

Global Development Job Management Manual V8.1 Page 1 of 49

Global 16-bit Development System
 Job Management Manual
 Version 8.1

All rights reserved. No part of this publication may

Global Development Job Management Manual V8.1 Page 2 of 49

be reproduced, stored in a retrieval system or
 transmitted, in any form or by any means,

electrical, mechanical, photocopying,
recording or otherwise, without

the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development Job Management Manual V8.1 Page 3 of 49

TABLE OF CONTENTS

Section Description Page Number

1. Introduction and Overview ???
1.1 Terminology ... ???
1.2 The Job Description ... ???
1.3 The Job File Builder, $JOB...................................... ???
1.4 Running a Job File .. ???
1.5 Global System Manager under Job Management ???
1.6 Advanced Job Management ... ???
1.7 Restrictions .. ???

2. Creating a job file ... ???
2.1 The Job Description ... ???
2.2 Building a Job File Using $JOB ???

3. Advanced Job Management facilities ???
3.1 Applications Under Job Management ???
3.2 Running a Job File Under Job Management ???
3.3 Invoking a Job File From an Application Program ???
3.4 Producing a Tailored Job Initiator Using JOB$???

Global Development Job Management Manual V8.1 Page 4 of 49

APPENDICES

Appendix Description Page Number

A Example Listings... ???

B Included Routines ... ???

C Job Listing Error and Warning Messages ???

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 5 of 49

1. Introduction and Overview

Job management allows you to run Global System Manager commands and
application programs under the control of a job dialogue table, held
in memory, which supplies predetermined responses to prompts, thus
minimising operator interaction.

In standard job management you create a job file which, when executed,
establishes a job dialogue table in memory and then initiates it.
Additional flexibility can be achieved by defining parameters whose
values you supply when the job file is run.

There is also an advanced form of job management in which you produce
a tailored job initiator to replace the standard job file. Your
initiator will build a job dialogue table to your precise requirements
and will initiate it when complete.

You will find uses for job management in all operationally repetitive
situations. For example:

● Program development, where compilations and linkage edits can be

automatically executed;

● Installing software products, e.g. building operational volumes

from distribution volumes;

● Running Global System Manager command programs as part of an

application system.

1.1 Terminology
Throughout this manual the term job file refers to a job management
control file as built by $JOB, and the term job (as in end-of-job
routine) refers to the activity which takes place between the time
that a program is executed from a ready prompt until the following
ready prompt.

1.2 The Job Description
To use standard job management, you must first of all prepare a job
description. This is similar in many ways to a Global Cobol source
file and, indeed, resembles a rather strange COBOL program since its
parameter division and dialogue division are comparable in many ways
to a data division and procedure division.

In the parameter division you describe, and define prompts for, any
input that the operator must provide each time that the job file is
run in order to complete the information supplied in the dialogue
division. For example, in a job description controlling program
compilation you would probably decide that the name of the Global
Cobol source file should be a run-time parameter described in the
parameter division. Normally the operator will supply values for all
parameters in sequence and then the execution of the job file will
start. However, any parameter can be defined to be conditional: The
operator can then key a special response to its prompt which causes
the prompting for the remaining parameters to be by-passed and job
file execution to begin.

Global System Manager prompt

Reference

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 6 of 49

LIBRARY library-id REQUIRED ON unit: $MONITOR
PROGRAM program-id REQUIRED ON unit: $MONITOR
PROGRAM program-id IN LIBRARY library-id REQUIRED ON
unit:

$MONITOR

PLEASE KEY PASSWORD FOR file-id: $MONITOR
PLEASE MOUNT volume-id ON unit AND KEY <CR>: $MONITOR
PLEASE ASSIGN unit-id: $MONITOR
* error ON description - unit - RETRY?: $MONITOR
MOUNT BACKUP backup-id ON description-unit AND KEY
<CR>:

$SAVE

CONTINUE WITH NEW BACKUP VOLUME?: $SAVE
$34 CONTINUE?: $TDUMP
$34 DESTROY tape-id?: $TDUMP
$34 MOUNT TAPE tape-id: $TDUMP
$34 TOO MANY ERRORS - RETRY?: $TDUMP
$34 MISSING DATA (nnnn BLOCKS) - RETRY?: $TDUMP
$34 FILE file-id ON unit n MISSING BLOCKS $TDUMP
$43 SPECIFY NEW COMPILATION UNIT: $COBOL
$43 SPECIFY NEW LISTING UNIT: $COBOL
$44 SYSTEM LIBRARY library REQUIRED ON unit: $LINK
Activate debugger, key D for diagnostics prompt, H for
help, <ESC> to exit:

$DEBUG

$54 SPECIFY NEW LISTING UNIT: $XREF
$78 DESTROY file-id ON UNIT unit?: $V
$78 DESTROY unit?: $V
$78 DESTROY volume-id?: $V
UNIT unit forms-control-message: $MONITOR
$91 BREAK?: $MONITOR
comma prompt on base line $MONITOR

* This prompt only bypasses job management if it follows a program
check.

Table 1.2 - Global System Manager Prompts which bypass Job Management

In the dialogue division header you may specify that the job file is
to be executed without any dialogue appearing at the operator console,
once the parameters have been accepted. In the dialogue division body
you anticipate all the prompts that the subject program (or programs)
will cause to be output, and supply responses for them. A response can
either be a predetermined character string, a parameter, or a control
sequence such as <CTRL A>, <CTRL B>, <CTRL C>, <ESCAPE> or <CR>.

Because certain Global System Manager prompts, shown in Table 1.2,
would be very hard to predict when creating a job description, they
are specially identified and, if they occur, job management is
bypassed and the operator is prompted in the normal way, without using
the dialogue you have created. If you reply <ESCAPE> to one of these
prompts and the program does not suppress the use of the escape key,
job management will be immediately terminated with the message:

$17 JOB MANAGEMENT TERMINATED

followed by a ready prompt. In addition, Global System Manager
commands and system routines have been modified so that when job
management is in control the prompts:

FILE ALREADY EXISTS - DELETE?:

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 7 of 49

and:
NEXT PAGE?:

are automatically provided with the response Y, whenever they occur.
Because of these simplifications, it is easy to supply the necessary
responses to any set of programs. You start by indicating the response
to the ready prompt which will cause the first program controlled by
the job description to be entered. As well as responses, you may
specify pause prompts and messages in the dialogue division. When a
pause prompt is met the text it contains is displayed and Global
System Manager waits until the operator hits any key. Pause prompts
are usually provided to allow diskettes to be changed at the correct
time. Messages are used to provide information at the console when no
operator reply is required.

Conditional parameters may be tested within the dialogue division, and
job file execution will be terminated immediately if the special
operator input which terminates parameter prompts was supplied for
that parameter (or a previous one) when the job file was initiated.

In summary, job descriptions are equivalent in many ways to the
catalogued procedures used on main-frame computers. Section 2.1
explains in detail how to create job descriptions.

Error Prompt or Message

Reference

Note

INVALID - REINPUT $MONITOR
MEMBER NOT FOUND $LIB
NOT FOUND $MONITOR
NOT FOUND OR WRONG TYPE $MONITOR
RECORD SIZE TOO LONG $L
INPUT REQUIRED $MONITOR 1
INVALID $MONITOR 1
TOO LARGE $MONITOR 1
TOO LONG $MONITOR 1
$43 NUMBER OF ERRORS non-zero $COBOL 2
$43 NUMBER OF WARNINGS non-zero $COBOL 2
$44 LINK ABORTED - reason etc. $LINK
$52 NUMBER OF ERRORS non-zero $JOB
$54 NUMBER OF ERRORS non-zero $XREF 2
$54 NUMBER OF WARNINGS non-zero $XREF 2
$64 TOO MANY ENTRIES $CATAL
$69 ASSIGNMENT TABLES FULL $A
$90 program-id TOO LARGE $MONITOR

Note 1 These messages will not cause termination if they

appear because the operator has supplied erroneous input to
a prompt which bypasses job management.

Note 2 Termination can be prevented in these cases by use of

an appropriate compilation or cross-reference option.

Table 1.5 - Typical Global System Manager Prompts and Messages Causing
Job Management Termination

1.3 The Job File Builder ($JOB)
Once you have created a job description, you run the $JOB command to
produce a job file from it. The job file is actually a program file,

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 8 of 49

so it can be saved, either as an individual file or as a member of a
program library, and invoked by keying its name in response to the
ready prompt or by chaining to it from an application program. A job
file may also be run under job management.

The data division of the job file contains a parameter table and
dialogue table, which are compressed versions of the job description's
parameter division and dialogue division. Each job file occupies 4K or
more bytes of disk space, depending on the size of its parameter
prompt area and the amount of dialogue it contains.

The $JOB command also produces a print file known as the job listing.
This is a validated version of the job description. It contains
information such as the date on which the job file was created and the
number of bytes of the dialogue table created. If the job description
is faulty, error messages will appear on the job listing and no job
file will be produced.

Section 2.2 describes in detail how to use the $JOB command to create
a job file and Appendix A contains sample job listings.

1.4 Running a Job File
The usual method of running a job file is to key its name in response
to the ready prompt. It is also possible for one job file to call
another or for an application program to invoke a job file. In all
cases the job file program is loaded, and control is passed to its
entry point, the job initiation routine.

The job initiation routine firstly examines its parameter table and,
if a parameter division was present in the job description, prompts
the operator for the required input, which is then used to complete
the dialogue table. If the job file was invoked from another job file,
the required parameter values may be supplied directly by the calling
job file.

Next the dialogue table, incorporating the parameter values supplied
for this execution of the job file, and the job manager (see below)
are moved to the user stack at the top of the Global Cobol memory
region. The user stack will have to be extended to accommodate them,
thus reducing slightly the user area available to the subject
programs.

The job initiation routine now logically replaces the console input
routine by the job manager. This means that whenever a program
requires input, the job manager, rather than the normal console input
routine, will receive control. The job manager will then supply input
from the dialogue table stored in the user stack, rather than
requiring operator intervention.

 Finally the job initiation routine returns to the monitor, which
issues a ready prompt in the normal way. Since the job manager is in
charge of all console input, it supplies the response to this - the
name of the first subject program to run under job management - from
the dialogue table in the user stack.

1.5 Global System Manager under Job Management
Once job management is active, Global System Manager continues to
extract responses from the dialogue table, one by one, until either

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 9 of 49

the end of the table is met, or one of the messages or prompts
summarised in Table 1.5 appears. If you examine these carefully you
will see that they indicate that one of the following types of error
has occurred:

● An incorrect response has been obtained from the dialogue table.

This response may have been supplied as a parameter by the
operator. Typically this might result in an INVALID prompt or FILE
NOT FOUND OR WRONG TYPE message.

● The subject program has met with an irrecoverable error, for

example output file space is exhausted.

Normally, when the end of the dialogue table is reached without there
being an error, the job manager automatically de-activates itself by
restoring the true console input routine so that the operator can
continue to communicate with Global System Manager in the normal way.
The area of user stack used to hold the job manager and dialogue table
is released.

If an error message or prompt from Table 1.5 appears, job management
is immediately terminated with the message:

$17 JOB MANAGEMENT TERMINATED

and control returns to the monitor.

If the dialogue table supplies the response $E to the ready prompt,
then the $E command is run and end-of-session processing takes place.
This processing includes de-activation of job management: Global
System Manager waits for operator input to start the next session.

The Global System Manager file utility, $F, and library utility, $LIB,
both have special facilities which enable them to perform volume-id
checking when executing under job management. $F provides the I and O
instructions which check that the required volume is mounted on the
input or output device respectively before proceeding with the next
file operation. There is also an IO instruction which combines the
functions of I and O. $LIB provides the I instruction which checks
that the required volume is mounted on the input device, and if the
special response <CTRL C> is supplied to the $95 TARGET LIBRARY:
prompt then $LIB will check that the required volume is mounted on the
output device. These facilities are fully described in the Global
Utilities Manual ($F), and Global Development Toolkit Manual ($LIB).
Examples of the use of each is given in the job listing L.INSPR in
Appendix A of this manual.

The prompts and messages of Tables 1.2 and 1.5 may vary with Global
System Manager versions and should therefore be considered as
representative. More generally, Global System Manager command program
dialogue may also vary with Global System Manager versions. These
differences will be kept to the minimum consistent with a continuously
improving software product, but if you are running Global System
Manager command programs under job management you must be prepared for
the possibility that your job files may need to be upgraded to move to
a later Global System Manager version.

1.6 Advanced Job Management

Chapter 1 - Introduction and Overview

Global Development Job Management Manual V8.1 Page 10 of 49

Chapter 3 describes the more advanced facilities available under job
management, and a brief summary is given here.

While existing applications may be run unchanged under job management,
new applications can take advantage of special controls which are
provided to improve operator interaction and the handling of error
situations.

It is possible to call one job file from another, passing parameters
if required, and to initiate job dialogue from an application program.

Using the JOB$ system routine you can create your own tailored job
initiator which can assemble a dialogue table from short sequences of
dialogue and then initiate it.

1.7 Restrictions
The size of a job dialogue table is limited only by the size of the
user area and the size of the programs to be run under its control.
The dialogue table is loaded into the user stack at the top of memory,
thus reducing the amount of memory available to its subject programs.
The job listing reports the size of user area needed to initiate each
job file, and the size of user stack needed during its execution.

A maximum of 20 parameters may be supplied for the job description.

Single character console input operations, as performed by CHAR$, and
console status testing operations, handled by CHECK$ and TEST$, always
bypass job management. Dialogue therefore cannot be supplied to these
routines from the job dialogue table: they always access the console
directly. For further information refer to the Global Development
Screen Presentation Manual.

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 11 of 49

2. Creating a Job File

To create a job file you must first produce a text file known as the
job description, and then use the $JOB command to build the job file
from this job description. This chapter describes the process in
detail.

2.1 The Job Description
A job description is a text file containing lines of up to 72
characters. It can be created and maintained by the $EDIT command. The
skeleton form of the job description is as follows:

JOB job-id title

[PARAMETER DIVISION

parameter definition lines]

DIALOGUE DIVISION [(SUPPRESS)]

dialogue definition lines,
optional pause prompt lines,
optional message lines
and optional conditional exit lines,
in any order

ENDJOB

Each line is in free format, with leading blanks and tabs before the
first significant character being ignored. Within the body of a line,
a blank, tab, or any combination of blanks and tabs may serve as a
separator between different job description elements. Optional
constructs are represented enclosed in square brackets.

Figure 2.1 shows a typical job description which contains examples of
all the main facilities, and you will find it helpful to refer to it
to supplement the explanation which follows. It performs a fairly
straightforward program preparation sequence, with conventional unit
assignments.

JOB CLXMP COMPILE, LINK & XREF MAIN PROGRAM
*
* THIS JOB DESCRIPTION COMPILES THE SOURCE OF A MAIN PROGRAM,
* LINKAGE EDITS IT WITH THE SYSTEM LIBRARIES,
* AND OPTIONALLY PRODUCES A CROSS-REFERENCE LISTING.
* ALL LISTINGS ARE PRODUCED ON THE LOGICAL PRINTER, $PR.

*
PARAMETER DIVISION
*
 &1 X(6) PROGRAM NAME (SUFFIX ONLY)
 &2 X(3) USER UNIT
 &3 X(1) ? XREF REQUIRED? (Y/N)
*
DIALOGUE DIVISION
*
* FIRSTLY, COMPILE THE PROGRAM
+COMPILATION STARTING+

GSM READY:<CR>
GSM READY:$COBOL
$43 SOURCE:&1 UNIT:&2
$43 COMPILATION UNIT:<CR> SIZE:<CR>
$43 COPY LIBRARY:<CR>
$43 LISTING UNIT:<CR>

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 12 of 49

$43 COMPILER OPTION:<CR>
* THEN LINK THE PROGRAM WITH THE SYSTEM LIBRARIES.
+LINKAGE EDITING STARTING+
GSM READY:<CR>
GSM READY:$LINK
$44 LINK:&1 UNIT:&2
$44 LINK:<CR>
$44 PROGRAM:<CR> UNIT:<CR>
$44 LISTING UNIT:<CR>
$44 LINK OPTION:<CR>
*CHECK IF XREF HAS BEEN SELECTED

?3
* PAUSE TO ASK IF XREF IS REQUIRED.
-CONFIRM XREF REQUIRED, <ESC> OTHERWISE-
* NOW PRODUCE THE CROSS-REFERENCE.
GSM READY:<CR>
GSM READY:$XREF
$54 SOURCE:&1 UNIT:&2
$54 COPY LIBRARY:<CR>
$54 LISTING UNIT:<CR>
$54 X-REFERENCE OPTION:<CR>
*

ENDJOB

Figure 2.1 - Example Job Description

2.1.1 The Job Line
The job line, beginning with the word JOB, must be the very first line
of the job description. Its format is:

JOB job-id title

The job-id is really only present to enable you to document the name
that you intend to give to the job file when it is produced by the
$JOB command from this job description. The name of the job file is
actually supplied from information keyed to the $JOB command, but you
will normally choose to make this the same as the job-id. A job-id is
usually six characters or less, and the job description source file
should be named S.job-id (e.g. S.CLXMP) in the case of the example of
Figure 2.1. The job-id is terminated by the first blank or tab
following it in the job line.

The title begins with the first character following the job-id which
is not a blank or tab. It can be up to 30 characters in length and can
contain embedded blanks. The title will appear on the screen when the
job file is run, and is stored in the program header record of the job
file, so that it can become a member title if the job file is later
incorporated into a program library. If the title is completely blank
it will not be displayed when the job is run.

2.1.2 Comment Lines
A comment line, whose first non-blank character is an asterisk, can
appear anywhere within the job description, but may not precede the
job line. The comment is output unchanged to the job file listing, but
is otherwise ignored.

Note that comments in a job description should only appear on lines by
themselves. It is not recommended to comment other job description
lines by coding to the right an asterisk followed by explanatory text,
as in Global Cobol. This is because an asterisk may well be a
significant character in a dialogue definition or pause prompt line.

2.1.3 The Parameter Division

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 13 of 49

If the entire dialogue for the program (or programs) to be run by a
job file can be specified when the job description is created, no
parameter division is needed. However, if the operator is to be able
to vary selected parts of the dialogue when the job file is run, then
a parameter division must be coded. The parameter division of the
example of Figure 2.1 gives the operator control of the program name,
user work unit and cross-reference selection, all other aspects of the
program preparation process being invariant for all executions of the
job file.

When present the division begins with the header:

PARAMETER DIVISION

which must be coded on a new line. It is terminated by the header:

DIALOGUE DIVISION [(SUPPRESS)]

also on a new line.

2.1.4 Parameter Definition Lines
When a parameter division is supplied, one or more parameter
definition lines must be coded between the delimiting headers. Each
line is of the form:

parameter-name format [?] prompt-message

The parameter-name consists of an ampersand immediately followed by
one or two digits representing a parameter number in the range 1 to 20
inclusive (e.g. &1). It is an error to use the same parameter-name on
more than one parameter definition line.

The format resembles the picture clause of a character or display
numeric item, except that the word PIC is not used. The format
information is used to check the operator input supplied for the
parameter when the job file is initiated. Typical valid formats are:

S9(3)
X(2)
9(4,3)
X
9

A format cannot contain a blank or tab, so for example:

9(4) COMP

is not a valid format. There is in any case no requirement to support
computational parameters since all console input must be either
character or display numeric.

The optional ? indicates that the parameter is conditional. If <CR> is
keyed to a conditional parameter then it, and all subsequent
parameters, will be set to <CR>. No further prompts will be displayed
and the job file will be initiated immediately. Later, the running job
file will inspect the value of the conditional parameter and will
terminate prematurely if the parameter is <CR>. The format X(1) has a
special meaning when it is used with a conditional parameter: an
operator reply of N has exactly the same effect as the <CR> input

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 14 of 49

described above. This facility enables more meaningful replies to be
made when entering conditional parameters, and an example of this form
of conditional parameter appears in Figure 2.1. Note that the format X
used with a conditional parameter does not have the special meaning
associated with the format X(1) : N is treated as a normal reply, not
as a synonym for <CR>.

If you reply <CTRL A>, <CTRL B> or <CTRL C> to any prompt this reply
will be accepted and stored as the parameter value. Similarly you may
terminate a reply with one of these special responses, for example
123<CTRL A>. If you reply <CR>, and the ? has not been specified, then
the parameter value will simply be set to <CR>.

The prompt-message begins with the first non-blank character following
either the format or the ? if present, and is terminated by the end of
the line. Prompt-messages are stored by the $JOB command in the
parameter table in parameter number order. When the job file is run,
they are output, followed by a colon character, as prompts requesting
input of the type governed by the associated format. For example,
suppose a job description contains the following parameter division:

PARAMETER DIVISION
&1 9(2,2) RATE
&2 X(8) ACCOUNT CODE
DIALOGUE DIVISION

Then, when the job file is run, the following dialogue might take
place:

RATE:122 INVALID - REINPUT
:12.2
ACCOUNT CODE:AB40798

The INVALID - REINPUT prompt appears because the operator input did
not satisfy the format information associated with the first
parameter. Note that during job initiation the validation of operator
input is limited to that defined by the associated format information,
and the job file may still fail if the accepted parameter value is
later rejected by more thorough validation by the program to which the
value is supplied as input. Thus, for example, the account code
supplied above, while conforming to the format X(8), may not be
acceptable to the program to which it is to be supplied.

2.1.5 The Dialogue Division
A dialogue division must always be present in a job description. It
begins with the header:

DIALOGUE DIVISION [(SUPPRESS)]

and ends with the trailer:

ENDJOB

Both must be coded on a new line. The alternative spelling DIALOG is
acceptable in the header.

If the (SUPPRESS) option is coded, the dialogue of the job file will
not in general be displayed on the console when the job file is run.
Once parameters have been accepted in the normal way, all dialogue is
suppressed except for the following:

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 15 of 49

● pause prompts (see 2.1.7);

● messages (see 2.1.8);

● program prompts which bypass job management (see Table 1.2 for

Global System Manager commands and section 3.1 for application
programs).

Suppression of dialogue begins as soon as the job file has been loaded
and its parameters (if any) have been supplied, and continues until
the last response of the dialogue table has been supplied by the job
manager to a subject program.

Between the header and trailer may appear any number of dialogue
definition lines, pause prompt lines, message lines, and conditional
exit lines. Syntactically, these may be in any order, but of course
the sequence of lines is very important, since their arrangement
determines the order in which responses are supplied to prompts, and
the times at which pause prompts appear and conditional parameters are
checked.

2.1.6 Dialogue Definition Lines
There must always be at least one dialogue definition line present,
since the first one encountered specifies the response to be made to
the ready prompt output by the monitor immediately following job
management initiation. The format of each dialogue definition line is:

text[:response text...]

Each text consists of zero or more characters, including blanks and
tabs, but excluding the colon character which is used to introduce the
response. The first text on the line must not begin with an asterisk,
question mark, plus sign or minus sign, nor must it start with the
word ENDJOB. In the interests of good documentation, each text item
should normally correspond exactly to the display that the subject
program will produce at this stage of the dialogue. However, no
information about the text is placed in the dialogue table by the $JOB
command. Note that text may appear on a line by itself.

Each response is coded immediately to the right of a colon character.
It may be either an input string (i.e. a number of characters to be
supplied in place of operator input), or one of the special responses
listed in Table 2.1.6. An input string may be directly followed by one
of the special terminators <CTRL A>, <CTRL B>, <CTRL C> or <ESCAPE>.
Thus the response:

:12<CTRL C>

supplies the value 12 and the terminator <CTRL C> to the subject
program.

The following rules apply when specifying responses:

● Each response must be terminated by a blank, tab, or end of line;

● The special responses must be coded exactly as shown in the first

column of Table 2.1.6. If a parameter name is used it must have
been introduced in a previous parameter definition line within the
parameter division. For a parameter name response, the value passed

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 16 of 49

to the subject program by the job manager will normally be the
value supplied to the corresponding parameter prompt-message.
However, if the parameter is conditional and a <CR> value was
supplied for it, or if a <CR> value was supplied for an earlier
conditional parameter, then the special response <CR> will be
passed to the subject program;

● An input string must not begin with ampersand or colon, nor may it

contain embedded blanks or tabs;

● If you need to specify an input string containing blanks, then you

must code an @ character whenever a blank is required. All @
characters will be converted to blanks in the strings stored in the
dialogue table by the $JOB command.

Special response

Meaning

&n Parameter n, where 1 ≤ n ≤ 9
&nn Parameter nn, where 10 ≤ nn ≤ 20
<CTRL A> Null string, consisting simply of

CTRL A
<CTRL B> Null string, consisting simply of

CTRL B
<CTRL C> Null string, consisting simply of

CTRL C
<ESCAPE> or <ESC> Null string, consisting simply of

ESCAPE
<CR> or <NULL> Null string, consisting simply of

RETURN

Table 2.1.6 - Special Responses

The last rule means that you cannot actually provide an input string
containing an @ character as a response, since any such character will
automatically be converted to a blank.

Whenever a program completes execution under Job Management, control
is returned to the monitor and the GSM READY prompt will appear so
that another program may be executed.

2.1.7 Pause Prompt Lines
The format of a pause prompt line is:

-prompt-

where prompt consists of one or more ASCII characters. The prompt may
contain spaces or tabs, but cannot include a minus sign, since this
character is used as the start and end delimiter.

If, when the job manager attempts to retrieve the next response from
its dialogue table, it encounters a pause prompt, the prompt is output
to the screen on a new line without the leading minus sign and with
the trailing minus sign replaced by a colon. The job file now waits
until the operator keys <CR> or <ESCAPE>. If the operator keys
<ESCAPE>, for example because he or she cannot find a required
diskette, then job management will be terminated. If the operator keys
<CR> a new line will appear at the screen and processing will

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 17 of 49

continue. Thus the following dialogue division statements, taken from
the example of Figure 2.1:

...
-CONFIRM XREF REQUIRED, <ESC> OTHERWISE-
GSM READY:<CR>
GSM READY:$XREF
$54 SOURCE: ...

would cause the following dialogue to take place when their job file
was run:

...
GSM READY:
CONFIRM XREF REQUIRED, <ESC> OTHERWISE:<CR>
GSM READY:$XREF
$54 SOURCE: ...

This pause prompt gives the operator the opportunity to change
diskettes if necessary, and as soon as he or she replies <CR> the job
manager continues by loading $XREF.

Note the use in the example of the dialogue definition line:

GSM READY:<CR>

Its purpose is merely to improve the appearance of the dialogue
displayed on the screen when the job file is run. If this line is
omitted, the screen dialogue will appear as:

GSM READY:
CONFIRM XREF REQUIRED, <ESC> OTHERWISE:<CR>
$XREF
$54 SOURCE...

because the job manager displays the pause prompt immediately before
displaying the next response. This technique applies also to the
message facility described in 2.1.8.

A pause prompt will always appear on the screen when a job file is
run, even if the job file has suppressed dialogue.

2.1.8 Message Lines
The format of a message line is:

+message+

where message consists of one or more ASCII characters. The text may
contain spaces or tabs, but cannot include a plus sign, since this
character is used as the start and end delimiter.

If, when the job manager attempts to retrieve the next response from
its dialogue table, it encounters a message, the message is output to
the screen on a new line without either the leading or trailing plus
sign, and followed by a new line. The job file then continues
processing.

Thus the following dialogue division statements, taken from the
example of Figure 2.1:

...
+COMPILATION STARTING+

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 18 of 49

GSM READY:<CR>
GSM READY:$COBOL
$43 SOURCE: ...

would cause the following dialogue to be displayed when their job file
was run:

...
GSM READY:
COMPILATION STARTING

GSM READY:$COBOL
$43 SOURCE: ...

A message will always appear on the screen when a job file is run,
even if the job has suppressed dialogue.

2.1.9 Conditional Exit Lines
The format of a conditional exit line is:

?n
or:

?nn

where n or nn is the number of a parameter defined as conditional in
the parameter division. If, when the job manager attempts to retrieve
the next response from its dialogue table, it encounters a conditional
exit, and either the value keyed for the corresponding parameter was
<CR> or a <CR> value was supplied for an earlier conditional
parameter, it returns to the monitor without processing any remaining
dialogue in its table. If the conditional parameter was not <CR>, the
job manager proceeds immediately to the following entry in its
dialogue table.

2.1.10 Executing the Example Job File
Suppose the $JOB command (described in section 2.2) has been run to
create the CLXMP job file from the example job description of Figure
2.1. Then the dialogue shown in Figure 2.1.10 might appear were that
job file to be run. (The numbers on the right hand side are not part
of the dialogue, but are simply used as reference line numbers in the
description which follows.)

You begin running the job file by supplying its file-id (job-id) in
response to the ready prompt (line 0), and the job title is then
displayed (line 2). You are then prompted for the three parameters
defined in the parameter division (lines 4,5 and 6). Once this
information has been keyed, job management is initiated and Global
System Manager obtains all responses from its internal dialogue table
until the assign prompt in line 15 appears. This is one of the prompts
that bypass job management. It is output at this stage because the
<CR> response to the $43 LISTING UNIT: prompt means that the default
listing unit $PR, the logical printer, is to be used by the compiler.
In this example $PR is unassigned at this stage, and so the prompt
appears.

Once you have keyed your reply, the job file will run automatically
without your intervention until the pause prompt in line 35. When you
have replied to this, the job file will continue to run automatically
until the end of the dialogue is reached. The final ready prompt (line
47) is not under job management.

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 19 of 49

During the compilation and linkage edit, existing compilation and
program files (C.TEST and TEST respectively) were replaced by new
versions. The fact that replacement took place is indicated by:

FILE ALREADY EXISTS - DELETE?:Y

appearing in lines 12 and 29.

You will notice how the <CR> response appears at the screen as a
single blank. <CTRL A>, <CTRL B> and <CTRL C> (not used in the
example) appear as an up-arrow followed by an A, B or C respectively,
but nothing appears for <ESCAPE>.

GSM READY:CLXMP 0
 1
COMPILE, LINK & XREF MAIN PROG 2
 3
PROGRAM NAME (SUFFIX ONLY):TEST 4
USER UNIT:205 5

XREF REQUIRED? (Y/N):Y 6
GSM READY: 7
COMPILATION STARTING 8
 9
GSM READY:$COBOL 10
$43 SOURCE:TEST UNIT:205 11
$43 COMPILATION UNIT: SIZE: FILE ALREADY EXISTS - DELETE?:Y 12
$43 COPY LIBRARY: 13
$43 LISTING UNIT: 14
PLEASE ASSIGN $PR:500 15
$43 COMPILER OPTION: 16
$43 COMPILING 17

$43 END OF FIRST PASS 18
$43 NUMBER OF ERRORS 0 19
$43 NUMBER OF WARNINGS 0 20
$43 COMPILATION COMPLETED 21
 22
GSM READY: 23
LINKAGE EDIT STARTING 24
 25
GSM READY:$LINK 26
$44 LINK:TEST UNIT:205 27
$44 LINK: 28

$44 PROGRAM: UNIT: FILE ALREADY EXISTS - DELETE?:Y 29
$44 LISTING UNIT: 30
$44 LINK OPTION: 31
$44 LINKAGE EDITING 32
$44 LINKAGE EDIT COMPLETED 33
GSM READY: 34
CONFIRM XREF REQUIRED, <ESC> OTHERWISE:<CR> 35
 36
GSM READY:$XREF 37
$54 SOURCE:TEST UNIT:205 38
$54 COPY LIBRARY: 39

$54 LISTING UNIT: 40
$54 X-REFERENCE OPTION: 41
$54 SOURCE PASS 42
$54 NUMBER OF ERRORS 0 43
$54 NUMBER OF WARNINGS 0 44
$54 X-REFERENCE COMPLETED 45
 46
GSM READY: 47

Figure 2.1.10 - Screen Dialogue when Job File CLXMP is run

2.2 Building a Job File using $JOB
The $JOB command is used to create a job file from a job description,
and to produce a job listing. The job file takes the form of an

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 20 of 49

executable program which can be run by supplying its name in response
to the ready prompt in the normal way. The job listing is simply an
annotated printout of the job description, which may contain warning
or error messages if the job description is suspect or faulty. If
errors are found no job file is produced.

2.2.1 The Job Description Prompt
$JOB begins by prompting you for the file-id and unit-id of the job
description to be processed. If you do not explicitly key a prefix
when you input the file-id, $JOB will assume that the file is
conventionally named and will append the S. prefix by default. For
example:

GSM READY:$JOB
$52 JOB DESCRIPTION:CLXMP UNIT:205
$52 JOB FILE:

indicates that the operator wishes to process job description S.CLXMP
on unit 205.

2.2.2 To Quit
To quit and return control to the monitor, simply key <ESCAPE> to any
prompt output by $JOB.

2.2.3 The Job File Prompt
When the job description has been specified you will be prompted for
the file-id and unit-id of the job file to be produced. For example:

$52 JOB FILE:TCLXMP UNIT:204
$52 LISTING UNIT:

If <CR> is keyed in response to JOB FILE: the suffix of the job
description is taken as the file-id of the job file.

If <CR> is keyed in response to UNIT: the unit used is the one
specified for the job description.

2.2.4 The Listing Unit Prompt
Once job file details have been specified the listing unit prompt is
displayed:

$52 LISTING UNIT:205
$52 JOB DESCRIPTION NOW BEING PROCESSED

If the suffix of the job description is CLXMP then the above example
will cause the listing to be written to file L.CLXMP on unit 101. If
the listing unit is a direct access device, the file will initially be
allocated the maximum contiguous space available. Any unused space
will be returned once $JOB completes.

If <CR> is keyed in response to the listing unit prompt, the file will
be placed on unit $PR, the logical printer.

If <CTRL A> is keyed in response to the listing unit prompt, no
listing will be produced.

2.2.5 The Option Prompt
You are next prompted:

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 21 of 49

$52 OPTION:

to which the replies TW, NTW and <CR> may be given. TW causes the job
to be created only if no warnings are found. NTW or <CR> allow a job
to be created even if there are warnings.

2.2.6 Processing
Once you have satisfied the option prompt, the message:

$52 JOB DESCRIPTION NOW BEING PROCESSED

appears and $JOB begins to validate the job description file and
output the job file and listing. Once this is finished the following
message may appear if $JOB has detected one or more suspect, though
not fatal, conditions:

$52 NUMBER OF WARNINGS nnnn

where nnnn is the number of warning messages output to the job
listing. Finally, one of the following two messages appears:

$52 NO ERRORS FOUND - JOB FILE CREATED

or:
$52 NUMBER OF ERRORS nnnn - JOB FILE NOT CREATED

and control returns to the monitor, which displays its ready prompt.
The first of these indicates that, although warnings may have been
flagged, there have been no serious error conditions and a job file
has been produced. The second message shows that serious errors have
occurred and in consequence no job file has been created.

2.2.7 The Job Listing
A complete listing of the source of the job description is produced,
showing the number of bytes of dialogue table generated for each line
of dialogue. At the end of the listing appear the job file statistics,
showing the size of user area needed to initiate the job file, and the
amount of user stack which is needed during its execution. This second
figure is the amount by which the standard user area will be reduced
during the running of the job file.

2.2.8 Operating Notes
If the listing file is being written to direct access storage and it
becomes full, $JOB displays the error message:

$52 JOB LISTING FILE SPACE EXHAUSTED

and returns to the monitor, which displays its ready prompt. A
partially completed file may then be in existence and can be deleted
using the $F DEL instruction.

A partially completed file may also result, and require deletion, if
$JOB is terminated by an irrecoverable I/O error.

2.2.9 Example 1 - Creating Standard Job File CLXMP
The following dialogue takes place when you process job description
S.CLXMP to create a conventionally named job file, CLXMP. The job
listing is written to your logical printer, $PR. Both the job
description and the job file occupy the volume on unit 204:

GSM READY:$JOB

Chapter 2 - Creating a Job File

Global Development Job Management Manual V8.1 Page 22 of 49

$52 JOB DESCRIPTION:CLXMP UNIT:204
$52 JOB FILE:<CR> UNIT:<CR>
$52 LISTING UNIT:<CR>
$52 JOB DESCRIPTION NOW BEING PROCESSED
$52 NO ERRORS FOUND - JOB FILE CREATED
GSM READY:

2.2.10 Example 2 - Testing a Modification to Job File CLXMP
In this example, having modified S.CLXMP slightly, we produce a job
file named TCLXMP on 205 and write the job listing, L.CLXMP, to 204:

GSM READY:$JOB
$52 JOB DESCRIPTION:CLXMP UNIT:204
$52 JOB FILE:TCLXMP UNIT:205
$52 LISTING UNIT:204
$52 JOB DESCRIPTION NOW BEING PROCESSED
$52 NUMBER OF ERRORS 2 - JOB FILE NOT CREATED
GSM READY:

No job file has been output, since the job description was faulty.

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 23 of 49

3. Advanced Job Management Facilities

3.1 Applications under Job Management
Most existing applications can be run under job management with no
change. However, in some cases you may need to indicate, as Global
System Manager does, that certain messages or prompts indicate error
conditions.

In rare circumstances you may also require that the response to a
prompt bypasses job management and comes directly from the operator.
The Global Cobol BELL statement allows you to terminate job management
in error situations in a tidy manner, and the job manager control
flag, the system variable $$JCL, is provided to allow you to bypass
job management when required.

3.1.1 Terminating Job Management using the BELL Statement
The BELL statement, described in the Global Development Screen Support
Manual, is usually coded when an error has been detected in console
input. Its effect is to sound the console bell (if there is one) and
to clear the console input buffer of any type-ahead data, so that
correct input can be supplied by the operator. When the BELL statement
is executed by a program which is running under job management, it has
the additional affect of forcing all subsequent console output to be
displayed (even if the job has suppressed dialogue) until the next
time that console input is requested, when the program will be
terminated with the message:

$17 JOB MANAGEMENT TERMINATED

By structuring your parameter validation logic as follows:

DISPLAY message
REINPUT.

ACCEPT reply
IF invalid

BELL
Display error-message
GO TO REINPUT

ELSE
program continues with good input

END

you can create programs which function consistently whether job
management is in control or not. When job management is not in
control, the bell will be sounded and the operator re-prompted with an
error message if an invalid reply is received. When the very same
logic runs under job management, however, and a faulty response is
supplied from the dialogue table, there is no way that a re-prompt can
cure the problem. In this case the bell is sounded and the error
message is displayed even if the job file had suppressed dialogue,
followed by the message:

$17 JOB MANAGEMENT TERMINATED

when the statement "ACCEPT reply" is executed for the second time.
Control then returns to the operator, with the type-ahead buffer
cleared, so the job file can be rerun with correct input.

3.1.2 Bypassing Job Management using $$JCL

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 24 of 49

Console input obtained through the CHAR$ system routine, described in
the Global Development Screen Presentation Manual, always bypasses job
management. However, console input obtained through the ACCEPT
statement, the ACCE$ system routine, the MAPIN statement or the PASS$
routine will only bypass job management if the system variable $$JCL
has been set to the value 1. Note that $$JCL must be set to 1 before
each such input operation, since the job manager will have restored
its normal value of -1 by the time that the application program
regains control following the affected input operation. Also remember
that if the operator replies <ESCAPE> to a prompt which bypasses job
management in this way, then job management will be terminated with
the screen message:

$17 JOB MANAGEMENT TERMINATED

If a job file has suppressed dialogue, then all display operations
issued while $$JCL is not equal to -1 will appear on the screen. This
enables an explanatory display to precede a bypass prompt even in a
job file with suppressed dialogue. The following example illustrates
the use of this mechanism:

* $$JCL IS INITIALLY -1
*

DISPLAY MSG1 * PROMPT
 * (SUPPRESSED IF DIALOGUE SUPPRESSED)

 *
ACCEPT REPLY1 * RESPONSE OBTAINED FROM DIALOGUE
 * TABLE IF RUNNING UNDER
 * JOB MANAGEMENT

 *
MOVE 1 TO $$JCL * REQUEST BYPASS
 *
DISPLAY MSG2 * PROMPT (NEVER SUPPRESSED)
 *
ACCEPT REPLY2 * COLON IS DISPLAYED AND REPLY2
 * ACCEPTED. THEN $$JCL REVERTS
 * TO -1
 *
DISPLAY MSG3 * PROMPT
 * (SUPPRESSED IF DIALOGUE SUPPRESSED)

 *
ACCEPT REPLY3 * RESPONSE OBTAINED FROM DIALOGUE
 * TABLE IF RUNNING UNDER
 * JOB MANAGEMENT

Note that the above example will also run interactively, with all
three ACCEPT statements taking their input from the console.

3.2 Running a Job File under Job Management
A job file may be run under job management in exactly the same way as
a program (i.e. by coding in the dialogue division of the controlling
job file the name of the subject job file) in such a way that this
latter name is supplied by the job manager as the response to a ready
prompt.

As explained in Chapter 1, a job file is merely a special type of
program which, from a job management viewpoint, operates exactly as an
ordinary program during its initiation phase, when it accepts
parameter values. These values may come directly from the console or,
if the job file is itself running under job management, may be
supplied by the job manager from the current job dialogue table. Only
when a job file has received all its parameters does it establish its
own dialogue table in the user stack as the current dialogue table, to

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 25 of 49

provide the subsequent dialogue for the job manager. When this table
is eventually exhausted further dialogue will be taken from the most
recent unexhausted job dialogue table or, if there is none, job
management will be terminated and dialogue from the console will be
resumed.

Thus it is possible for one job file to nest another, and this process
may be repeated to any depth, subject only to the limitation imposed
by the user area size. As each further nested job file is initiated,
its dialogue table is added to the user stack, further reducing the
user area available for the execution of dialogue. It is also possible
for one job file to chain to another: in this case the dialogue table
for the second job file is not established in the user stack until the
dialogue table for the first job file has been exhausted and deleted
from the user stack. Thus a more economical use of the user stack
results when chaining is used rather than nesting.

As an example of nesting, suppose that a job file is to be created
which will call the job file CLXMP, whose job description is given in
Figure 2.1, passing it the same 3 parameters that it received from the
operator console in the example dialogue of Figure 2.1.10. The
following dialogue definition lines would appear in the job
description of this job file:

...
GSM READY:CLXMP
PROGRAM NAME (SUFFIX ONLY):TEST
USER UNIT:205

XREF REQUIRED? (Y/N):Y
next statement

...

In this case, once CLXMP has completed execution, dialogue control
will return to the dialogue table of the calling job file, at the
point "next statement" above.

If, however, the call of CLXMP was followed immediately by an ENDJOB
statement:

GSM READY:CLXMP
PROGRAM NAME (SUFFIX ONLY):TEST
USER UNIT:205
XREF REQUIRED?(Y/N):Y
ENDJOB

then this would be an example of chaining, since the dialogue table of
the calling job file would exhaust itself in supplying the parameters
of CXLMP. Thus by the time that the CLXMP dialogue table was
established in the user stack, the calling dialogue table would
already have been deleted.

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 26 of 49

JOB COMP10 COMPILE UP TO 10 PROGRAMS
*
* THIS JOB COMPILES FROM 1 TO 10 PROGRAMS ON THE SAME UNIT.
*
* IT COMPILES ONE PROGRAM EACH TIME IT IS CALLED,
* THEN CALLS A FURTHER COPY OF ITSELF ITERATIVELY,
* PASSING A REDUCED SET OF PARAMETERS,
* UNTIL ALL PROGRAMS HAVE BEEN COMPILED.
*
PARAMETER DIVISION
*

 &1 X(3) UNIT
 &2 X(6) SOURCE FILE 1
 &3 X(6) ? SOURCE FILE 2
 &4 X(6) ? SOURCE FILE 3
 &5 X(6) ? SOURCE FILE 4
 &6 X(6) ? SOURCE FILE 5
 &7 X(6) ? SOURCE FILE 6
 &8 X(6) ? SOURCE FILE 7
 &9 X(6) ? SOURCE FILE 8
 &10 X(6) ? SOURCE FILE 9
 &11 X(6) ? SOURCE FILE 10

*
DIALOGUE DIVISION
*
GSM READY:$COBOL
$43 SOURCE:&2 UNIT:&1
$43 COMPILATION UNIT:<CR> SIZE:<CR>
$43 COPY LIBRARY:<CR>
$43 LISTING UNIT:<CR>
$43 COMPILER OPTION:<CR>
* CHECK IF THERE ARE MORE PROGRAMS TO COMPILE
?3

* THERE ARE, SO RUN THE JOB FILE AGAIN
GSM READY:COMP10
* MOVE ALL REMAINING PARAMETERS UP ONE POSITION
UNIT:&1
SOURCE FILE 1:&3
SOURCE FILE 2:&4
?4
SOURCE FILE 3:&5
?5
SOURCE FILE 4:&6
?6

SOURCE FILE 5:&7
?7
SOURCE FILE 6:&8
?8
SOURCE FILE 7:&9
?9
SOURCE FILE 8:&10
?10
SOURCE FILE 9:&11
?11
SOURCE FILE 10:<CR>

ENDJOB

Figure 3.2.2 - Job Description of iterative Job File

3.2.1 Programming Notes
Any jobs called from a job with suppressed dialogue will have their
dialogue suppressed. However, if a job file with suppressed dialogue
chains to another job file, the dialogue of the second job will not be
suppressed unless that job itself specifies suppression.

When passing a parameter value between job files, care must be taken
to ensure that it conforms to the format associated with it in the job
description of the called job file. Failure to do this will result in
the generation of one of the prompts marked with a + sign in Table

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 27 of 49

1.5, which will cause job management to be terminated. This contrasts
with the acceptance of parameter values from operator input, where
invalid values will cause a prompt to which the operator may reply
with correct input.

3.2.2 Example - An Iterative Job File
Figure 3.2.2 shows a job file, COMP10, which accepts a variable number
of parameters and invokes itself iteratively, dealing with one
parameter each time that it is run, until all parameters have been
processed.

The purpose of the job file is to compile from 1 to 10 source programs
held on the same unit, producing compilation files also on that unit.
Parameter &1 supplies the unit-id for the sequence of compilations and
parameter &2, which is not conditional, supplies the name of the
source file to be compiled by this execution of the job file. The
remaining parameters are conditional. If source file names are
supplied for parameters &3 to &11, they are accepted and placed in the
dialogue table, but if <CR> is replied for any of these parameters
then the job file is initiated immediately. The file defined by &2 is
then compiled, and a blank separator page is output to $PR by the $P
command. Then parameter &3 is checked to see if a null value was
supplied and if it is null this means that all source files have been
compiled and so job management is terminated. If parameter &3 is non-
null, there are more compilations to be performed, so control is
passed to the COMP10 job file again, passing the same unit number, but
cycling the source file parameters so that parameter &3 will be
treated as &2, and so on.

Note that after each parameter is supplied to the next iteration, by a
dialogue line such as:

SOURCE FILE 2:&4

It is tested to see whether it was initially specified by a line such
as:

?4

This test allows the job manager to free the user stack space occupied
by the previous iteration of COMP10 as soon as it is no longer
required. If the test were omitted n copies of COMP10 would be present
by the time the n'th compilation took place, possibly causing the job
to fail if used for a sufficiently large number of source files. By
including the test immediately after the parameter is supplied we
ensure that a maximum of two copies (of the invoking and invoked job)
are present in the stack at any one time.

COMP10 is of course reloaded from direct access storage every time it
is invoked, so it should ideally be kept online during the entire
process, or you will have to mount it when requested by a prompt which
bypasses job management.

The following screen dialogue is produced when COMP10 is used to
compile two programs, TEST1 and TEST2, on unit 101:

GSM READY:COMP10

COMPILE UP TO 10 PROGRAMS

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 28 of 49

UNIT:205
SOURCE FILE:TEST1
SOURCE FILE:TEST2
SOURCE FILE:<CR>
GSM READY:$COBOL
$43 SOURCE:TEST1 UNIT:205
$43 COMPILATION UNIT: SIZE:
$43 COPY LIBRARY:
$43 LISTING UNIT:
$43 COMPILER OPTION:
$43 COMPILING

$43 END OF FIRST PASS
$43 NUMBER OF ERRORS 0
$43 NUMBER OF WARNINGS 0
$43 COMPILATION COMPLETED
GSM READY:COMP10

COMPILE UP TO 10 PROGRAMS

UNIT:205
SOURCE FILE:TEST2
SOURCE FILE:

GSM READY:$COBOL
$43 SOURCE:TEST2 UNIT:205
$43 COMPILATION UNIT: SIZE:
$43 COPY LIBRARY:
$43 LISTING UNIT:
$43 COMPILER OPTION:
$43 COMPILING
$43 END OF FIRST PASS
$43 NUMBER OF ERRORS 0
$43 NUMBER OF WARNINGS 0
$43 COMPILATION COMPLETED

GSM READY:

3.3 Invoking a Job File from an Application Program
Since a job file is a program file, it may be invoked from an
application program by a RUN (or CHAIN) statement. For example:

RUN "CLXMP"

will cause job file CLXMP (Figure 2.1) to gain control and to prompt
for its parameters on the screen.

Note that it is not possible to pass parameters directly from the
calling program to the job file, but the applications work area,
$$AREA, may be used to pass a small number of values to a subject
program.

If any error occurs during the loading of the job file (because it is
not present on the program residence device, for example) then the
calling program will be terminated in error.

3.3.1 Programming Note
Each subject program of the invoked job file, including the first, is
run from a ready prompt, with the job manager supplying the name of
the program to be run in response to each ready prompt. At each ready
prompt the monitor performs end-of-job processing, and this ensures
that each subject program starts execution in an initial state (i.e.
with the console in teletype mode) with the ESCAPE key enabled, with
no work space allocated and without a user-specified end-of-job
routine. Since a job file is normally run from a ready prompt, it too
expects to be run from this same initial state. This will be the case
if you invoke the job file using the RUN statement. If you use CHAIN
(only recommended if you require your programs to run under an earlier

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 29 of 49

version of Global System Manager which does not support the RUN
statement) you must establish the initial state yourself, by:

● resetting teletype mode;

● enabling the ESCAPE key;

● releasing work space;

● detaching any end-of-job routine.

The following code shows how the initial state might be re-established
before chaining to the example job file:

SCROLL * RESET TELETYPE MODE
MOVE 0 TO $$ESC * ENABLE ESCAPE KEY
CALL FREE$ * RELEASE WORKSPACE
CALL EOJ$ * DETACH END-OF-JOB ROUTINE

*
CHAIN "CLXMP" * INVOKE JOB FILE CLXMP

3.4 Producing a Tailored Job Initiator using JOB$
In some situations the standard job file as created by the $JOB
command may not provide sufficient flexibility, and for this reason
the JOB$ system routine is provided so that you can develop a tailored
job initiator.

A tailored job initiator performs a similar function to a job file
created by $JOB, inasmuch as both build dialogue tables on the user
stack and then call the job manager to initiate the dialogue. However,
it is the method used to build the dialogue table which distinguishes
a tailored job initiator from a job file. For a job file, the contents
of its dialogue table are broadly determined when it is created by
$JOB, although some flexibility can be provided by parameter values
which you supply when the job file is executed. With a tailored job
initiator however, the dialogue table is assembled under program
control and the variety of possible dialogue tables is limited only by
the sophistication of the initiator.

A typical initiator would be designed to generate dialogue to perform
a particular function, and would be capable of generating every
variant of dialogue table that might be needed to achieve that
function. When it is executed, the initiator will obtain parameter
information (e.g. by prompting for it) and will generate the required
dialogue table accordingly. This it does by passing dialogue packets
in successive calls to the JOB$ routine which actually builds the
dialogue table on the user stack. When all dialogue has been built, a
special dialogue packet causes the complete dialogue to be initiated.

3.4.1 The JOB$ Routine
The JOB$ routine is invoked by a call of the form:

CALL JOB$ USING dialogue-packet

where dialogue-packet is a character variable or character literal
containing job dialogue. Each dialogue packet terminates with an
exclamation mark which is not itself part of the job dialogue, but
merely enables JOB$ to detect the end of the packet.

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 30 of 49

During the execution of a typical job initiator, the dialogue packets
passed in sequence to JOB$ correspond to a subset of the job
description dialogue division (see 2.1.5 - 2.1.9). There are six basic
types of dialogue packet that may be passed to JOB$, as follows:

CALL JOB$ USING "DIALOGUE DIVISION!"
or:

CALL JOB$ USING "DIALOGUE DIVISION (SUPPRESS)!"

These dialogue packets correspond to the dialogue division header
described in 2.1.5. The first packet passed by a job initiator to
JOB$ must be of this form, since it causes JOB$ to initialise its
dialogue table prior to building it.

CALL JOB$ USING "text!"

Here text corresponds broadly to the text which can appear in a
dialogue definition line (see 2.1.6). The text consists of one or
more characters, including spaces if required but excluding the
colon, minus, plus and exclamation mark characters. Additionally
it must not contain the string ENDJOB. This packet is supported
for documentation purposes only, and is completely ignored by
JOB$.

CALL JOB$ USING ":response !"

Here response is as described in 2.1.6, except that the space
character is the only acceptable terminator and the special
parameter name response introduced by an ampersand is not
allowed. For each packet of this type, JOB$ adds the response to
the dialogue table that it is building.

CALL JOB$ USING "-prompt-!"

Here prompt is the text of a pause prompt as described in 2.1.7.
For each packet of this type, JOB$ adds the pause prompt to the
dialogue table that it is building.

CALL JOB$ USING "+message+!"

Here message is the text of a message as described in 2.1.8. For
each packet of this type, JOB$ adds the message to the dialogue
table that it is building.

CALL JOB$ USING "ENDJOB!"

When JOB$ receives this packet it causes the dialogue table to be
initiated. This must be the last packet passed by the initiator
to JOB$. Control is not returned to the initiator from this call
of JOB$.

It is possible to concatenate the basic dialogue packets described
above to produce more complex packets. In this case only the last
basic packet is terminated by an exclamation mark. This technique
reduces the number of calls on JOB$ needed to build a complete
dialogue table. For example, the following call of JOB$ will build and
initiate the dialogue table needed to run the $P command which throws
a blank page on the system printer:

CALL JOB$ USING "DIALOGUE DIVISION:$P ENDJOB!"

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 31 of 49

3.4.2 Programming Notes
When coding a job initiator it is extremely important to check that
each dialogue packet is terminated by an exclamation mark character.
If this is omitted, additional characters will be unintentionally
passed to JOB$, with unpredictable results. Also each response within
a dialogue packet must be terminated with a space character, each
pause prompt with a minus character and each message with a plus
character. In particular, if the last item in a packet is a response
the packet must end with a space followed by an exclamation mark. By
following these simple rules the possibilities of errors will be
reduced, but when errors do occur they will produce stop codes
documented in the Global Utilities Manual.

It is possible to run a tailored job initiator under job management in
exactly the same way as a job file is run under job management (see
3.2). Remember that the job dialogue table built by the initiator is
not established as the current job dialogue table until the "ENDJOB"
dialogue packet is passed to JOB$. Until this time the initiator
behaves like a job file in its parameter-acceptance phase.

3.4.3 The Example Job Initiator, CLX
Appendix A contains the compilation listing of an example job
initiator, CLX. This initiator is capable of building the dialogue
table needed to perform any combination of compile, link and cross-
reference steps upon a named program. Thus it performs a superset of
the functions possible with the example job file, CLXMP, given in
Figure 2.1.

You execute the job initiator by typing its name in response to a
ready prompt in the normal way, and it displays its title and prompts
for the program name, user unit and copy library name:

GSM READY:CLX

COMPILE, LINK AND XREF JOB INITIATOR

PROGRAM NAME (SUFFIX ONLY):TEST
USER UNIT:205
COPY LIBRARY (DEFAULT = NONE):TT
COMPILATION REQUIRED? (DEFAULT = Y):

You are then asked if the program is to be compiled, and if you reply
Y or <CR> the necessary dialogue to achieve the compilation will be
passed to JOB$. Note that three separate dialogue packets are used to
enable different dialogue to be selected depending on the presence or
absence of a copy library. A standard job file cannot provide this
facility as it can only support a fixed sequence of responses. Note
also that the dialogue packets are parameterised with program name,
unit name and copy library name before being passed to JOB$. This
parameterisation is equivalent to the ampersand parameters supported
by a job file and explains why there is no need for ampersand
parameters in JOB$ dialogue. If you reply N to this prompt, no
compilation dialogue will be generated.

COMPILATION REQUIRED? (DEFAULT = Y):<CR>
X-REFERENCE REQUIRED? (DEFAULT = Y):

You are now asked if the program is to be cross-referenced:

X-REFERENCE REQUIRED? (DEFAULT = Y):<CR>

Chapter 3 - Advanced Job Management Facilities

Global Development Job Management Manual V8.1 Page 32 of 49

LINK REQUIRED? (DEFAULT = Y):

The initiator action is similar to that described above for the
compilation.

Finally you are asked if the compilation file is to be linked. If you
reply Y or <CR> the dialogue table for a linkage edit will be
generated, but an additional prompt appears asking for the name of any
extra compilation files or libraries to be included in the linkage
edit:

LINK REQUIRED? (DEFAULT = Y):<CR>
ADDITIONAL LINK MODULE NAME (DEFAULT = NONE):

Each time that you supply the name of an additional link module the
necessary dialogue packet will be constructed and passed to JOB$. The
same prompt will then be redisplayed. Once you reply <CR> to this
prompt the final linkage edit dialogue packet will be passed to JOB$:

ADDITIONAL LINK MODULE NAME (DEFAULT = NONE):MOD1
ADDITIONAL LINK MODULE NAME (DEFAULT = NONE):MOD2
ADDITIONAL LINK MODULE NAME (DEFAULT = NONE):<CR>

The initiator then generates dialogue to throw a clean page on the
printer and finally initiates the generated dialogue by calling JOB$
with the special "ENDJOB" parameter. The generated dialogue now
appears at the console as the dialogue table supplies input in place
of the console:

GSM READY:

JOB INITIATED

GSM READY:$COBOL
.........
......... (rest of dialogue)
.........
GSM READY:

The source, S.CLX, of this initiator is supplied as part of any
advanced Global Cobol development system so that you can compile and
link it to produce the CLX job initiator to use in your own program
development, or indeed modify it so that it exactly meets your own
special requirements. The S.CLX file is installed on the system volume
containing the Global Cobol compiler.

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 33 of 49

Appendix A - Example Listings

The following pages contain three job listings produced by $JOB from
example job descriptions, and a compilation listing of an example
tailored job initiator. In the job listings, the first column numbers
the source line and the second column gives the number of bytes of
dialogue table generated by each line. The compilation listing format
is described in MU-A.

L.CLXMP is the job listing for the example job description given in
Figure 2.1.

L.COMP10 is the job listing for the job description of the iterative

job file given in Figure 3.2.2, and shows how a job file may
invoke a further copy of itself, passing on a reduced
parameter set.

L.INSPR is the job listing for a job description which shows how an

application product may be installed from distribution
diskettes onto operational volumes. This example has been
deliberately simplified to highlight the use of the volume-
id checking facilities of $F and $LIB.

L.CLX is the compilation listing of the example job initiator
which is described in 3.4.3.

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 34 of 49

JOB LIST OF CLXMP COMPILE, LINK & XREF MAIN PROG 14/4/88 11.45.06 PAGE 1
1 0 JOB CLXMP COMPILE, LINK & XREF MAIN PROGRAM
2 0 *
3 0 * THIS JOB DESCRIPTION COMPILES THE SOURCE OF A MAIN PROGRAM,
4 0 * LINKAGE EDITS IT WITH THE SYSTEM LIBRARIES,
5 0 * AND OPTIONALLY PRODUCES A CROSS-REFERENCE LISTING.
6 0 * ALL LISTINGS ARE PRODUCED ON THE LOGICAL PRINTER, $PR.
7 0 *
8 0 PARAMETER DIVISION
9 0 *
10 8 &1 X(6) PROGRAM NAME (SUFFIX ONLY)

11 5 &2 X(3) USER UNIT
12 3 &3 X(1) ? XREF REQUIRED? (Y/N)
13 0 *
14 0 DIALOGUE DIVISION
15 0 *
16 0 * FIRSTLY, COMPILE THE PROGRAM
17 24 +COMPILATION STARTING+
18 1 GSM READY:<CR>
19 9 GSM READY:$COBOL
20 4 $43 SOURCE:&1 UNIT:&2
21 2 $43 COMPILATION UNIT:<CR> SIZE:<CR>

22 1 $43 COPY LIBRARY:<CR>
23 1 $43 LISTING UNIT:<CR>
24 1 $43 COMPILER OPTION:<CR>
25 0 *
26 0 *
27 0 * THEN LINK THE PROGRAM.
28 28 +LINKAGE EDITING STARTING+
29 1 GSM READY:<CR>
30 8 GSM READY:$LINK
31 4 $44 LINK:&1 UNIT:&2
32 1 $44 LINK:<CR>

33 2 $44 PROGRAM:<CR> UNIT:<CR>
34 1 $44 LISTING UNIT:<CR>
35 1 $44 LINK OPTION:<CR>
36 0 *
37 2 *
38 0 * CHECK IF A CROSS-REFERENCE HAS BEEN SELECTED.
39 1 ?3
40 0 * PAUSE TO ALLOW $XREF TO BE MOUNTED.
41 0 * NOTE: THIS PAUSE PROMPT IS NOT STRICTLY NECESSARY,SINCE SYSTEM
42 0 * MANAGER PRODUCES OWN MOUNT PROMPT IF $XREF IS NOT FOUND.
43 42 -CONFIRM XREF REQUIRED, <ESC> OTHERWISE-

44 0 * NOW PRODUCE THE CROSS-REFERENCE.
45 1 GSM READY:<CR>
46 8 GSM READY:$XREF
47 4 $54 SOURCE:&1 UNIT:&2
48 1 $54 COPY LIBRARY:<CR>
49 1 $54 LISTING UNIT:<CR>
50 1 $54 X-REFERENCE OPTION:<CR>
51 0 * FINALLY, THROW ANOTHER BLANK SEPARATOR PAGE, THEN STOP.
52 0 *
53 0 *
54 0 ENDJOB

Job Listing, L.CLXMP - Page 1

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 35 of 49

JOB LIST OF CLXMP COMPILE, LINK & XREF MAIN PROG 14/4/88 11.45.07 PAGE 2

END OF JOB DESCRIPTION -- 164 BYTES OF JOB DIALOGUE TABLE USED

NUMBER OF WARNINGS 0
NUMBER OF ERRORS 0

11318 (#2B82) BYTES OF USER AREA REQUIRED TO INITIATE THIS JOB
1210 (#04BA) BYTES OF USER STACK WILL BE USED THROUGHOUT THE EXECUTION OF THIS JOB

SOURCE FILE S.CLXMP OF SIZE 1.4K BYTES USED ON UNIT 205
JOB FILE CLXMP OF SIZE 3.0K BYTES PRODUCED ON UNIT 205
LISTING FILE L.CLXMP OF SIZE 5.9K BYTES PRODUCED ON UNIT 206
PRODUCED BY JOB MANAGEMENT V8.1

Job Listing, L.CLXMP - Page 2

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 36 of 49

JOB LIST OF COMP10 COMPILE UP TO 10 PROGRAMS 14/04/88 11.46.49 PAGE 1

1 0 JOB COMP10 COMPILE UP TO 10 PROGRAMS
2 0 *
3 0 * THIS JOB COMPILES FROM 1 TO 10 PROGRAMS ON THE SAME UNIT.
4 0 *
5 0 * IT COMPILES ONE PROGRAM EACH TIME IT IS CALLED,
6 0 * THEN CALLS A FURTHER COPY OF ITSELF ITERATIVELY,
7 0 * PASSING A REDUCED SET OF PARAMETERS,
8 0 * UNTIL ALL PROGRAMS HAVE BEEN COMPILED.
9 0 *

10 0 PARAMETER DIVISION
11 0 *
12 5 &1 X(3) UNIT
13 8 &2 X(6) SOURCE FILE 1
14 8 &3 X(6) ? SOURCE FILE 2
15 8 &4 X(6) ? SOURCE FILE 3
16 8 &5 X(6) ? SOURCE FILE 4
17 8 &6 X(6) ? SOURCE FILE 5
18 8 &7 X(6) ? SOURCE FILE 6
19 8 &8 X(6) ? SOURCE FILE 7
20 8 &9 X(6) ? SOURCE FILE 8

21 8 &10 X(6) ? SOURCE FILE 9
22 8 &11 X(6) ? SOURCE FILE 10
23 0 *
24 0 DIALOGUE DIVISION
25 0 *
26 9 GSM READY:$COBOL
27 4 $43 SOURCE:&2 UNIT:&1
28 2 $43 COMPILATION UNIT:<CR> SIZE:<CR>
29 1 $43 COPY LIBRARY:<CR>
30 1 $43 LISTING UNIT:<CR>
31 1 $43 COMPILER OPTION:<CR>

32 0 *
33 0 *
34 0 * CHECK IF THERE ARE MORE PROGRAMS TO COMPILE
35 1 ?3
36 0 * THERE ARE, SO RUN THE JOB FILE AGAIN
37 9 GSM READY:COMP10
38 0 * MOVE ALL REMAINING PARAMETERS UP ONE POSITION
39 2 UNIT:&1
40 2 SOURCE FILE 1:&3
41 2 SOURCE FILE 2:&4
42 1 ?4

43 2 SOURCE FILE 3:&5
44 1 ?5
45 2 SOURCE FILE 4:&6
46 1 ?6
47 2 SOURCE FILE 5:&7
48 1 ?7
49 2 SOURCE FILE 6:&8
50 1 ?8
51 2 SOURCE FILE 7:&9
52 1 ?9
53 2 SOURCE FILE 8:&10

54 1 ?10
55 2 SOURCE FILE 9:&11
56 1 ?11
57 1 SOURCE FILE 10:<CR>
58 0 ENDJOB

Job Listing, L.COMP10 - Page 1

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 37 of 49

JOB LIST OF COMP10 COMPILE UP TO 10 PROGRAMS 14/04/88 11.46.49 PAGE 2

END OF JOB DESCRIPTION -- 142 BYTES OF JOB DIALOGUE TABLE USED

NUMBER OF WARNINGS 0
NUMBER OF ERRORS 0

11094 (#2B56) BYTES OF USER AREA REQUIRED TO INITIATE THIS JOB
 1188 (#04A4) BYTES OF USER STACK WILL BE USED THROUGHOUT THE EXECUTION OF THIS JOB

SOURCE FILE S.COMP10 OF SIZE 1.1K BYTES USED ON UNIT 205
JOB FILE COMP10 OF SIZE 3.2K BYTES PRODUCED ON UNIT 205
LISTING FILE L.COMP10 OF SIZE 6.2K BYTES PRODUCED ON UNIT 206
PRODUCED BY JOB MANAGEMENT V8.1

Job Listing, L.COMP10 - Page 2

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 38 of 49

JOB LIST OF INSPR INSTALL PAYROLL ONTO 1 VOLUME 14/04/88 11.48.59 PAGE 1

 1 0 JOB INSPR INSTALL PAYROLL ONTO 1 VOLUME
 2 0 *
 3 0 * THIS JOB FILE ILLUSTRATES THE USE OF THE VOLUME-ID CHECKING
 4 0 * FACILITIES OF $F AND $LIB.
 5 0 *
 6 0 * IT INSTALLS THE PROGRAM LIBRARY OF A PAYROLL SYSTEM BY MERGING THE
 7 0 * TWO LIBRARIES, P.PRA AND P.PRB, DISTRIBUTED ON VOLUMES PRA AND PRB
 8 0 * RESPECTIVELY, INTO A SINGLE LIBRARY, P.PR, HELD ON VOLUME PRGRES.
 9 0 * THE MENU PROGRAM, $MENU, IS THEN COPIED FROM SYSRES TO PRGRES.

10 0 * THE JOB FILE ITSELF IS LOADED FROM VOLUME P.PRA ON UNIT $P.
 11 0 *
 12 0 PARAMETER DIVISION
 13 0 *
 14 5 &1 X(3) OUTPUT UNIT (PRGRES)
 15 0 *
 16 0 DIALOGUE DIVISION
 17 0 *
 18 7 GSM READY:$LIB
 19 10 $95 TARGET LIBRARY:<CTRL C> VOLUME-ID:PRGRES
 20 9 $95 TARGET LIBRARY:P.PR UNIT:&1

 21 5 $95 NEW?:Y SIZE:<CR>
 22 1 $95 TITLE:<CR>
 23 0 $95 LIBRARY MAINTENANCE
 24 7 :MER FROM UNIT:<CR>
 25 9 $95 FILE:P.PRA MEMBER:<CTRL B>
 26 0 (LIST OF MEMBERS OF P.PRA AS THEY ARE MERGED)
 27 0 $95 LIBRARY MAINTENANCE
 28 10 :I :PRB
 29 0 $95 LIBRARY MAINTENANCE
 30 3 :MER FROM UNIT:<CR>
 31 9 $95 FILE:P.PRB MEMBER:<CTRL B>

 32 0 (LIST OF MEMBERS OF P.PRB AS THEY ARE MERGED)
 33 0 $95 LIBRARY MAINTENANCE
 34 7 :TRU NEW SPACE SPACE:<CR> TRUNCATED
 35 0 $95 LIBRARY MAINTENANCE
 36 6 :END
 37 1 $95 TARGET LIBRARY:<ESCAPE>
 38 5 GSM READY:$F
 39 6 $66 INPUT DEVICE:$CP
 40 2 $66 OUTPUT DEVICE:&1
 41 0 $66 FILE MAINTENANCE
 42 11 :I :SYSRES

 43 0 $66 FILE MAINTENANCE
 44 6 :O :PRGRES
 45 0 $66 FILE MAINTENANCE
 46 16 :COP :$MENU TO:<CR> SIZE:<CR>
 47 0 $66 FILE MAINTENANCE
 48 1 :<ESCAPE>
 49 0 *
 50 0 ENDJOB

Job Listing, L.INSPR - Page 1

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 39 of 49

JOB LIST OF INSPR INSTALL PAYROLL ONTO 1 VOLUME 14/04/88 11.48.59 PAGE 2

END OF JOB DESCRIPTION -- 136 BYTES OF JOB DIALOGUE TABLE USED

NUMBER OF WARNINGS 0
NUMBER OF ERRORS 0

10860 (#2A6C) BYTES OF USER AREA REQUIRED TO INITIATE THIS JOB
 1088 (#0440) BYTES OF USER STACK WILL BE USED THROUGHOUT THE EXECUTION OF THIS JOB

SOURCE FILE S.INSPR OF SIZE 1.3K BYTES USED ON UNIT 205
JOB FILE INSPR OF SIZE 2.8K BYTES PRODUCED ON UNIT 205
LISTING FILE L.INSPR OF SIZE 5.5K BYTES PRODUCED ON UNIT 206
PRODUCED BY JOB MANAGEMENT V8.1

Job Listing, L.INSPR - Page 2

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 40 of 49

LISTING OF CLX COMPILE, LINK & XREF SEQUENCER 14/04/88 11.55.22 PAGE 1

 2 PROGRAM CLX
 3 *
 4 * THIS PROGRAM ILLUSTRATES HOW THE JOB$ SYSTEM ROUTINE MAY BE USED
 5 * TO PRODUCE A TAILORED JOB BUILDER/INITIATOR.
 6 *
 7 * WITH A MINIMUM OF OPERATOR INTERACTION, A JOB IS CREATED TO
 8 * COMPILE, CROSS-REFERENCE AND LINK A SELECTED PROGRAM. ANY OF THE
 9 * THREE DEVELOPMENT STEPS MAY BE OMITTED.
 10 *

 11 0000 DATA DIVISION
 12 *
 13 0000 01 C-PKTS * $COBOL JOB DIALOGUE PACKETS
 14 0000 02 C-PKT1 * $COBOL JOB DIALOGUE PACKET 1
 15 0000 03 FILLER PIC X(?)
 16 0000 VALUE "GSM READY:$COBOL "
 17 0011 VALUE "$43 SOURCE:"
 18 001C 03 CNAME PIC X(6) * SOURCE FILE NAME
 19 0022 03 FILLER PIC X(?)
 20 0022 VALUE " UNIT:"
 21 0028 03 CUNIT PIC X(3) * SOURCE FILE UNIT

 22 002B 03 FILLER PIC X(?)
 23 002B VALUE " $43 COMPILATION UNIT:"
 24 0041 03 CCOMPU PIC X(3) * COMPILATION FILE UNIT
 25 0044 03 FILLER PIC X(?)
 26 0044 VALUE " SIZE:<CR> "
 27 0051 VALUE "$43 COPY LIBRARY:"
 28 0062 03 CCOP PIC X(6) * COPY LIBRARY NAME
 29 0068 03 FILLER PIC X(?)
 30 0068 VALUE " !"
 31 006A 02 C-PKT2 PIC X(?) * $COBOL JOB DIALOGUE PACKET 2
 32 006A VALUE " UNIT:<CR> !"

 33 0078 02 C-PKT3 PIC X(?) * $COBOL JOB DIALOGUE PACKET 3
 34 0078 VALUE "$43 LISTING UNIT:$PR "
 35 008D VALUE "$43 COMPILER OPTION:<CR> !"
 36 *
 37 00A9 01 X-PKTS * $XREF JOB DIALOGUE PACKETS
 38 00A9 02 X-PKT1 * $XREF JOB DIALOGUE PACKET 1
 39 00A9 03 FILLER PIC X(?)
 40 00A9 VALUE "GSM READY:$XREF "
 41 00B9 VALUE "$54 SOURCE:"
 42 00C4 03 XNAME PIC X(6) * SOURCE FILE NAME
 43 00CA 03 FILLER PIC X(?)

 44 00CA VALUE " UNIT:"
 45 00D0 03 XUNIT PIC X(3) * SOURCE FILE UNIT
 46 00D3 03 FILLER PIC X(?)
 47 00D3 VALUE " $54 COPY LIBRARY:"
 48 00E5 03 XCOP PIC X(6) * COPY LIBRARY NAME
 49 00EB 03 FILLER PIC X(?)
 50 00EB VALUE " !"
 51 00ED 02 X-PKT2 PIC X(?) * $XREF JOB DIALOGUE PACKET 2
 52 00ED VALUE " UNIT:<CR> !"
 53 00FB 02 X-PKT3 PIC X(?) * $XREF JOB DIALOGUE PACKET 3
 54 00FB VALUE "$54 LISTING UNIT:$PR "

 55 0110 VALUE "$54 X REFERENCE OPTION:<CR> !"

Compilation Listing, L.CLX - Page 1

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 41 of 49

LISTING OF CLX COMPILE, LINK & XREF SEQUENCER 14/04/88 11.55.22 PAGE 2

 57 012F 01 L-PKTS * $LINK JOB DIALOGUE PACKETS
 58 012F 02 L-PKT1 * $LINK JOB DIALOGUE PACKET 1
 59 012F 03 FILLER PIC X(?)
 60 012F VALUE "GSM READY:$LINK "
 61 013F VALUE "$44 LINK:"
 62 0148 03 LNAME1 PIC X(6) * FIRST COMPILATION FILE NAME
 63 014E 03 FILLER PIC X(?)
 64 014E VALUE " UNIT:"
 65 0154 03 LUNIT PIC X(3) * COMPILATION FILE UNIT

 66 0157 03 FILLER PIC X(?)
 67 0157 VALUE " !"
 68 *
 69 0159 02 L-PKT2 * $LINK JOB DIALOGUE PACKET 2
 70 0159 03 FILLER PIC X(?)
 71 0159 VALUE "$44 LINK:"
 72 0162 03 LNAME2 PIC X(6) * NEXT COMPILATION FILE NAME
 73 0168 03 FILLER PIC X(?)
 74 0168 VALUE " UNIT:<CR> !"
 75 *
 76 0176 02 L-PKT3 * $LINK JOB DIALOGUE PACKET 3

 77 0176 03 FILLER PIC X(?)
 78 0176 VALUE "$44 LINK:<CR> "
 79 0186 VALUE "$44 PROGRAM:"
 80 0192 03 LPROG PIC X(6) * PROGRAM FILE NAME
 81 0198 03 FILLER PIC X(?)
 82 0198 VALUE " UNIT:<CR> "
 83 01A5 VALUE "$44 LISTING UNIT:$PR "
 84 01B6 VALUE "$44 LINK OPTION:<CR> !"
 85 *
 86 01CE 77 REPLY PIC X
 87 01CF 77 NAME PIC X(6)

 88 01D5 77 UNIT PIC X(3)
 89 01D8 77 COPLIB PIC X(6)

Compilation Listing, L.CLX - Page 2

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 42 of 49

LISTING OF CLX COMPILE, LINK & XREF SEQUENCER 14/04/88 11.55.22 PAGE 3

 91 01DE 0 0 PROCEDURE DIVISION
 92 01DE 0 0 SECTION MAIN
 93 *
 94 * DISPLAY JOB TITLE BEFORE ACCEPTING PARAMETERS
 95 *
 96 01E4 0 0 DISPLAY SPACE * DISPLAY BLANK LINE
 97 01E6 0 0 DISPLAY "COMPILE, LINK AND XREF SEQUENCER"
 98 0208 0 0 DISPLAY SPACE * DISPLAY BLANK LINE
 99 *

100 020A 0 0 CALL JOB$ USING "DIALOGUE DIVISION!" * START BUILDING JOB
101 *
102 * GENERATE DIALOGUE FOR MESSAGE TO BE DISPLAYED WHEN JOB IS
INITIATED
103 *
104 0222 0 0 CALL JOB$ USING "GSM READY!" * COMMENT DIALOGUE
105 0232 0 0 CALL JOB$ USING "+ ++JOB INITIATED+!" * NOTE: TWO MESSAGES
106 024C 0 0 CALL JOB$ USING ":<CR> !" * PRODUCE "GSM READY:" DISPLAY
107 *
108 * ACCEPT PARAMETER VALUES FOR THIS INITIATION OF THE JOB
109 *

110 025C 0 0 DISPLAY "PROGRAM NAME (SUFFIX ONLY)"
111 0278 0 0 ACCEPT NAME
112 0284 0 0 DISPLAY "USER UNIT"
113 0290 0 0 ACCEPT UNIT
114 029C 0 0 DISPLAY "COPY LIBRARY (DEFAULT = NONE)"
115 02BC 0 0 ACCEPT COPLIB NULL
116 02CC 0 1 MOVE "<CR>" TO COPLIB * NO COPY LIBRARY
117 02D8 0 0 END
118 *
119 * GENERATE $COBOL JOB DIALOGUE PACKETS IF REQUESTED
120 *

121 02D8 0 0 DISPLAY "COMPILATION REQUIRED? (DEFAULT = Y)"
122 02FE 0 0 ACCEPT REPLY NULL
123 030E 0 0 OR REPLY = "Y"
124 0318 0 1 MOVE NAME TO CNAME
125 0320 0 1 MOVE UNIT TO CUNIT
126 0328 0 1 MOVE UNIT TO CCOMPU
127 0330 0 1 MOVE COPLIB TO CCOP
128 0338 0 1 CALL JOB$ USING C-PKT1 * $COBOL JOB PACKET PART 1
129 0340 0 1 IF COPLIB NOT = "<CR>" * COPY LIBRARY REQUIRED
130 0350 0 2 CALL JOB$ USING C-PKT2
131 0358 0 1 END

132 0358 0 1 CALL JOB$ USING C-PKT3 * $COBOL JOB PACKET PART 3
133 0360 0 0 END
134 *
135 * GENERATE $XREF JOB DIALOGUE PACKETS IF REQUESTED
136 *
137 0360 0 0 DISPLAY "X-REFERENCE REQUIRED? (DEFAULT = Y)"
138 0386 0 0 ACCEPT REPLY NULL
139 0396 0 0 OR REPLY = "Y"
140 03A0 0 1 MOVE NAME TO XNAME
141 03A8 0 1 MOVE UNIT TO XUNIT
142 03B0 0 1 MOVE COPLIB TO XCOP

143 03B8 0 1 CALL JOB$ USING X-PKT1 * $XREF JOB PACKET PART 1
144 03C0 0 1 IF COPLIB NOT = "<CR>" * COPY LIBRARY REQUIRED
145 03D0 0 2 CALL JOB$ USING X-PKT2
146 03D8 0 1 END
147 03D8 0 1 CALL JOB$ USING X-PKT3 * $XREF JOB PACKET PART 3
148 03E0 0 0 END

Compilation Listing, L.CLX - Page 3

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 43 of 49

LISTING OF CLX COMPILE, LINK & XREF SEQUENCER 14/04/88 11.55.22 PAGE 4

150 *
151 * GENERATE $LINK JOB DIALOGUE PACKETS IF REQUESTED
152 *
153 03E0 0 0 DISPLAY "LINK REQUIRED? (DEFAULT = Y)"
154 03FE 0 0 ACCEPT REPLY NULL
155 040E 0 0 OR REPLY = "Y"
156 0418 0 1 MOVE NAME TO LNAME1
157 0420 0 1 MOVE NAME TO LPROG
158 0428 0 1 MOVE UNIT TO LUNIT

159 0430 0 1 CALL JOB$ USING L-PKT1 * $LINK JOB PACKET PART 1
160 0438 0 1 ADDMOD.
161 0438 0 1 DISPLAY "ADDITIONAL LINK MODULE NAME (DEFAULT = NONE)"
162 0466 0 1 ACCEPT LNAME2 NULL GO TO CONT
163 0476 0 1 CALL JOB$ USING L-PKT2 * $LINK JOB PACKET PART 2
164 047E 0 1 GO TO ADDMOD
165 0482 0 1 CONT.
166 0482 0 1 CALL JOB$ USING L-PKT3 * $LINK JOB PACKET PART 3
167 048A 0 0 END
168 *
169 * GENERATE DIALOGUE TO THROW A BLANK PAGE

170 *
171 048A 0 0 CALL JOB$ USING ":$P !" * THROW PAGE
172 *
173 * GENERATE DIALOGUE TO INITIATE THE JOB
174 *
175 0496 0 0 CALL JOB$ USING "ENDJOB!" * INITIATE JOB
176 *
177 * THE STOP RUN STATEMENT IS INCLUDED FOR TIDYNESS - JOB$ DOES NOT
178 * RETURN CONTROL TO THE INITIATOR AFTER RECEIVING "ENDJOB!"
179 *
180 04A4 0 0 STOP RUN

181 *
182 04A8 0 0 ENDPROG

Compilation Listing, L.CLX - Page 4

Appendix A - Example Listings

Global Development Job Management Manual V8.1 Page 44 of 49

LISTING OF CLX STATISTICS 14/04/88 11.55.22 PAGE 5

NUMBER OF ERRORS 0
NUMBER OF WARNINGS 0

COMPILATION OPTIONS IN FORCE :

TR - TRACE INFORMATION GENERATED IN COMPILATION FILE
NLN - NO LONG NAMES, THE FIRST 6 CHARACTERS ARE SIGNIFICANT
SD - SYMBOLIC DEBUG RECORD GENERATED IN COMPILATION FILE

PROGRAM SIZE = 04A8 BYTES (HEXADECIMAL)

TOTAL NUMBER OF LINES 182 (EXCLUDING COMMENTS 135)

SOURCE FILE - S.CLX ON 114 CREATED 14/04/88
COMPILATION - C.CLX ON 114 SIZE 1.8K
LISTING FILE - L.CLX ON 500 SIZE 8.7K

MACHINE - IBM PS/2-95
VERSION - V8.1

COMPILATION COMPLETED

Compilation Listing, L.CLX - Page 5

Appendix B - Included Routines

Global Development Job Management Manual V8.1 Page 45 of 49

Appendix B - Included Routines

System routines referenced by the CALL statement are included in your
program from the system library when it is linkage edited. If you
create a tailored initiator using the JOB$ system routine, the 2
members of C.$APF shown in the table below are included. The SIZE
column indicates the approximate memory size taken, rounded up to the
nearest .1K (K=1024).

Global Cobol
statement

Program name of the subroutine included

Size (Kb)

CALL JOB$

CXA, OJA

5.2

Table B - Included Routines

Appendix C - Job Listing Error and Warning Messages

Global Development Job Management Manual V8.1 Page 46 of 49

Appendix C - Job Listing Error and Warning
Messages

This appendix describes the error and warning messages produced by the
Job File Builder, $JOB, in the listing file. If an error occurs, this
indicates a serious fault and no job file will have been created. $JOB
is able to recover following a warning however, and the description of
the warning message specifies the recovery action taken. Job files
subject to warnings are executable, but it is of course good practice
to correct the job description so that a clean job listing can be
obtained.

Each message consists of the error or warning number of one or two
digits and a short explanation. In general the message follows the
line in error, but where a missing line is referred to the message is
printed where the missing line should have been.

* WARNING 1 LINE NOT RECOGNISED

An invalid line has been found where a PARAMETER DIVISION,
DIALOGUE DIVISION or comment line only would be valid. The
invalid line is ignored.

* WARNING 2 FIRST LINE IS NOT A JOB LINE

The first line of a job description must be a JOB line. The
invalid line is ignored.

* WARNING 3 PARAMETER DIVISION STATEMENT NOT PRESENT

A parameter definition line has been found before a PARAMETER
DIVISION line has been processed. The PARAMETER DIVISION line is
assumed to have occurred immediately before the current line
which is then processed accordingly.

* WARNING 4 DIALOGUE DIVISION STATEMENT NOT PRESENT

A dialogue line, pause line, message line, conditional exit line
or ENDJOB line has been found before a DIALOGUE DIVISION line has
been processed. The DIALOGUE DIVISION line is assumed to have
occurred immediately before the current line which is then
processed accordingly.

* WARNING 5 ENDJOB NOT PRESENT BEFORE END OF FILE

End of file has been reached before an ENDJOB line has been
processed. The ENDJOB line is assumed to have been present
immediately before the end of file.

*** ERROR 6 PARAMETER FORMAT IS INVALID

The format field of a parameter definition line must have the
form of the picture clause of a character or display numeric
item, except that the word PIC is not used and the maximum
character format is X(79). See the Global Development Cobol
Language Manual for a full description of valid formats.

* WARNING 7 PARAMETER PROMPT IS NOT PRESENT

Appendix C - Job Listing Error and Warning Messages

Global Development Job Management Manual V8.1 Page 47 of 49

The current parameter definition line has no parameter prompt
string. A null parameter prompt is assumed.

*** ERROR 8 PARAMETER ALREADY DEFINED

The parameter in the current parameter definition line has
already been defined in a previous parameter definition line.

*** ERROR 9 SPECIAL STRING NOT FOLLOWED BY A SPACE

The special strings <CTRL A>, <CTRL B>, <CTRL C>, <ESC>,
<ESCAPE>, <NULL> and <CR> can only appear at the end of a
response, and must therefore always be followed by a space or new
line.

*** ERROR 10 NO RESPONSE TO COLON IN DIALOGUE LINE

The current dialogue definition line ends with a colon. Each
colon must be followed by a response. This error is often due to
a missing <CR> response.

*** ERROR 11 <CR> MUST BE IMMEDIATELY PRECEDED BY A COLON

When the special string <CR> appears as a response it must form
the entire response (i.e. it must be immediately preceded by a
colon and followed by a space or new line).

*** ERROR 12 UNDEFINED PARAMETER

A parameter has been found in the current dialogue definition
line, but it has not been defined in a previous parameter
definition line in the parameter division.

* WARNING 13 EXTRA CHARACTERS AT END OF LINE

Surplus characters have been found at the end of a PARAMETER
DIVISION line, DIALOGUE DIVISION line, conditional exit line or
ENDJOB line, and have been ignored.

* WARNING 14 EXTRA LINES AFTER ENDJOB STATEMENT

Surplus lines have been found following an ENDJOB line and have
been ignored.

* WARNING 15 MISPLACED PARAMETER DIVISION STATEMENT

A PARAMETER DIVISION line has been found out of sequence and has
been ignored.

* WARNING 16 MISPLACED DIALOGUE DIVISION STATEMENT

A DIALOGUE DIVISION line has been found out of sequence and has
been ignored.

*** ERROR 17 MISPLACED PARAMETER LINE

A parameter definition line has been found within the dialogue
division.

*** ERROR 18 PAUSE LINE NOT TERMINATED BY A MINUS SIGN

Appendix C - Job Listing Error and Warning Messages

Global Development Job Management Manual V8.1 Page 48 of 49

A pause prompt line has been found which is not terminated by a
minus sign.

* WARNING 19 ONLY (SUPPRESS) ALLOWED AFTER DIVISION

The (SUPPRESS) option only can occur on the DIALOGUE DIVISION
line following the word DIVISION. Note that SUPPRESS is enclosed
in round brackets.

* WARNING 20 DIVISION NOT PRESENT

The word DIVISION is missing or spelt incorrectly in a PARAMETER
DIVISION line, but the PARAMETER DIVISION line has been accepted.

* WARNING 21 DIVISION NOT PRESENT

The word DIVISION is missing or spelt incorrectly in a DIALOGUE
DIVISION line, but the DIALOGUE DIVISION line has been accepted.

*** ERROR 22 LINE STARTING WITH AMPERSAND NOT VALID PARAMETER

A parameter definition line starting with an ampersand must have
one or two digits only immediately following the ampersand and
these must be followed by a blank or tab. Moreover the digits
must represent a number in the range 1 to 20 inclusive.

*** ERROR 23 PARAMETER FORMAT AND PROMPT NOT PRESENT

A parameter definition line does not contain a format field or
parameter prompt following the parameter number.

*** ERROR 24 INVALID PARAMETER IN DIALOGUE LINE

A parameter number found as a response in a dialogue definition
line is not in the valid range 1 to 20 inclusive.

* WARNING 25 PAUSE MUST CONTAIN AT LEAST ONE CHARACTER

There must be at least one character between the leading and
trailing minus signs of a pause prompt. A single space character
has been assumed.

*** ERROR 26 JOB MUST HAVE SOME DIALOGUE

No dialogue has been generated for this job file. The dialogue
division of every job description must contain at least one
dialogue definition line containing a response.

*** ERROR 27 TOO MUCH DIALOGUE

The dialogue generated from the job description has exceeded the
capacity of $JOB's dialogue table. This capacity will depend on
the size of the user area in which $JOB is running.

* WARNING 28 PARAMETERS OUT OF ORDER

The current parameter definition line has a lower parameter
number than the highest parameter number previously defined. It
is good practice to supply parameter definition lines in

Appendix C - Job Listing Error and Warning Messages

Global Development Job Management Manual V8.1 Page 49 of 49

parameter number sequence, because that is the sequence in which
the job file will prompt for them.

* WARNING 29 CONDITIONAL EXIT LINE OF NO USE

The current conditional exit line refers to a conditional
parameter, and either this parameter or a higher-numbered one has
been referred to in a previous conditional exit line. In either
case this conditional exit can never cause an exit when the job
file is run.

*** ERROR 30 INVALID CONDITIONAL EXIT LINE

A conditional exit line starting with a question mark must have
one or two digits only immediately following the question mark
and these must be the only characters on the line. Moreover the
digits must represent a number in the range 1 to 20 inclusive.

* WARNING 31 PARAMETER IS NON-CONDITIONAL

The parameter referred to in the current conditional exit line
has not been defined as conditional in the parameter division.
The conditional exit line has been generated, but will have no
effect when the job file is run.

*** ERROR 32 MESSAGE NOT TERMINATED BY A PLUS SIGN

A message line has been found which is not terminated by a plus
sign.

* WARNING 33 MESSAGE MUST CONTAIN AT LEAST ONE CHARACTER

There must be at least one character between the leading and
trailing plus signs of a message. A single space character has
been assumed.

