accessed.

A successful READ PRIOR decrements the keyname field by the length of
the record to be read, and then accesses that record.

6.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is always required. Length is
specified as a symbol and the statement:

02 symbol PIC 9(4) COMP

is generated within the FD.

The program must place the length of the record to be read in the
length field before executing a read or write statement. The field is
set to zero when the file is opened, and is not altered by read and
write operations.

6.2.7 The SIZE Statement
The SIZE statement is required when creating a new file or truncating
an existing one. Its use, which is common to all file organisations,
is explained in section 1.2.8.

6.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 99 of 244

6.2.9 Additional Fields in the FD
A basic direct access FD contains three additional fields which can be
accessed by including a redefinition of the FD, as in the following
example:

01 BD REDEFINES filename
03 FILLER PIC X(44)
03 BDLAB
05 FILLER PIC X(3)
05 BDORG PIC 9(2) COMP
05 FILLER PIC X(12)
05 BDADE PIC X(8)
05 FILLER PIC X(12)

The field BDLAB, the file label area, is a 36-byte area Containing all
the information about the file which is preserved in its label,
including the organisation type, file-id and size. It is written to
the file label by a successful CLOSE, and is returned by a successful
OPEN OLD or OPEN SHARED. A successful OPEN NEW statement may corrupt
certain parts of the label area.

If you use the basic direct access method in conjunction with a link
handler constructed using Assembler Interface to transmit files of any
organisation across a communications link then, in addition to the
data, the label area should also be transmitted.

You should then use the basic direct access method to write the
transmitted data to the direct access device. The file label area,
containing all the access method dependent information, can then be
written to the file label by moving it to the output file label area
in the BD FD before closing the file. In this way it is possible to
transmit files of any organisation, including relative sequential,
indexed sequential and program files. There is a detailed example
illustrating the technique in Appendix D, which contains a short
program capable of copying files of any organisation using the basic
direct access method.

Following a successful OPEN OLD or SHARED operation the field BDORG
will contain the organisation type of the file opened, as specified in
the ORGANISATION statement associated with the FD. This can be checked
by your program to ensure that the organisation is as expected.

The field BDADE, the access method dependent area, is an 8-byte area
which is available to the user program. It is written to the file
label by a successful CLOSE statement, and is returned by a successful
OPEN OLD or SHARED. Following an OPEN NEW operation the area will be
set to binary zeros.

6.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW, OLD or SHARED and filename identifies the
basic direct file definition. An OPEN statement must be executed
before any other operation affecting the file. If an OPEN is attempted
but the FD is already open your program will be terminated in error.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 100 of 244

OPEN NEW is used to create a BD file. OPEN OLD obtains exclusive
access to an existing file and OPEN SHARED allows co-operating jobs
running under multi-user System Manager to share a file. (The features
of the open operation which are common to all file organisations, such
as volume-id checking, are described in detail in section 1.3.2.)

6.3.1 File Conditions
The file already exists condition will be signalled in response to
OPEN NEW if a file with the same file-id as that specified in the FD
is already present on the direct access volume.

When an OPEN OLD or OPEN SHARED statement is executed the System
Manager checks to see whether a file with the same file-id as that
specified in the FD is present on the volume, and that it is not a
product file. If this is not the case, file not found is signalled.
(Note that the organisation is not checked as is normally the case. If
you wish to test that the organisation is as expected, examine BDORG
as explained in 6.2.9.)

6.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in the System Manager allocating the amount of space
indicated by the FD's SIZE statement (or its absence).

When an OPEN OLD or OPEN SHARED statement completes successfully the
file size is returned in the FD and can be accessed by the user
program if a SIZE statement with the symbol option was coded. In
addition the file organisation type and access method dependent area
are returned in BDORG and BDADE, as explained in 6.2.9.

The record length field in the FD is set to zero by a successful OPEN
NEW statement. When an OPEN OLD or OPEN SHARED statement completes
successfully the record length returned is the value it had when the
file was last closed. If the file is an IS or RS file this will be the
actual record length of the file.

The keyname field in the FD is always set to zero following a
successful OPEN statement. This is to allow the file to be processed
sequentially using a sequence of READ NEXT or WRITE NEXT statements as
described below.

6.3.3 Programming Notes
Since the basic direct access method does not check the file
organisation it can be used to access any file, except a product file
such as the System Manager command library. You should not, however,
attempt to update a file created by a different access method, as this
is likely to result in the file becoming corrupt.

6.4 The WRITE NEXT Statement
WRITE NEXT is used to write all or part of a file sequentially. It is
coded:

WRITE NEXT filename FROM A

Here filename identifies the basic direct file definition and A is a
simple or indexed variable. If a WRITE NEXT is attempted on an FD
which is not already open the program will be terminated in error.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 101 of 244

6.4.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE
NEXT.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

6.4.2 File Conditions
An file boundary violation condition will be signalled if WRITE NEXT
attempts to output a record which is wholly or partially outside the
file extent.

6.4.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE NEXT will set the key to the number of the byte following the
previous record accessed (if any) and transfer A to the record thus
identified. The number of bytes transferred is given by the length
field.

6.4.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to zero when the
file is opened. In this case WRITE NEXT can be used to write the
entire file sequentially.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. WRITE NEXT will continue writing from
the record following the one accessed by READ or WRITE.

The READ NEXT statement sets the key field to the record retrieved, so
that a subsequent WRITE NEXT statement will write the following
record.

6.5 The WRITE Statement
WRITE is used to write a record at random or rewrite the last record
accessed. It is coded:

WRITE filename FROM A

Here filename identifies the basic direct file definition and A is a
simple or indexed variable. If a WRITE is attempted on an FD which is
not already open the program will be terminated in error.

6.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the WRITE statement.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 102 of 244

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the WRITE statement is to rewrite the record previously
retrieved by READ NEXT or written by WRITE NEXT.

6.5.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

6.5.3 File Conditions
An extent boundary violation condition will be signalled if WRITE
attempts to output a record which is wholly or partially outside the
file extent.

6.5.4 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE will transfer the number of bytes given by the record length
from A to the record identified by the key.

6.5.5 Programming Note
A WRITE operation will always complete the updating of the file before
returning control, so that even if the program subsequently fails the
file will have been updated.

6.6 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record of the file. It is
coded:

READ FIRST filename INTO A

Similarly READ LAST is used to read the very last record in the file.
It is coded:

READ LAST filename INTO A

In both cases filename identifies the basic direct file definition and
A is a simple or indexed variable. If READ FIRST or READ LAST is
attempted on an FD which is not open the program will be terminated in
error.

6.6.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing a READ FIRST or
READ LAST.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

6.6.2 File Conditions

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 103 of 244

A file boundary violation condition will be signalled if a READ FIRST
or READ LAST attempts to input a record which is larger then the total
file size, and which would therefore start or end outside the file
extent.

6.6.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
FIRST will set the key to address the first byte of the file (a value
of zero), and READ LAST will set the key to be the file extent size
less the length of the record to be processed. The record thus
identified will be transferred to A, the number of bytes transferred
being given by the length field.

6.6.4 Programming Note
Use of READ FIRST is normally used to reposition at the start of the
file prior to reading records sequentially using READ NEXT.

Use of READ LAST presupposes that the program has sufficient
information about the file to be able to determine the length of the
very last record (possibly because the length is fixed). It is
important to note that it is the responsibility of the program to
determine an appropriate record length for use by READ LAST, not that
of the basic direct access method itself.

6.7 The READ NEXT and READ PRIOR Statements
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT is used to read the next sequential record,
and it is coded:

READ NEXT filename INTO A

READ PRIOR is used to read the previous sequential record. It is
coded:

READ PRIOR filename INTO A

In both cases filename identifies the basic direct file definition and
A is a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

6.7.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ NEXT
or READ PRIOR.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

6.7.2 File Conditions
A file boundary violation condition will be signalled if READ NEXT or
READ PRIOR attempts to input a record which is wholly or partially
outside the file extent.

6.7.3 Successful Completion

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 104 of 244

Provided that no file condition or irrecoverable I/O error occurs READ
NEXT will set the key to the number of the byte following the previous
record accessed (if any), and READ PRIOR will set the key to the
number of the byte record length bytes before the start of the
previous record accessed. The record thus identified is transferred to
A. In both cases the number of bytes transferred is given by the
length field.

6.7.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file; READ PRIOR at any point may be used to
retrieve the preceding record; WRITE updates the last record thus
retrieved; and READ rereads it. In addition READ FIRST and READ LAST
may be used to position at either the start or end of the file.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ LAST will process sequentially from the
record before it.

A WRITE NEXT statement sets the key field to the start of the record
written, so that a subsequent READ NEXT statement will read the
following record, and a READ PRIOR statement will read the previous
record.

Note that when using READ PRIOR it is the responsibility of the
program to determine the length of the record to be processed by some
means (possibly because it has a fixed length), and not that of the
basic direct access method itself.

6.8 The READ Statement
READ is used to retrieve a record at random or reread the last record
accessed. It is coded:

READ filename INTO A

Here filename identifies the basic direct file definition and A is a
simple or indexed variable. If READ is attempted on an FD which is not
already open the program will be terminated in error.

6.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 105 of 244

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

6.8.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

6.8.3 File Conditions
A file boundary violation condition will be signalled if READ attempts
to input a record which is wholly or partially outside the file
extent.

6.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer to A the number of bytes given by the record length of
the record specified in the key field.

6.8.5 The READ PHYSICAL Statement
As the key of a BDAM file is a byte number, the READ PHYSICAL
statement functions in exactly the same way as a READ.

6.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE|DELETE]

where filename identifies the basic direct file definition.

6.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same (or a different)
file by a subsequent OPEN NEW or OPEN OLD statement.

6.9.2 File Conditions
If the FD passed to the CLOSE was not open, then a file not open
condition will be signalled.

6.9.3 Truncation
The TRUNCATE phrase is used in conjunction with a SIZE statement with
the symbol option. The program must have established the size to which
the file is to be truncated in the size field. When a CLOSE TRUNCATE
is subsequently executed the additional part of the file, if any, will
be returned to the volume so that it can be reallocated.

If you have created a new file using a sequence of WRITE NEXT
Statements and wish to return any unused space to the System Manager
you must have specified the key field using the symbol option. To find
the size of the file you have created simply add the record length of
the last record output by WRITE NEXT and the current value of the

Chapter 6 - The Basic Direct File Organisation

Global Development File Management Manual V8.1 Page 106 of 244

keyname field together. Store this value in the size field, then CLOSE
TRUNCATE the file.

Note that if a CLOSE TRUNCATE is attempted and the size specified is
greater than the file's extent, the program will be terminated in
error.

If you use the basic direct access method on a file created by a
different access method, you must never truncate the file under any
circumstances, except to set it to the current file size, as given by
the FSTAT$ system routine.

6.9.4 Deletion
If a DELETE phrase is coded all the space the file occupies is
returned to the volume and its file-id is destroyed. Following a CLOSE
DELETE the file no longer exists.

6.9.5 Programming Notes
If you fail to close a basic direct file, records created by WRITE
NEXT statements may not have been written to the file, as such records
are buffered for efficiency.

A WRITE operation is effected immediately so that a file which is only
updated by WRITEs should normally remain consistent, even if it is not
closed. This feature is intended to protect files which are updated
interactively from damage in the event of machine failure: programs
should always close the files they use.

A CLOSE statement will write the access method dependent area in the
FD (defined in 6.2.9) to the file label, so that it can be retrieved
by a subsequent OPEN OLD or OPEN SHARED.

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 107 of 244

7. The Data Library File Organisation

7.1 Data Library Files
A data library file contains up to 99 fixed length records, identified
by 10 character names. Each block contains a title, date and time of
creation, and the operator-id of the creator, as well as user-defined
fields. In addition to allowing records to be read or written by name,
the access method will list out the library members on the screen, so
that you can identify the one you want and delete members that are no
longer needed.

This access method should be used when you need to store a number of
fixed length items of information with user-defined names, but do not
want to create large numbers of separate files, nor have to list
existing items or delete unwanted items yourself.

In addition to the data records, there is an extra header record,
containing the library title. This can be used to hold additional
information specific to the data library.

It is not necessary to allocate space for all 99 members: if the
library is smaller it is simply restricted to the number of members
for which there is space. You can increase its size, up to a maximum
of 99 members, by simply copying it to a larger file.

7.1.1 File Format
A data library file consists of a 200-byte index block followed by up
to 100 records, each of the length given by the file's record length.
The first of these records is the header record, the rest are data
records 1 to 99.

The first 2 bytes of the index are not used. The remainder consist of
a 1 byte hash of the record name, followed by the number of the
corresponding record, with the hash set to zero if the record does not
exist. The entries are held with all the in use records before all the
unused entries, and with in use records held in alphabetic order.

The hash of the record name is formed by adding together all the
characters of the name and taking the junior byte of the result, but
with a hash value of zero being replaced by 1 so that the value zero
is available for unused records.

When a new record is created the record number is taken from the first
unused index entry; when a record is deleted its record number is put
at the start of the unused record entries. In this way records near
the start of the file are used in preference to later records.

7.1.2 Record Format
Each record starts with a 60 byte fixed format area which contains the
record name, title and the operator-id, and the date and time of the
last update. The remainder of the record is user defined. The layout
of the first 60 bytes is as follows:

03 &&NAME PIC X(10) * record name
03 &&TTL PIC X(30) * title
03 &&OPID PIC X(4) * operator
03 &&DATE PIC 9(6) COMP * date yymmdd
03 &&TIME PIC X(8) * time hh:mm:ss

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 108 of 244

03 FILLER PIC X(5) * reserved for future use

7.1.3 File Processing Statements
Ten procedure division statements are provided:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record given the member name or list the
library;

READ FIRST to read the first record in the library;

READ LAST to read the last record in the library;

READ NEXT used to read records sequentially in ascending
order;

READ PRIOR to read records sequentially in descending
order;

WRITE used to add a new record or update an
existing record with the name specified;

REWRITE used to update the record last read, possibly

changing its name or deleting it;

DELETE to delete a record from the library;

CLOSE to terminate processing of a library.

The READ and WRITE statements also allow you to list out the current
contents of the library, and to delete unwanted records, as described
below.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

7.1.4 Listing Format
When the library is listed it is displayed on the screen in the
following format:

library-title

NAME TITLE OPERATOR LAST UPDATED
1 name title operator-id dd/mm/yy hh:mm
2 " " " " "

 [*** end ***]

Key name, number, Next page, Delete, End:

If you key a number, the corresponding record is selected. Replies of
N or <CR> cause the next page to be displayed. If there are no more

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 109 of 244

entries, the list starts again at the beginning. A reply of D causes
you to be prompted for the name of the entry to be deleted, and the
screen is redisplayed. A reply of <ESCAPE> when $$ESC is set non-zero
is treated the same as E, and causes an exit.

7.1.5 The ORGANIZATION Statement
If a program accesses a data library, the following statement must be
coded in the data division before the first FD or data declaration:

ORGANIZATION OR$86 TYPE 5 EXTENSION 8

7.2 The File Definition
The file definition for a data library is coded as follows:

FD file-name ORGANIZATION OR$86
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]

7.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1.2.1.

7.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
data library access method is to be used.

7.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation, is explained in section 1.2.

7.2.4 Optional Statement Placement
The RECORD LENGTH, SIZE, OPTION and ON ERROR statements may appear in
any order following the ASSIGN statement. They are all optional.

7.2.5 The RECORD LENGTH Statement
The RECORD LENGTH statement is required when creating a new file, and
may be present (in the symbol form, as described in section 1.2) when
processing an existing file.

The record length of the library records must be established before an
OPEN NEW takes place, and is returned whenever an OPEN OLD or OPEN
SHARED is performed.

In addition whenever any READ, READ FIRST, READ LAST, READ NEXT, READ
PRIOR, WRITE or REWRITE statement is performed, the amount of data
processed for the record in question is determined by the current
value of the record length, which may be any value from 60 up to the
maximum record length.

7.2.6 The SIZE Statement
The SIZE statement is required when creating a new file. Its use,
which is common to all file organisations, is explained in section
1.2.8.

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 110 of 244

7.2.7 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

7.3 The OPEN Statement
The open statement is coded:

OPEN type filename

where type is OLD or SHARED to access an existing file, or NEW to
create a new file. The FD must be closed and the file-id and unit-id
must have been established before the statement is executed; for an
OPEN NEW the record length must also be established. The record length
must be at least 60, the length of the fixed part of data records. The
size is omitted or set to zero to allocate the maximum available space
(subject to a maximum of 99 records), or set to the amount of space
required, calculated as (200+ record length * (number of records +
1)).

If the size given in the FD is not at least (200 + record length)
bytes (i.e. index plus header record), your program will be terminated
in error.

7.3.1 File Conditions
A file not found ($$RES = "3") or wrong type ($$RES = "1") exception
is signalled if the file is not present or not the correct
organization for an OPEN OLD or OPEN SHARED operation.

A file already exists ($$RES = "4") exception is signalled if the file
is already present when an OPEN NEW is executed.

An insufficient space ($$RES = "5") exception is signalled if the file
is opened with size 0 and there is insufficient space on the volume
for a file of minimum size (i.e. 200 + record length bytes).

7.3.2 Successful Completion
When the open completes successfully the record length and file size
will be returned in the FD.

7.4 The WRITE Statement
WRITE is used to create or rewrite the record identified by the name
field in the supplied record area. It is coded:

WRITE filename FROM A

Here filename identifies the data library file definition, and A may
be a simple or indexed variable. If a WRITE is attempted on an FD
which is not open then the program will be terminated in error.

7.4.1 The Record Length
The length of the record to be written must be established in the
record length field. This may be shorter than the actual record length
if you do not want to update the whole of the record.

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 111 of 244

7.4.2 The Record Name
You must establish the name of the record to be written in the first
10 bytes of the record area before executing the WRITE statement. If
you supply the special record name of spaces then instead of writing a
record, the library contents will be listed on the screen, and you
will be allowed to delete unwanted entries.

7.4.3 File Full Processing
If the data library is full, then the current contents will be listed
on the screen, and the user invited to delete one of the existing
entries to make space:

..........

.......... listing

..........

FILE FULL - Key Delete, Next page, End:

The processing is similar to the normal listing, except that if you
delete a record, the new record overwrites it, and the operation
completes successfully.

7.4.4 File Conditions
If the user abandons the write, without causing the new record to be
written to the library, then a file space exhausted condition will be
signalled.

7.4.5 Programming Notes
If the member name supplied is low-values then the header record will
be written.

The current operator-id, date and time fields will be set up in the
record when it is written.

Since the record name and title will be displayed on the screen when
the record is listed, these fields should only contain characters in
the range #20 to #7E.

7.5 The REWRITE Statement
REWRITE updates the data record last read or written, or the header
record if the previous operation was an OPEN. It is coded:

REWRITE filename FROM A

Here filename identifies the data library file definition, and A may
be a simple or indexed variable. If a REWRITE is attempted on an FD
which is not open then the program will be terminated in error.

7.5.1 The Record Length
The length of the record to be written must be established in the
record length field. This may be shorter than the actual record length
if you do not want to update the whole of the record.

7.5.2 The Record Name
The first ten bytes of the record area supplied must contain the new
record name. If a record with the new name already exists (other than

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 112 of 244

the record being updated) then the user will be asked to confirm that
the existing record is to be overwritten:

OVERWRITE EXISTING RECORD name?

If you reply Y the existing record will be deleted, and the current
record updated to have this name.

If the name supplied is spaces, the library will be listed instead.

7.5.3 File Conditions
If the user abandons the rewrite because the record with the new name
already exists, then an already exists exception will be signalled.

7.5.4 Programming Notes
It is not possible to rewrite the header record with a name other than
low-values, or to change any other record to have a name of low-
values. Any such attempt will cause the program to be terminated in
error.

The current operator-id, date and time fields will be set up in the
record when it is written.

Since the record name and title are displayed on the screen when the
record is listed, these fields should only contain characters in the
range #20 to #7E.

7.5.5 Record Deletion
For compatibility with earlier version of the data library access
method, if the record name area contains high-values when a REWRITE is
performed, then the record will be deleted. In general, however, we
would recommend that the DELETE statement, documented in section 7.6,
is used to DELETE records from a data library.

7.6 The DELETE Statement
DELETE is used to remove the last record read or written from the data
library. It is coded:

DELETE filename

Here filename identifies the data library file definition. If a DELETE
is attempted on an FD which is not open then the program will be
terminated in error.

Note that no record area need be passed as part of the DELETE
statement, as the access method keeps a note of the last record
accessed.

7.6.1 Programming Notes
A DELETE issued on a data library will remove from the index the
record last accessed. In an environment where other programs may be
sharing access to the data library it is sensible to use the LOCK
statement to secure access to the record before it is deleted.

7.7 The READ Statement

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 113 of 244

READ is used to retrieve a record given its name, or to list out the
records so that the user can identify the one required. It can also be
used to allow unwanted records to be deleted. It is coded:

READ filename INTO A

Here filename identifies the data library file definition, and A may
be a simple or indexed variable. If a READ is attempted on an FD which
is not open then the program will be terminated in error.

7.7.1 The Record Length
The length of the record to be read must be established in the record
length field. This may be shorter than the actual record length if you
do not want to process the whole of the record.

7.7.2 The Record Name
The record supplied must have the record name established (in the
first ten bytes) when the READ is issued. A name of low-values causes
the header record to be retrieved; any other name except spaces causes
the record of that name to be retrieved, or an exception to be
signalled if it does not exist.

A name of spaces causes the library to be listed on the screen, and
also allows the user to delete unwanted records.

7.7.3 File Conditions
If the specified record is not found, or you key <ESC> to the select
prompt, a record not found exception will be signalled.

7.8 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record in the index. It is
coded:

READ FIRST filename INTO A

Similarly, READ LAST is used to read the very last record in the
index. It is coded:

READ LAST filename INTO A

In both cases filename identifies a data library file definition, and
A may be a simple or indexed variable. If a READ FIRST or READ LAST is
attempted on an FD which is not already open the program will be
terminated in error.

7.8.1 The Record Length
The length of the record to be read must be established in the record
length field. This may be shorter than the actual record length if you
do not want to process the whole of the record.

7.8.2 File Conditions
The record not found condition will be signalled to READ FIRST and
READ LAST if there are no records present in the data library.

7.9 The READ NEXT and READ PRIOR Statements
READ NEXT is used to read each data record in turn from the data
library, in ascending order of record name. It is coded:

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 114 of 244

READ NEXT filename INTO A

READ PRIOR is used to read sequential data records from the data
library, in descending order of record name. It is coded:

READ PRIOR filename INTO A

In both cases filename identifies a data library file definition, and
A may be a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

7.9.1 The Record Length
The length of the record to be read must be established in the record
length field. This may be shorter than the actual record length if you
do not want to process the whole of the record.

7.9.2 The Record Retrieved
The record retrieved depends on the previous file operation.

For READ NEXT:

● following an OPEN the header record is read;

● following a read or write of the header record the first data

record is read;

● following any other operation the next data record is read, or an

exception signalled if there are no more.

For READ PRIOR:

● following an OPEN, or a read or write of the header record, the

start of file condition will be signalled;

● following any other operation the previous data record is read, or

an exception signalled if the start of file has been reached.

7.9.3 File Conditions
READ NEXT will signal the end of file condition when an attempt is
made to read past the last non-deleted record in the library.

READ PRIOR will signal the start of file condition when an attempt is
made to read before the first record in the library.

7.10 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [TRUNCATE/DELETE]

where filename identifies the data library file definition.

7.10.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.

Chapter 7 - The Data Library File Organisation

Global Development File Management Manual V8.1 Page 115 of 244

Following CLOSE, the FD can be re-opened for the same, or a different,
file by a subsequent OPEN statement.

7.10.2 File Conditions
If a CLOSE is attempted on an FD which is not open, then the file not
open condition will be signalled.

7.10.3 Truncation
If the TRUNCATE phrase is coded, the System Manager will return the
unused part of the overflow area, if any, to the volume so that it can
be re-allocated.

7.10.4 Deletion
If the DELETE phrase is coded all the space the file occupies is
returned to the volume and its file-id is erased from the directory.
Following a CLOSE DELETE the file no longer exists.

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 116 of 244

8. The Physical Sector Access Method

The physical sector access method allows you to read or write any
sector of certain types of direct access volume according to the
physical sector number which you supply. The access method will
operate on discrete direct access volumes or entire domains, but it
cannot be used on a subunit of a domain. It enables you to process
native volumes which have not been created under the System Manager.

8.1 Specifying Volume Attributes
You use a standard Global Cobol file definition (FD) to specify the
unit-id of the volume you require to access and, optionally, fields in
which its physical sector size and total capacity will be returned.
You also define a key field which you must set to contain the physical
sector number before performing a READ or WRITE operation. Section 8.2
below explains those parts of the file definition which are specific
to the physical sector file organisation, but the statements which are
common to all organisations are defined in section 1.2 of this manual.

8.1.1 Processing Statements
Just four procedure division statements are provided to enable you to
process the physical sectors of a volume. These are:

OPEN OLD executed prior to accessing any sector;

READ to read an identified sector;

WRITE to write an identified sector;

CLOSE to terminate processing of the volume.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR is specified in the FD, exception condition
1 will be generated should an irrecoverable I/O error occur. Therefore
it is usual to follow each file processing statement with an ON
EXCEPTION statement. If you do not, and an exception condition arises,
your program will be terminated in error.

8.1.2 The ORGANISATION Statement
If a program uses the physical sector access method then the
statement:

ORGANISATION OR$82 TYPE 2 EXTENSION 8

must be coded in the data division before the first FD or data
declaration.

8.2 The File Definition
The file definition for physical sector access is coded in either
working storage or the linkage section as follows:

FD filename ORGANISATION OR$82
[ASSIGN TO UNIT unit-id FILE "?"]
KEY IS keyname
[RECORD LENGTH IS length]
[SIZE IS size]

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 117 of 244

[OPTION ERROR]
[ON ERROR intercept]

The FD establishes a special group data item, 88 bytes in length,
whose name is filename. The quantities unit-id, keyname, length, and
size appear as subordinate items within this group and can be referred
to by the application program.

If it is possible to specify the unit-id before the program executes,
then code it as a character string in quotes. The sector length and
size of the volume in bytes are returned in the length and size fields
respectively when an OPEN OLD operation completes. The length and size
should therefore be coded as symbols if the RECORD LENGTH and SIZE
statements are used.

8.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1.2.1.

8.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
physical sector access method is to be used.

8.2.3 The ASSIGN statement
The ASSIGN statement indicates the unit on which the volume which is
to be accessed by physical sector resides. The FILE clause must be
coded as shown. (The file information specified merely satisfies the
compiler's syntax checking: file information is not used by the access
method since the volume does not contain a System Manager file
directory.)

The ASSIGN statement may be omitted if the file definition appears in
the linkage section.

8.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE and OPTION statements may appear in any
order following the ASSIGN statement. The KEY statement must be coded:
the others are optional.

8.2.5 The KEY Statement
The KEY statement defines a symbol, keyname, which causes the
statement:

02 keyname PIC 9(9) COMP

to be generated within the FD. You must move the physical sector
number of the sector you require to access to the keyname field before
executing a READ or WRITE operation. Physical sector numbers are
allocated consecutively starting from 1.

8.2.6 The RECORD LENGTH Statement
You may optionally code the RECORD LENGTH statement to define a field,
length, in which the physical sector size, in bytes, is returned. The
statement:

02 length PIC 9(4) COMP

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 118 of 244

is generated within the FD. The sector size is placed in this field as
the result of a successful OPEN OLD statement.

8.2.7 The SIZE statement
The SIZE statement is optional. When present it defines a symbol,
size, which causes the statement:

02 size PIC 9(9) COMP

to be generated within the FD. The System Manager will return the size
of the volume in this field when it is successfully opened. (Note that
the volume size is the product of the maximum sector number and the
sector size.)

8.2.8 The OPTION and ON Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations and is described
in section 1.6 of this manual.

8.2.9 Additional Fields in the FD
A physical sector FD contains two additional fields which can be
accessed by including a redefinition of the FD, as in the following
example:

01 PS REDEFINES filename
 02 FILLER PIC X(56)
 02 PSTRACK PIC 9(2) COMP * TRACKS/CYLINDER
 02 PSSECT PIC 9(2) COMP * SECTORS/TRACK

These fields, which are supplied by the access method once the FD has
been satisfactorily opened, can be used in determining all the
parameters associated with a conventional direct access volume, as
summarised in Table 8.2 overleaf.

| | |

| | |
| PARAMETER | METHOD OF CALCULATION |
 +++++++++ +++++++++++++++++++++
| | |

| | |
| Volume capacity in bytes | From the size field named in the |
 ////
	FD's SIZE statement
Sector size in bytes	From the length field named in the
 //////
	FD's RECORD LENGTH STATEMENT
Number of cylinders per	SIZE / (PSTRACK x PSSECT x length)
 //////
volume	
Cylinder size in bytes	PSTRACK x PSSECT x length
 //////
| | |

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 119 of 244

Number of tracks per	PSTRACK
cylinder	
Track size in bytes	PSSECT x length
 //////
Number of sectors per	PSSECT
track	
Number of sectors per	PSTRACK x PSSECT
cylinder	
Number of sectors per	SIZE / length
 //////
volume	
Number of tracks per	SIZE / (PSSECT x length)
 //////
| volume | |
| | |

Table 8.2 - Direct Access Volume Parameters and How They are
Calculated

8.3 The OPEN OLD statement
OPEN OLD is used to begin the processing of the physical sectors of a
volume. It is coded:

OPEN OLD filename

where filename identifies the physical sector file definition. OPEN
OLD must be coded before any READ, WRITE or CLOSE statement affecting
the volume.

If OPEN OLD is attempted and the FD is already open the program will
be terminated with an error.

8.3.1 File Conditions
The invalid device type file condition will be signalled in response
to OPEN OLD if the System Manager detects that the operation is being
attempted on a unit which is not a discrete direct access device or a
domain.

8.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the
OPEN OLD operation completes successfully. The sector length and
volume size will be returned in the symbols associated with the RECORD
LENGTH and SIZE statements if these have been coded.

8.4 The READ Statement
READ is used to retrieve a single specified physical sector:

READ filename INTO A

Here filename identifies the physical sector file definition and A is
a simple or indexed variable. If READ is attempted on an FD which is
not already open the program will be terminated in error.

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 120 of 244

8.4.1 Identifying the Sector to be Read
The FD must contain a KEY statement of the form:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated internally. The program must move the physical sector
number of the sector to be read to the symbol field before executing
the READ operation.

8.4.2 File Conditions
The file boundary violation condition will be signalled if the
physical sector number supplied using the KEY symbol does not
correspond to a sector the volume contains. The number must be
positive since the sectors are allocated numbers consecutively,
starting at 1. The out of range condition can be trapped and processed
by an ON EXCEPTION statement following the READ. If such an exception
occurs the record area, A, will remain undisturbed.

8.4.3 Successful Completion
Providing no file condition or irrecoverable I/O error occurs,
 the READ will transfer the contents of the single specified
 sector to A.

8.5 The WRITE Statement
WRITE is used to output a single specified physical sector:

WRITE filename FROM A

Here filename identifies the physical sector file definition and A is
a simple or indexed variable. If WRITE is attempted on a FD which is
not already open the program will be terminated in error.

8.5.1 Identifying the Sector to be Written
The FD must contain a KEY statement of the form:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated internally. The program must move the physical sector
number of the sector to be written to the symbol field before
executing the WRITE operation.

8.5.2 File Conditions
The file boundary violation condition will be signalled if the
physical sector number supplied using the KEY symbol does not
correspond to a sector the volume contains. The number must be
positive since the sectors are allocated numbers consecutively,
starting at 1. The out of range condition can be trapped and processed
by an ON EXCEPTION statement following the WRITE. If such an exception

Chapter 8 - The Physical Sector Access Method

Global Development File Management Manual V8.1 Page 121 of 244

occurs no output operation will take place and the data on the volume
will remain undisturbed.

8.5.3 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the
WRITE will transfer the contents of a single specified sector
beginning at A to the volume.

8.6 The CLOSE Statement
CLOSE must be used to terminate the processing of a volume. It is
coded:

CLOSE filename

where filename identifies the physical sector file definition.

8.6.1 Standard Processing
CLOSE returns the FD to the status it possessed prior to being opened.
Following CLOSE the FD can be reopened for the same, or a different,
volume by a subsequent OPEN OLD statement.

8.6.2 File Conditions
If a CLOSE is attempted on an FD which is not open, then a file not
open condition will be signalled.

8.6.3 Programming Notice
All READ and WRITE operations using the physical sector access method
are effected immediately, so the CLOSE operation itself performs no
I/O on the volume. Nevertheless the FD should be closed once volume
processing is finished to release the System Manager resources
involved.

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 122 of 244

9. The Speedbase File Organisation

9.1 Speedbase Files
A Global Speedbase file consists of one or more record sets each of
which can be accessed by one or more indexes. A full description of
Speedbase files can be found in the Speedbase Development System
manual. The file processing statements OPEN, READ, READ PRIOR, READ
NEXT, READ FIRST, READ LAST, READ PHYSICAL, CLOSE and UNLOCK are used
in conjunction with a file definition with ORGANISATION OR$99R to
process an existing Speedbase file:

OPEN must be executed prior to any other statement
affecting the file;

READ retrieves a specific record corresponding to a
specified index key value;

READ NEXT retrieves the next record in the sequence of the

specified index;

READ PRIOR retrieves the preceding record in the
sequence of the specified index;

READ FIRST retrieves the first record in the sequence of
the specified index;

READ LAST retrieves the last record in the sequence of the
specified index;

READ PHYSICAL retrieves a record using its relative record
number (RNN);

UNLOCK is used to release a lock obtained by a previous
READ operation;

CLOSE must be issued to terminate file processing.

Speedbase files can only be created and maintained on direct access
devices.

When any of the statements is executed a file condition, signalled by
an exception condition 2, may arise as explained in 1.2.1. In
addition, if OPTION ERROR is specified in the FD, exception condition
1 will be generated should an irrecoverable I/O error occur. Therefore
it as usual to follow each file processing statement with an ON
EXCEPTION statement. If you do not, and an exception condition arises,
your program will be terminated in error.

9.1.1 Data Record Format
The data record format of a Speedbase file is described in full detail
in the Speedbase Manual. The complete record layout, including the
system area, must be used for reading records using SPAM.

9.1.2 Programming Notes
The Speedbase access method described in this chapter is a read only
access method allowing only the reading (not writing) of Speedbase
records. Speedbase files can only be created and amended using the
Speedbase facilities described in the Speedbase Development System

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 123 of 244

Manual. The detailed structure and limitations of the database is also
described in the Speedbase Development manual.

9.1.3 Performance Guidlines for Global Speedbase Databases
READ, READ FIRST and READ LAST need to access one index block from
each index level then at least one data record.

READ NEXT and READ PRIOR retrieve a single data record using
information saved in the access method or in a save area supplied in
an OPEN statement, and may need to read a single index block as well.
If there is no information saved (which can occur after an OPEN
statement or after a SPAM access on a separate FD) then READ NEXT and
READ PRIOR require the same processing as a READ.

READ PHYSICAL retrieves a single data record from the file address
supplied, but the relative record number must have been determined
from another database operation previously.

READ PHYSICAL is the most efficient read operation, then READ NEXT and
READ PRIOR, then READ, READ FIRST and READ LAST.

9.1.4 File Locking
The SPAM database access method provides two forms of locking. The
locks are specified by appending the lock-type (LOCK or PROTECT) to
any of the READ, READ NEXT, READ PRIOR, READ FIRST, READ LAST, READ
PHYSICAL statements. The effect of the various locking options is as
follows:

● LOCK obtains an exclusive lock on the record (region = record

address) This is intended to serve the purpose of an update lock,
held on a record while it is in the process of being updated. This
record lock should not be needed in the read only context of this
access method but is included here for completeness. This lock is
equivalent to the Speedbase default lock.

● PROTECT obtains a shared lock on the record. This is intended to

protect the record locked against deletion or some other major
update. This lock is equivalent to the Speedbase protect lock

Any further READ type operation on the FD will release any outstanding
locks, and will of course obtain the new lock option if such is
specified. An UNLOCK or CLOSE will release any outstanding locks on
the FD. The locking operations are compatible with the default locking
and PROTECT lock in Speedbase and can be used in conjunction with
Speedbase.

9.1.5 The ORGANISATION Statement for Global Speedbase
Databases
The following statement must be coded in the data division before the
first FD or data declaration:

ORGANISATION OR$99R TYPE 99 EXTENSION 144

9.2 The File Definition
The file definition of a Speedbase file is coded in either the working
storage or linkage section as follows:

FD filename ORGANISATION OR$99R

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 124 of 244

[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]
[RECORD LENGTH IS length]
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
[01 FILLER REDEFINES filename
03 FILLER PIC X(81) * reserved
03 SPINDEX PIC X(6) * index name
03 SPRNN PIC 9(6) COMP * relative record number]

The FD establishes a special group data item, 220 bytes in length
whose name is filename. The quantities unit-id, file-id, volume-id,
SPINDEX, SPRNN, length, size and intercept appear as subordinate items
within this and can, if need be, be referred to by the application
program.

If it is possible to specify unit-id, file-id, volume-id, or index-
name before the program executes then the quantity should be coded as
a character string in quotes. If any of these quantities apart from
index-name are not known until run-time then a symbol must be coded
for the quantity. The symbol will then label a 02 level item which the
user program is responsible for initialising.

9.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1 of the Global Cobol File Management Manual.
The filename for the Speedbase file must not contain the "DB" prefix.

9.2.2 The ORGANISATION Clause
The organisation clause must be coded as shown, except that you may
use the abbreviation ORG instead of ORGANISATION. It indicates that
the file is a Speedbase database.

9.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation is explained in section 1.

9.2.4 Optional Statement Placements
The RECORD LENGTH, SIZE, ON ERROR and option statements are optional
and may appear in any order following the ASSIGN statement. The index
field in also optional.

9.2.5 The Index Name Redefinition
The index name (SPINDEX) is required to identify the index used to
read the Speedbase file. The program must place the index name to be
used in the field before the file is opened.

9.2.6 The Relative Record Number Redefinition
The relative record number (SPRNN) is only required if you wish to use
the READ PHYSICAL operation on the database. After any successful file
processing statement (other than OPEN, CLOSE or UNLOCK) the relative
record number of the record last processed will be returned to you in
the SPRNN field. You establish the correct record address in the SPRNN
field before executing a READ PHYSICAL operation.

9.2.7 The RECORD LENGTH statement

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 125 of 244

The RECORD LENGTH statement need only be supplied if you require to
determine the record length of the record set at run-time. You code:

RECORD LENGTH IS symbol

causing the statement:

02 symbol PIC 9(4) COMP

to be generated either the file definition. When the OPEN operation
terminates successfully the record length will be returned to you in
the field named symbol.

9.2.8 The SIZE Statement
The SIZE statement is required only when you wish to determine the
actual number of bytes allocated to the database file. The size is
coded as a symbol, causing the statement:

02 symbol PIC 9(9) COMP

to be generated within the FD. When the OPEN statement completes
satisfactorily the actual number of bytes allocated to the file will
be returned in the generated field.

9.2.9 The OPTION ERROR and ON ERROR Statements
OPTION ERROR should be code only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.

9.3 The OPEN statement
The OPEN statement is coded:

OPEN type filename

where type is the word OLD or SHARED and filename identifies the
Speedbase file definition.

An OPEN statement must be executed before any other file processing
statement. If an OPEN is attempted but the FD is already open your
program will terminate in error.

OPEN NEW is not supported because Speedbase files are always created
using Speedbase utilities as documented in the Speedbase Development
System Manual. OPEN OLD obtains exclusive access to the file (allowing
only one index to be used at a time) whilst the OPEN SHARED allows co-
operating jobs to share a Speedbase database file. The features of the
open operation which are common to all file organisations, such as
volume-id checking, are described in detail in section 9.

9.3.1 File Conditions
The file not found ($$RES = 3) or wrong type ($$RES = "1") condition
is signalled if a file with Speedbase organisation and the same file-
id as that specified in the FD is not present on the direct access
volume. The index not present ($$RES = "2") condition is signalled if
the index whose name is specified is not defined in the database file.

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 126 of 244

9.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the
OPEN operation completes successfully. The index specified in SPINDEX
is found, and access to the record set to which it applies is made
possible via the appropriate key. The file size and record length are
returned in the FD and made available to the user program if the SIZE
and RECORD LENGTH statements with the symbol option were coded.

9.3.3 Programming Notes
The database index file and all the data record files will be opened
by the OPEN operation. This means that the open operation will in fact
open up to four channels. In addition the open operation will open and
close the database dictionary to obtain the index information.

An I/O error or not found error can refer to any one of these files.

9.4 The READ statement
READ is used to retrieve a record with a given key from the file. If
the key is not present the record area will not be changed.

The READ statement is coded:

READ filename INTO A [lock-type]

Here filename identifies the Speedbase database file definition, A is
a simple or indexed variable and lock-type is one of LOCK or PROTECT
as specified earlier. If READ is attempted on an FD which is not
already open the program will be terminated in error.

9.4.1 Establishing the Key
The key is established by setting the various elements of the key
within the record area before the READ statement is executed.

9.4.2 File Conditions
The record not found file condition will be signalled if a record with
the key you have specified is not present on the file. In this case
the record area will remain unchanged. The "virtual position" in the
file, for subsequent READ NEXT and READ PRIOR operations, will be set
as if the record specified by the key value of the failing READ does
exist.

If the lock-type clause is coded Global System Manager will attempt to
obtain the appropriate lock for you. If this is not possible, for
example due to some other user already having a competing lock
himself, then the lock unavailable condition ($$COND = 3) is
signalled. The record will still be retrieved, but will have not been
locked.

9.4.3 Successful completion
Providing no permanent I/O error occurs and a key equal to the one you
specified exists on the file, READ will transfer bytes from the record
thus identified to A. The number of bytes transferred does not depend
on the picture clause associated with A, but will be equal to the
record length of the record set defined when the file was created.

9.5 The READ NEXT and READ PRIOR statements

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 127 of 244

READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT processes keys in ascending sequence, and READ
PRIOR processes keys in descending sequence. They are coded:

READ NEXT filename [KEY LENGTH length] INTO A [lock-type]
and:

READ PRIOR filename [KEY LENGTH length] INTO A [lock-type]

Here filename identifies the Speedbase file definition, length is an
integer literal in the range 1 to 50, A is a simple or index variable
and lock-type is one of LOCK or PROTECT. If a READ NEXT or READ PRIOR
is attempted on an FD which is not already open the program will be
terminated in error.

9.5.1 The Record Retrieved
The record retrieved by READ NEXT or READ PRIOR depends on the
previous file operation:

● A READ NEXT following an OPEN will retrieve the first record of the

record set. If there are no records in the record set end of file
will be signalled.

● A READ NEXT following a successful READ, READ NEXT, READ PRIOR,

READ FIRST or READ LAST will retrieve the record immediately higher
in collating sequence than the one just read processed. If there is
no such record end of file will be signalled.

● A READ NEXT following an unsuccessful READ, READ FIRST or READ LAST

will retrieve the record immediately higher in collating sequence
than the virtual, non-existent record that was specified by the
previous READ. If there is no such record end of file will be
signalled.

● A READ PRIOR following a successful READ, READ NEXT, READ PRIOR,

READ FIRST or READ LAST will retrieve the record immediately lower
in collating sequence than the one just processed. If there is no
such record start of file will be signalled.

● A READ PRIOR following an unsuccessful READ, READ FIRST or READ

LAST will retrieve the record immediately lower in collating
sequence than the virtual, non-existent record that was specified
by the previous READ. If there is no such record start of file will
be signalled.

● A READ PRIOR following an OPEN will signal start of file

immediately.

● The record retrieved by a READ PRIOR or READ NEXT operation

following a READ PHYSICAL operation will be dependent on the
operation prior to the READ PHYSICAL operation as above. The read
physical operation does not affect the sequencing.

Where a KEY LENGTH clause was specified, the partial key established
serves to delimit the range of the READ NEXT or READ PRIOR operation.
If the key of the record retrieved does not match the partial key
established in the record area the key match condition will be
signalled.

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 128 of 244

9.5.2 File conditions
The end of file condition ($$COND = 2) will be signalled in response
to READ NEXT if the record last accessed was the record with the
highest key, or if the last file operation encountered end of file.
When this condition occurs the record area is unchanged. The start of
file condition ($$COND = 2) will be signalled in response to READ
PRIOR if the last record accessed was the record with the lowest key,
or if the last file operation encountered start of file. Additionally
the key check condition ($$COND = 2) will be signalled if the partial
key established in the record area prior to the READ NEXT or READ
PRIOR did not match the start of the key in the record retrieved. In
this latter case record area will remain unchanged.

If the lock-type clause was coded Global System Manager will attempt
to obtain the appropriate lock for you. If this is not possible due to
some other user already having a competing lock, then the lock
unavailable ($$COND = 3) is signalled. The record will still be
retrieved, but will not have been locked.

Note that if the key match condition has been signalled then the
record will not be locked, regardless of any lock option which might
be specified.

9.5.3 Successful Completion
Providing no irrecoverable I/O error occurs, bytes will be transferred
from the file to A. The number of bytes transferred will not depend on
the picture clause of A, but will be equal to the record length of the
file, defined when it was created.

9.5.4 Programming Notes
Unlike the FETCH NEXT statement in Speedbase the record area is not
set to HIGH-VALUES when an end of file condition is reached but is set
to the highest key value.

9.6 The READ FIRST and READ LAST statements
READ FIRST and READ LAST are used to retrieve the first or last record
of a record set. They are coded:

READ FIRST filename [KEY LENGTH length] INTO A [lock-type]
and:

READ LAST filename [KEY LENGTH length] INTO A [lock-type]

Here filename identifies the Speedbase file definition, length is a
numeric literal in the range 1 to 50, A a simple or indexed variable
and lock-type is one of LOCK or PROTECT. If a READ FIRST or READ LAST
is attempted on an FD which is not already open the program will be
terminated in error.

9.6.1 The Record Retrieved
The record retrieved by READ FIRST or READ LAST depends on the partial
key specified by the KEY LENGTH clause. If no partial key is specified
either the very first or the very last record of the record set is
retrieved. If a partial key is specified the first or last record in
the record set whose key start matches the partial key as specified in
the record area is retrieved.

9.6.2 File Conditions

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 129 of 244

The end of file condition ($$COND = 2) will be signalled in response
to READ FIRST if there are no records in the record set. The start of
file condition ($$COND = 2) will be signalled in response to READ LAST
if there are no records in the record set. In both cases the record
area will remain unchanged. The "virtual position" in the file, for
subsequent READ NEXT and READ PRIOR operations, will be set as if the
record specified by the key value of the failing READ does exist.

Additionally the key check condition ($$COND = 2) will be signalled if
there is no record in the record set whose key start matches the
partial key specified in the record area. In this case the record area
will also remain unaffected by the operation.

If the lock-type clause was coded System Manager will attempt to
obtain the appropriate lock for you. if this is not possible, for
example due to some other user already having a competing lock
himself, then the lock unavailable condition ($$COND = 3) is
signalled. The record will still be retrieved, but will not have been
locked.

9.6.3 Successful Completion
Providing no error condition occurs, bytes will be transferred from
the file to A. The number of bytes transferred will not depend on the
picture clause of A, but will be equal to the record length of the
record set defined when the file was created.

9.7 The READ PHYSICAL statement
READ PHYSICAL is used to retrieve a record with a given relative
record number. You code:

READ PHYSICAL filename INTO A [lock-type]

Here filename identifies the Speedbase file definition, A is a simple
or indexed variable and lock-type is one of LOCK, or PROTECT. The
relative record number must have been established in the SPRNN field
prior to the READ PHYSICAL operation being issued. If READ PHYSICAL is
attempted on an FD which is not already open the program will be
terminated in error.

9.7.1 File Conditions
If the READ PHYSICAL attempts to return a deleted record then the
record deleted condition ($$COND = 4) is signalled.

If the lock-type clause was coded System Manager will obtain the
appropriate lock for you. If this is not possible, for example due to
some other user already having a competing lock, then the lock
unavailable condition ($$COND = 3) is signalled. The record will still
be retrieved, but will not be locked.

9.7.2 Successful completion
Providing no error occurs, bytes will be transferred from the file to
A. The number of bytes transferred will not depend on the picture
clause associated with A but will be equal to the record length of the
record set, defined when it was created.

9.7.3 Programming Notes
When a READ PHYSICAL operation is performed, the data is transferred
from the record with the relative record number established by the

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 130 of 244

calling program. No checking is performed to establish the fact that
this is a valid relative record number. It is being assumed that the
calling program has saved the relative record number correctly. It is
also the responsibility of the calling program to perform suitable
validation checks on the record retrieved before processing it, as it
may have been deleted, reused or updated since its number was saved.

Normally after a file processing statement has completed the relative
record number field will contain the record number of the record last
processed. However after a start of file or end of file condition has
been signalled (and immediately after an OPEN operation) the SPRNN
value will not be valid. Programs should not attempt a READ PHYSICAL
with these values.

It is generally inappropriate to keep a relative record number from
one run of a program to another, as a reorganisation of the database
which might be performed between the two program runs.

An example of a situation in which a READ PHYSICAL might be useful is
in a sort. Records would be read from the database using READ NEXT,
and the sort key constructed from them, with the relative record
number appended as in a tag sort. When the sorted records are returned
READ PHYSICAL is used to retrieve the records, thereby avoiding any
index processing and speeding the whole process considerably.

It should be noted that a record may have been updated between these
two accesses, or deleted, or even reused by an application using
Speedbase Presentation Manager. It is therefore essential that either
the entire process is carried out so that no such interference can
occur (by having the file OPENed OLD for example), or that the
returned record is checked to ensure its validity. In practice if a
record has been updated so as to no longer be valid, you will probably
have to ignore it.

9.8 The UNLOCK statement
The UNLOCK statement is used to release any locks outstanding from a
previous READ type operation using the lock-type clause. You code:

UNLOCK filename

where filename identifies the Speedbase file definition. If an UNLOCK
is attempted on an FD which is not already open the program will be
terminated in error.

9.8.1 Successful completion
Any outstanding lock on the file due to a previous READ type operation
on the FD passed to the UNLOCK is released.

Note particularly that any lock gained through the use of the LOCK
verb is not released by this UNLOCK statement, but must be released by
using an UNLOCK filename region statement as documented in this
manual.

9.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 131 of 244

where filename identifies the Speedbase file definition. If a CLOSE is
attempted on an FD which is not already open the program will be
terminated in error.

9.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same or a different
Speedbase file using the same or a different index, by a subsequent
OPEN statement.

9.9.2 Programming Notes
CLOSE on a Speedbase file releases any locks outstanding on the
particular FD closed, which were gained through use of the Speedbase
lock option on a READ type statement. CLOSE does not release any other
locks (including locks on other FD's, or locks gained through the use
of the LOCK verb), unless the CLOSE releases the last active channel
on the database file. In practice this means you should exercise
extreme caution in using the LOCK verb with a Speedbase database, and
should ensure that, and locks you obtain using it, are explicitly
released by using the UNLOCK verb.

The CLOSE verb closes the index files and all the data files of the
database. An I/O error returned can be due to closing any one of these
files.

9.10 Speedbase compatibility
The operation code for the read only access method is compatible with
the operational code for Speedbase Presentation Manager. Databases
accessed by the Speedbase access method can be accessed concurrently
by Speedbase Presentation Manager.

The locking is compatible. The PROTECT lock types are equivalent, and
the LOCK lock-type being the same as the default locking in
Presentation Manager.

9.11 Memory Paged SPAM
This version of SPAM has most of the SPAM code within a System Manager
memory page and therefore requires less space within a program. It
cannot be used under pre-V8.1 Global System Manager.

Paged SPAM operates in exactly the same way as non-paged SPAM. No
changes are required to any code using standard SPAM, all that is
needed is that C.$PAGES is linked in to your program before C.$APF and
C.$MCOB ensuring that module AS$Z is linked in preference to module
AS$R. (See section on memory paged subroutines in the System
Subroutines manual).

9.12 The Speedbase Access Method for Speedbase in
C-ISAM
This version of the read only Speeedbase access method, can only be
used on Speedbase databases where the data is held in C-ISAM
databases. Please refer to your Speedbase Development Manual for
details on the file structure.

9.12.1 Record Format

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 132 of 244

The record format for SPAM for C-ISAM is described in section 9.1.1
and also in the Speedbase Development Manual.

9.12.2 ORGANISATION statement
The organisation statement for SPAM in C-ISAM is as follows:

ORGANISATION OR$99C TYPE 99 EXTENSION 144

9.12.3 The File Definition
The file definition is as described in section 9.2 except that the FD
statement must be as follows:

FD filename ORGANISATION OR$99C

9.12.4 The File Processing Statements
The file processing statements are as described in sections 9.3 to
9.9.

If an I/O error occurs on the Speedbase C-ISAM database the Unix error
code will be returned in the system variable $$CRES, a PIC 9(6) COMP
field. For information about the Unix error code see your C-ISAM
manual from INFORMIX or Unix Manuals from your operating system
supplier.

9.12.5 Programming Notes
All locking on the Speedbase file will be done on the Speedbase schema
file within System Manager. This does mean that the Speedbase C-ISAM
database must not be accessed by other Unix applications at the same
time as it is being accessed by Global applications.

For further information about accessing Speedbase C-ISAM files please
refer to the Speedbase Development Manual.

9.13 The Speedbase Access Method for Speedbase in
Btrieve
This version of the read only Speeedbase access method, can only be
used on Speedbase databases where the data is held in Btrieve
databases. Please refer to your Speedbase Development Manual for
details on the file structure.

9.13.1 Record Format
The record format for SPAM for Btrieve is described in section 9.1.1
and also in the Speedbase Development Manual.

9.13.2 ORGANISATION statement
The organisation statement for SPAM in Btrieve is as follows:

ORGANISATION OR$99N TYPE 99 EXTENSION 144

9.13.3 The File Definition
The file definition is as described in section 9.2 except that the FD
statement must be as follows:

FD filename ORGANISATION OR$99N

9.13.4 The File Processing Statements

Chapter 9 - The Speedbase File Organisation

Global Development File Management Manual V8.1 Page 133 of 244

The file processing statements are as described in sections 9.3 to
9.9.

If an I/O error occurs on the Speedbase Btrieve database the Unix
error code will be returned in the system variable $$CRES, a PIC 9(6)
COMP field. For information about the Btrieve error code see your
Btrieve manual from your system supplier.

9.13.5 Programming Notes
There is no Global locking required for Btrieve SPAM , and locking is
not available.

For further information about accessing Speedbase C-ISAM files please
refer to the Speedbase Development Manual.

9.14 Memory Paged Open SPAM
This version of SPAM is memory paged and can be used on the Global,
Btrieve and C-ISAM versions of Speedbase. It cannot be used under pre-
V8.1 (revision f) Global System Manager.

The organisation statement is as for non-paged SPAM for Global
Speedbase files. It behaves in the same way as the appropriate non-
paged routine for the individual types of Speedbase databases.

In order to use open SPAM you must insure that your program is linked
in the following way:

$44 LINK:database program UNIT:SSS
$44 LINK:C.$PAGES/AW$Z UNIT:$S
$44 LINK:C.$PAGES UNIT:$S

ensuring that module AW$Z is linked in preference to modules AS$R and
AS$Z. (See section on memory paged subroutines in the System
Subroutines manual).

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 134 of 244

10. The C-ISAM Indexed Sequential File
Organisation

10.1 C-ISAM Indexed Sequential Files
The C-ISAM indexed sequential access method (CIAM) can be used to read
and write to a C-ISAM database, on a single index, from the Global
System Manager environment. To do this it is necessary to create a
CIAM schema file in a Global directory using RCBUILD and $SETIRU (see
chapters 13 and 14). The schema file contains the details of the C-
ISAM database you want to access and all file operation are done via
the schema file. (See your C-ISAM Programmer's guide for details of C-
ISAM files.)

10.1.1 Specifying File Attributes
The attributes of the schema file, such as its unit-id, volume-id and
file-id , are specified in its file definition (FD), coded in the data
division.

The index will be as defined by the RCBUILD record conversion table as
defined when creating the schema file.

10.1.2 File Processing Statements
The following procedure division statements are provided to enable a
C-ISAM database, through the schema file, to be processed. They are:

OPEN must be executed prior to any either statement
affecting the file;

READ retrieves a specific record corresponding to a
specified index key value;

READ NEXT retrieves the next record in the sequence of the

specified index;

READ PRIOR retrieves the preceding record in the
sequence of the specified index;

READ FIRST retrieves the first record in the sequence of
the specified index;

READ LAST retrieves the last record in the sequence of the
specified index;

READ PHYSICAL retrieves a record using its record number;

WRITE writes a new record to the database;

REWRITE updates the record just read;

UNLOCK is used to release a lock obtained by a previous
READ operation;

CLOSE must be issued to terminate file processing.

When any of the statements is executed a file condition, signalled by
an exception condition 2, may arise as explained in 1.2.1. In
addition, if OPTION ERROR is specified in the FD, exception condition

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 135 of 244

1 will be generated should an irrecoverable I/O error occur. In either
case any C-ISAM or Unix error will be returned in the System Variable
$$CRES, a PIC 9(6) COMP field. It is therefore usual to follow each
file processing statement with an ON EXCEPTION statement. If you do
not , and an exception condition arises, your program will terminate
in error.

10.1.3 Data Records
The data record definition used by the application must be in Global
format as defined by the RCBUILD conversion table used in creating the
schema file and not in the C-ISAM format.

10.1.4 File locking
The C-ISAM access method provides a lock option which is specified by
appending the lock-type, LOCK, to any of the READ, READ NEXT, READ
PRIOR, READ FIRST, READ LAST, READ PHYSICAL statements. The lock verb
will attempt to get an exclusive lock on the schema file for the
system (e.g. system 1B) being used. If another partition on the system
has the file locked, then a lock exception will be returned. The LOCK
operation will then attempt to obtain a C-ISAM lock on the record
returned.

Any number of locks can then be issued by the partition on the system
with locking control.

An UNLOCK operation will release all the C-ISAM locks for that
partition as well as the lock on the schema file for the FD. If
several FD's are being used in a single program at the same time to
access the same schema file, then although an UNLOCK operation on one
FD will release all the C-ISAM locks, it will not release all the
Global locks on the schema file for every FD in the partition. UNLOCK
must therefore be called for every FD.

If more than one schema file is being used to access a single C-ISAM
database, then care must be taken to ensure that locks on both files
are issued, otherwise the C-ISAM file will not be locked against all
Global access.

10.1.5 The ORGANISATION Statement
The following statement must be coded in the data division before the
first FD declaration:

ORGANISATION OR$96 TYPE 1 EXTENSION 16

10.2 The File Definition
The file definition for the schema file is coded in either working
storage or in the linkage section as follows:

FD filename ORGANISATION OR$96
[ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]
[KEY IS keyname]
[OPTION ERROR]
[ON ERROR intercept]

The FD establishes a special group data item, 96 bytes in length whose
name is filename. The quantities unit-id, file-id, volume-id and
intercept appear as subordinate items within this and can, if need be,
be referred to by the application program.

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 136 of 244

If it is possible to specify unit-id, file-id or volume-id before the
program executes then the quantity should be coded as a character
string in quotes. If any of these quantities are not known until run-
time then a symbol must be quoted for the quantity. The symbol will
then label a 02 level item which the user program is responsible for
initialising.

10.2.1 The Filename
The filename must be a symbol. It serves to label the file definition,
as explained in section 1 of the Global Cobol File Management Manual.

10.2.2 The ORGANISATION Clause
The organisation clause must be coded as shown, except that you may
use the abbreviation ORG instead of ORGANISATION. It indicates that
the file is a CIAM schema file.

10.2.3 The ASSIGN Statement
Use of the ASSIGN statement, which is the same for any file
organisation is explained in section 1.

10.2.4 Optional Statement Placements
The KEY IS, ON ERROR and OPTION ERROR statements are optional and may
appear in any order following the ASSIGN statement.

10.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed using
the READ PHYSICAL OPERATION. Keyname is specified as a symbol and the
statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

CIAM maintains the keyname field to contain the record number of the
C-ISAM record last accessed. The program must place the record number
in the keyname field before executing a READ PHYSICAL operation.

A successful READ, READ NEXT, READ PRIOR, READ LAST, READ FIRST or
WRITE operation will return the C-ISAM record number of the record
accessed in the keyname field.

10.2.6 The OPTION ERROR and ON ERROR statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.

10.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type id the word OLD or SHARED and filename identifies the CIAM
file definition.

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 137 of 244

An OPEN statement must be executed before any other file
 processing statement. If an OPEN is attempted but the FD is
 already open your program will terminate in error.

OPEN NEW is not supported because the C-ISAM file must always be
created by another C-ISAM application and the Global schema file by
$SETIRU. OPEN OLD obtains exclusive access to the schema file and
opens the C-ISAM file whilst the OPEN SHARED allows co-operating jobs
to share a schema file. (The features of the open operation which are
common to all file organisations such as volume-i checking are
described in detail in section 1.2 of
 this manual.)

10.3.1 File Conditions
The file not found ($$RES = "3") or wrong type ($$RES = "1") condition
is signalled if the schema file is not present or of the wrong file
organisation or if the C-ISAM file is not present on the directory
specified by the schema file. The index not present ($$RES = "2")
condition is signalled if the index defined in the schema file is not
present on the C-ISAM file.

10.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, the
OPEN operation completes successfully. The index specified in the
schema file is found and access to the C-ISAM file is made possible
via the appropriate key.

10.4 The WRITE Statement
WRITE is used to create a new record identified by the supplied record
area to the C-ISAM file. It is coded:

WRITE filename FROM A

Here filename identifies the CIAM file definition, and A may be a
simple or indexed variable. If WRITE is attempted on an FD which is
not open then the program will terminate in error.

10.4.1 File Conditions
CIAM attempt to write a new record to the C-ISAM database. If any
unique index contains a key of the same value then a key already
exists condition ($$RES = 4) will be returned.

10.4.2 Successful Completion
Providing that no file condition or irrecoverable I/O error occurs,
WRITE will either cause an overflow record to be created or an
existing record to be modified. The number of bytes transferred from
the record at A to direct access storage will not depend on the
picture clause of A but will be equal to the record length specified
in the schema file.

10.5 The REWRITE Statement
REWRITE is used to update the record last accessed from a C-ISAM
database. It is coded:

REWRITE filename FROM A

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 138 of 244

Here filename identifies the CIAM schema file definition and A is a
simple or indexed variable or literal. If REWRITE is attempted on an
FD which is not already open the program will terminate in error.

10.5.1 File Conditions
If the key value of any unique index is modified the unique key
condition ($$COND = 4) will be returned. In this case, if you want to
update the record, the record must be deleted using the DELETE
operation and then written using the WRITE statement.

10.5.2 Successful Completion
Providing the key has not been erroneously modified, and no
irrecoverable error occurs, REWRITE will update the record last
accessed. The number of bytes converted and transferred from the
record at A to direct access storage will not depend on the picture
clause of A but will be equal to the record length specified in the
schema file.

10.6 The DELETE statement
The DELETE statement is used to delete the last record processed. You
code:

DELETE filename

where filename identifies the CIAM schema file definition. If the FD
is not already open then your program will terminate in error.

10.6.1 File Conditions
No file condition can arise as a result of the DELETE statement.

10.6.2 Successful Completion
Providing that no irrecoverable error occurs the record will be
deleted from the database file.

10.7 The READ statement
READ is used to retrieve a record with a given key from the C-ISAM
database. If the key is not present the record area will not be
changed.

The READ statement is coded:

READ filename INTO A [LOCK]

Here filename identifies the schema file for the C-ISAM database and A
is a simple or indexed variable. If READ is attempted on an FD which
is not already open the program will terminate in error.

10.7.1 Establishing the Key
The key is established by setting the various elements of the key
within the record are in Global format before the READ statement is
executed.

10.7.2 File Conditions
The record not found condition will be signalled if a record with the
key you have specified is not present on the file. In this case the
record area will remain unchanged. If the LOCK clause was coded an

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 139 of 244

attempt will be made to obtain a lock on the schema file and to obtain
a C-ISAM lock o the record. If this is not possible a lock unavailable
error ($$COND = 3) will be returned and the record will not be
retrieved.

10.7.3 Successful Completion
Providing no permanent I/O error occurs and the record can be locked
if the LOCK clause is specified, READ will convert and transfer bytes
from the record thus identified to A. The number of bytes transferred
does not depend on the picture clause of A, but will be equal to the
record length as defined in the schema file.

10.8 The READ NEXT and READ PRIOR Operations
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT processes keys in ascending sequence, and READ
PRIOR processes keys in descending sequence. They are coded:

READ NEXT filename INTO A [LOCK]
and:
 READ PRIOR filename INTO A [LOCK]

Here filename identifies the CIAM schema file definition and A is a
simple or indexed variable. If a READ NEXT or READ PRIOR is attempted
on an FD which is not already open the program will terminate in
error.

10.8.1 The Record Retrieved
The record retrieved by READ NEXT or READ PRIOR depends on the
previous file operation:

● A READ NEXT following an OPEN statement will retrieve the first

record of the C-ISAM file. If there are no records in the record
set end of file will be signalled.

● A READ NEXT following a READ, READ NEXT, READ FIRST, READ LAST,

READ PHYSICAL, WRITE or DELETE will retrieve the record immediately
higher in collating sequence than the one just read processed. If
there is no such record end of file will be signalled.

● A READ PRIOR following a READ, READ NEXT, READ FIRST, READ LAST,

READ PHYSICAL, WRITE, REWRITE or DELETE will retrieve the record
immediately lower in collating sequence then the one just
processed. If there is no such records start of file will be
signalled.

● A READ PRIOR following an OPEN will signal start of file

immediately.

10.8.2 File Conditions
The end of file condition ($$COND = 2) will be signalled in response
to READ NEXT if the record last accessed was the record with the
highest key, or if the last file operation encountered end of file.
When this condition occurs the record area remains unchanged. The
start of file condition ($$COND = 2) will be signalled in response to
a READ PRIOR if the last record accessed was the record with the
lowest key, or if the last file operation encountered start of file.
In this case the record area will remain unchanged.

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 140 of 244

If the LOCK clause was coded an attempt will be made to obtain a lock
on the schema file and to lock the C-ISAM record. If this is not
possible then the lock unavailable condition ($$COND = 3) is signalled
and the record will not be retrieved

10.8.3 Successful Completion
Providing no irrecoverable error occurs, bytes will be converted and
transferred from the file to A. The number of bytes transferred will
not depend on the picture clause associated with a, but will be equal
to the record length defined in the schema file.

10.9 The READ FIRST and READ LAST statements
READ FIRST and READ LAST are used to retrieve the first or last record
of a record set. They are coded:

READ FIRST filename INTO A [LOCK]
and:

READ LAST FILENAME INTO A [LOCK]

Here filename identifies the CIAM schema file definition and A is a
simple or indexed variable. If a READ FIRST or READ LAST is attempted
on an FD which is not already open the program will terminate in
error.

10.9.1 The Record Retrieved
The record retrieved by READ FIRST or READ LAST will be the very first
or the very last record of the index specified in the schema file on
the C-ISAM database.

10.9.2 File Conditions
The end of file condition ($$COND = 2) will be signalled in response
to READ FIRST if there are no records in the record set. The start of
file condition ($$COND = 2) will be signalled in response to a READ
LAST if there are no records in the record set.

If the LOCK clause was coded and the attempt to obtain as lock failed
then the lock unavailable condition ($$COND = 3) is signalled. The
record will not be retrieved.

10.9.3 Successful Completion
Providing no irrecoverable I/O error occurs bytes will be converted
and transferred from the file to A. The number of bytes transferred
will not depend on the picture clause associated with A, but will be
equal to the record length specified in the schema file.

10.10 The READ PHYSICAL statement
READ PHYSICAL is used to retrieve a record with a given record number
provided that the C-ISAM file has a record numbering index defined.
You code:

READ PHYSICAL filename INTO A [LOCK]

Here filename identifies the CIAM schema file definition and A is a
simple or indexed variable. The record number must have been
established in the KEY IS clause prior to the READ PHYSICAL operation

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 141 of 244

being issued. If the READ PHYSICAL is attempted on an FD which is not
already open the program will be terminated in error.

10.10.1 File Conditions
If the READ PHYSICAL is attempted on an invalid record number for
which there is no record, the record not found condition ($$COND = 2)
will be signalled.

If the LOCK clause was coded an the attempt to gain the lock failed,
then the lock unavailable condition ($$COND = 3) is signalled. The
record will not be retrieved.

10.10.2 Successful Completion
Providing no irrecoverable I/O error occurs and any lock does not
fail, bytes will be converted and transferred from the file to A. The
number of bytes transferred will not depend on the picture clause of A
but on the record length specified in the schema file.

10.11 The UNLOCK statement
The UNLOCK statement is used to release any locks outstanding on the
C-ISAM file for the current system and to release the lock on the
current FD for the schema file. You code:

UNLOCK filename

where filename identifies the CIAM schema file definition. If the
UNLOCK is attempted on an FD which is not already open the program
will be terminated in error.

10.11.1 Successful Completion
All locks on the C-ISAM file for this system will be released and the
lock on the schema file for this FD will also be release. Note that an
UNLOCK does not release all schema file locks for this system and that
this will need to be done explicitly for each FD.

Note particularly that the lock gained through use of the LOCK
statement is not released by this UNLOCK statement, but must be
release using an UNLOCK filename region statement.

10.12 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [DELETE]

where filename identifies the CIAM schema file definition. If a CLOSE
is attempted on an FD which is not already open the program will be
terminated in error.

10.12.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the schema
file and C-ISAM file and returns the FD to the status it possessed
prior to being opened. Following a CLOSE, the FD can be re-opened by a
subsequent OPEN statement.

10.12.2 Deletion

Chapter 10 - The C-ISAM Indexed Sequential File Organisation

Global Development File Management Manual V8.1 Page 142 of 244

If the DELETE phrase is coded all the space the schema file and C-ISAM
database occupies is returned to the volume and the file-id and name
is erased from the directory.

WARNING: A CLOSE DELETE will delete the entire database file. This
option should be used with extreme caution.

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 143 of 244

11. The Direct Unix File Organisation

The direct Unix file organisation allows access to Unix files from the
Global System Manager environment and may therefore only be run on
Global System Manager Unix. The Unix file accessed is treated as a
string of bytes numbered sequentially from zero upwards. Records are
accessed by supplying the starting byte number as key, together with
the number of bytes to be read or written.

11.1 File Structure

11.1.1 Record Format
The format of the Unix file records is entirely under program control
since you determine the length and starting byte of each record.

11.1.2 Specifying File Attributes
The attributes of a file, such as its unit-id, volume-id and file-id,
specified in the file definition (FD) coded in the data division has
no meaning but must be specified. It is recommended that the file-id
is set to a descriptive variable name, the unit-id to "?" and the
volume-id should not be set at all., coded in the data division.

You must specify the name of the area which contains the record
length. You can also define a key area to contain the starting byte
number for use in random access READ and WRITE statements. Section
11.2 below describes those parts of the file definition which are
specific to the basic direct file organisation, but the statements
which are common to all organisations are defined in section 1.2.

11.1.3 File Processing Statements
A number of procedure division statements are provided to enable a
Unix file to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record during sequential
processing;

READ PRIOR to read the previous record during sequential
processing;

WRITE to update an existing record at random;

WRITE NEXT to write a record during sequential
processing;

CLOSE to terminate processing of a file.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 144 of 244

exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

11.1.4 Extent Boundary Checking
A write next pointer is not maintained for a direct Unix file, and you
may use WRITE NEXT, WRITE, READ FIRST, READ LAST, READ NEXT, READ
PRIOR and READ statements to access information anywhere within the
allocated file extent. However, should any of these statements attempt
to read or write a record which is partially or wholly outside the
file extent, the file boundary violation file condition will be
signalled.

11.1.5 The ORGANISATION Statement
If a program uses the basic direct access method then the statement:

ORGANISATION OR$97 TYPE 0 EXTENSION 128

must be coded in the data division before the first FD or data
declaration.

11.2 The File Definition
The file definition for a Unix direct file is coded in either working
storage or the linkage section as follows:

FD filename ORGANISATION OR$97
[ASSIGN TO UNIT "?" FILE file-id]
[KEY IS keyname]
RECORD LENGTH IS length
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
01 FILLER REDEFINES filename
02 FILLER PIC X(88)
02 PANAME PIC X(99) * Unix directory path and filename
02 FILLER PIC X
VALUE #00

The FD establishes a special group data item, 208 bytes in length,
whose name is filename. The quantities file-id, Unix

Directory path and filename, keyname, length and size appear as
subordinate items within this group and can, if need be, be referred
to by the application program.

It is possible to specify the Unix path and file name (which must be
terminated with a #00 byte) before the program executes, In this case
the quantity should be coded with a VALUE clause as a character
string. If you can specify the size or length before the program
executes, code the quantity as a numeric string. If the Unix directory
path and filename is not known until run-time then the quantity must
be moved to the PANAME field during program execution. If the size or
length is not known until run-time a symbol must be coded for the
quantity. This symbol will then label a level 02 item which the user
program is responsible for initialising.

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 145 of 244

11.2.1 The Filename
The filename is coded as a descriptive symbol. It serves to label the
file definition, as explained in section 1.2.1.

11.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
basic direct access method is to be used.

11.2.3 The ASSIGN Statement
The ASSIGN statement is required in working storage and should be
coded as shown, where file-id is only required as a descriptive
symbol.

11.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements may
appear in any order following the ASSIGN statement. The RECORD LENGTH
statement must be coded: the others are optional.

11.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

DUAM maintains the keyname field to contain the byte number of the
start of the record last accessed. The byte number of the very first
byte of the file counts as byte number zero.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT or WRITE NEXT operation increments the keyname
field by the length of the previous record accessed and then accesses
the record thus identified: if the previous operation on the file was
an OPEN then the first record is accessed.

A successful READ PRIOR decrements the keyname field by the length of
the record to be read, and then accesses that record.

11.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is always required. Length is specified as
a symbol and the statement:

02 symbol PIC 9(4) COMP

is generated within the FD.

The program must place the length of the record to be read in the
length field before executing a read or write statement. The field is
set to zero when the file is opened, and is not altered by read and
write operations.

11.2.7 The SIZE Statement
The SIZE statement is required only if you wish know the current size
of the file. The file size will be maintained during processing.

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 146 of 244

11.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

11.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW or OLD filename identifies the direct Unix
file definition. An OPEN statement must be executed before any other
operation affecting the file. If an OPEN is attempted but the FD is
already open your program will be terminated in error.

OPEN NEW is used to create a new Unix file of the specified path and
file name if one does not already exist or to truncate a file that
already exists to zero length. If there is no existing file the new
file will be create with Unix permissions 600 octal (i.e. RW access
for the owner). OPEN OLD obtains exclusive access to an existing file.

11.3.1 File Conditions
When an OPEN OLD statement is executed the System Manager checks to
see whether a file with the same Unix path and file name exists. If
this is not the case, file not found is signalled.

11.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in an empty file of size zero being opened on with the
specified Unix path and file name.

When an OPEN OLD statement completes successfully the file size is
returned in the FD and can be accessed by the user program if a SIZE
statement with the symbol option was coded.

The record length field in the FD is set to zero by a successful OPEN
statement.

The keyname field in the FD is always set to zero following a
successful OPEN statement. This is to allow the file to be processed
sequentially using a sequence of READ NEXT or WRITE NEXT statements as
described below.

11.4 The WRITE NEXT Statement
WRITE NEXT is used to write all or part of a file sequentially. It is
coded:

WRITE NEXT filename FROM A

Here filename identifies the Direct Unix file definition and A is a
simple or indexed variable. If a WRITE NEXT is attempted on an FD
which is not already open the program will be terminated in error.

11.4.1 Establishing the Length

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 147 of 244

The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE
NEXT.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

11.4.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE NEXT will set the key to the number of the byte following the
previous record accessed (if any) and transfer A to the record thus
identified. The number of bytes transferred is given by the length
field.

11.4.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to zero when the
file is opened. In this case WRITE NEXT can be used to write the
entire file sequentially.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. WRITE NEXT will continue writing from
the record following the one accessed by READ or WRITE.

The READ NEXT statement sets the key field to the record retrieved, so
that a subsequent WRITE NEXT statement will write the following
record.

The WRITE NEXT can cause the file size to be extended if needed,
subject to space being available in the Unix file system.

11.5 The WRITE Statement
WRITE is used to write a record at random or rewrite the last record
accessed. It is coded:

WRITE filename FROM A

Here filename identifies the direct Unix file definition and A is a
simple or indexed variable. If a WRITE is attempted on an FD which is
not already open the program will be terminated in error.

11.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the WRITE statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 148 of 244

opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the WRITE statement is to rewrite the record previously
retrieved by READ NEXT or written by WRITE NEXT.

11.5.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

11.5.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE will transfer the number of bytes given by the record length
from A to the record identified by the key.

11.5.4 Programming Note
A WRITE may extend the file size if needed subject to the available
space in the Unix file system.

11.6 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record of the file. It is
coded:

READ FIRST filename INTO A

Similarly READ LAST is used to read the very last record in the file.
It is coded:

READ LAST filename INTO A

In both cases filename identifies the direct Unix file definition and
A is a simple or indexed variable. If READ FIRST or READ LAST is
attempted on an FD which is not open the program will be terminated in
error.

11.6.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing a READ FIRST or
READ LAST.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

11.6.2 File Conditions
A file boundary violation condition will be signalled if a READ FIRST
or READ LAST attempts to input a record which is larger then the total
file size, and which would therefore start or end outside the file
extent.

11.6.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
FIRST will set the key to address the first byte of the file (a value
of zero), and READ LAST will set the key to be the file extent size
less the length of the record to be processed. The record thus

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 149 of 244

identified will be transferred to A, the number of bytes transferred
being given by the length field.

11.6.4 Programming Note
Use of READ FIRST is normally used to re-position at the start of the
file prior to reading records sequentially using READ NEXT.

Use of READ LAST presupposes that the program has sufficient
information about the file to be able to determine the length of the
very last record (possibly because the length is fixed). It is
important to note that it is the responsibility of the program to
determine an appropriate record length for use by READ LAST, not that
of the direct Unix access method itself.

11.7 The READ NEXT and READ PRIOR Statements
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT is used to read the next sequential record,
and it is coded:

READ NEXT filename INTO A

READ PRIOR is used to read the previous sequential record. It is
coded:

READ PRIOR filename INTO A

In both cases filename identifies the direct Unix file definition and
A is a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

11.7.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ NEXT
or READ PRIOR.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

11.7.2 File Conditions
A file boundary violation condition will be signalled if READ NEXT or
READ PRIOR attempts to input a record which is wholly or partially
outside the file extent.

11.7.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
NEXT will set the key to the number of the byte following the previous
record accessed (if any), and READ PRIOR will set the key to the
number of the byte record length bytes before the start of the
previous record accessed. The record thus identified is transferred to
A. In both cases the number of bytes transferred is given by the
length field.

11.7.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 150 of 244

is opened. In this case READ NEXT can be used to read sequentially
through the entire file; READ PRIOR at any point may be used to
retrieve the preceding record; WRITE updates the last record thus
retrieved; and READ rereads it. In addition READ FIRST and READ LAST
may be used to position at either the start or end of the file.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ LAST will process sequentially from the
record before it.

A WRITE NEXT statement sets the key field to the start of the record
written, so that a subsequent READ NEXT statement will read the
following record, and a READ PRIOR statement will read the previous
record.

Note that when using READ PRIOR it is the responsibility of the
program to determine the length of the record to be processed by some
means (possibly because it has a fixed length), and not that of the
direct Unix access method itself.

11.8 The READ Statement
READ is used to retrieve a record at random or reread the last record
accessed. It is coded:

READ filename INTO A

Here filename identifies the direct Unix file definition and A is a
simple or indexed variable. If READ is attempted on an FD which is not
already open the program will be terminated in error.

11.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

11.8.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length
 coded as a symbol. The program must establish the length of the
 record to be read (1 to 32767 bytes) in this field before
 executing the READ.

Chapter 11 - The Direct Unix File Organisation

Global Development File Management Manual V8.1 Page 151 of 244

If the length is not established explicitly by the program the length
of the last record accessed will be used.

11.8.3 File Conditions
A file boundary violation condition will be signalled if READ attempts
to input a record which is wholly or partially outside the file
extent.

11.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer to A the number of bytes given by the record length of
the record specified in the key field.

11.8.5 The READ PHYSICAL Statement
As the key of a DUAM file is a byte number, the READ PHYSICAL
statement functions in exactly the same way as a READ.

11.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [DELETE]

where filename identifies the direct Unix file definition.

11.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same (or a different)
file by a subsequent OPEN NEW or OPEN OLD statement.

11.9.2 File Conditions
If the FD passed to the CLOSE was not open, then a file not open
condition will be signalled.

11.9.3 Deletion
If a DELETE phrase is coded all the space the file occupies is
returned to Unix file system and the file name is removed from the
Unix directory. Following a CLOSE DELETE the file no longer exists.

11.9.4 Programming Notes
If you fail to close a direct Unix file then the Unix channel will
remain open and will not be closed by any other System Manager process
including exiting from System Manager. It is therefore very important
to ensure that all direct Unix FD's are closed.

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 152 of 244

12. Direct MS-DOS Access Method

The direct DOS file organisation allows access to DOS files from the
Global System Manager environment and may therefore only be run on
Global System Manager DOS. The DOS file accessed is treated as a
string of bytes numbered sequentially from zero upwards. Records are
accessed by supplying the starting byte number as a key, together with
the number of bytes to be read or written.

12.1 File Structure

12.1.1 Record Format
The format of the DOS file records is entirely under program control
since you determine the length and starting byte of each record.

12.1.2 Specifying File Attributes
The attributes of a file, such as its unit-id, volume-id and file-id,
specified in the file definition (FD) coded in the data division has
no meaning but must be specified. It is recommended that the file-id
is set to a descriptive variable name, the unit-id to "?" and the
volume-id should not be set at all.

You must specify the name of the area which contains the record
length. You can also define a key area to contain the starting byte
number for use in random access READ and WRITE statements. Section
12.2 below describes those parts of the file definition which are
specific to the basic direct file organisation, but the statements
which are common to all organisations are defined in section 1.2.

12.1.3 File Processing Statements
A number of procedure division statements are provided to enable
 a DOS file to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record during sequential
processing;

READ PRIOR to read the previous record during sequential
processing;

WRITE to update an existing record at random;

WRITE NEXT to write a record during sequential
processing;

CLOSE to terminate processing of a file.

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 153 of 244

exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

12.1.4 Extent Boundary Checking
A write next pointer is not maintained for a direct DOS file, and you
may use WRITE NEXT, WRITE, READ FIRST, READ LAST, READ NEXT, READ
PRIOR and READ statements to access information anywhere within the
allocated file extent. However, should any of these statements attempt
to read a record which is partially or wholly outside the file extent,
the file boundary violation file condition will be signalled.

12.1.5 The ORGANISATION Statement
If a program uses the basic direct access method then the statement:

ORGANISATION OR$98 TYPE 0 EXTENSION 128

must be coded in the data division before the first FD or data
declaration.

12.2 The File Definition
The file definition for a direct DOS file is coded in either working
storage or the linkage section as follows:

FD filename ORGANISATION OR$98
[ASSIGN TO UNIT "?" FILE file-id]
[KEY IS keyname]
RECORD LENGTH IS length
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
01 FILLER REDEFINES filename
02 FILLER PIC X(88)
02 PANAME PIC X(99) * DOS directory path and filename
02 FILLER PIC X
VALUE #00

The FD establishes a special group data item, 208 bytes in length,
whose name is filename. The quantities file-id, DOS Directory path and
filename, keyname, length and size appear as subordinate items within
this group and can, if need be, be referred to by the application
program.

It is possible to specify the DOS path and file name (which must be
terminated with a #00 byte) before the program executes, In this case
the quantity should be coded with a VALUE clause as a character
string. If you can specify the size or length before the program
executes, code the quantity as a numeric string. If the DOS directory
path and filename is not Known until run-time then the quantity must
be moved to the PANAME field during program execution. If the size and
length is not Known until run-time symbol must be coded for the
quantity. This symbol will then label a level 02 item which the user
program is responsible for initialising.

12.2.1 The Filename

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 154 of 244

The filename is coded as a descriptive symbol. It serves to label the
file definition, as explained in section 1.2.1.

12.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
basic direct access method is to be used.

12.2.3 The ASSIGN Statement
The ASSIGN statement is required in working storage and should be
coded as shown, where file-id is only required as a descriptive
symbol.

12.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements may
appear in any order following the ASSIGN statement. The RECORD LENGTH
statement must be coded: the others are optional.

12.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

DDAM maintains the keyname field to contain the byte number of the
start of the record last accessed. The byte number of the very first
byte of the file counts as byte number zero.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT or WRITE NEXT operation increments the keyname
field by the length of the previous record accessed and then accesses
the record thus identified: if the previous operation on the file was
an OPEN then the first record is accessed.

A successful READ PRIOR decrements the keyname field by the length of
the record to be read, and then accesses that record.

12.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is always required. Length is
specified as a symbol and the statement:

02 symbol PIC 9(4) COMP

is generated within the FD.

The program must place the length of the record to be read in the
length field before executing a read or write statement. The field is
set to zero when the file is opened, and is not altered by read and
write operations.

12.2.7 The SIZE Statement
The SIZE statement is required only if you wish know the current size
of the file. The file size will be maintained during processing.

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 155 of 244

12.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

12.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW or OLD filename identifies the direct DOS
file definition. An OPEN statement must be executed before any other
operation affecting the file. If an OPEN is attempted but the FD is
already open your program will be terminated in error.

OPEN NEW is used to create a new DOS file of the specified path and
file name if one does not already exist or to truncate a file that
already exists to zero length. OPEN OLD obtains exclusive access to an
existing file.

12.3.1 File Conditions
When an OPEN OLD statement is executed the System Manager checks to
see whether a file with the same DOS path and file name exists. If
this is not the case, file not found is signalled.

12.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in an empty file of size zero being opened on with the
specified DOS path and file name.

When an OPEN OLD statement completes successfully the file size is
returned in the FD and can be accessed by the user program if a SIZE
statement with the symbol option was coded.

The record length field in the FD is set to zero by a successful OPEN
statement.

The keyname field in the FD is always set to zero following a
Successful OPEN statement. This is to allow the file to be processed
sequentially using a sequence of READ NEXT or WRITE NEXT statements as
described below.

12.4 The WRITE NEXT Statement
WRITE NEXT is used to write all or part of a file sequentially. It is
coded:

WRITE NEXT filename FROM A

Here filename identifies the Direct DOS file definition and A is a
simple or indexed variable. If a WRITE NEXT is attempted on an FD
which is not already open the program will be terminated in error.

12.4.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 156 of 244

written (1 to 32767 bytes) in this field before executing the WRITE
NEXT.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

12.4.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE NEXT will set the key to the number of the byte following the
previous record accessed (if any) and transfer A to the record thus
identified. The number of bytes transferred is given by the length
field.

12.4.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to zero when the
file is opened. In this case WRITE NEXT can be used to write the
entire file sequentially.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. WRITE NEXT will continue writing from
the record following the one accessed by READ or WRITE.

The READ NEXT statement sets the key field to the record retrieved, so
that a subsequent WRITE NEXT statement will write the following
record.

The WRITE NEXT can cause the file size to be extended if needed,
subject to space being available in the DOS file system.

12.5 The WRITE Statement
WRITE is used to write a record at random or rewrite the last record
accessed. It is coded:

WRITE filename FROM A

Here filename identifies the direct DOS file definition and A is a
simple or indexed variable. If a WRITE is attempted on an FD which is
not already open the program will be terminated in error.

12.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the WRITE statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 157 of 244

only use of the WRITE statement is to rewrite the record previously
retrieved by READ NEXT or written by WRITE NEXT.

12.5.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

12.5.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE will transfer the number of bytes given by the record length
from A to the record identified by the key.

12.5.4 Programming Note
A WRITE may extend the file size if needed subject to the available
space in the DOS file system.

12.6 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record of the file. It is
coded:

READ FIRST filename INTO A

Similarly READ LAST is used to read the very last record in the file.
It is coded:

READ LAST filename INTO A

In both cases filename identifies the direct DOS file definition and A
is a simple or indexed variable. If READ FIRST or READ LAST is
attempted on an FD which is not open the program will be terminated in
error.

12.6.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing a READ FIRST or
READ LAST.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

12.6.2 File Conditions
A file boundary violation condition will be signalled if a READ FIRST
or READ LAST attempts to input a record which is larger then the total
file size, and which would therefore start or end outside the file
extent.

12.6.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
FIRST will set the key to address the first byte of the file (a value
of zero), and READ LAST will set the key to be the file extent size
less the length of the record to be processed. The record thus

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 158 of 244

identified will be transferred to A, the number of bytes transferred
being given by the length field.

12.6.4 Programming Note
Use of READ FIRST is normally used to re-position at the start of the
file prior to reading records sequentially using READ NEXT.

Use of READ LAST presupposes that the program has sufficient
information about the file to be able to determine the length of the
very last record (possibly because the length is fixed). It is
important to note that it is the responsibility of the program to
determine an appropriate record length for use by READ LAST, not that
of the direct DOS access method itself.

12.7 The READ NEXT and READ PRIOR Statements
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT is used to read the next sequential record,
and it is coded:

READ NEXT filename INTO A

READ PRIOR is used to read the previous sequential record. It is
coded:

READ PRIOR filename INTO A

In both cases filename identifies the direct DOS file definition and A
is a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

12.7.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ NEXT
or READ PRIOR.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

12.7.2 File Conditions
A file boundary violation condition will be signalled if READ NEXT or
READ PRIOR attempts to input a record which is wholly or partially
outside the file extent.

12.7.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
NEXT will set the key to the number of the byte following the previous
record accessed (if any), and READ PRIOR will set the key to the
number of the byte record length bytes before the start of the
previous record accessed. The record thus identified is transferred to
A. In both cases the number of bytes transferred is given by the
length field.

12.7.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 159 of 244

is opened. In this case READ NEXT can be used to read sequentially
through the entire file; READ PRIOR at any point may be used to
retrieve the preceding record; WRITE updates the last record thus
retrieved; and READ rereads it. In addition READ FIRST and READ LAST
may be used to position at either the start or end of the file.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ LAST will process sequentially from the
record before it.

A WRITE NEXT statement sets the key field to the start of the record
written, so that a subsequent READ NEXT statement will read the
following record, and a READ PRIOR statement will read the previous
record.

Note that when using READ PRIOR it is the responsibility of the
program to determine the length of the record to be processed by some
means (possibly because it has a fixed length), and not that of the
direct DOS access method itself.

12.8 The READ Statement
READ is used to retrieve a record at random or reread the last record
accessed. It is coded:

READ filename INTO A

Here filename identifies the direct DOS file definition and A is a
simple or indexed variable. If READ is attempted on an FD which is not
already open the program will be terminated in error.

12.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

12.8.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ.

Chapter 12 - The Direct DOS File Organisation

Global Development File Management Manual V8.1 Page 160 of 244

If the length is not established explicitly by the program the length
of the last record accessed will be used.

12.8.3 File Conditions
A file boundary violation condition will be signalled if READ attempts
to input a record which is wholly or partially outside the file
extent.

12.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer to A the number of bytes given by the record length of
the record specified in the key field.

12.8.5 The READ PHYSICAL Statement
As the key of a DDAM file is a byte number, the READ PHYSICAL
statement functions in exactly the same way as a READ.

12.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [DELETE]

where filename identifies the direct DOS file definition.

12.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same (or a different)
file by a subsequent OPEN NEW or OPEN OLD statement.

12.9.2 File Conditions
If the FD passed to the CLOSE was not open, then a file not open
condition will be signalled.

12.9.3 Deletion
If a DELETE phrase is coded all the space the file occupies is
returned to DOS file system and the file name is removed from the DOS
directory. Following a CLOSE DELETE the file no longer exists.

12.9.5 Programming Notes
If you fail to close a direct DOS file then the DOS channel will
remain open and will not be closed by any other System Manager process
including exiting from System Manager. It is therefore very important
to ensure that all direct DOS FD's are closed.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 161 of 244

13. The Direct Windows File Organisation

The direct Windows file organisation allows access to Windows files
from the Global System Manager environment and may therefore only be
run on Global System Manager Windows 95 or Windows-NT. The Windows
file accessed is treated as a string of bytes numbered sequentially
from zero upwards. Records are accessed by supplying the starting byte
number as a key, together with the number of bytes to be read or
written.

13.1 File Structure

13.1.1 Record Format
The format of the Windows file records is entirely under program
control since you determine the length and starting byte of each
record.

13.1.2 Specifying File Attributes
The attributes of a file, such as its unit-id, volume-id and file-id,
specified in the file definition (FD) coded in the data division has
no meaning but must be specified. It is recommended that the file-id
is set to a descriptive variable name, the unit-id to "?" and the
volume-id should not be set at all.

You must specify the name of the area which contains the record
length. You can also define a key area to contain the starting byte
number for use in random access READ and WRITE statements. Section
13.2 below describes those parts of the file definition which are
specific to the basic direct file organisation, but the statements
which are common to all organisations are defined in section 1.2.

13.1.3 File Processing Statements
A number of procedure division statements are provided to enable a
Windows file to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record during sequential
processing;

READ PRIOR to read the previous record during sequential
processing;

WRITE to update an existing record at random;

WRITE NEXT to write a record during sequential
processing;

CLOSE to terminate processing of a file.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 162 of 244

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

13.1.4 Extent Boundary Checking
A write next pointer is not maintained for a direct Windows file, and
you may use WRITE NEXT, WRITE, READ FIRST, READ LAST, READ NEXT, READ
PRIOR and READ statements to access information anywhere within the
allocated file extent. However, should any of these statements attempt
to read a record which is partially or wholly outside the file extent,
the file boundary violation file condition will be signalled.

13.1.5 The ORGANISATION Statement
If a program uses the basic direct access method then the statement:

ORGANISATION OR$98W TYPE 0 EXTENSION 128

must be coded in the data division before the first FD or data
declaration.

13.2 The File Definition
The file definition for a direct Windows file is coded in either
working storage or the linkage section as follows:

FD filename ORGANISATION OR$98W
[ASSIGN TO UNIT "?" FILE file-id]
[KEY IS keyname]
RECORD LENGTH IS length
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
01 FILLER REDEFINES filename
02 FILLER PIC X(88)
02 PANAME PIC X(99) * Windows directory path and filename
02 FILLER PIC X
VALUE #00

The FD establishes a special group data item, 208 bytes in length,
whose name is filename. The quantities file-id, Windows Directory path
and filename, keyname, length and size appear as subordinate items
within this group and can, if need be, be referred to by the
application program.

It is possible to specify the Windows path and file name (which must
be terminated with a #00 byte) before the program executes, In this
case the quantity should be coded with a VALUE clause as a character
string. If you can specify the size or length before the program
executes, code the quantity as a numeric string. If the Windows
directory path and filename is not known until run-time then the
quantity must be moved to the PANAME field during program execution.
If the size and length is not known until run-time symbol must be
coded for the quantity. This symbol will then label a level 02 item
which the user program is responsible for initialising.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 163 of 244

13.2.1 The Filename
The filename is coded as a descriptive symbol. It serves to label the
file definition, as explained in section 1.2.1.

13.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
Windows direct access method is to be used.

13.2.3 The ASSIGN Statement
The ASSIGN statement is required in working storage and should be
coded as shown, where file-id is only required as a descriptive
symbol.

13.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements may
appear in any order following the ASSIGN statement. The RECORD LENGTH
statement must be coded: the others are optional.

13.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

DWAM maintains the keyname field to contain the byte number of the
start of the record last accessed. The byte number of the very first
byte of the file counts as byte number zero.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT or WRITE NEXT operation increments the keyname
field by the length of the previous record accessed and then accesses
the record thus identified: if the previous operation on the file was
an OPEN then the first record is accessed.

A successful READ PRIOR decrements the keyname field by the length of
the record to be read, and then accesses that record.

13.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is always required. Length is
specified as a symbol and the statement:

02 symbol PIC 9(4) COMP

is generated within the FD.

The program must place the length of the record to be read in the
length field before executing a read or write statement. The field is
set to zero when the file is opened, and is not altered by read and
write operations.

13.2.7 The SIZE Statement

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 164 of 244

The SIZE statement is required only if you wish know the current size
of the file. The file size will be maintained during processing.

13.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

13.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW or OLD filename identifies the direct
Windows file definition. An OPEN statement must be executed before any
other operation affecting the file. If an OPEN is attempted but the FD
is already open your program will be terminated in error.

OPEN NEW is used to create a new Windows file of the specified path
and file name if one does not already exist or to truncate a file that
already exists to zero length. OPEN OLD obtains exclusive access to an
existing file.

13.3.1 File Conditions
When an OPEN OLD statement is executed the System Manager checks to
see whether a file with the same Windows path and file name exists. If
this is not the case, file not found is signalled.

13.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in an empty file of size zero being opened on with the
specified Windows path and file name.

When an OPEN OLD statement completes successfully the file size is
returned in the FD and can be accessed by the user program if a SIZE
statement with the symbol option was coded.

The record length field in the FD is set to zero by a successful OPEN
statement.

The keyname field in the FD is always set to zero following a
successful OPEN statement. This is to allow the file to be processed
sequentially using a sequence of READ NEXT or WRITE NEXT statements as
described below.

13.4 The WRITE NEXT Statement
WRITE NEXT is used to write all or part of a file sequentially. It is
coded:

WRITE NEXT filename FROM A

Here filename identifies the Direct Windows file definition and A is a
simple or indexed variable. If a WRITE NEXT is attempted on an FD
which is not already open the program will be terminated in error.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 165 of 244

13.4.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE
NEXT.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

13.4.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE NEXT will set the key to the number of the byte following the
previous record accessed (if any) and transfer A to the record thus
identified. The number of bytes transferred is given by the length
field.

13.4.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to zero when the
file is opened. In this case WRITE NEXT can be used to write the
entire file sequentially.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. WRITE NEXT will continue writing from
the record following the one accessed by READ or WRITE.

The READ NEXT statement sets the key field to the record retrieved, so
that a subsequent WRITE NEXT statement will write the following
record.

The WRITE NEXT can cause the file size to be extended if needed,
subject to space being available in the Windows file system.

13.5 The WRITE Statement
WRITE is used to write a record at random or rewrite the last record
accessed. It is coded:

WRITE filename FROM A

Here filename identifies the direct Windows file definition and A is a
simple or indexed variable. If a WRITE is attempted on an FD which is
not already open the program will be terminated in error.

13.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the WRITE statement.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 166 of 244

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the WRITE statement is to rewrite the record previously
retrieved by READ NEXT or written by WRITE NEXT.

13.5.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

13.5.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE will transfer the number of bytes given by the record length
from A to the record identified by the key.

13.5.4 Programming Note
A WRITE may extend the file size if needed subject to the available
space in the Windows file system.

13.6 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record of the file. It is
coded:

READ FIRST filename INTO A

Similarly READ LAST is used to read the very last record in the file.
It is coded:

READ LAST filename INTO A

In both cases filename identifies the direct Windows file definition
and A is a simple or indexed variable. If READ FIRST or READ LAST is
attempted on an FD which is not open the program will be terminated in
error.

13.6.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing a READ FIRST or
READ LAST.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

13.6.2 File Conditions
A file boundary violation condition will be signalled if a READ FIRST
or READ LAST attempts to input a record which is larger then the total
file size, and which would therefore start or end outside the file
extent.

13.6.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
FIRST will set the key to address the first byte of the file (a value

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 167 of 244

of zero), and READ LAST will set the key to be the file extent size
less the length of the record to be processed. The record thus
identified will be transferred to A, the number of bytes transferred
being given by the length field.

13.6.4 Programming Note
Use of READ FIRST is normally used to re-position at the start of the
file prior to reading records sequentially using READ NEXT.

Use of READ LAST presupposes that the program has sufficient
information about the file to be able to determine the length of the
very last record (possibly because the length is fixed). It is
important to note that it is the responsibility of the program to
determine an appropriate record length for use by READ LAST, not that
of the direct Windows access method itself.

13.7 The READ NEXT and READ PRIOR Statements
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT is used to read the next sequential record,
and it is coded:

READ NEXT filename INTO A

READ PRIOR is used to read the previous sequential record. It is
coded:

READ PRIOR filename INTO A

In both cases filename identifies the direct Windows file definition
and A is a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

13.7.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ NEXT
or READ PRIOR.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

13.7.2 File Conditions
A file boundary violation condition will be signalled if READ NEXT or
READ PRIOR attempts to input a record which is wholly or partially
outside the file extent.

13.7.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
NEXT will set the key to the number of the byte following the previous
record accessed (if any), and READ PRIOR will set the key to the
number of the byte record length bytes before the start of the
previous record accessed. The record thus identified is transferred to
A. In both cases the number of bytes transferred is given by the
length field.

13.7.4 Programming Note

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 168 of 244

If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file; READ PRIOR at any point may be used to
retrieve the preceding record; WRITE updates the last record thus
retrieved; and READ rereads it. In addition READ FIRST and READ LAST
may be used to position at either the start or end of the file.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ LAST will process sequentially from the
record before it.

A WRITE NEXT statement sets the key field to the start of the record
written, so that a subsequent READ NEXT statement will read the
following record, and a READ PRIOR statement will read the previous
record.

Note that when using READ PRIOR it is the responsibility of the
program to determine the length of the record to be processed by some
means (possibly because it has a fixed length), and not that of the
direct Windows access method itself.

13.8 The READ Statement
READ is used to retrieve a record at random or reread the last record
accessed. It is coded:

READ filename INTO A

Here filename identifies the direct Windows file definition and A is a
simple or indexed variable. If READ is attempted on an FD which is not
already open the program will be terminated in error.

13.8.1 Establishing the Key
If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

13.8.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ.

Chapter 13 - The Direct Windows File Organisation

Global Development File Management Manual V8.1 Page 169 of 244

If the length is not established explicitly by the program the length
of the last record accessed will be used.

13.8.3 File Conditions
A file boundary violation condition will be signalled if READ attempts
to input a record which is wholly or partially outside the file
extent.

13.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer to A the number of bytes given by the record length of
the record specified in the key field.

13.8.5 The READ PHYSICAL Statement
As the key of a DDAM file is a byte number, the READ PHYSICAL
statement functions in exactly the same way as a READ.

13.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [DELETE]

where filename identifies the direct Windows file definition.

13.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same (or a different)
file by a subsequent OPEN NEW or OPEN OLD statement.

13.9.2 File Conditions
If the FD passed to the CLOSE was not open, then a file not open
condition will be signalled.

13.9.3 Deletion
If a DELETE phrase is coded all the space the file occupies is
returned to Windows file system and the file name is removed from the
Windows directory. Following a CLOSE DELETE the file no longer exists.

13.9.5 Programming Notes
If you fail to close a direct Windows file then the Windows channel
will remain open and will not be closed by any other System Manager
process including exiting from System Manager. It is therefore very
important to ensure that all direct Windows FD's are closed.

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 170 of 244

14. The Open Direct File Organisation

The Open Direct file organisation allows access to DOS, Unix and
Windows files from the Global System Manager environment and may
therefore only be run only on Global System Manager DOS, Unix, Windows
95 and Windows-NT. The file accessed is treated as a string of bytes
numbered sequentially from zero upwards. Records are accessed by
supplying the starting byte number as key, together with the number of
bytes to be read or written.

This access method is only available under V8.1 (revision f) or later
System Manager.

14.1 File Structure

14.1.1 Record Format
The format of the file records is entirely under program control since
you determine the length and starting byte of each record.

14.1.2 Specifying File Attributes
The attributes of a file, such as its unit-id, volume-id and file-id,
specified in the file definition (FD) coded in the data division has
no meaning but must be specified. It is recommended that the file-id
is set to a descriptive variable name, the unit-id to "?" and the
volume-id should not be set at all.

You must specify the name of the area which contains the record
length. You can also define a key area to contain the starting byte
number for use in random access READ and WRITE statements. Section
14.2 below describes those parts of the file definition which are
specific to the open direct file organisation, but the statements
which are common to all organisations are defined in section 1.2.

14.1.3 File Processing Statements
A number of procedure division statements are provided to enable a
file to be processed. They are:

OPEN which must be executed prior to any other
statement affecting the file;

READ to read a record at random;

READ FIRST to read the very first record in the file;

READ LAST to read the very last record in the file;

READ NEXT to read the next record during sequential
processing;

READ PRIOR to read the previous record during sequential
processing;

WRITE to update an existing record at random;

WRITE NEXT to write a record during sequential
processing;

CLOSE to terminate processing of a file.

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 171 of 244

When any of the statements is executed a file condition, signalled by
exception condition 2, may arise as explained in section 1.3.1. In
addition, if OPTION ERROR or ON ERROR is specified in the FD, an
exception condition will be generated should an irrecoverable I/O
error occur, as explained in section 1.6. Therefore it is usual to
follow each file processing statement with an ON EXCEPTION statement.
If you do not, and an exception condition arises, your program will be
terminated in error.

14.1.4 Extent Boundary Checking
A write next pointer is not maintained for a direct file, and you may
use WRITE NEXT, WRITE, READ FIRST, READ LAST, READ NEXT, READ PRIOR
and READ statements to access information anywhere within the
allocated file extent. However, should any of these statements attempt
to read or write a record which is partially or wholly outside the
file extent, the file boundary violation file condition will be
signalled.

14.1.5 The ORGANISATION Statement
If a program uses the basic direct access method then the statement:

ORGANISATION OR$98 TYPE 0 EXTENSION 128

must be coded in the data division before the first FD or data
declaration.

14.1.6 Programming Notes
The open direct access method is a pageable routine (See System
Subroutines manual for details and its interface routine must be
linked specially. You must include the following line in the $link
dialogue before linking either C.$PAGES, C.$APF or C.$MCOB:

$44 LINK:C.$PAGES/AG$Z UNIT:$S

The routine will appear in the link map with program name AG$Z. Note
that if you do not specifically link this routine then the direct DOS
access method (AC$A) will be included instead.

14.2 The File Definition
The file definition for a direct file is coded in either working
storage or the linkage section as follows:

FD filename ORGANISATION OR$98
[ASSIGN TO UNIT "?" FILE file-id]
[KEY IS keyname]
RECORD LENGTH IS length
[SIZE IS size]
[OPTION ERROR]
[ON ERROR intercept]
01 FILLER REDEFINES filename
02 FILLER PIC X(88)
02 PANAME PIC X(99) * directory path and filename
02 FILLER PIC X
VALUE #00
02 FILLER PIC X(8)
02 PAPERM PIC 9(4) COMP * Unix permissions

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 172 of 244

The FD establishes a special group data item, 208 bytes in length,
whose name is filename. The quantities file-id, Directory path and
filename, keyname, length and size appear as subordinate items within
this group and can, if need be, be referred to by the application
program.

It is possible to specify the path and file name (which must be
terminated with a #00 byte) before the program executes, In this case
the quantity should be coded with a VALUE clause as a character
string. If you can specify the size or length before the program
executes, code the quantity as a numeric string. If the directory path
and filename is not known until run-time then the quantity must be
moved to the PANAME field during program execution. If the size or
length is not known until run-time a symbol must be coded for the
quantity. This symbol will then label a level 02 item which the user
program is responsible for initialising. The permissions field is only
of value for Unix files and allows you to set the Unix permissions
before opening a file.

14.2.1 The Filename
The filename is coded as a descriptive symbol. It serves to label the
file definition, as explained in section 1.2.1.

14.2.2 The ORGANISATION Clause
The ORGANISATION clause must be coded as shown. It indicates that the
open direct access method is to be used.

14.2.3 The ASSIGN Statement
The ASSIGN statement is required in working storage and should be
coded as shown, where file-id is only required as a descriptive
symbol.

14.2.4 Optional Statement Placement
The KEY, RECORD LENGTH, SIZE, OPTION and ON ERROR statements may
appear in any order following the ASSIGN statement. The RECORD LENGTH
statement must be coded: the others are optional.

14.2.5 The KEY Statement
The KEY statement is only required if records are to be accessed at
random. Keyname is specified as a symbol and the statement:

02 symbol PIC 9(9) COMP

is generated within the FD.

ODAM maintains the keyname field to contain the byte number of the
start of the record last accessed. The byte number of the very first
byte of the file counts as byte number zero.

The program must place the byte number of the start of the record it
requires to access in the keyname field before executing a random READ
or WRITE operation.

A successful READ NEXT or WRITE NEXT operation increments the keyname
field by the length of the previous record accessed and then accesses
the record thus identified: if the previous operation on the file was
an OPEN then the first record is accessed.

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 173 of 244

A successful READ PRIOR decrements the keyname field by the length of
the record to be read, and then accesses that record.

14.2.6 The RECORD LENGTH Statement
The RECORD LENGTH statement is always required. Length is specified as
a symbol and the statement:

02 symbol PIC 9(4) COMP

is generated within the FD.

The program must place the length of the record to be read in the
length field before executing a read or write statement. The field is
set to zero when the file is opened, and is not altered by read and
write operations.

14.2.7 The SIZE Statement
The SIZE statement is required only if you wish know the current size
of the file. The file size will be maintained during processing.

14.2.8 The OPTION and ON ERROR Statements
OPTION ERROR should be coded only if you wish your program to regain
control following an irrecoverable I/O error. ON ERROR should be coded
if you wish to handle certain I/O errors specially. The processing of
these statements is common to all file organisations, and is described
in section 1.6.

14.3 The OPEN Statement
The OPEN statement is coded:

OPEN type filename

where type is the word NEW or OLD filename identifies the direct file
definition. An OPEN statement must be executed before any other
operation affecting the file. If an OPEN is attempted but the FD is
already open your program will be terminated in error.

OPEN NEW is used to create a new file of the specified path and file
name if one does not already exist or to truncate a file that already
exists to zero length. If there is no existing file the new file will
be created. For Unix files the new file will be created with Unix
permissions 600 octal (i.e. RW access for the owner) unless otherwise
specified by the PAPERM field. OPEN OLD obtains exclusive access to an
existing file.

14.3.1 File Conditions
When an OPEN OLD statement is executed the System Manager checks to
see whether a file with the same path and file name exists. If this is
not the case, file not found is signalled.

14.3.2 Successful Completion
Providing no file condition or irrecoverable I/O error occurs an OPEN
NEW results in an empty file of size zero being opened on with the
specified path and file name.

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 174 of 244

When an OPEN OLD statement completes successfully the file size is
returned in the FD and can be accessed by the user program if a SIZE
statement with the symbol option was coded.

The record length field in the FD is set to zero by a successful OPEN
statement.

The keyname field in the FD is always set to zero following a
successful OPEN statement. This is to allow the file to be processed
sequentially using a sequence of READ NEXT or WRITE NEXT statements as
described below.

14.4 The WRITE NEXT Statement
WRITE NEXT is used to write all or part of a file sequentially. It is
coded:

WRITE NEXT filename FROM A

Here filename identifies the Direct file definition and A is a simple
or indexed variable. If a WRITE NEXT is attempted on an FD which is
not already open the program will be terminated in error.

14.4.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE
NEXT.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

14.4.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE NEXT will set the key to the number of the byte following the
previous record accessed (if any) and transfer A to the record thus
identified. The number of bytes transferred is given by the length
field.

14.4.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to zero when the
file is opened. In this case WRITE NEXT can be used to write the
entire file sequentially.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. WRITE NEXT will continue writing from
the record following the one accessed by READ or WRITE.

The READ NEXT statement sets the key field to the record retrieved, so
that a subsequent WRITE NEXT statement will write the following
record.

The WRITE NEXT can cause the file size to be extended if needed,
subject to space being available in the file system.

14.5 The WRITE Statement

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 175 of 244

WRITE is used to write a record at random or rewrite the last record
accessed. It is coded:

WRITE filename FROM A

Here filename identifies the direct file definition and A is a simple
or indexed variable. If a WRITE is attempted on an FD which is not
already open the program will be terminated in error.

14.5.1 Establishing the Key
If WRITE is to be used as a random access operation the FD must
contain a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the WRITE statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the WRITE statement is to rewrite the record previously
retrieved by READ NEXT or written by WRITE NEXT.

14.5.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
written (1 to 32767 bytes) in this field before executing the WRITE.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

14.5.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs
WRITE will transfer the number of bytes given by the record length
from A to the record identified by the key.

14.5.4 Programming Note
A WRITE may extend the file size if needed subject to the available
space in the file system.

14.6 The READ FIRST and READ LAST Statements
READ FIRST is used to read the very first record of the file. It is
coded:

READ FIRST filename INTO A

Similarly READ LAST is used to read the very last record in the file.
It is coded:

READ LAST filename INTO A

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 176 of 244

In both cases filename identifies the direct file definition and A is
a simple or indexed variable. If READ FIRST or READ LAST is attempted
on an FD which is not open the program will be terminated in error.

14.6.1 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing a READ FIRST or
READ LAST.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

14.6.2 File Conditions
A file boundary violation condition will be signalled if a READFIRST
or READ LAST attempts to input a record which is larger then the total
file size, and which would therefore start or end outside the file
extent.

14.6.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
FIRST will set the key to address the first byte of the file (a value
of zero), and READ LAST will set the key to be the file extent size
less the length of the record to be processed. The record thus
identified will be transferred to A, the number of bytes transferred
being given by the length field.

14.6.4 Programming Note
Use of READ FIRST is normally used to re-position at the start of the
file prior to reading records sequentially using READ NEXT.

Use of READ LAST presupposes that the program has sufficient
information about the file to be able to determine the length of the
very last record (possibly because the length is fixed). It is
important to note that it is the responsibility of the program to
determine an appropriate record length for use by READ LAST, not that
of the direct access method itself.

14.7 The READ NEXT and READ PRIOR Statements
READ NEXT and READ PRIOR are used to process part or all of a file
sequentially. READ NEXT is used to read the next sequential record,
and it is coded:

READ NEXT filename INTO A

READ PRIOR is used to read the previous sequential record. It is
coded:

READ PRIOR filename INTO A

In both cases filename identifies the direct file definition and A is
a simple or indexed variable. If a READ NEXT or READ PRIOR is
attempted on an FD which is not already open the program will be
terminated in error.

14.7.1 Establishing the Length

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 177 of 244

The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ NEXT
or READ PRIOR.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

14.7.2 File Conditions
A file boundary violation condition will be signalled if READ NEXT or
READ PRIOR attempts to input a record which is wholly or partially
outside the file extent.

14.7.3 Successful Completion
Provided that no file condition or irrecoverable I/O error occurs READ
NEXT will set the key to the number of the byte following the previous
record accessed (if any), and READ PRIOR will set the key to the
number of the byte record length bytes before the start of the
previous record accessed. The record thus identified is transferred to
A. In both cases the number of bytes transferred is given by the
length field.

14.7.4 Programming Note
If a KEY statement was not specified in the file definition the FD
still contains an internal key field which is set to 0 when the file
is opened. In this case READ NEXT can be used to read sequentially
through the entire file; READ PRIOR at any point may be used to
retrieve the preceding record; WRITE updates the last record thus
retrieved; and READ rereads it. In addition READ FIRST and READ LAST
may be used to position at either the start or end of the file.

When a KEY statement is specified a READ or WRITE can be used to
position the file at any point. READ NEXT will continue sequential
processing from the record following the one retrieved by READ or
output by WRITE, and READ LAST will process sequentially from the
record before it.

A WRITE NEXT statement sets the key field to the start of the record
written, so that a subsequent READ NEXT statement will read the
following record, and a READ PRIOR statement will read the previous
record.

Note that when using READ PRIOR it is the responsibility of the
program to determine the length of the record to be processed by some
means (possibly because it has a fixed length), and not that of the
direct access method itself.

14.8 The READ Statement
READ is used to retrieve a record at random or reread the last record
accessed. It is coded:

READ filename INTO A

Here filename identifies the direct file definition and A is a simple
or indexed variable. If READ is attempted on an FD which is not
already open the program will be terminated in error.

14.8.1 Establishing the Key

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 178 of 244

If READ is to be used as a random access operation the FD must contain
a KEY statement coded as:

KEY IS symbol

which causes:

02 symbol PIC 9(9) COMP

to be generated. The program must then move the byte number of the
start of the record it is required to retrieve to this field before
executing the READ statement.

If a KEY statement is not coded in the file definition the FD still
contains an internal key field which is set to zero when the file is
opened and incremented by READ NEXT and WRITE NEXT. In this case the
only use of the READ statement is to reread the record previously
retrieved by READ NEXT or written by WRITE NEXT.

14.8.2 Establishing the Length
The FD must contain the RECORD LENGTH statement with the length coded
as a symbol. The program must establish the length of the record to be
read (1 to 32767 bytes) in this field before executing the READ.

If the length is not established explicitly by the program the length
of the last record accessed will be used.

14.8.3 File Conditions
A file boundary violation condition will be signalled if READ attempts
to input a record which is wholly or partially outside the file
extent.

14.8.4 Successful Completion
Providing no file condition or irrecoverable I/O error occurs, READ
will transfer to A the number of bytes given by the record length of
the record specified in the key field.

14.8.5 The READ PHYSICAL Statement
As the key of a ODAM file is a byte number, the READ PHYSICAL
statement functions in exactly the same way as a READ.

14.9 The CLOSE Statement
CLOSE must be used to terminate the processing of a file. It is coded:

CLOSE filename [DELETE]

where filename identifies the direct file definition.

14.9.1 Standard Processing
CLOSE always completes any outstanding I/O operations on the file and
returns the FD to the status it possessed prior to being opened.
Following CLOSE, the FD can be re-opened for the same (or a different)
file by a subsequent OPEN NEW or OPEN OLD statement.

14.9.2 File Conditions
If the FD passed to the CLOSE was not open, then a file not open
condition will be signalled.

Chapter 14 - The Open Direct File Organisation

Global Development File Management Manual V8.1 Page 179 of 244

14.9.3 Deletion
If a DELETE phrase is coded all the space the file occupies is
returned to file system and the file name is removed from the
directory. Following a CLOSE DELETE the file no longer exists.

14.9.5 Programming Notes
If you fail to close a direct file then the channel will remain open
and will not be closed by any other System Manager process including
exiting from System Manager. It is therefore very important to ensure
that all direct FD's are closed.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 180 of 244

15. File Management Routines

15.1 The File Conversion Routine, CONV$
The CONV$ system routine reads an input file, performs a conversion
process, and creates an output file. The type of conversion is
governed by the ORGANISATION clauses in the FD statements for the
input and output files. The routine can be employed to create an
indexed sequential file from a relative sequential file; to produce an
empty indexed sequential file; to extract a relative sequential file
from an indexed sequential file; to create a reorganised indexed
sequential file from an existing indexed sequential file; and to
produce a relative sequential file free of logically deleted records
from an existing relative sequential file.

An indexed sequential file processed by the routine must occupy direct
access storage.

The records of the input file must begin with a two-byte record type
code, as described in 2.1.1 and 3.1.1. Records whose first byte is an
asterisk character are considered to be logically deleted and are not
transferred to the output file, unless the record type is *!, as
explained in 3.1.9.

If either the input or the output file is indexed sequential the
records must contain a two-byte link field and a record key following
the type code. See 3.1.1.

15.1.1 Invocation
The file conversion routine is invoked by a CALL of the form:

CALL CONV$ USING [filename-i] filename-o area

Here filename-i is the name of the file definition for the input file;
filename-o is the name of the file definition for the output file; and
area is the name of a data area, long enough to hold a single record
of the input file, which CONV$ will use as a work area. The input file
may be omitted only when creating an empty indexed sequential file.

The file definitions associated with filename-i and filename-o must
both be closed when CONV$ is called and they will remain closed when
the routine returns control. If volume identification checking is
specified in either or both FD's it will be applied in the normal way
when the conversion routine opens the files for processing.

If a file with the same name as the output file already exists on the
output volume it will be deleted. The output file is always allocated
anew. It is allocated the extent specified in its file definition's
SIZE statement except that, if the SIZE statement is omitted, or the
actual size is specified as zero, the input file extent size will be
used.

If the size specified is 999999999 the output file extent will be
allocated the maximum amount of contiguous free space available.

The ISAM file size calculation routine, CALC$, described in Section
15.13 can be used to determine the extent required for an indexed
sequential file.

15.1.2 Exceptions

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 181 of 244

Exception condition 1 is signalled if an irrecoverable I/O error
arises on either the input or output file.

Exception condition 2 may be generated for a variety of reasons, each
of which is identified by the value of $$RES:

● Input file is not of indicated organisation ($$RES="1");

● Keys out of sequence when creating an indexed sequential file from

a relative sequential file ($$RES="2");

● Input file not found ($$RES="3").

● Output file capacity exceeded ($$RES="5").

When control is returned following an exception, both FD's will be
closed in the normal way. An incomplete output file may be in
existence in this case. If so it can be deleted either by using the
file utility command program interactively or by using the conversion
routine again.

15.1.3 Creating an Indexed Sequential File
An indexed sequential file is created by constructing a relative
sequential file containing standard format records in ascending key
sequence and then using CONV$ to convert the file to indexed
sequential format.

The input file will be the relative sequential file previously
created. Its file definition requires only an FD and an ASSIGN
statement.

The output file is the new indexed sequential file to be produced by
the conversion process. In its file definition you must specify that
the file organisation is indexed sequential, and you must provide an
ASSIGN statement. The RECORD LENGTH is unnecessary: it is taken from
the input file. Unless you supply a SIZE statement and establish a
non-zero size the file will be allocated the same size extent as the
input file. Take care - this means that unless there is some spare
space in the input file extent there will be insufficient room to
create the additional index required by the new file and the
conversion process will fail. Normally it is best to code a SIZE
statement making an explicit or maximum (999999999) request, ensuring
that plenty of spare space is available for the index and the overflow
area.

You must supply the length of the key in the indexed sequential file
definition KEY LENGTH statement.

15.1.4 Creating an Empty Indexed Sequential File
An empty indexed sequential file is created by calling CONV$ with the
input file omitted.

The output file is the new indexed sequential file to be created. In
its file definition you must specify that the file organisation is
indexed sequential, and you must provide ASSIGN and RECORD LENGTH
statements. Unless you supply a SIZE statement and establish a non-
zero size other than 999999999 the file will be given the maximum
available extent. If you do not supply the key length in the FD then
the operator will be prompted for the key length.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 182 of 244

Note that if more that a few records are added to an empty indexed
sequential file, access will become very slow until the file is
reorganised. (See 3.1.2).

15.1.5 Extracting a Relative Sequential File
The conversion routine can be used to extract a relative sequential
file from an indexed sequential file. The relative sequential file
will have its records in ascending record key sequence. It will
contain no logically deleted records.

The input file is the indexed sequential file. Its definition requires
only an FD and an ASSIGN statement.

The output file is the new relative sequential file to be produced by
the conversion process. In its file definition you must specify that
the file organisation is relative sequential and you must provide an
ASSIGN statement. Unless you supply a SIZE statement and establish a
non-zero size the file will be allocated the same size extent as the
input file. Other file definition statements are unnecessary, since
the record length is taken from the input file.

15.1.6 Creating a Reorganised Indexed Sequential File
The conversion routine can be used to create a reorganised indexed
sequential file from an existing indexed sequential file. The
reorganised file will contain no logically deleted records and no
overflow chains, and its overflow area will be empty.

The input file is the existing indexed sequential file. Its file
definition requires only an FD and an ASSIGN statement.

The output file is the reorganised indexed sequential file to be
produced by the conversion process. In its file definition you must
specify that the file organisation is indexed sequential and you must
provide an ASSIGN statement. Unless you supply a SIZE statement and
establish a non-zero size the file will be allocated the same size
extent as the input file. Other file definition statements are
unnecessary since the record length and record key length are taken
from the input file.

Note that if you omit the SIZE statement (or specify a zero size) so
as to allocate the output file the same extent size as the input file,
then there must be spare space in the existing extent. If this is not
the case the conversion process will most likely fail. This is because
if there are any overflow records at all the new file is liable to be
larger than the old one, since the index area will have grown due to
there being more records requiring reference in the prime area. This
means that you cannot normally reorganise an indexed sequential file
which has been truncated (by CLOSE...TRUNCATE) by using an extent of
the same SIZE as the one it currently occupies.

15.1.7 Creating a Relative Sequential File Free of Deletions
The conversion routine can be used to create a relative sequential
file containing no logically deleted records from an existing relative
sequential file. (Note however that to simply copy one relative
sequential file to another it is faster to use the COPY$ system
routine described in 15.2.)

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 183 of 244

The input file is the existing relative sequential file. Its file
definition requires only an FD and an ASSIGN statement.

The output file is the new relative sequential file to be produced by
the conversion process. In its file definition you must specify that
the file organisation is relative sequential and you must provide an
ASSIGN statement. Unless you supply a SIZE statement and establish a
non-zero size the file will be allocated the same size extent as the
input file. Other file definition statements are unnecessary, since
the record length is taken from the input file.

15.1.8 Programming Notes
If a relative sequential file is used as either the input or output
file for CONV$ then a BLOCK CONTAINS statement in the FD will normally
improve the performance of the conversion.

15.2 The File Copy Routine, COPY$
The COPY$ system routine copies an input file to an output file
without performing any conversion process. It employs the unused part
of the user area following the program last loaded as a buffer area so
that it can transfer very large blocks between the files. The routine
therefore executes much faster than the conversion routine which has
to process a record at a time. On the other hand COPY$ cannot be used
to change indexed sequential to relative sequential or drop logically
deleted records. However, by copying an indexed sequential file to a
larger area its overflow area will be automatically extended without
the overhead of reorganising the file.

COPY$ can be used on direct access files but should not be employed to
transfer data to a printer since this will not result in a properly
formatted report appearing. The routine is not concerned with record
format and can be used to transfer any sort of information.

If the size specified is 999999999 the output file extent will be
allocated the maximum amount of contiguous space available.

15.2.1 Invocation
The copy routine is invoked by a CALL of the form:

CALL COPY$ USING filename-i filename-o

Here filename-i is the name of the file definition for the input file
and filename-o is the name of the file definition for the output file.

The filename that is associated with filename-i and filename-o must
both be closed when COPY$ is called and they will remain closed when
the routine returns control. If volume identification checking is
specified by the VOLUME phrase appearing in either or both FDs, it
will be applied in the normal way when the copy routine opens the file
for processing.

If a file with the same name as the output file already exists on the
output volume, it will be deleted. The output file is always allocated
anew. It is allocated the extent specified in its file definition's
SIZE statement except that if the SIZE statement is omitted, or the
actual size is specified as zero, the input file extent size will be
used.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 184 of 244

The file definition for the input file need contain only the FD and
ASSIGN statements.

The file definition for the output file must contain the FD and ASSIGN
statements and have the same ORGANISATION phrase as the input file.
You may, if you wish, code ORGANISATION UNDEFINED in both cases and
possibly avoid an unnecessary access method routine being included in
your program. Unless you supply a SIZE statement and establish a non-
zero size the file will be allocated the same size extent as the input
file. Other file definition statements are unnecessary, since any
additional file attributes are taken from the input file.

15.2.2 Exceptions
Exception condition 1 is signalled if an irrecoverable I/O error
arises on either the input or output file.

Exception condition 2 may be generated for a variety of reasons,
identified by the value of $$RES:

● Input file not available ($$RES="3");

● Output file capacity less than that of the input file ($$RES="5").

When control is returned following an exception both FD's will be
closed in the normal way. An incomplete output file may be in
existence in this case. If so it can be deleted either by using the
file utility command program interactively or by using the copy
utility again after taking corrective action.

15.2.3 Programming Notes
The size of the output file extent must be at least as great as the
extent occupied by the input file. If you wish to reduce the size of
the extent occupied by a direct access file you cannot use COPY$.
Instead you must use an OPEN OLD followed by a CLOSE TRUNCATE.

When the output file size is greater than that of the input file the
extra space is initialised to binary zeros. This automatically extends
the overflow area associated with an indexed sequential file.

COPY$ uses the free storage at the end of the user area as a work
space. If you invoke the routine from an overlay or chained program
you may need to use the FREE$ system routine before passing control to
the program to ensure that the System Manager allocates the maximum
amount of free space actually available.

15.3 The Catalogue Routine, CATA$
Instead of coding the unit-id and, possibly, the volume-id of a file
in its file definition you can hold this information in a special
relative sequential direct access file known as the catalogue. Each
record of the catalogue contains the file-id, and supplies the unit-id
and volume-id, of a catalogued file.

The catalogue maintenance command program ($CATAL) is used to create
and update a catalogue, which can contain information for up to 110
files. At run-time the CATA$ system routine is used to extract
information from a catalogue and place it in the unit-id and volume-id
fields of a list of up to 16 file definitions.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 185 of 244

15.3.1 Invocation
The catalogue routine is invoked by a CALL of the form:

CALL CATA$ USING catalogue-name filename number

Here catalogue-name labels the file definition of the catalogue itself
and filename identifies the first file definition of a file list.
Number is an integer literal or PIC 9(4) COMP variable whose value
specifies the number of file definitions in the file list.

The file definition for the catalogue file need only contain the FD
and ASSIGN statements. Its ORGANISATION must be specified as RELATIVE-
SEQUENTIAL. Volume identification checking is optional. If specified
it will be applied when the catalogue is opened by the routine.

The file list consists of between 1 and 16 file definitions defined in
contiguous storage. Data and map definitions may not appear within the
list, which can therefore only be constructed using the following file
definition statements:

FD KEY LENGTH
ASSIGN OPTION
BLOCK CONTAINS RECORD LENGTH
KEY SIZE

The catalogue file definition and all files within the list must be
closed when CATA$ is called. They will remain closed when the routine
returns control.

15.3.2 Processing
The catalogue routine examines the file-id of each file definition in
the list. If the file-id is present in the catalogue it completes the
unit-id and volume-id fields from the information in the catalogue.
Otherwise, if there is no information for the file in the catalogue,
the file definition remains undisturbed unless the unit-id has been
specified as ? (a question mark followed by two blanks).

Whenever the unit-id of an FD in the list is supplied as ? then CATA$
will prompt the operator for the true unit-id and volume-id if this
information is not present in the catalogue. Assigning every
catalogued FD to unit ? can therefore simplify system development
during the stages when the catalogue is still evolving.

The example shows a typical catalogued FD and the prompt which is
output when there is no information present for it:

FD CUSFIL ORGANISATION INDEXED-SEQUENTIAL
ASSIGN TO UNIT "?" FILE "CUSTOMER"

$75 SPECIFY CUSTOMER FILE INFORMATION
$75 UNIT-ID:100 VOLUME-ID:SALESV

The operator replies, which are underlined, cause the unit-id field in
the CUSFIL file definition to be set to "110", and the volume-id field
to be set to "SALESV".

15.3.3 Exceptions
Exception condition 1 is signalled if an irrecoverable I/O error is
encountered when reading the catalogue.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 186 of 244

Exception condition 2 is generated if the catalogue file is not
present ($$RES="3"), or if the file specified does exist, but does not
have the attributes of a catalogue ($$RES="1").

15.4 The Delete Routine, DELE$
The DELE$ system routine is used to delete a file given its name,
which is supplied in an FD.

15.4.1 Invocation
The routine is invoked by a CALL of the form:

CALL DELE$ USING filename

Here filename is the name of the file definition for the file which is
to be deleted. Only the FD and ASSIGN statements are necessary in this
definition, which must be closed when the routine is called and will
remain closed when it returns control. Any valid organisation may be
specified in the file definition and you may, if you wish, code
ORGANISATION UNDEFINED to possibly prevent an unnecessary access
method routine from being included in your program.

15.4.2 Processing
The routine deletes the file specified by the file-id of the ASSIGN
statement, irrespective of whether its file organisation is the same
as that specified by the ORGANISATION clause. The file definition is
not altered in any way by DELE$.

15.4.3 Exceptions
Exception condition 1 will be signalled if an irrecoverable I/O error
arises whilst attempting to delete the file.

Exception condition 2 occurs if the file to be deleted cannot be found
on its volume.

15.4.4 Programming Notes
The delete routine is usually employed to remove an unwanted file
detected when an OPEN NEW operation on a relative sequential file is
suppressed with a file operation exception. It should be used rather
than the sequence OPEN OLD, CLOSE DELETE, which has the following
disadvantages:

● OPEN OLD will only open files with the same organisation as that

specified in the file definition. Therefore the sequence could not
be used to delete an unwanted indexed sequential file given a
relative sequential FD;

● OPEN OLD will return information from the unwanted file label in

the FD and therefore overwrite the size and record length
information which may have been established for OPEN NEW.

15.5 The Rename Routine, RENA$
The RENA$ system routine is used to alter the file-id of a direct
access file which already exists. The file, which may be of any
organisation, is not modified in any other way. If you attempt to
rename a print file your program will be terminated in error.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 187 of 244

15.5.1 Invocation
The routine is invoked by a CALL of the form:

CALL RENA$ USING filename new-file-id

Here filename is the name of the file definition for the file which is
to be renamed. Only the FD and ASSIGN statements are necessary in this
definition, which must be closed when the routine is called and will
remain closed when it returns control. The file-id specified in the
ASSIGN statement's FILE clause is the old-file-id, and should identify
an existing file.

Any valid organisation may be specified in the file definition and you
may, if you wish, code ORGANISATION UNDEFINED to possibly prevent an
unnecessary access method routine from being included in your program.

The second parameter, new-file-id, is a PIC X(8) variable or 8
character literal which will be used to identify the file once the
rename is successful.

15.5.2 Processing
Providing the rename is successful, no exception occurs and the new-
file-id becomes the identifier by which the file is subsequently
known. In addition this new-file-id replaces the old-file-id in the FD
supplied to RENA$. This allows you to issue an OPEN OLD using this FD
if you require to access the file once you have renamed it.

15.5.3 Exceptions
Exception condition 1 will be signalled if an irrecoverable I/O error
arises whilst attempting to rename the file.

Exception condition 2 may be generated for the following reasons, each
of which is identified by the value of $$RES:

● A file with the old-file-id is not present on the unit specified by

the FD ($$RES="3");

● A file with the new-file-id already exists on the unit specified by

the FD ($$RES="4").

 When control is returned following an exception the FD you passed to
the rename routine remains unchanged.

15.6 The File Information Routine, FILE$
The file information routine is used to obtain the file-id and unit-id
fields of an FD from the operator, who is prompted for this
information. The routine is employed extensively by Global Cobol
system software and you may wish to use it to standardise the way in
which you obtain file information in those programs, such as
utilities, which work with many different files.

15.6.1 Invocation
The file information routine is invoked by a CALL of the form:

CALL FILE$ USING filename [prefix]

where filename identifies the file definition whose file-id and unit-
id are required. This file definition must be closed when FILE$ is

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 188 of 244

called, and will remain closed when the routine returns control. Any
valid organisation may be specified in the file definition and you
may, if you wish, code ORGANISATION UNDEFINED to possibly prevent an
unnecessary access method routine from being included in your program.

If the second parameter, prefix, is absent (the normal case) the
routine prompts the operator for the file-id, to be used in the FD,
and the unit-id.

When the second parameter, the prefix, is present it must be a PIC
X(2) variable or 2 character literal. In this case, if the operator
replies with a non-prefixed file-id (one whose second character is not
a full stop) the routine manufactures the file-id to be used in the FD
from the prefix concatenated with the first six characters of his
input. For example, if the prefix were S., and the operator keyed
SALES, the file-id actually used would be S.SALES.

The prefix supplied to FILE$ is ignored if the operator keys a
prefixed file-id such as B.SALES. In this case the operator's input is
used unchanged.

15.6.2 Processing
Before calling FILE$ you should have displayed an explanatory message
such as:

INPUT MASTER FILE

The routine will then output the file-id prompt:

:

on the same line and accept the file-id keyed by the operator. It will
then output the unit-id prompt:

UNIT:

also on the same line, and accept a unit-id.

A typical dialogue using the routine might therefore appears as:

INPUT MASTER FILE:CUSTOMER UNIT:100

where the operator replies are underlined.

The operator may reply <CR> instead of supplying a file-id. In this
case the processing depends on the value of the file-id in the FD you
supplied to FILE$. If this file-id was ? (a question mark followed by
7 blanks) the routine exits signalling exception condition 2 and the
FD remains unchanged. If, however, the file-id contains any other
value apart from ? the routine leaves this value, which serves as a
default, undisturbed and continues by outputting the unit-id prompt.

The operator may reply <CR> instead of supplying a unit-id. If the
unit-id you supplied in the FD contains ? (a question mark followed by
two blanks) the <CR> reply will not be accepted and the operator will
be re-prompted for a valid unit-id. If, however, the unit-id contains
any value apart from ? the routine leaves this value, which serves as
a default, undisturbed. It then returns control to the caller without
signalling an exception.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 189 of 244

In essence, therefore, you supply a ? file-id or unit-id when a
sensible default cannot be provided, or when you want the operator to
be able to signal a special processing requirement by replying <CR> to
the file-id prompt.

15.6.3 Exceptions
Exception condition 2 is generated by FILE$ in the event that the FD
passed to FILE$ contained a file-id consisting of a question mark
followed by seven blanks and the operator keyed <CR> in response to
the file-id prompt. This exception, which is the only one generated by
the routine, can be used to allow the operator to signal a special
processing requirement. For example, keying <CR> instead of a file-id
might mean that the operator requires to leave the current program and
obtain the ready prompt.

15.6.4 The FILDF$ Routine
An alternative entry point to FILE$, called FILDF$, permits you to
show the default file-id and unit-id to the operator. It is invoked by
a CALL of the same form as FILE$:

CALL FILDF$ USING filename [prefix]

and performs the same processing, except that before the prompt for
the file-id and the unit it shows the current default value in
parentheses. For example:

UNIT(xxx):

If the value of the file-id or unit-id is ?, indicating that there is
no default, then no default is shown.

15.7 The Volume Identification Routine, VOLID$
The VOLID$ system routine is used to obtain the volume-id of the
volume currently mounted on a unit. An exception is signalled if the
volume does not support a standard System Manager directory and
therefore does not possess a volume-id.

15.7.1 Invocation
You may obtain the volume-id of the volume currently mounted on a unit
by coding a CALL statement of the form:

CALL VOLID$ USING filename

where filename identifies an FD which should have the volume-id
specified as a symbol if you wish to examine it following the call.
(This is unnecessary if you are simply using VOLID$ to check whether
or not the volume supports a standard directory.)

Note that the unit-id must be specified in the file definition, which
must be closed when VOLID$ is called, and will remain closed once
control is returned. Any valid ORGANISATION may be specified in the
FD, including ORGANISATION UNDEFINED.

15.7.2 Processing
When VOLID$ returns control, either an exception will be signalled or
the volume-id of the currently mounted volume will have been placed in
the field you have specified using the FD. Note that this means that

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 190 of 244

if the volume-id is returned and the file subsequently opened, then
volume-id checking will take place unless you zeroise the volume-id
field.

15.7.3 Exception Conditions
Exception condition 1 will be signalled if an irrecoverable I/O error
occurs.

Exception condition 2 will be signalled if the volume assigned to the
unit does not support a standard the System Manager directory (for
example, the unit was a printer).

The volume-id field will not be changed if an exception occurs.

15.8 The Assignment Routine, ASSIG$
The ASSIG$ system routine can be used to establish or modify a unit
assignment, or determine the unit address currently assigned to a
unit-id. The routine can also delete a specified assignment or, more
drastically, purge all but the initial permanent assignments set up by
the $CUS Permanent Unit Assignments option. You may need to use the
purge facility if an assign request signals the exception which
indicates that the assignment tables have become full. This routine
can also be used to return the full assignment table.

15.8.1 Invocation
You can assign a unit address to a unit-id by coding a CALL statement
of the form:

CALL ASSIG$ USING unit-id unit-address

where unit-id is a 3-character variable or literal specifying the
unit-id to be assigned, and unit-address is a 3-character variable or
literal containing the unit address to which it is to be assigned. If
the unit address is not an integer in the range 110 to 999 or a LAN
address consisting of a letter and two digits and if it does not
contain "?bb" (as described below) an exception will be generated. If
the unit-id is already assigned the old assignment will be changed.
Otherwise a new assignment is made and an exception is signalled if
this is not possible due to the assignment tables being full.

You can determine the unit address currently assigned to a unit-id by
coding a CALL statement of the form:

CALL ASSIG$ USING unit-id unit-address

where unit-id is a 3-character variable or literal specifying the
unit-id whose assignment you wish to determine, and unit-address is a
3-character variable, initially containing "?bb", where b represents a
space, in which the unit-address will be returned, overwriting "?bb".
If the unit-id is not assigned an exception will be generated.

You may delete an assignment by coding a CALL statement of the form:

CALL ASSIG$ USING unit-id

where unit-id is a 3-character variable or literal specifying the
unit-id to be deleted. An exception will be generated if the unit-id
was not assigned.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 191 of 244

You may purge the assignment tables, reducing them to the size
initially established by the $CUS Permanent Unit Assignments option by
coding a parameterless CALL:

CALL ASSIG$

You can determine the full assignment table by a call of the form:

CALL ASSIG$ USING "? " uat

where uat is the full assignment table as follows:

01 UAT
 02 UATID OCCURS 30 PIC X(3) * Unit-ids
 02 UATAD OCCURS 30 PIC X(3) * Equivalent addresses

If all the entries are not used then the entry following the last
entry will be set to LOW-VALUES. Note that the structure of the
assignment table is not guaranteed for any future releases of System
Manager and may be changed.

15.8.2 Exception Conditions
Exception condition 1 will be signalled if the unit address supplied
is not "?bb", a number in the range 110 to 999 or a LAN address
consisting of a letter followed by two digits.

Exception condition 2 will be signalled if an attempt is made to make
a new assignment when the assignment tables are full.

Exception condition 3 will be signalled if an attempt is made to
determine or delete the assignment of a unit-id which is not assigned.

Exception condition 4 will be signalled if the assignment table cannot
be found on the system.

15.8.3 Programming Notes
ASSIG$ can be used to find the unit address currently associated with
an assigned unit-id, and this in turn can be used to determine the
device type, as implied by the first character of the address:

| | |
 --
 | | |
 | UNIT ADDRESS | DEVICE TYPE |
 ++++++++++++ +++++++++++
 | | |
 --
 | | |
 | 1xx | local discrete direct access device |
 //
	on non-separated systems
2xx	local direct access domain or subunit
//	
	on non-separated systems
3xx	reserved
 //

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 192 of 244

 | | |
 | 4xx | reserved |
 //
 | | |
 | 5xx | printer |
 //
 | | |
 | 6xx | direct access domain or subunit on the |
 //
	master computer on a network or separated
	system
7xx	reserved
//	
8xx	remote discrete direct access device
//	
9xx	remote direct access domain or subunit
//	
cxx	discrete direct access device on network
//	
	or separated system - the system or
	computer designated by the initial letter
Cxx	direct access domain or subunit on a
//	
	network or separated system - the system
	or computer designated by the initial
	letter
 --

Table 15.8.3 - Unit Addresses and Device Types

You should note that the purge operation simply reduces the assignment
tables to the size they initially occupied as a result of the use of
$CUS Permanent Unit Assignments. Providing none of the permanent
assignments has been modified or deleted this will restore the
assignment tables to their initial state, just as if $E were run.
However, if the permanent assignments have been altered in any way,
the result of the purge operation is not easy to predict. Generally,
of course, permanent assignments will not be modified.

15.8.4 Memory Paged ASSIG$
A memory paged version of ASSIG$ is available only when running on
System Manager V8.1 and later. This is a version where most of the
code for ASSIG$ is held in a System Manager memory page, thus making
the subroutine smaller. To link in this routine you must link in
subroutine library C.$PAGES as explained in the section on memory
paged subroutines in the System Subroutines Manual.

15.9 The Directory Routine, OPEN$, OPENS$, LIST$ &
CLOSE$
The directory routine is a system routine with three entry points,
OPEN$, OPENS$, LIST$ and CLOSE$. You can use it to determine the file-

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 193 of 244

id and type of each file present on a System Manager direct access
volume, providing it is not in use as a spool unit.

15.9.1 The Directory File Definition
The OPEN$, LIST$, and CLOSE$ entry points each require a filename as
their first parameter. This name identifies an FD to be used in the
directory processing operation. At a minimum you must code the FD
statement and the following ASSIGN statement:

FD filename ORGANISATION organisation
ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]

You can use any convenient organisation (e.g. UNDEFINED, RELATIVE-
SEQUENTIAL) since the one specified is immaterial as far as the
directory routine is concerned. You should specify the file-id as a
symbol, since LIST$ returns each file-id found to be present in this
field. The volume-id should be specified as a symbol if you wish to
examine it following a call of OPEN$.

The FD must be closed when it is passed to OPEN$. It will then be
opened so that it can be processed by LIST$ or CLOSE$: the type of
open is special, however, and prevents the FD from being used by any
other file processing operation such as a READ or WRITE. When you have
finished examining the directory you must close the FD using CLOSE$.
It is then returned to the normal closed state and can, should you so
wish, be processed by a conventional access method OPEN statement.

15.9.2 The OPEN$ function
To open the file definition for directory processing you invoke the
OPEN$ function with a CALL of the form:

CALL OPEN$ USING filename

Exception condition 1 will be signalled if an irrecoverable I/O error
occurs. Exception condition 2 is generated if the unit you have
attempted to open does not contain a volume with a System Manager
directory ($$RES = 6), or if it is in use as a spool unit ($$RES = 5).
If either exception occurs the OPEN$ does not take effect and the file
definition remains unchanged.

If no exception is signalled the volume-id of the currently mounted
volume will have been placed in the field you have specified using the
FD. Note that this means that if the volume-id is returned and the
file subsequently opened normally, then volume-id checking will take
place unless you zeroise the volume-id field.

If you attempt an OPEN$ operation on an FD which is already open,
either due to an access method OPEN statement or to a previous
invocation of OPEN$, your job will be terminated with a stop code.

15.9.3 The OPENS$ Function
The OPENS$ function behaves in the same way as the OPEN$ function
except that it will function on a spool unit (that is it will not
return exception condition 2 ($$RES = 6)).

15.9.4 The LIST$ Function
To obtain details of the first or next file present in the directory
you invoke the LIST$ function with a CALL of the form:

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 194 of 244

CALL LIST$ USING filename type

where type is the name of a PIC S9(2) COMP field in which a value
defining the file type, as shown in Table 15.5.3, is returned when the
routine signals normal completion or exception 3 or 4. In this case
the file-id is returned as well, in the field that you named in the
FILE clause of the FD's ASSIGN statement.

 | | |
 --
 | | |
 | TYPE | DESCRIPTION |
 ++++ +++++++++++
 | | |
 --
-1 to -99	Backup file. If the type is -1 this is the
	first file of the cycle, for -2 the second
	file, and so on.
0	Relative sequential file.
1	Indexed sequential file.
2	Program file or library.
3	Text file.
4	Variable length record file, eg AutoClerk
	control file.
5	Data library.
6	Compilation file or library (if file has C.
	prefix), or DMAM database file (otherwise).
7	Global Planner plan file.
8	Global Writer document file.
9	Global Finder database.
11 to 99	User-dependent organisation. Files of type
	11 to 99 can be created using the basic direct
	access method with the appropriate type
	specified in the ORGANISATION statement used to
	produce the access method.
110 to 127	System Manager system files. User programs
	should not attempt to process these files.
 --

Table 15.9.3 - Type Values Returned by LIST$

Exception condition 1 will be signalled if an irrecoverable I/O error
occurs, and exception condition 2 when there are no more files present
in the directory. In the case of either exception the file-id and type
fields are not updated. You should follow either of these exceptions

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 195 of 244

by issuing a call on the CLOSE$ function to re-establish the FD's
initial status and release the System Manager resources involved in
the directory processing operation.

Each call on the LIST$ function which completes normally or with
exception 3 or 4 returns information concerning a single file from the
directory. If the file is not in use (i.e. not already open by the
current job or a competing job in a multi-user environment) the
routine signals normal completion. Exception 3 is signalled if the
file is open as shared, and exception 4 if the file is open
exclusively. The file information is supplied in the same order in
which it would appear were the directory to be listed using the file
utility's LIS instruction: file-ids do not appear in alphabetical
order, nor does the sequence of presentation necessarily reflect the
time at which a file was created or its position on the volume. Once
exception condition 2 is signalled, all file information has been
returned to you. If you require to scan the directory again you should
follow the CLOSE$ call with a new OPEN$ call and a new sequence of
LIST$ calls.

Note that if you attempt a LIST$ operation using an FD which has not
been opened by a previous OPEN$ your job will be terminated with a
stop code.

15.9.4 The CLOSE$ function
To close the file definition once you have finished processing the
directory you invoke the CLOSE$ function with a CALL of the form:

CALL CLOSE$ USING filename

This simply restores the FD to its unopened state. No actual
input/output takes place, so CLOSE$ always completes normally and
never signals an exception.

If you attempt a CLOSE$ operation on an FD which has not been opened
by a previous OPEN$ your job will be terminated with a stop code.

15.9.5 Programming Notes
Directory operations are relatively slow, so whenever possible you
should use conventional access method open operations to determine
whether or not files are present. For example, to check whether a file
of known type is present it is usually best to issue an OPEN OLD or
OPEN SHARED for it.

The directory operations are best employed in applications which are
not performance critical, such as displaying or listing file
information in response to an operator enquiry, or in printing or
conversion operations where a number of files on the same volume are
subjected to lengthy processing. In both these cases the time spent
accessing the directory is short in comparison with the display or
file processing time.

Note that if a spool unit has been opened by the OPENS$ routine the
file names returned by the LIST$ routine will be as those listed by $F
(i.e. sssoooop where sss is the sequence number, oooo is the operator-
id and p is the partition number.

15.10 The File Status Routine, FSTAT$

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 196 of 244

The FSTAT$ system routine enables you to discover the current size of
a file.

15.10.1 Invocation
To obtain the file status you execute a CALL statement of the form:

CALL FSTAT$ USING filename size

The filename is the name of the file definition, which must be open
when the routine is called, and will remain open when it returns
control.

The second parameter, size, is the name of a PIC 9(9) COMP field in
which the routine returns the size of the file in bytes. (See the
programming notes which follow.)

15.10.2 Programming Notes
The size of an RS, TF or VL file is defined as the number of bytes in
the used part of the file, delimited by the write next pointer. The
size of an IS file includes the prime data area, the index area, and
all the overflow records currently developed, but does not take
account of any spare space reserved for new records. The size of a
DMAM database includes all the extents allocated for use by records or
index blocks, but does not take account of any spare space available
for further allocation. The size of a BD file is its extent size.
These definitions imply that WRITE NEXT statements may increase the
size of RS, TF and VL files, and WRITE statements the size of IS and
DMAM files, providing free space is available at the end of the
extent. BD files are unique in that they can never increase in size
following initial allocation.

If you are using FSTAT$ to examine the status of a shared file, you
can only rely upon the information if you specify a locking strategy
required for any file extending statements, and obtain the appropriate
lock yourself before calling FSTAT$. You should obviously unlock the
file when the status is no longer important to you.

If you do not (or cannot) do this, then it may be extended by another
user after you have obtained the size. This should not be a problem if
you are only using the size for a reporting function, or to make a
decision about file re-allocation.

15.11 The Set Password Routine, SET$
The SET$ system routine is used to establish a password, so that files
which have been secured with that password can be opened. The routine
can also be used in conjunction with the SECUR$ routine to secure
files by assigning them a password.

15.11.1 Invocation
To set the password you execute a CALL statement of the form:

CALL SET$ USING password

where password is an 8 character variable or literal containing the
password to be set. It should consist of printable ASCII characters,
as otherwise it will not be possible to key it into the file utility
or in response to the System Manager password prompt. If the password

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 197 of 244

is all spaces then the current password, if any, will be cleared and
there will be no password established.

15.11.2 Programming Notes
The password specified becomes the current password used for checking
secured files. It remains in force until a new password is set up,
either by another invocation of the SET$ routine or by the operator
keying another password in response to the System Manager prompt:

PLEASE KEY PASSWORD FOR file-id:

which will appear whenever you attempt to open a file which has been
secured with a different password. If the password is not changed in
either of these ways it will remain current until the end of the
session when the $E command, used to sign-off, clears it. The password
is only set for the partition in which SET$ is called, and each
partition running on a single screen may have its own distinct
password set up.

15.12 The Secure File Routine, SECUR$
The SECUR$ system routine is used to secure a file by assigning it the
current password, which can be established using the SET$ system
routine. SECUR$ can be used to secure an unprotected file, or to
change the password on a file, or to remove a password from a file.

15.12.1 Invocation
To secure a file by assigning it the current password you execute a
CALL statement of the form:

CALL SECUR$ USING filename

where filename is the name of a file definition, which must have been
opened using OPEN OLD or OPEN NEW before the routine is called, and
which will remain open when it returns control.

15.12.2 Programming Notes
The new password is only established when the file is closed. If you
fail to close the file the old password will remain in force.

The password on a secured file can be changed as follows:

● establish the old password using SET$;

● OPEN OLD file;

● establish the new password using SET$;

● secure the file with the new password using SECUR$;

● CLOSE file.

If the new password is specified as all spaces then the resulting file
will no longer be password secured.

If the file is not open when SECUR$ is called, or if it is shared,
then your program will be terminated in error.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 198 of 244

15.13 The IS File Size Calculation Routine, CALC$
The CALC$ system routine is used to calculate the size of an IS file
required to contain a specified number of records.

15.13.1 Invocation
The routine is invoked by a CALL of the form:

CALL CALC$ USING filename records

where the filename parameter identifies a closed IS file definition.
The record length and key length must have been established, and
usually a symbol is defined for the size field, in which the routine
returns its result. For example, a typical FD might be:

FD MAST ORGANISATION INDEXED-SEQUENTIAL
ASSIGN TO UNIT "DSK" FILE "SAMAST"
KEY LENGTH IS 8
RECORD LENGTH IS 200
SIZE IS Z-SIZE

The records parameter is the name of a PIC 9(9) COMP variable in which
the number of records the file is to contain has been established.

15.13.2 Processing
The routine calculates the file size required and returns this value
in the size field of the FD.

15.13.3 Exception Condition
Exception condition 1 will be signalled if the number of records
calculated is too large to fit into a PIC 9(9) COMP variable.

15.13.4 Programming Notes
The calculation will always give a size sufficiently large for the
number of records specified, irrespective of whether or not the file
contains overflow records. It will, therefore, be a slight over-
estimate in most cases.

15.14 Fix Product Serial Number and Expiry Date,
FIX$
The FIX$ system routine enables you to fix a serial number and,
optionally, an expiry date on a template file so that it becomes a
product file. A template file is any program, compilation file or
library which has not yet been made a product file. FIX$ lets you
perform under program control the functions provided by the file
utility's SER and FIF instructions, which are described in the Global
System Manager Utilities Manual.

15.14.1 Invocation
To fix a product serial number and, optionally, an expiry date on a
template file you execute a CALL statement of the form:

CALL FIX$ USING filename serial [date]

The filename is the name of the file definition identifying the
template file, which must be closed at the time FIX$ is called, and
which will remain closed when the routine returns control. At a

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 199 of 244

minimum you must code the FD statement and the following ASSIGN
statement:

FD filename ORGANISATION organisation
ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]

You can use any convenient file organisation (e.g. UNDEFINED,
RELATIVE-SEQUENTIAL) since the one specified is immaterial as far as
FIX$ is concerned.

The second parameter, serial, must be the name of a PIC 9(6) COMP
field containing a product serial number in the range 0 to 8,379,999
inclusive. If you supply the value 0 the System Manager serial number
of the current system will be used.

The optional third parameter date must, if present, be the name of a
PIC 9(6) COMP field containing the desired expiry date in internal
format. If the parameter is omitted no expiry date will be assigned.

15.14.2 Exception Conditions
Exception condition 1 will be signalled if an irrecoverable I/O error
occurs whilst FIX$ is accessing the template file.

Exception condition 2 is generated if the specified file is not
present on the indicated unit (in which case $$RES is "3"), or if a
file with the correct name is found, but it is not a template file
(when $$RES will be "1").

15.15 The Scratch Volume Routine, SCR$
The SCR$ system routine enables you to scratch the directory of a
direct access volume (e.g. a diskette) or a subvolume of a hard disk
domain. It results in the deletion of every file occupying the volume
or subvolume. The routine cannot be used to scratch an entire domain.

15.15.1 Invocation
To scratch a volume you code a CALL statement of the form:

CALL SCR$ USING filename

where filename identifies a file definition in which the unit-id of
the volume to be scratched has been established. Any valid
organisation may be specified in this FD, including ORGANISATION
UNDEFINED. The FD must be closed when SCR$ is called, and will remain
closed when the routine returns control.

No volume-id checking is performed by SCR$, but if a volume-id is
established in the file definition this will be used to rename the
volume once it has been scratched.

15.15.2 Exception Conditions
Exception condition 1 will be signalled if an irrecoverable I/O error
occurs during the scratch operation.

Exception condition 2 indicates the specified unit was not a direct
access device or was a domain.

15.16 Device Information Routine, DEVIN$

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 200 of 244

The DEVIN$ routine is passed a DN block containing either a unit
address or a format code (e.g. A1M, C11A). It signals an exception if
the format or unit is not supported. Otherwise, when the routine
completes normally, it returns information in the DN block giving the
characteristics of the device, and a 25 character device description.

15.16.1 The DN Device Information Block
The device information block is defined as follows:

01 DN
 03 DNFORM PIC X(6) * FORMAT CODE
 03 DNTYPE PIC X * DEVICE TYPE
 03 DNUAD PIC X(3) * UNIT ADDRESS
 03 DNVSIZ PIC 9(9) COMP * TOTAL VOLUME SIZE
 03 DNDESC PIC X(25) * DRIVE DESCRIPTION
 03 DNDLEN PIC 9(4) COMP * LENGTH OF DESCRIPTION
 03 DNNUMU PIC 9(2) COMP * NUMBER OF UNITS
 03 DNDATA PIC 9(9) COMP * DATA SIZE OF UNIT
 03 DNFMTG PIC 9 COMP * 0=NO FMTG, 1=WHOLE
 * 2=TRACK,3=TRACK IMAGE
 03 DNCNCD PIC 9(2) COMP * CONTROLLER CODE
 03 DNDRIV PIC 9(2) COMP * DRIVE NUMBER
 03 DNDACC PIC 9(2) COMP * DEFAULT ACCESS OPT
 03 DNSEC PIC 9(4) COMP * SECTOR SIZE
 03 DNSPT PIC 9(4) COMP * SECTORS PER TRACK
 03 DNHPC PIC 9(4) COMP * HEADS PER CYLINDER
 03 DNSTA PIC 9(9) COMP * START OF DIRECTORY
 03 DNDIRS PIC 9(6) COMP * DIRECTORY SIZE
 03 DNDGAP PIC 9(6) COMP * GAP BETWEEN DIRECTORY AND NEXT
 * TRACK (DISKETTE)
 03 DNVTYP PIC 9(2) COMP * VOLUME TYPE
 03 DNLUAD PIC X(3) * LAN UNIT ADDRESS
 03 DNNFIL PIC 9(4) COMP * MAXIMUM NO. OF FILES IN DIRECTORY
 03 DNDNGP PIC 9(4) COMP * GAP BETWEEN DIRECTORY AND NEXT
 * TRACK (DISKETTE)
 03 DNFILL PIC X(2) * RESERVED FOR FUTURE USE

You must set up the DNFORM field to contain either a format code,
aunit address, padded to six characters with trailing blanks or an
ANAcode (e.g. G1, O2).

15.16.2 Information Returned by DEVIN$
When DEVIN$ signals normal completion the routine returns thefollowing
information in the DN block:

DNFORM
If a format code was supplied, then it is returned unchanged in this
field. Otherwise, if a unit address was supplied, it is replaced by
the corresponding format code. The format can be supplied as an ANA
code in which case the first unit with a format of that description
will be returned.

DNTYPE The device type code returned is one of:
 T = Tiny capacity diskette (less then 240K)
 L = Low capacity diskette (240 to 480K)
 M = Medium capacity diskette (480 to 960K)
 H = High capacity diskette (960K or more)
 S = Subvolume of a domain
 D = Domain

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 201 of 244

 B = Big domain (larger than 2GB)
 R = RAM disk
 X = DLV (ie separate volume on a hard disk)
 P = Printer

Type B should not be returned on any properly configured domain.

DNUAD If a format code was supplied in DNFORM this will be the lowest
unit address corresponding to that format. Otherwise, when a unit
address was provided, this field will contain that address. If the
format was supplied in DNFORM as an code the first unit with a format
of that description will be returned. If this is a Unix system then
not only the devices associated with this system are searched for the
format, but also the devices attached to system A.

DNVSIZ The total size of the volume corresponding to the unit,
including reserved areas, alternates and directory space. The total
number of cylinders can be calculated by dividing this number by the
sector size, number of sectors per track and number of heads per
cylinder.

DNDESC The device description. Note that this description only
identifies the location of the drive, and not the precise format being
used. For example, single and double density formats on the same
device will return an identical device description, such as "LEFT HAND
DRIVE". Descriptions shorter than 25 characters are padded with
trailing blanks.

DNDLEN The length of the device description, excluding trailing
blanks. The length is always at least 1.

DNNUMU For a domain, this is the number of subunits on the domain. For
a subunit, it is the index to the subunit within the domain, for
example subunit 237 of domain 220 will return an index of 17. For all
other types of unit it is the number of consecutive units, starting
with DNUAD, which have the same format code. Thus if units 140 and 141
are the same format but 142 is either undefined or a different format,
unit 140 willreturn a value of 2 in DNNUMU and 141 a value of 1.

DNDATA The total data capacity of the unit, available for allocation
as files (or for allocation as subunits if the unit is a domain). Note
however that file allocations are always rounded up to whole number of
sectors, and subunits to a whole number of tracks.

DNFMTG Formatting flag, returned as one of:
 0 = formatting not supported
 1 = whole volume formatting only
 2 = individual track formatting
 3 or greater = individual track formatting using a
 supplied track image.

For a printer this field is set to the device characteristic byte, bit
#40 of which is set for X-ON/X-OFF printers.

DNCNCD A code which identifies the System Manager controller used to
access the device except when the device is a printer.

DNDRIV The physical drive number of the device (not necessarily unique
if several different controllers are used).

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 202 of 244

DNDACC The default access option used by the System Manager, chosen to
give optimum performance when reading or writing large records.

DNSECT The sector size in bytes for a disk, or the width in characters
of a printer.

DNSPT The number of sectors on each track for a disk, or the page size
in lines of a printer (0 = hardware form feed used).

DNHPC The number of heads on each cylinder, or the baud rate for a
printer.

DNSTA The byte address of the start of the directory area within the
volume.

DNDIRS The size of the directory in bytes (a whole number of
sectors).

DNDGAP For a diskette, the size in bytes of gap between the end of the
directory and the start of the next track. This field is undefined for
domains, subvolumes and printers. THIS FIELD FOR INTERNAL USE BY
GLOBAL BUSINESS SYSTEMS.

DNVTYP The volume type code, a number used to differentiate between
different format diskettes readable on a single drive.

DNLUAD The LAN format of the unit address. Set to spaces if the unit
is not on a network or separated system file server, otherwise set to
the LAN form of the address (starting with A - Z or a - z) which can
be used to access the unit from any computer.

DNNFIL If the device type is a diskette of subvolume, then the maximum
number of files that can be allocated on the volume is returned in
DNNFIL. For subvolumes this value is normally either 99 or 250.

DNDNGP For a domain, the size in bytes of gap between the end of the
directory and the start of the next track. This value must be
subtracted from DNDATA to obtain the usable data size. This field is
undefined for subvolumes, diskettes and printers.

Note that for printers the only fields that are established by DEVIN$
are DNTYPE, DNDESC, DNDLEN, DNSECT, DNFMTG, DNCNCD and DNSPT.

15.16.3 Invocation
After setting up the DNFORM field to contain either a format or a unit
address you invoke the DEVIN$ routine with a CALL statement of the
form:

CALL DEVIN$ USING DN

Providing the system on which it is executing supports the format or
unit, the routine completes normally and returns device information in
the other fields of the DN block, as explained above. However, an
exception is signalled if the format or unit is not supported, or if
the value supplied in DNFORM is invalid.

15.16.4 Programming Notes
On a System Manager V5.0 system the controller code and full device
description are not available. Therefore, on such systems the

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 203 of 244

controller code is always set to zero, and a device description of the
form "DRIVE NUMBER nn" or "PRINTER" is returned. For a System Manager
V5.1 and greater the controller code is only zero for printers.

Some diskette formats contain a few tracks which have a different
density or sector size to the rest of the diskette and hence cannot be
used for the System Manager directory or for data. For the purpose of
the fields returned by DEVIN$, such as the volume size, these tracks
are treated as if they were formatted in the same way as the rest of
the volume.

Two different unit addresses correspond to the same physical drive
only if they have the same controller code, drive number and device
description.

If a diskette unit allows track image formatting (DNFMTG > 2) then it
supports an extended format as used by the System Manager V5.1 product
distribution system.

Since the DEVIN$ routine never accesses the volume mounted on the
drive, it cannot detect unallocated subvolumes, and the values
returned in DNDATA and DNDIRS refer to the last subvolumes accessed on
that subunit. These values are meaningless if no volume has been
accessed on that unit since the computer was bootstrapped. If you want
to determine whether a subvolume is allocated, and its data size, you
should first access the subvolume by calling the VOLID$ routine. Set
up an error intercept in the FD you pass to VOLID$ in order to
suppress error messages (the intercept should be an EXIT WITH 1
statement). If an I/O error is signalled, and $$RES is set to C, then
the subvolume is not allocated. Any other errors represent genuine I/O
errors accessing the volume. If the operation completes normally, you
can call DEVIN$ to determine the data size.

For Unix systems DEVIN$ not only searches the current system for the
unit information but also searches devices attached to system A.

15.17 ISAM Records In Use Routine, ISUSE$
ISUSE$, the ISAM records in use routine, returns the number of records
in use for a specified ISAM file and, optionally, the number in the
overflow area. Note that both counts include deleted records that have
not yet been removed using CONV$.

15.17.1 Invocation
ISUSE$ is invoked by a call of the form:

CALL ISUSE$ USING fd area used [overflow]

where fd is the file definition of an open IS file which will be left
open on return, area is a work area large enough to contain a record
of the file, used is a PIC 9(9) COMP variable in which the number of
records used is returned, and the optional overflow is a PIC 9(4) COMP
variable in which the number of records in the overflow area is
returned.

15.17.2 Exceptions
Exception condition 1 will be signalled if an irrecoverable I/O error
occurs.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 204 of 244

15.18 The Shared Lock Routine, SLOCK$/SULOC$
The Shared Lock routine allows you to obtain a lock on a record
similar to that granted by the LOCK verb, but which may also be
obtained by other users who also use a shared lock. This would
typically be of use in a master/servant record structure, where you
wish to find the master record before creating or updating the
servant, and lock it to prevent deletion by some exclusive process
without denying other users the ability to create different servants
from the same master record.

15.18.1 Invocation
This routine is invoked by a call of the form:

CALL SLOCK$ USING fd region

to gain a shared lock, and released by a call of the form:

CALL SULOC$ USING fd region

where the fd is the FD on which the lock is to be performed (which
must be open), and region is the region to be locked.

15.18.2 Exceptions
Exception 2 will be signalled if an attempt is made to gain a shared
lock which someone else already has exclusively.

This routine is fully compatible with (and will work on) all versions
of the System Manager.

15.18.3 Programming Notes
The most common situation where shared locks are useful is when
processing records which have a master/servant relationship. For
example, if the requirement for a system is that each customer record
have a pre-existing territory record corresponding to the territory of
that customer, then the territory record is a master for the customer
record. When adding a customer record you might wish to LOCK the
territory record, so as to ensure that it is not deleted. However, if
you simply issue a normal LOCK, then not only would it be impossible
to delete the record, but it would also be impossible to add another
customer record on that territory. The solution would be to issue a
shared lock, using SULOC$, permitting other record addition processes
to proceed.

Note that if a program which has obtained a shared lock fails to
release it for some reason (due to program failure for example), then
the shared lock will remain in existence until all users of the file
have closed it.

15.18.4 Memory Paged Routine
A memory paged version of the shared lock routine is available only
when running your program on V8.1 or later System Manager. This is a
version where most of the code for the shared locking routine is held
in a System Manager memory page. It can be linked into your program by
linking compilation library C.$PAGES as explained in the section on
memory paged routines in the system subroutines manual.

15.19 Work Unit Locking, LWORK$ and UWORK$

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 205 of 244

The work unit locking routine enables you to lock a work unit rather
than a file, typically so that your program can get exclusive access
to the unit.

15.19.1 Invocation
This routine is invoked by a call of the form:

CALL LWORK$ USING fd

where fd is the FD of the work unit.

To unlock the unit the following call is used:

CALL UWORK$ USING fd

15.19.2 Exceptions
Exception 1 is returned if the unit table is full or, when invoking
UWORK$, if the unit is not locked. Exception 2 is returned if someone
already has the unit locked.

15.19.3 Programming Notes
The lock does not prevent other users from accessing the unit, so it
is vital that when unit locking is used all the programs lock the unit
before use. The routine is used by Global Business Software modules to
control access to the work units they use.

It is important to note that separate FD's are required for every unit
locked using LWORK$. The same FD must not be used to lock two
different units.

15.20 The Open File with Optional Delete Routine,
OPDE$
The OPDE$ routine permits you to open a new file, prompting the
operator for deletion if a file with the same name already exists on
the unit in question. Additionally the routine detects that it is
being run under Job Management, and in this case automatically takes
the decision to delete the offending file.

15.20.1 Invocation
This routine is invoked by a call of the form:

CALL OPDE$ USING filename [newline]

where filename identifies the file definition which is to be opened,
and newline is an optional PIC X(4) parameter, used as described under
processing below.

15.20.2 Processing
OPDE$ first attempts an OPEN NEW on the file definition provided,
using whatever access method is specified by its ORGANISATION
statement. If this should be a file organisation which does not
support an OPEN NEW operation, such as ISAM or DMAM, then your program
will be terminated in error.

If the OPEN succeeds, then OPDE$ immediately returns control to the
calling program. However, if the OPEN fails, because there is already

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 206 of 244

a file with the same name on the unit specified in the ASSIGN clause
in the FD, then the operator will be prompted:

FILE ALREADY EXISTS - DELETE?:

If no newline parameter was supplied, then this prompt is displayed on
the same line as the cursor currently occupies (as if a DISPLAY ...
SAMELINE had been executed). If a newline parameter was supplied, then
it is displayed first, on a new line. When working in formatted mode
it is usual to provide a parameter of four spaces, so that the prompt
will appear on the baseline.

If the operator replies Y to the prompt, then the file will be
deleted, and OPDE$ will proceed to open the new file required. If the
operator replies <CR>, N, or any reply except Y then OPDE$ will signal
an exception to the calling program.

15.20.3 Exception Conditions
Exception 1 is returned if an irrecoverable I/O error arose when
attempting to open the new file.

Exception 2 is returned if the operator declined to delete an existing
file.

15.20.4 Programming Notes
OPDE$ is used by several System Manager system programs which wish to
be run under Job Management, and issue prompts offering deletion of
existing listing files etc. It is only really valuable when the task
it is called by is likely to be run under Job Management.

15.21 The Copy Library Index Routine, LIBR$
The LIBR$ system routine is used to build an index of the names and
starting positions of the books in a Global Cobol copy library.
Subsequently individual books can be accessed using the text file
access method by performing a READ statement followed by READ NEXT
statements.

15.21.1 Invocation
The routine is invoked by a CALL of the form:

CALL LIBR$ USING filename LI [FM]

The filename is the name of the text library file, which must have
text file organisation and must be closed when the routine is called,
and will remain closed when the routine returns control.

The parameter LI is the name of a control block in which the index
will be built, and consists of: the name table; a filler to hold the
terminating zero byte if the library contains the maximum of 110
books; and the start table. The format is:

01 LI
 03 LINAME OCCURS 110 PIC X(2) * NAME TABLE
 03 FILLER PIC X * MAX. TERMINATOR
 03 LISTART OCCURS 110 PIC 9(6) COMP * START TABLE

When LIBR$ returns control it will have placed the names of the books
the library contains in the name table in the order in which they were

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 207 of 244

found. A corresponding entry in the start table will indicate the
starting character number of the first line following the book start
line. The last entry returned in the name table will be terminated by
a binary zero byte so that a Global Cobol SEARCH can be employed to
rapidly check for the presence of a book name.

The optional third parameter, FM, can be provided if spare memory is
available and it is desired to optimise the performance of LIBR$ by
supplying it with a large additional work area which it can use when
scanning the text file. When the third parameter is used the quantity
FM should label a free memory request block which has been previously
set up to address an area acquired by the FREE$ system routine, as
explained in 5.2.2. The block is therefore of the form:

01 FM
 03 FMFUN PIC 9 COMP * WILL CONTAIN 2
 * I.E. GET WORK SPACE
 03 FMSIZE PIC 9(6) * SIZE REQUIRED
 03 FMALL PIC 9(6) COMP * SPACE ACTUALLY
 * ALLOCATED
 03 FMPTR PIC PTR * POINTER TO SPACE

If an FM area is not supplied, or if the space actually allocated in
FMALL is less then 512 bytes, LIBR$ will simply use the 512-byte FD
extension as its work area and no performance optimisation will take
place.

15.21.2 Processing
The copy library is scanned sequentially. It is checked to be of the
correct format, as described in Appendix F of the Global Cobol
Language Manual. Each time a book start line is found a count is
incremented by one and used to index the name table and the start
table. The book name is placed in the name table and the character
number of the line following the book start line is placed in the
start table.

15.21.3 Exceptions
Exception condition 1 will be signalled if an irrecoverable I/O error
arises while scanning the library file.

Exception condition 2 will be generated if the file cannot be found,
or does not have text file organisation.

Exception condition 3 will occur if the text file is not in correct
copy library format (for example, a book end line is missing) or a
111st book is encountered. A message giving the name of the book in
error will be displayed on the screen.

When control is returned following an exception the FD will be closed
and the index table will contain a valid index to the part of the file
already processed prior to the exception being detected.

15.21.4 Programming Notes
Once the library index has been constructed you read the lines of a
particular book as follows:

● Use the Global Cobol SEARCH statement to find the index of the book

name within the name table;

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 208 of 244

● Move the correspondingly indexed start table entry to the key field
of the text file FD used to access the library;

● READ the first line of the book (i.e. the line immediately

following the book start line);

● Obtain the second and subsequent lines of the book using READ NEXT.

The book is delimited by the book end line. Unlike any other line
within the book, the first significant character of the book end line
is an ASCII full stop. Thus to check for the book end line the
simplest method is to redefine your record area as a table of single-
character entries and check the entry whose number is returned in the
TXSIG field to see whether it contains a full stop.

Note that a copy library may contain a null book, consisting of just a
book start line immediately followed by a book end line. In this case
the READ statement used to access the very first line of the book will
obtain the book end line, and, in consequence, subsequent READ NEXTs
will not be required.

15.22 The Volume description routines,
GTDES$/PTDES$
The volume description routines allow you to read or write volume
descriptions. These routines would typically be of use in installation
programs or as an addition to general volume description information.

15.22.1 Invocation
The reading of a volume description is invoked by a call of the
following form:

CALL GTDES$ USING fd description

To write a volume description you code the following statement:

CALL PTDES$ USING fd description

where the fd is an FD containing the unit-id of the volume and
description is a PIC X(50) field in which the volume description will
be returned or in which the new volume description is supplied.

15.22.2
Exception condition 1 will be returned if an I/O error has occurred
when accessing the volume description table or if the volume does not
have an entry in the volume description table.

15.22.3 Programming Notes
Domains initialised using pre-V7.0 versions of System Manager may not
have space in the volume descriptions file for all the possible volume
on the domain. This means that some of the higher numbered volumes
will not have volume description entries and an error condition 1 will
be returned if an attempt is made to access entries for these volumes.

15.23 The Sub-volume size routine, SUBS$
The SUBS$ routine returns the current size and maximum possible size
of a subvolume.

Chapter 15 - File Management Routines

Global Development File Management Manual V8.1 Page 209 of 244

15.23.1 Invocation
To return the subvolume sizes you code a CALL statement of the form:

CALL SUBS$ USING unit current maximum

where unit is the subvolume unit-id, current is a PIC 9(9) COMP field
in which the current size of the subvolume is returned, and maximum is
a PIC 9(9) COMP field in which the size of the largest free space
available on the domain to allocate a new subunit is returned. If the
subunit is not allocated the current size is returned as zero.

15.23.2 Exception conditions
An exception condition of 1 is signalled if the unit supplied is not
supported.

An exception condition of 2 is returned if SUBS$ is attempted on a
domain.

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 210 of 244

16. The Data Security System Routines

This chapter describes two routines, SAVE$ and REST$, which can be
used to take backups of files and to restore them. The Data Security
System, of which these routines form part, is described in detail in
Chapter 4 of the Utilities Manual.

You should note that SAVE$ and REST$, like the sort, temporarily
acquire whatever free memory is available, and operate faster the more
they can obtain. At least 2 Kbytes should be available, otherwise
performance may prove very poor. The extra storage is released when
the routine in question returns control. There is a full discussion of
free memory management in Chapter 8 of the System Subroutines Manual.

16.1 Save Files on Backup Cycle Routine, SAVE$ and
SAVEN$
The SAVE$ system routine is used to create a backup cycle containing
the files defined in the principal master volume's security catalogue.
The principal master volume involved, and the particular cycle to be
saved, are specified in parameters supplied to the routine. You can
also determine the title that is to be given to the backup cycle when
it is first produced, and which is checked to be present whenever the
cycle is reused. Alternatively, if you supply no title, the operator
will be prompted for one when the cycle is initially created, and
asked to confirm that the title is as expected whenever the cycle is
subsequently used.

The SAVEN$ routine is identical to SAVE$ except that the backup
diskettes are not verified. We do not recommend its use, but in some
circumstances it will save time at the expense of security.

16.1.1 Invocation
The save routine is invoked by a call of the form:

CALL SAVE$ [or SAVEN$] USING filename SR ["SHARED"]

The filename parameter labels a file definition for your security
catalogue. Only the FD and ASSIGN statements are required. The
ORGANISATION should be specified as RELATIVE-SEQUENTIAL. In the ASSIGN
statement the file-id must be the name of the catalogue, and the unit-
id and volume-id must be those of the principal master volume on which
it resides. The FD must be closed when SAVE$ is called and will remain
closed when it returns control.

The SR parameter is the name of a save/restore control area of the
form:

01 SR
02 SRCYCLE PIC X * CYCLE-ID
02 SRTITLE PIC X(30) * TITLE (OPTIONAL)
02 SRVOLN PIC 9(2) COMP * BACKUP VOLUME NO.
02 SRFILE PIC X(8) * FILE-ID

Before invoking SAVE$ you must establish the cycle-id of the backup
cycle that you wish to create in SRCYCLE. You must place the title to
be assigned or checked in SRTITLE. However, if SRTITLE remains blank
the operator will be prompted to assign the title when the backup

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 211 of 244

cycle is first created, and to confirm it whenever the cycle is re-
used.

The other fields of the SR area are used to supply information to your
program when SAVE$ returns control.

The optional third parameter is of importance in multi-user and
networking environments where a number of user programs can be
accessing files at the same time. When it is omitted, or is anything
other than the character string "SHARED", SAVE$ opens each of the
files to be preserved with an OPEN OLD statement, implying that the
prompt:

* IN USE ERROR ON description unit - RETRY?:

will appear if any such file is currently opened by another user. If
this prompt appears the operator will either have to abort the save
operation or wait until all other programs have finished with the file
in question.

By coding "SHARED" as the third SAVE$ parameter you can request the
routine to open each file to be preserved with an OPEN SHARED so that
other users can continue inspecting it throughout the backup process.
Obviously an inconsistent backup will be taken if updates are taking
place at this time. Therefore applications which use this option
should ensure that no other users can update the files involved in a
save operation whilst SAVE$ is working. When only one update program
can be active at once a simple technique is to define a regional lock
associated with one of the files to mean "updating allowed". Then the
program responsible for the backup operation need only acquire this
lock before executing the shared save and all will be well. For
example:

LOCK SAMAST "FILE"
ON EXCEPTION
DISPLAY "AN UPDATE IS IN PROGRESS"
DISPLAY "- SAVE CANNOT TAKE PLACE" SAMELINE
BELL
STOP RUN
END
CALL SAVE$ USING SECURE SR "SHARED"
etc etc

Note that whether or not "SHARED" is specified you must ensure that
there are no files opened on the backup unit, $B, before calling
SAVE$, otherwise "file in use" I/O errors will occur.

16.1.2 Processing
The save routine is used internally by the $SAVE command program, and
you will find a detailed description of how the operator may respond
to the prompts it issues in the Global System Manager Utilities
Manual.

SAVE$ begins by opening the security catalogue to determine the
location of the master files, which are processed one by one in
catalogue entry order. A mount prompt appears whenever a master volume
is required which is not online.

A backup prompt of the form:

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 212 of 244

MOUNT BACKUP backup-id ON description unit AND KEY <CR>:

is output to control the loading of each backup volume. This prompt
will be suppressed if the operator correctly anticipates the mounting
of the first backup volume. If the SRTITLE field supplied to SAVE$ was
blank, the operator will be prompted for the title when the first
volume of the backup cycle is new:

Backup title:

or, if the cycle is already in use, he or she will be asked to confirm
that it can be overwritten:

Overwrite title backup of date time?:

When SRTITLE is non-blank these two prompts are suppressed. The title
is then automatically inserted when the cycle is created, and checked
whenever it is reused.

If an irrecoverable I/O error occurs on a backup volume, then,
following the operator's reply of N to the retry prompt, the
continuation prompt:

CONTINUE WITH NEW BACKUP VOLUME?:

appears to allow the operator to replace the faulty volume and
continue.

If the save operation succeeds, SAVE$ returns control signalling
normal completion. In this case SRVOLN contains the volume number of
the last backup volume created, so that you can output this statistic
in a report, should you so wish.

16.1.3 Exceptions
If the save operation fails, one of four different exception
conditions will be signalled to indicate the type of error that has
occurred.

Exception condition 1 can only arise if you are re-using a security
cycle. It indicates that the backup title is not as expected. Either
it does not match the information you supplied in SRTITLE, or if your
SRTITLE was blank, the operator did not reply Y to the overwrite
confirmation prompt.

Exception condition 2 indicates that SAVE$ has detected that it is
about to request that a master file be mounted on the backup unit
itself. This means either that the security catalogue is in error, or
that the wrong unit-id was supplied in the file definition passed as a
parameter to SAVE$. The field SRFILE contains the file-id of the
master file involved.

Exception condition 3 occurs if the operator replies N to any mount
prompt, if there is an irrecoverable I/O error on a master file, or if
a master file defined in the security catalogue is not present on its
master volume. SRFILE contains the file-id of the file involved. If
this is the name of your security catalogue, then either there was an
irrecoverable I/O error accessing the file, or the file was not

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 213 of 244

present on the principal master volume, or it was present, but was not
a valid catalogue.

Exception condition 4 is signalled if the operator indicates that a
required backup volume is not available, either by replying N to the
backup prompt or to the continuation prompt which follows a permanent
I/O error on a backup volume. The field SRVOLN contains the volume
number of the backup volume involved.

16.1.4 Programming Notes
The only console output from SAVE$ consists of the prompts described
under "Processing" above. The calling program is responsible for
reporting that the save operation has been completed successfully, or
producing an appropriate warning if it has been terminated in error.
In production running, assuming a debugged system in which the calling
program, rather than the operator, supplies the backup title, the four
exceptions may be interpreted as follows:

1 This should not occur providing sensible operating procedures have
been adopted. If it does it means that two or more different versions
of the same cycle of backup volumes are in existence, clearly a
situation to be avoided. The save operation must be repeated using the
correct version.

2 This should not occur.

3 A permanent I/O error has arisen on a master volume, or a master
volume has become lost. If the master data is truly unobtainable it
will be necessary to restore an earlier version from a previous backup
cycle and repeat the intervening processing before attempting the save
operation again.

4 The operator has terminated the save operation because he needs a
spare backup volume and one is not available. The save operation can
be repeated as soon as the necessary volume or volumes have been
initialised.

16.2 Restore Files from Backup Cycle Routine,
REST$
The REST$ system routine is used to restore master file information
from a previously saved backup cycle. The principal master volume
involved, and the particular cycle to be restored, are specified in
parameters supplied to the routine. You can also specify a title which
must be present on the backup cycle in order that the restore
operation be allowed to proceed. Alternatively, you may supply no
title and in this case the operator will be prompted to confirm that
the correct backup cycle is in use.

16.2.1 Invocation
The restore routine is invoked by a call of the form:

CALL REST$ USING filename SR [type]

The filename parameter labels a file definition for your security
catalogue. Only the FD and ASSIGN statements are required. The
ORGANISATION should be specified as UNDEFINED. In the ASSIGN statement
the file-id must be the name of the catalogue, and the unit-id and
volume-id must be those of the principal master volume on which it

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 214 of 244

resides. The FD must be closed when REST$ is called and will remain
closed when the routine returns control. Note that REST$ uses the
filename parameter solely to determine the identity of the principal
master volume: the restore process is controlled by file, volume and
unit-id information established on the backup volumes themselves
during the save process.

The SR parameter is the name of the save/restore control area, the
format of which is defined in section 16.1.1. Before invoking REST$
you must establish the cycle-id of the backup cycle you wish to
restore in SRCYCLE, and place the title you wish to have checked in
SRTITLE. Alternatively you may leave SRTITLE blank, and in this case
the operator will be prompted to confirm that the title of the backup
cycle is as expected before the restore operation is allowed to
proceed.

The other fields of the SR area are used to supply information to your
program when REST$ returns control.

The optional third parameter, type, is a PIC X variable which may
contain one of the following values:

F to indicate that a full restore is required (this is the default if
the parameter is omitted);

L to indicate that the backup volume's contents should be listed on
the screen (which must be in teletype mode);

S to indicate that a selective restore is required; this is not
generally used except in the context of program development.

Note that before calling REST$ you must ensure that there are no files
open on the unit assigned to $B, otherwise the restore process will be
terminated with I/O error F, indicating that there are files already
in use on the backup device.

16.2.2 Processing
The restore routine is used internally by the $RESTORE command
program, and you will find a detailed description of how the operator
may respond to the prompts it issues in the Global System Manager
Utilities Manual.

REST$ begins by requesting the first backup volume of the cycle by a
backup prompt of the form:

MOUNT BACKUP backup-id ON description unit AND KEY <CR>:

Each subsequent backup volume is requested by a similar prompt.

If the SRTITLE field supplied to the routine was blank, then, as soon
as the first backup volume is mounted, the operator is asked to
confirm that the actual title and date are as expected:

Restore backup title of date time?:

When SRTITLE is non-blank this prompt is suppressed and the title you
have supplied is simply checked against the one actually present on
the backup cycle.

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 215 of 244

If type is F or has been omitted indicating a full restore, then each
backup file is read from the backup cycle and a mount prompt is issued
if the required master volume is not online. I/O errors, arising on
either master or backup files, are handled by the normal System
Manager mechanism, the retry prompt.

If type is L then the backup cycle is read through and the names and
destinations of the files found are displayed on the screen but they
are not restored. This is useful when you need to know what files are
within a backup cycle and which volumes they are on.

If type is S, this indicates that a selective restore is required
(usually to cope with a partially corrupted master volume). As with
list, the names and destinations of the files contained in the backup
cycle are displayed, but the operator is given the option to restore
these files (Y is keyed to restore, N or <CR> if not). When the first
file is to be restored onto a new master volume the operator is given
the option to scratch the master volume.

If the restore operation succeeds REST$ returns control signalling
normal completion. The field SRVOLN contains the volume number of the
last backup volume accessed.

16.2.3 Exceptions
If the restore operation fails one of four different exception
conditions will be signalled to indicate the type of error that has
occurred.

Exception condition 1 arises if the backup title is not as expected.
Either it does not match the information you supplied in SRTITLE, or
if your SRTITLE was blank, the operator did not reply Y to the restore
confirmation prompt.

Exception condition 2 occurs if REST$ detects that it is about to
request that a master file be mounted on the backup unit itself. This
probably means that the wrong unit-id was supplied in the file
definition passed as a parameter to REST$. The field SRFILE contains
the file-id of the master file involved.

Exception condition 3 occurs if the operator replies N to any mount
prompt or if there is an irrecoverable I/O error affecting the master
file. SRFILE is set to the file-id of the affected master file.

Exception condition 4 is signalled if the operator indicates that a
required backup volume is not available by replying N to the backup
prompt, or if an irrecoverable I/O error occurs on a backup volume.
Exception condition 4 will also arise if REST$ detects that the backup
cycle is internally inconsistent, as might be the case if it was only
partially created because the previous save operation terminated in
error. The field SRVOLN contains the volume number of the backup
volume found to be faulty.

16.2.4 Programming Notes
The only console output from REST$ consists of the prompts described
under "Processing" above. The calling program is responsible for
reporting that the restore operation has completed successfully, or
producing an appropriate warning if it has been terminated in error.
In production running, assuming a debugged system in which the calling

Chapter 16 - The Data Security System Routines

Global Development File Management Manual V8.1 Page 216 of 244

program, rather than the operator, supplies the backup title, the four
exceptions may be interpreted as follows:

1 This should not occur providing sensible operating procedures have
been adopted. If it does it means that two or more different versions
of the same cycle of backup volumes are in existence, clearly a
situation to be avoided. The restore operation must be repeated using
the correct version.

2 This should not occur.

3 A permanent I/O error has arisen on a master volume, or a master
volume has become lost. The restore operation must be repeated once a
new volume has been initialised, or a missing volume found.

4 The backup data itself is in error. It will be necessary to fall
back to an earlier backup cycle and then repeat the restore operation.

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 217 of 244

17. The Multi-Key Sort

The $SORT command described in the Global Utilities Manual allows you
to sort files of fixed length records into an order determined by up
to nine keys, each of which may be defined as either character or
computational fields of ascending or descending sequence. The Global
Cobol SORT, RELEASE and RETURN statements defined below allow you to
construct sorts of almost any complexity under program control. Before
coding your own sort, however, you should check that the same effect
cannot be achieved more easily by using $SORT, possibly tailored for a
particular purpose, using Global Cobol Job Management.

The sort employs the unoccupied part of the user area following the
last program loaded as a work area. The size of the work area
determines how many records can be sorted without requiring a work
file and the efficiency of the sort when a work file is present. The
larger the work area can be, the better.

If you provide a work file and the work area is large enough to allow
all the records to be sorted internally, the file will not be used.

You can use the $CALC command described in the Utilities Manual to
calculate sort work space requirements, given the number of records to
be sorted. A work file, if it is needed, must be large enough to
contain all the records and all the keys to be sorted.

17.1 Invoking the Sort
The sort is invoked by the SORT statement, which supplies the
addresses of an input and an output routine. The input routine
supplies records to the sort using the RELEASE statement, and the
output routine obtains sorted records from the sort using the RETURN
statement.

17.1.1 The SORT Statement
To initiate the multi-key sort you must code a SORT statement of the
form:

SORT sc input output [filename]

The parameter sc is the name of a sort control area of the following
format:

01 SC
 03 SCRLEN PIC 9(4) COMP * RECORD LENGTH
 03 SCRECS PIC 9(9) COMP * NO. OF RECORDS
 03 SCKLEN PIC 9(4) COMP * TOTAL KEY LENGTH
 03 SCKEYS PIC 9(4) COMP * NO. OF KEYS (n)
 03 SCDESC OCCURS n PIC X(8) * KEY DESCRIPTOR TABLE

You must initialise all fields of the area, which is read-only as far
as the sort is concerned. The size in bytes of the fixed length
records must be in SCRLEN and must not be greater than 2000 bytes.

The field SCRECS may be supplied as zero if the number of records to
be sorted is not known. If a positive value is supplied the sort will
check whether it has sufficient capacity to process the indicated
number of records and will signal an exception if this is not the
case.

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 218 of 244

SCKLEN must be set to the total size of all the keys involved in the
sort, in bytes. SCKEYS must contain a value between 1 and 9,
indicating the number of different keys, which must correspond to the
number of key descriptor entries in the following SCDESC table. Each
key descriptor consists of a string of exactly 8 characters, of the
form:

"kkfsoooo"

where:

kk is the length of the key in bytes. For ascending character keys kk
must be between 01 and 99 inclusive, and for other keys kk must be
between 01 and 08 inclusive.

f indicates the format of the key, X=character, C=computational.

s is the sequence indicator, A=ascending, D=descending.

oooo specifies the origin of the first byte of the key within the
record. The first byte of the record is 0001.

Thus the descriptor "08XA0005" defines an 8-byte character key, to be
sorted into ascending sequence, starting at byte 5 of the record. The
first entry in the key descriptor table should be for the most
significant key, the second entry for the next most significant... and
so on.

The second parameter of the SORT statement, input, is the name of a
section within the calling program which is responsible for providing
the records to be sorted using the RELEASE statement.

The third parameter, output, is the name of another section which
obtains sorted records using the RETURN statement. The System Manager
PERFORMs the input section to obtain the records to be sorted, and
then the output section to return the sorted records to your program.

The final, optional parameter, filename, identifies the file
definition of the sort work file, which is only needed when there is
insufficient main memory available to perform the sort internally.
Only the FD and ASSIGN statements are required in the file definition,
which should be coded:

FD filename ORGANISATION UNDEFINED
ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]

This file definition must be closed when the SORT statement is
executed, and will remain closed when Global Cobol returns control to
the next statement following the SORT statement.

Note that if the work file already exists when the sort is called, it
will be overwritten if it is needed but will remain in existence at
the end of the processing. If the work file is not allocated at the
start of the sort it will be deleted at the end of the sort.

17.1.2 Exception Conditions from SORT
When the sort completes normally control is returned to the statement
immediately following the SORT statement and no exception is

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 219 of 244

signalled. However, if you specified a non-zero number of records in
the SCRECS field of the sort control area, the System Manager will
check that there is sufficient space to perform the sort and signal an
exception if this is not the case, or if an irrecoverable I/O error
occurs when examining the sort work file (if there is one). You should
trap and process the condition using an ON EXCEPTION statement
immediately following the SORT statement.

Three separate exceptions may be signalled:

$$COND=1 means that an irrecoverable I/O error occurred when checking
the work file capacity;

$$COND=2 indicates that either there is no work file, and there is not
sufficient internal memory available to perform the sort, or there is
a work file, but it is not sufficiently large;

$$COND=3 indicates that the capacity of the sort algorithm has been
exceeded. There is insufficient internal memory available. You must
make more user area space available by one of the techniques suggested
in chapter 8 of the Global Cobol System Subroutines Manual.

An exception will also be signalled if the input or output routine
executes an EXIT WITH condition statement. The condition number
signalled by the SORT will be that in the EXIT WITH statement. To
avoid confusion with those exceptions generated by the SORT itself,
the condition should be 4 or greater.

17.1.3 The RELEASE Statement
The RELEASE statement must be executed from within the input section
of your program. Each execution of the statement is responsible for
providing a single record to be sorted. It is coded:

RELEASE record

where record labels an area within the data division in which you
supply the record.

Once you have released the last record to be sorted you should execute
an EXIT statement to return control from your input section to the
sort. The System Manager will then PERFORM the output section so that
you can obtain the sorted records one by one.

Note that you can terminate the sort by executing a statement:

EXIT WITH 4

which will cause exception condition 4 to be signalled by the SORT
statement. This is particularly useful if you need to cancel a sort
due to operator intervention or detection of an irrecoverable error.

If an irrecoverable error occurs on the work file during the input
phase of the sort, an exception will be signalled by the RELEASE
statement. You can trap and examine this condition by using an ON
EXCEPTION statement immediately following the RELEASE statement.

Three separate conditions may be signalled:

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 220 of 244

$$COND = 11 means that an irrecoverable I/O error occurred on the work
file;

$$COND = 12 means that there was insufficient space on the work file;

$$COND = 13 means that there was insufficient free memory available.

17.1.4 The RETURN Statement
The RETURN statement must be executed within the output section of
your program. Each execution of the statement provides you with a
single sorted record. It is coded:

RETURN record

where record labels an area within the data division in which the sort
returns each record. When there are no more records remaining RETURN
signals exception condition 1. You should trap this condition by means
of an ON EXCEPTION statement immediately following the RETURN
statement.

Following the exception, you may perform your own end-of-sort
housekeeping. You must then execute an EXIT statement to return
control from your output section to the sort, which will then resume
the main part of your program at the instruction following the SORT
statement, signalling normal completion.

If an irrecoverable I/O error occurs on the work file exception
condition 11 will be signalled (not exception condition 1).

Note that you can terminate the sort by executing a statement:

EXIT WITH 4

which will cause exception condition 4 to be signalled by the SORT
statement. This is particularly useful if you need to cancel a sort
due to operator intervention or detection of an irrecoverable error.

17.2 Programming and Design Notes

17.2.1 Estimate of Number of Records to be Sorted
If you are unable to estimate the number of records, specify the
SCRECS field as zero. The System Manager will not then check the
capacity of the sort, and the SORT statement will not be liable to an
exception. However, your program will be terminated in error during
the sort process if the capacity is exceeded. If you do specify a
positive value in SCRECS this may limit the capacity of the sort, and
so you should ensure that the figure you specify is at least as large
as the number of records to be sorted. Specifying the number of
records may sometimes allow a sort to be performed in memory which
otherwise would have to use the work file.

17.2.2 Specification of Keys
You must be careful to specify the keys correctly, as it is unlikely
that any error in the specification will be detected by the System
Manager.

The number and type of the keys involved affects the efficiency of the
sort process. Ascending character keys are the simplest to sort, then

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 221 of 244

descending character, ascending computational and finally, most
difficult of all, descending computational keys. Whenever possible,
group together the keys that you need to sort frequently and sort them
as a single ascending character key. Note that computational keys
which cannot take on negative values may be treated as character keys.

17.2.3 Free Memory
The sort uses the free storage at the end of the user area as a
workspace. The smaller the program calling the sort, the larger the
workspace, and hence the larger to capacity of the sort. Therefore you
may wish to make a sort and its associated processing into a separate
overlay, to maximise the free storage available. Note that you may
need to use the FREE$ system routine before passing control to the
program to ensure that the System Manager allocates the maximum amount
of free space actually available. (See the section on storage
management in the Global Cobol System Subroutines Manual for more
details.)

In general, additional free memory will increase the speed of a sort,
particularly if this permits an in-memory sort to be performed rather
than one which uses a work file.

In extreme cases, you may need to overlay the input and output section
processing. You will still need skeletal, permanently resident, input
and output sections, but each of these can pass control to a separate
overlay introduced by a LOAD or EXEC statement. You must make sure
that the input overlay is at least as large as the output overlay, and
load the input overlay before initiating the sort, because the sort
will use the whole of the remaining memory for its work area. When the
output section is entered you must LOAD or EXEC the output overlay,
which will occupy the same storage area as the input overlay. Because
the top of memory is used by the sort you must set the system variable
$$INDE to point at the overlay storage area, to avoid corrupting high
memory. The example shows, in skeleton form, the coding required:

LOAD input-overlay
SORT SC SORT-IN SORT-OUT WFILE

SECTION SORT-IN
CALL $$EPT USING... * CALL INPUT OVERLAY
EXIT * RETURN TO SORT

SECTION SORT-OUT
POINT $$INDE AT overlay area * SET UP $$INDE
EXEC output-overlay USING... * LOAD AND ENTER

 * OUTPUT OVERLAY
EXIT * END SORT

17.2.4 File Location
For large sorts, file access time will account for most of the time
spent in the sort. This time can be greatly reduced by locating the
files on the fastest direct access devices available, and by putting
the files on separate drive units so that the read/write heads on the
drives do not have to be continually moved between the files.

The most important consideration is to avoid contention between the
work file and files accessed in the output section. This can be done
either by putting them on separate drives, or, if the output is

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 222 of 244

relative sequential, by using a BLOCK CONTAINS statement in the output
file's FD, thus reducing the number of accesses to the output file.

17.2.5 Blocking Files
If a relative sequential file is used either as the sort input or as
the sort output, then a BLOCK CONTAINS statement in the FD will
normally improve performance, although it does reduce the free space
available to the sort. Blocking of the output file is particularly
useful if it is on the same drive as the work file. Note that it may
be possible to use the same FD for both input and output files, so
that they can share the same buffer area.

17.2.6 "Tag" Sorts
In a normal sort the whole of the input record is sorted. In a tag
sort however, only a special, short record is passed to the sort,
consisting of the sort key(s) followed by the record key. The output
section of the sort must then re-read the input file, using the record
key, to obtain the complete record.

The advantage of a tag sort is that because the record is much smaller
the sort capacity is increased. It may be possible to perform the sort
in memory instead of using a work file. The disadvantage is that each
record on the input file must be read twice, and this often outweighs
any time savings on the sort itself.

A tag sort must be used if a normal sort would not have sufficient
capacity. A tag sort will usually be faster than a normal sort when
the record constructed for the tag sort is much shorter than the
original record length, particularly if this results in the sort being
performed in memory. However, the performance of a sort depends
critically on the machine on which it is executing and the relative
performance of the two types of sort vary considerably from machine to
machine.

17.2.7 Processing the Sorted Records Directly
In many cases the sorted records need not be written to a file, but
can be processed immediately. For example, it is often necessary to
sort records into a particular sequence simply in order to print a
report. It is clearly unnecessarily time-consuming to write the
records to a file and then print them in a separate program; it is
better if the report is printed as part of the sort output routine.
When the report is being written directly to the printer, much of the
time spent in the sort will be overlapped with the printing, giving
further performance benefits.

Such a sort can also be made more efficient by reducing the number and
the size of the records sorted. If only certain types of records are
required to produce the report, then the other records should be
omitted by the sort input routine. If only a small amount of the
information contained within the record is required to produce the
report, it may be better to construct shorter records containing just
the information required.

PROGRAM SORT1
DATA DIVISION
FD WFILE ORGANISATION UNDEFINED
ASSIGN TO UNIT "DSK" FILE "SORTWORK"
.
(File definitions for the unsorted input file, INFILE and the

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 223 of 244

sorted output file, OUTFILE, follow).
.
77 RECORD PIC X(100) * RECORD AREA
01 SC * SORT CONTROL AREA
02 FILLER PIC 9(4) COMP
VALUE 100 * RECORD LENGTH
02 FILLER PIC 9(9) COMP
VALUE 1000 * NUMBER OF RECORDS
02 FILLER PIC 9(4) COMP
VALUE 13 * TOTAL KEY LENGTH
02 FILLER PIC 9(4) COMP
VALUE 2 * TWO KEYS
02 FILLER OCCURS 2 PIC X(8) * KEY DESCRIPTORS:
VALUE "08XA0005" * CUSTOMER CODE
VALUE "04CA0013" * TRANSACTION AMOUNT

PROCEDURE DIVISION
.
(Coding to open the input file, INFILE)
.
SORT SC SORT-IN SORT-OUT WFILE
 ON EXCEPTION GO TO ERROR-REP
 .
 (If control reaches here the sort has completed
 satisfactorily, and OUTFILE, containing the sorted records,
 has been created)
 .
 SECTION SORT-IN
 GETINP.
 READ NEXT INFILE INTO RECORD * READ RECORD FROM INFILE
 ON EXCEPTION * SIGNALS END OF FILE
 (Coding to close the input file)
 EXIT
 END
 RELEASE RECORD * SUPPLY RECORD TO SORT
 ON EXCEPTION EXIT WITH $$CODE * REFLECT ERRORS TO SORT
 ERROR HANDLING
 GO TO GETINP
 SECTION SORT-OUT
 (Coding to open the output file, OUTFILE)
 GETOUT.
 RETURN RECORD * OBTAIN RECORD FROM SORT
 ON EXCEPTION
 IF $$COND = 1 STOP RUN * STOP IF READ ERROR ON
 WORK FILE
 (Coding to close the output file)
 EXIT * END OF SORT
 END
 WRITE NEXT OUTFILE FROM RECORD * OUTPUT SORTED RECORD
 GO TO GETOUT

Figure 13.3.1 - Sort Example 1 - A Simple Multi-key sort

17.3 Examples
In order to fit the examples onto single pages, and to emphasise the
structure of the sort itself, most of the statements have been
replaced by brief descriptions in parentheses. Note that the input and
output files need not be relative sequential; for example, the input
file in the first example could be indexed sequential.

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 224 of 244

17.3.1 Example 1 - A Simple Multi-key Sort
Figure 13.3.1 shows the skeleton of a program which uses the multi-key
sort to arrange the records of an input file, INFILE, in the sequence
of transaction amount within customer code. The sorted information is
written to an output file, OUTFILE.

The sort control area (SC) indicates that the records involved are 100
bytes in length, that a maximum of 1000 records ever need to be
sorted, and that there are 2 keys whose combined length is 13 bytes.
The key description table defines the 8 character customer code,
beginning at byte 5 of the record, as the most significant key. The
second key, the transaction amount, is a 4-byte computational field
beginning at byte 13 of the record. Both are to be sorted in ascending
sequence. Note that if the amount could never be negative, these two
fields could be combined into a single character key.

Before the sort takes place the input file is opened. You could use
the FSTAT$ routine described in section 9.10 to determine the size of
the file and deduce the exact number of records present. You could
then make an accurate estimate of the number of records to be sorted,
rather than just using an appropriately high value as in this example.

The SORT statement which initiates the multi-key sort identifies SORT-
IN and SORT-OUT respectively as the input and output section names. A
sort work file named WFILE is provided. An ON EXCEPTION statement
immediately following the SORT statement routes control to ERROR-REP
if insufficient space is available, or if an irrecoverable I/O error
occurs when checking the work file. Control will only reach the next
statement if the sort completes successfully.

The input section, SORT-IN, simply reads records one by one from
INFILE and releases them to be sorted. In a more sophisticated
application some of the records might well be dropped from the sort at
this point, or additional records might be added. When the READ NEXT
statement used to obtain records sequentially from the file signals an
exception this means the end of the file has been reached. The file is
then closed and an EXIT statement is executed to return control to the
System Manager.

Once the records have been sorted according to the key sequences
defined by the key descriptor table the output section, SORT-OUT,
receives control. It extracts the records one by one using the RETURN
statement and writes them sequentially to the output file. Once the
last record has been supplied RETURN signals an exception. The output
file is then closed and an EXIT statement executed to transfer control
back to the System Manager which, in turn, passes control back to the
ON EXCEPTION statement following the SORT statement. However, since
processing has completed normally no exception is signalled, the ON
EXCEPTION logic is skipped, and the next statement is executed.

PROGRAM SORT2
DATA DIVISION
.
(File definitions for input file INFIL, key INKEY, and output
fileOUTFIL).
.
01 SC * SORT CONTROL AREA
 02 FILLER PIC 9(4) COMP

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 225 of 244

 VALUE 13 * RECORD LENGTH
 02 FILLER PIC 9(9) COMP
 VALUE 0 * NUMBER OF RECORDS
 02 FILLER PIC 9(4) COMP
 VALUE 8 * TOTAL KEY LENGTH
 02 FILLER PIC 9(4) COMP
 VALUE 1 * ONE KEY
 02 FILLER PIC X(8) * KEY DESCRIPTION
 VALUE "08XA0001"
*
01 RC
 02 FILLER PIC X(4)
 02 RCKEY PIC X(8) * SORT KEY
 02 FILLER PIC X(188) * REST
*
01 ZA * RECORD FOR TAG SORT
 02 ZASKEY PIC X(8) * SORT KEY
 02 ZARKEY PIC 9(9) COMP * RECORD KEY
*
.
PROCEDURE DIVISION
 .
 (Coding to open input and output files)
 .
 SORT SC SORT-IN SORT-OUT
 ON EXCEPTION GO TO ERROR-REP
 .
 (If control reaches here the sort has completed successfully) (Close
input and output files and exit)
 .
SECTION SORT-IN
GETINP.
 READ NEXT INFIL INTO RC * GET NEXT RECORD
 ON EXCEPTION EXIT
 MOVE RCKEY TO ZASKEY * MOVE SORT KEY
 MOVE INKEY TO ZARKEY * AND RECORD KEY TO ZA
 RELEASE ZA * PASS ZA TO SORT
 GO TO GETINP
*
SECTION SORT-OUT
GETOUT.
 RETURN ZA * GET NEXT KEY FROM SORT
 ON EXCEPTION EXIT
 MOVE ZARKEY TO INKEY * MOVE KEY TO INPUT FD
 READ INFIL INTO RC * AND READ RECORD
 WRITE NEXT OUTFIL FROM RC * THEN WRITE TO OUTPUT
 GO TO GETOUT

Figure 17.3.2 - Sort Example 2 - A Tag Sort

17.3.2 Example 2 - A Tag Sort
Figure 17.3.2 shows the skeleton of a program which uses the multi-key
sort to sort an input file, INFIL, using a tag sort. The sorted file
is written to an output file, OUTFIL.

The record to be sorted consists of the 8 character sort key followed
by a 4 byte file key. (This assumes that the file has a four byte key
field, as for relative sequential files.) Hence the sort control area
(SC) gives a record length of 13 bytes (8+4), with a single 8

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 226 of 244

character key starting at the first byte. Because the record length is
only 13 bytes, a large number of records can be sorted in memory,
typically 1000-2000, and so a work file is not required.

The input section, SORT-IN, reads records one by one from the input
file, constructs the tag record to be sorted from the sort key and the
record key, and releases the record to the sort.

The output section, SORT-OUT, extracts records from the sort using the
RETURN statement, moves the record key to the key field of the input
file definition, and then reads the original record from the input
file. This record is then written to the output file.

17.4 Using the multi-phase sort, MSORT$
A new sorting subroutine is available as part of V6.2 and later System
Manager which performs much the same function as the Global Cobol SORT
verb. It has a number of advantages over the SORT verb, the most
important being that its capacity to sort records is not limited by
the amount of memory available.

MSORT$ includes a multi-phase merge mechanism, to permit it to sort
unlimited amounts of data, and this mechanism is optimised for
performance assuming that there are around 30 cache buffers available
on the computer. (Note that on a multi-user system other programs will
be competing for cache buffers, so MSORT$ will not get to use all the
buffers configured.) If there are no cache buffers at all (or
potentially if there are vastly more than 30) then the performance of
MSORT$ may be somewhat worse than that of the SORT verb if large
numbers of records are processed (although in general the performance
of MSORT$ is the same as or better than that of the SORT verb).

MSORT$ also makes use of the special service used by DMAM to build its
keys (this is used both to remove the key length limits on descending
keys, and to provide the new translation key types), and as a
consequence may not be used on a pre-V5.1 operating system. It is
necessary to call the DBSET$ routine at some point in the program
suite before calling MSORT$ (this is to establish the required service
routine - see documentation of DBSET$ in the Data Management Manual
for full details). Note: the requirement to call DBSET$ does not apply
if the records to be sorted have only a single, character ascending
key.

Because of the extra interface requirements of MSORT$, and possible
performance degradation in certain situations, it is not currently
being introduced as the standard sort invoked by the SORT verb.
Nevertheless it is likely that MSORT$ will become the standard at some
point in the future, and developers are encouraged to use MSORT$ in
any situation where its unlimited capacity would be of value.

As with the SORT verb, MSORT$ employs the unoccupied part of the user
area following the last program loaded as a work area. The size of the
work area affects the efficiency of the sort, but does not limit the
number of records which can be sorted.

If all the records can be sorted in memory, then no work file will be
used. If a work file is required then it must be large enough to
contain all the records and all the keys, and allow an expansion
factor for the multi-phase merge. Details on the calculation of the
expansion factor may be found in section 13.5.

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 227 of 244

17.4.1 Invoking MSORT$
MSORT$ is invoked by a call, similar to the SORT verb. You code:

CALL MSORT$ USING sc input output [filename]

Where the parameters have the same meaning as those in 13.1.1.

In addition to the key formats supported by the SORT verb, it is
permissible to code a key format of T, which indicates translation. A
translation key is built using a translation table held in the sort
routine, which is accessible to the user program as an EXTERNAL
SECTION in the following format:

EXTERNAL SECTION IX$TAB * name of section
*
77 IX-NSEG PIC 9(4) COMP * no. of merge streams
*
01 IX-TT * translation table
 03 IXBITS PIC 9 COMP * translation type
 03 FILLER PIC X(3)

VALUE LOW-VALUES
 03 IXCHAR OCCURS 256 PIC X * translations

The field IX-NSEG is used to control the maximum number of input
streams the sort will permit during its internal merge processing, and
is set initially to 32. It is desirable to have no more streams of
merge data than there are cache buffers available (for efficiency
reasons), but within this limit the higher the number of streams
permitted the more efficient the sort will be. The field may be
amended by the user program to tune performance of the sort to the
system configuration - values of less than 8 or more than 64 in IX-
NSEG will be treated as 8 and 64 respectively (although future
versions of MSORT$ may permit a wider range of values). If no cache is
available IX-NSEG should be set to 9999 to use as many streams as
possible.

The IX-TT table defines a translation table in the same format as that
used by DMAM (it may be read from a DMAM database using the DBRTT$
routine documented in the Data Management manual). Consult the
appropriate appendix of the Data Management manual for complete
details of the table layout.

The default values in IX-TT give a RAD-50 style (3 characters into 2
bytes) compression of numerals and alphabetic characters, without
regard to case and ignoring all other characters. The user program may
of course establish its own translation table, either by setting the
values explicitly in IX-TT, or by reading the translation table from a
DMAM database file using the DBRTT$ subroutine.

When translations are in use it can be difficult to determine the
total length key length of the sort, so MSORT$ calculates the precise
value for this field itself. You should set SCKLEN to be the sum of
the lengths of the individual keys, and the sort will establish the
correct total key length in the field once it has examined all the
keys and determined their correct key lengths taking translation into
account. Each translation key is allocated space sufficient to hold
the maximum number of bytes into which the key value could be
translated.

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 228 of 244

17.4.2 Exception Conditions from MSORT$
Exception conditions 1 and 2 have the same meaning as those for the
SORT verb.

Exception condition 3 indicates that there is not sufficient space in
memory to hold at least 8 copies of the record to be sorted, and hence
to manage at least 8 merge streams (the multi-phase merge requires a
minimum of 8 streams to ensure an acceptable level of performance). In
such a case you must either make more memory available as workspace,
or perform a tag sort on the record in question.

17.4.3 The MREL$ routine
The MREL$ routine serves the same purpose for MSORT$ as the RELEASE
statement serves in the SORT, that is to say it is used to pass
records from your input routine to MSORT$ for processing. Each
execution of MREL$ is used to pass a single record to MSORT$. It is
coded:

CALL MREL$ USING record

Where record identifies the record to be passed to the sort.

Once you have released the last record to be sorted you should EXIT
from the input routine, returning control to MSORT$ which will be
performing any merging required and then call your output section so
that you may obtain the sorted records.

MREL$ has the same programming interface as the RELEASE statement, and
may return the same exceptions with the same meanings (except
exception 13 which can only be returned when there is no workfile
specified).

17.4.4 The MRET$ routine
The MRET$ routine serves the same purpose for MSORT$ to that served by
the RETURN statement in the SORT, that is to say it is called from
your output section to provide you with a single sorted record. It is
coded:

CALL MRET$ USING record

where record identifies the area where the sorted record will be
returned.

The programming interface to the MRET$ routine is the same as that of
the RETURN statement.

17.5 Programming and Design Notes for MSORT$
Most of the notes in section 13.2 apply equally to MSORT$. The one
that does not is the point at the end of 13.2.1, which says that
specifying the number of records to be sorted may permit a sort to
take place completely in memory rather than using the workfile. This
is not the case for MSORT$, which never dynamically allocates table
space for sorting.

17.5.1 Capacity of MSORT$
The SORT verb is limited in its capacity to sort records, in that it
cannot sort more than the square of the number of records which will

Chapter 17 - The Multi-Key Sort

Global Development File Management Manual V8.1 Page 229 of 244

fit into memory. As has already been mentioned MSORT$ has no such
limitation, but the ability to sort more records means that under some
circumstances MSORT$ will require a larger work file than the SORT
verb.

MSORT$ can sort up to the number of records which will fit into free
memory without requiring a work file at all. When there are more
records than this the sort writes records to the work file in groups,
each of which contains the number of records which will fit into
memory. So long as there are no more groups in the work file than the
number of merge streams the sort will use, then the work file needs
only space to hold the records (and keys), as was the case for the
SORT verb. If, however, there are more groups than the number of merge
streams, then the sort will need extra space in the work file so that
it can perform some merging of the groups before data is returned from
the sort.

The number of merge streams the sort utilises is the minimum of the
number of records which will fit into memory and the number of input
streams set up in IX-NSEG (whose default value is 32). The sort will
not function if there is space for fewer than 8 records in memory, nor
will it handle more than 64 input streams, so these form the bounds on
the number of merge streams available to the sort.

The precise amount of expansion space required by the sort to perform
its multi-phase merge depends on the number of records being sorted,
the size of the available free memory, and the number of merge streams
available to the sort. A worst case estimate of the expansion space
required can be made based purely on the number of merge streams,
however, and calculations show that the expansion factor is
(200%/(number of merge streams)). Thus with only 8 merge streams the
worst possible case requires 25% more work file space than that taken
up by the records and keys. With 32 merge streams (the default value
given sufficient free memory) the worst possible expansion is around
6.5%. Clearly some consideration of the number of records which will
fit into memory, and hence the number of merge streams likely to be
available, should be done when producing estimates of required work
file size.

17.5.2 Subroutine Size
The size of the MSORT$ routine and the subroutines used by the SORT
verb are similar (the extra size of MSORT$ is taken up by pre-
allocated space for holding tables of merge stream information, which
would have been allocated from free memory by the SORT verb). You
should try to call DBSET$ in a separate overlay to the MSORT$,
however, to ensure that the maximum amount of free memory is available
for sorting (DBSET$ and its included routines are quite large in
total).

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 230 of 244

APPENDIX A - INDEXED SEQUENTIAL FILE STRUCTURE
++

 Figure A1 shows how an indexed sequential file is divided into
 three parts: the prime data area; the index area; and the
 overflow area. The size of each individual area is determined
 when the file is first created; however, the overflow area may be
 extended by simply copying the file to a larger extent.

 The Prime Data Area
 +++++++++++++++++++
 The prime data area contains the fixed-length data records of the
 file from which the indexed sequential file was created. During
 the creation process the dummy high record is added and this, in
 turn, may be followed by a slack area serving to make the space
 allocated for prime data a multiple of 256 bytes. (This is so
 that the following index area begins on a 256-byte boundary
 within the file in order to optimise performance.)

 The format of data records is shown in Figure A2. The TYPE, and
 USER DATA may be updated by the application program. The KEY
 cannot be changed: although the key length may vary from file to
 file it is fixed for any particular indexed sequential file when
 that file is created. The data records are in ascending KEY
 order.

 The dummy high record has a TYPE of spaces, a KEY of high values,
 and USER DATA consisting entirely of binary zeros.

 All LINK fields within prime data records (including the dummy
 high record) are set to -1 when the file is created to show that
 there are no overflow records chained. These LINK fields are
 updated, as explained below, when new records are added to the
 file.

 The Index Area
 ++++++++++++++
 The index area is built when the indexed sequential file is
 created from a relative sequential file, or re-organised, and is
 read-only from then on. The index contains a number of 256-byte
 blocks arranged in levels, with the first (lowest) level index at
 the start of the area, followed by the second level index, and so
 on. The highest level index, consisting of just a single block,
 occupies the very last block of the index area.

 Each index block (see Figure A2) consists of a 4-byte file
 pointer and a 252-byte key table. Suppose the key table can hold
 n different keys. Then the first level index contains one block
 /
 for every n prime data records, and holds every key appearing in
 /
 the prime data, including the dummy high key. The second level
 index contains one block for every n blocks of the first level
 /
 index, and holds only the highest key from each first level
 block. Index levels are constructed one after another until the
 highest level index, consisting of just a single block, is
 developed. The keys appearing within the second, third, or
 higher index level are always in ascending sequence. The first
 level index may be out of sequence if some third level entries

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 231 of 244

 address it directly for optimisation purposes (explained later).

PRIME DATA
AREA
 - - - - - - - - - - - - - - - -
dummy high record slack			

 | |
INDEX	
(starts on a 256-byte	
boundary)	
 - - - - - - - - - - - - - - - - - - -
highest level index block	

 | |
 | OVERFLOW | |
 | AREA | |
 | | | Data
 | in use | | records
 | | |
 | | |
 - - - - - - - - - - - - - - - - - - -
 | |
 | | |
 | unused spare space | | Binary
 | | | zeros
 | | |

Figure A1 - Indexed Sequential File Structure

There will be unused space at the end of a key table when the key
 length does not divide exactly into 252. There will be
 additional unused space in the very last block of an index level
 if there are insufficient keys to fill the last key table.

 In order to optimise access, the third level index can address
 the first level index directly for records at the beginning of
 the file. This results in faster access to such records when
 using the index, as there is no second level index to be read.
 Enough second level blocks are omitted to ensure that all the
 higher level blocks are completely full. In the first level

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 232 of 244

 index, blocks which have a second level index appear before those
 which are accessed directly from the third level.

 The file pointer in a first level index block addresses the data
 record in which the first key in the block appears, and thus the
 access method can use the relative position of a key within the
 table, together with the file pointer, to proceed directly to the
 data record containing a prime data key. (However, if the
 required key is in an overflow record an overflow chain will then
 have to be searched as well.) The file pointer in an index level
 higher than the first effectively addresses the block of the next
 lower level index in which the first key of the table appears as
 the highest key. Once again, the access method uses the relative
 position of the key within the table, in conjunction with the
 file pointer, to determine which block of the lower-level index
 to search. It is only ever necessary to search one block at each
 index level.

 The Overflow Area
 +++++++++++++++++
 When an indexed sequential file is initially created the overflow
 area is empty, and each byte it contains is set to binary zeros.
 However, whenever a new record, containing a key which is not
 already present on the file, is added it is written to the first
 free location of the overflow area. Data records within the
 overflow area have exactly the same format as those within the
 prime data area.

 The LINK field is used to place all overflow records with key
 values between those of two adjacent prime data area records in
 an overflow chain arranged in ascending key sequence. The LINK
 ++++++++++++++
 field of the prime record with the higher key is set to point at
 the first record of its chain, or contains the value -1 if the
 prime record possesses no such chain. A LINK value of -1 in an
 overflow area record simply signifies that it is the last record
 of its chain.

 A LINK value of 0 in an overflow record means that the record
 lies within the unused spare space. When an indexed sequential
 file is closed a pointer to the spare space is maintained in the
 file label so that the directory listing produced by the file
 utility indicates the amount of free storage available for over-
 flow records. However, to guard against the case when you fail
 to close the file, having inserted some records, the access
 method always scans the spare space to find the first free
 record, if any, whenever the file is opened.

DATA RECORD FORMAT
++++++++++++++++++

| | | | |
--------------------------------- - - - - ----------------------
TYPE	LINK	KEY	USER DATA
2	2	?	
--------------------------------- - - - -----------------------

 TYPE: A PIC X(2) code identifying the record type. If

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 233 of 244

 ++++
 If it begins with * the record is logically
 deleted.

 LINK: A PIC S9(4) COMP field, defined as follows:
 +++++

 -1 no overflow record chained

 0 unused record in spare part of the overflow
 area

 >0 record number of the chained record within
 the overflow area.

INDEX BLOCK FORMAT
++++++++++++++++++

| | |
------------------------------------ - - - ---------------------
FILE POINTER	KEY TABLE (252 BYTES)				
4	KEY-1	KEY-2		KEY-N	UNUSED
------------------------------------ - - - ---------------------

 FILE POINTER: A PIC S9(9) COMP field defined as follows:
 ++++ +++++++

 Non-negative. The block is part of the lowest
 +++++++++++++
 level index and the file pointer is the relative
 byte address of the data record containing KEY-1
 (first record starts at byte 0).

 Negative. The block is not in the lowest level
 +++++++++
 index. The file pointer is the (negative) offset
 from the start of the overflow area of the index
 block containing KEY-1 in the next lower level of
 index.

 Figure A2 - Data record and index block formats

Example Structure
 +++++++++++++++++
 Figure A3 shows the structure of an indexed sequential file after
 some insertions have been made. A rather artificial example has
 been chosen in order to keep the figure reasonably simple. In
 particular the keys of the file are untypically long (60 charact-
 ers), so that only four of them can fit in a single index block
 key table.

 The indexed sequential file was created from a relative sequen-
 tial file containing records with key values 10, 20, 30, 40, 50,
 60, 70, 80, and 90. The first level index contains just three
 blocks. Its last key table holds only two key values, 90 and *

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 234 of 244

 (signifying the dummy high key). The second level index is also
 the highest level index. Its key table contains just three
 entries, representing the high keys from three first level index
 blocks.

 Six records have been added to the file since it was created.
 Their keys appear in the overflow area in the order 11, 35, 23,
 21, 96 and 91, and this is the sequence in which these new
 records were themselves created.

 Four overflow chains have been developed, as shown in the
 following table:

 | | |
 --
 | | |
 | PRIME RECORD | ADDRESSES OVERFLOW CHAIN MADE UP OF |
 ++++++++++++ +++++++++++++++++++++++++++++++++++
 | WITH KEY | RECORDS WITH THE INDICATED KEY VALUES |
 ++++++++ +++++++++++++++++++++++++++++++++++++
 | VALUE | |
 +++++
 | | |
 --
20	11
30	21 - 23
40	35
*	91 - 96
(dummy	
high	
record)	
 --

 Table A4 - Overflow Chains
 ++++++++++++++++++++++++++

 This example illustrates the main purpose of the dummy high
 record, namely to control the overflow chain of records with key
 values higher than any appearing in the file when it was created.

 Dummy
 High
PRIME Record
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
DATA | || || || || || || || || || |
AREA | 10 || 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || * |
 | || || || || || || || || || |
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 235 of 244

 --------------- --------------- ------------ -------------
INDEX |
AREA | |10|20|30|40| | |50|60|70|80| | |90| | | | | |40|80|*| |
 |
 --------------- --------------- ------------ -------------

OVERFLOW
 ------ ------ ------ ------ ------ ------
AREA | | | | | | | | | | | |
 | 11 | | 35 | | 33 | | 21 | | 96 | | 91 |
 | | | | | | | | | | | |
 ------ ------ ------ ------ ------ ------

-------> LINKS

-------> FILE POINTERS

 Figure A3 - Example indexed sequential file structure

File Corruption
+++++++++++++++
 Rarely, hardware or software faults on a system may cause data
 corruption within files. If such corruption occurs within
many
 file organisations it will be unnoticed, and the invalid data
 will be returned to the user program. The indexed sequential
 access method has a limited ability to detect file corruption
 however, and if it does so it will issue an appropriate STOP
 code, to alert the operator to this fact.

 The ability of ISAM to detect file corruption falls into two
 broad areas. The first of these is corruption of the LINK field
 within the data records, and the second is general corruption of
 file pointers.

 Where the LINK field in a record has been corrupted, ISAM can
 detect this if it contains a non-positive value which is not -1.
 Such a situation cannot arise legally, and enables ISAM to detect
 around 50% of random record corruption problems. In fact, as
 typical values for corruption are either binary zeros or large

Appendix A - Indexed Sequential File Structure

Global Development File Management Manual V8.1 Page 236 of 244

 negative values, ISAM can normally manage to detect most record
 corruption problems.

 Where file pointers have been corrupted the problem is more
 complicated. Obviously a file pointer which points outside the
 file extent is invalid, and may be simply detected when it is
 used. However file pointers which spuriously point within the
 file may indicate apparently valid records and index blocks. In
 an attempt to detect these situations ISAM is careful to notice
 when key values lie out of sequence, for example when a lower key
 value is encountered when scanning an overflow chain, and in
 these cases too an error is indicated.

 If such file corruption should occur it may well only be detected
 by one of a series of programs running on the same data, as
 detection of the corruption involves attempting to process the
 corrupted portions of the file. When file corruption is detected
 it will usually be necessary to fall back to a backup copy of the
 data, but it is vital to attempt to repeat the operation which
 +++++
 noted the corruption in the first place, as it is possible that
 the corruption may have occurred some time previously, and that
 the backup may also be corrupted.

 In some situations it may be possible to reconstitute the ISAM
 file, with the corrupted records omitted, by using the $RECOVER
 utility which is documented in the Toolkit Manual. Note however
 that it is not, in general, possible to reconstitute ISAM files
 used by Global 2000 Business Software in this way. You should
 consult the TIS Global Hotline before attempting any recovery or
 reconstitution of a Business Software data file.

Appendix B - Catalogue File Structure

Global Development File Management Manual V8.1 Page 237 of 244

Appendix B - Catalogue File Structure

A catalogue file is a relative sequential file containing up to 100
nineteen-byte records. Each record represents a catalogue entry, and
has the following format:

01 CG
 03 CGFID PIC X(8) * FILE-ID
 03 CGUID * UNIT-ID OR
 05 CGFLU PIC S9(2) * FLOATING UNIT
 03 CGVID PIC X(6) * VOLUME-ID
 03 CGDUP PIC X * DUPLICATE IND.
 03 FILLER PIC X * RESERVED

The field CGFID is simply the file-id corresponding to the entry. If a
CGFID field in a data security catalogue begins with two asterisks,
then the record it occupies represents a request to secure all the
files on the volume identified by CGVID.

The field CGUID either contains a floating address, in the range -99
to 99 inclusive, or a unit-id. The two cases can be distinguished by
testing if redefinition CGFLU is numeric: if it is then the entry
represents a floating address. For example:

IF CGFLU NUMERIC
process floating unit number

ELSE
process unit address

END

The field CGVID contains the volume-id, or low-values if no volume-id
checking is required (not "?"). The volume-id may contain asterisks as
wild card characters, which CATA$ will replace by the equivalent
characters from the volume-id of the volume actually occupied by the
catalogue.

The duplicate indicator, CGDUP, is normally blank, but for catalogues
used by SAVE$ and REST$, or the $SAVE and $RESTORE commands, it may
contain the ' or " character that can be appended to the file-id in
order to distinguish duplicate entries.

Appendix C - Using BDAM to Copy Files of Any Organisation

Global Development File Management Manual V8.1 Page 238 of 244

Appendix C - Using BDAM to Copy Files of Any
Organisation

This appendix contains an example program showing how you can use the
basic direct access method to read or create System Manager files of
any organisation. The program copies any type of input file to produce
an identical new output file, block by block. Of course you would
normally use the COPY$ system routine to copy files on the same
computer. The point of the example is to illustrate the technique to
employ when implementing a communications scheme where the input and
the output files are located on different System Manager computers not
linked by a network.

In the example BDAM is used to copy the file defined by the INFILE FD
to create a new file specified by the OUTFILE FD. The program prompts
for the block size it is to use, which must be between 1 and 9999
bytes. The file label area is defined by the BDLAB field of the BD
group, as explained in 6.2.9. The letters identifying the following
notes also appear to the right of comment asterisks in the subsequent
listing so that they can be readily correlated with the descriptions
below:

A. Define BD FDs for INFILE and OUTFILE. The optional KEY statement

is not required because the file will only be accessed
sequentially. The SIZE statement must be coded on the input FD so
that we know how many bytes (INSIZE) are to be copied.

B. Having prompted for the block size and established its value in

BSIZE, use FILE$ to obtain the input file-id and unit. Then open
the INFILE FD. Note that exception condition 2 will be signalled
if either the file is not found, or if it is the "wrong type" for
BDAM. The only type of files which cannot be processed are
product files. These can only be used at a single specified
installation and should not be transmitted.

C. Save the input file label in the 36-byte work field LABEL. (It

contains the SIZE field and other internal information.)

D. Use FILE$ to prompt the operator for the output file-id and unit.

Then move the LABEL information, defining the characteristics of
the input file, to the OUTFILE FD before opening it.

E. Next open the output file, performing conventional processing if
the file already exists.

F. Set the record length fields in both FDs to the common block size

to be used in copying all but the last block, which may of
course, be short.

G. Copy (INSIZE) bytes of INFILE to OUTFILE using the sequence:

READ NEXT INFILE INTO AREA
WRITE NEXT OUTFILE FROM AREA

repeatedly, and adjusting the record length fields appropriately
before copying the last block.

Appendix C - Using BDAM to Copy Files of Any Organisation

Global Development File Management Manual V8.1 Page 239 of 244

H. Restore the label of the output FD to its initial status prior to
OPEN by moving it in again, and then close the output file.
Notice the line of code (commented out) which says:

MOVE 0 TO BDOCNT

This line is only required if you have opened the input file
shared, and is needed to avoid checking in the System Manager
close handling. The location of BDOCNT can be found from the BD
data area on the first page of the listing.

I. Restore the label of the input FD to its initial status prior to

OPEN, and then close the input file. The copy operation is now
complete.

Note that any I/O error will simply terminate the example program. In
a more sophisticated application OPTION ERROR would be coded in the
FDs involved and error recovery logic would be added to the programs.

It is possible to open the input file shared, rather than old as in
this example, but if you do this it is possible that some other user
of the file may update it while you are copying it, rendering your
copy invalid. You should either be satisfied that this cannot occur,
or provide some suitable update locking strategy which will prevent
file amendment during the copying process. Note also the special line
of code, in note H, which must be activated if you are copying a
shared file.

LISTING OF COPY FILE COPY USING BDAM 06/05/88 14.01.00 PAGE 1

 1 PROGRAM COPY
 2 *
 3 * CREATES AN OUTPUT FILE FROM AN INPUT FILE USING BDAM
 4 *
 5 0000 DATA DIVISION
 6 *
 7 ORGANISATION OR$85 TYPE 99 EXTENSION 8
 8 *
 9 0000 77 AREA PIC X(9999) * AREA FOR BLOCK
 10 270F 77 TOMOVE PIC 9(9) COMP * BYTES TO MOVE

 11 2713 77 BSIZE PIC 9(4) COMP * BLOCK SIZE, 1-9999 BYTES
 12 2715 77 REPLY PIC X * REPLY FOR DELETE PROMPT
 13 2716 77 LABEL PIC X(36) * WORK AREA FOR LABEL
 14 *
 15 273A FD INFILE ORGANISATION OR$85 *A
 16 ASSIGN TO UNIT "?" FILE INID *A
 17 RECORD LENGTH IS INLENG *A
 18 SIZE IS INSIZE *A
 19 *
 20 2792 FD OUTFILE ORGANISATION OR$85 *A
 21 ASSIGN TO UNIT "?" FILE OUTID *A

 22 RECORD LENGTH IS OUTLENG *A
 23 *
 24 27EA LINKAGE SECTION
 25 *
 26 27EA 01 BD
 27 0000 02 FILLER PIC X(44)
 28 002C 02 BDLAB
 29 002C 03 FILLER PIC X(3)
 30 002F 03 BDORG PIC 9(2) COMP
 31 0030 03 FILLER PIC X(3)
 32 0033 03 BDOCNT PIC 9 COMP *H

 33 0034 03 FILLER PIC X(8)
 34 003C 03 BDADE PIC X(8)
 35 0044 03 FILLER PIC X(12)

Sample Copy Program - Page 1

Appendix C - Using BDAM to Copy Files of Any Organisation

Global Development File Management Manual V8.1 Page 240 of 244

Appendix C - Using BDAM to Copy Files of Any Organisation

Global Development File Management Manual V8.1 Page 241 of 244

LISTING OF COPY FILE COPY USING BDAM 06/05/88 14.01.00 PAGE 2

 36 27EC 0 0 PROCEDURE DIVISION
 37 *
 38 27EC 0 0 SECTION MAIN
 39 *
 40 27F2 0 0 DISPLAY "BLOCK SIZE OF COPY (1-9999)"
 41 2810 0 0 ACCEPT BSIZE
 42 281C 0 0 IF BSIZE ZERO GO TO MAIN
 43 2824 0 0 IN.
 44 2824 0 0 DISPLAY "INPUT FILE"

 45 2830 0 0 CALL FILE$ USING INFILE *B
 46 2838 0 0 OPEN OLD INFILE *B
 47 2848 0 0 ON EXCEPTION *B
 48 284C 0 1 DISPLAY " NOT FOUND OR WRONG TYPE" SAMELINE
 49 2866 0 1 GO TO IN *B
 50 286A 0 0 END *B
 51 286A 0 0 BASE BD AT INFILE *C SAVE INPUT FILE LABEL
 52 2872 0 0 MOVE BDLAB TO LABEL *C
 53 287C 0 0 OUT.
 54 287C 0 0 DISPLAY "OUTPUT FILE" *D
 55 288A 0 0 CALL FILE$ USING OUTFILE *D

 56 2892 0 0 BASE BD AT OUTFILE *D COPY LABEL INFORMATION
 57 289A 0 0 MOVE LABEL TO BDLAB *D TO THE OUTPUT FILE
 58 28A4 0 0 OPEN NEW OUTFILE *E
 59 28B4 0 0 ON EXCEPTION *E
 60 28B8 0 1 DISPLAY " FILE ALREADY EXISTS - DELETE?" SAMELINE
 61 28D8 0 1 ACCEPT REPLY NULL GO TO OUT *E
 62 28E8 0 1 IF REPLY NOT = "Y" GO TO OUT*E
 63 28F2 0 1 CALL DELE$ USING OUTFILE *E
 64 28FA 0 1 OPEN NEW OUTFILE *E
 65 290A 0 0 END *E
 66 290A 0 0 MOVE BSIZE TO INLENG OUTLENG *F SET BLOCK LENGTH

 67 291A 0 0 MOVE INSIZE TO TOMOVE *G AND EXTENT SIZE
 68 2922 0 0 DO WHILE TOMOVE > BSIZE *G
 69 292E 1 0 READ NEXT INFILE INTO AREA *G TRANSFER ALL BAR
 70 293E 1 0 WRITE NEXT OUTFILE FROM AREA*G THE LAST BLOCK
 71 294E 1 0 SUBTRACT BSIZE FROM TOMOVE *G
 72 295A 0 0 ENDDO *G
 73 295E 0 0 MOVE TOMOVE TO INLENG OUTLENG *G TRANSFER
 74 296E 0 0 READ NEXT INFILE INTO AREA *G LAST
 75 297E 0 0 WRITE NEXT OUTFILE FROM AREA *G BLOCK
 76 298E 0 0 MOVE LABEL TO BDLAB *H REFRESH LABEL AND
 77 ** MOVE 0 TO BDOCNT *H

 78 2998 0 0 CLOSE OUTFILE *H CLOSE OUTPUT FILE
 79 29A8 0 0 BASE BD AT INFILE *I
 80 29B0 0 0 MOVE LABEL TO BDLAB *I REFRESH LABEL AND
 81 29BA 0 0 CLOSE INFILE *I CLOSE INPUT FILE
 82 29CA 0 0 GO TO MAIN
 83 *
 84 29CE 0 0 ENDPROG

Sample Copy Program - Page 2

Appendix C - Using BDAM to Copy Files of Any Organisation

Global Development File Management Manual V8.1 Page 242 of 244

LISTING OF COPY STATISTICS 06/05/88 14.01.00 PAGE 3

NUMBER OF ERRORS 0
NUMBER OF WARNINGS 0

COMPILATION OPTIONS IN FORCE :

TR - TRACE INFORMATION GENERATED IN COMPILATION FILE
NLN - NO LONG NAMES, THE FIRST 6 CHARACTERS ARE SIGNIFICANT
SD - SYMBOLIC DEBUG RECORD GENERATED IN COMPILATION FILE

PROGRAM SIZE = 29CE BYTES (HEXADECIMAL)

TOTAL NUMBER OF LINES 84 (EXCLUDING COMMENTS 71)

SOURCE FILE - S.COPY ON F25 CREATED 06/05/88
COMPILATION - C.COPY ON F05 SIZE 1.1K
LISTING FILE - L.COPY ON F05 SIZE 4.4K

MACHINE - KLUDGECOMP MK 3
VERSION - V6.1

COMPILATION COMPLETED

Sample Copy Program - Page 3

Appendix D - Included Routines

Global Development File Management Manual V8.1 Page 243 of 244

Appendix D - Included Routines

System routines referenced by the CALL statement are included in your
program when it is linkage edited, as are access methods Introduced by
FD statements coded in working storage. Table D overleaf shows the
program names of the particular subroutines included from the system
library when various language constructs described in this manual are
coded. The SIZE column indicates the approximate size of each routine
in bytes, rounded up to the nearest 0.1K (K = 1024 bytes). System
routines described in other manuals are excluded from this table as
they are listed in the appendices of the appropriate manuals.

If you require a more accurate estimate you should compile and link a
program containing a GLOBAL statement for each of the required
routines and file organisations. The link map will then give the total
size of the included routines.

Global Cobol
statement

Program name of the subroutine included

Size (Kb)

CALL ASSIG$ paged GH$A 0.6
CALL CALC$ CY$A 0.2
CALL CATA$ BG$A + QJ$A + EC$A + BJ$A 1.6
CALL CONV$ BH$A + BE$A + EC$A 2.6
CALL COPY$ BK$A + BE$A + EC$A 1.2
CALL DELE$ BE$A + EC$A 0.4
CALL DEVIN$ OM$A + BZ$A 1.6
CALL FILE$ or
FILDF$

BI$A 0.3

CALL FIX$ EN$A + EC$A 0.4
CALL FSTAT$ CI$A 0.2
CALL GTDES$ or
PTDES$

BJ$A + EC$A 0.5

CALL ISUSE$ IL$A + EC$A 0.5
CALL LIBR$ BM$A + EC$A + BL$A 1.6
CALL LWORK$ or
UWORK$

OA$A + ER$A 0.8

CALL MSORT$ IX$A + EI$A 4.3
CALL OPDE$ QI$A + BE$A + EC$A 0.7
CALL OPEN$ or
LIST$ or CLOSE$

QW$A + EC$A 0.7

CALL RENA$	EB$A + EC$A	0.5
CALL REST$	QZ$A + EZ$A + GC$A +	5.4
	BE$A + EC$A	

Appendix D - Included Routines

Global Development File Management Manual V8.1 Page 244 of 244

CALL SAVE$ or SAVEN$	QY$A + EZ$A + GC$A +	7.4
	QL$A + EA$A + EC$A	
CALL SCR$	IH$A + EC$A + BJ$A	0.8
CALL SECUR$	CV$A	0.1
CALL SET$	CU$A	0.1
CALL SLOCK$ or SULOC$	CA$A + ER$A	0.6
paged		
CALL VOLID$	QJ$A + EC$A + BJ$A	0.4
FD... ORGANISATION	AR$B + EC$A	1.7
RELATIVE SEQUENTIAL	(AR$A + EC$A)	(1.2)*
for C-ISAM	AY$Z + AZ$A + EC$A	3.1
FD... ORGANISATION	AI$A + AZ$A + EC$A	2.1
INDEXED SEQUENTIAL		
for C-ISAM	AY$Z + AZ$A + EC$A	3.1
FD... ORGANISATION OR$82	AP$A + EC$A	0.7
FD... ORGANISATION OR$83	AT$A + EC$A	1.2
FD... ORGANISATION OR$84	AV$A + EC$A	0.9
FD... ORGANISATION OR$85	AB$A + EC$A	0.7
FD... ORGANISATION OR$86	AL$A + EC$A + QL$A +	4.6
	GC$A + GA$A + EA$A	
FD... ORGANISATION OR$96		
FD... ORGANISATION OR$97		
FD... ORGANISATION OR$98		
FD... ORGANISATION OR$99R	AS$R + CA$A + ER$A	4.0
	+ EC$A	
FD... ORGANISATION OR$99C		

SORT or RELEASE or RETURN	QO$A + QN$A + EI$A	3.9
LOCK or UNLOCK	ER$A	0.4
 --

 * Smaller size applies if BLOCK CONTAINS statement not used

Table D - Included Routines

