

Global Speedbase Development Manual V8.1 Page 1 of 238

 Global 16-bit Development System
 Speedbase Manual
 Version 8.1

Global Speedbase Development Manual V8.1 Page 2 of 238

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,
electrical, mechanical, photocopying,

recording or otherwise, without
the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Speedbase Development Manual V8.1 Page 3 of 238

TABLE OF CONTENTS

Section Description Page Number

0. Foreword .. 6

1. Speedbase Language Overview ... 7

1.1 Capabilities .. 7
1.2 Basic Concepts ... 8
1.3 Introduction to the Language Structure .. 9

2. Speedbase Database Manager ... 12

2.1 Introduction .. 12
2.2 Background ... 12
2.3 Speedbase DBMS Overview .. 13
2.4 The Database Life-Cycle .. 14
2.5 Indexing Capabilities ... 15
2.6 Record Relationships - Masters and Servants .. 16
2.7 Multi-user Access - Locking .. 18
2.8 Database Access Statements .. 21
2.9 Global Database Structure .. 25
2.10 Unix C-ISAM Database Structure... 28
2.11 Restrictions .. 29
2.12 Performance Hints .. 31

3. Language Structure .. 33

3.1 Language Elements .. 33
3.2 Source Code Layout ... 35
3.3 Frame Structure .. 37
3.4 Control Structure ... 38
3.5 Managing Overlay Structures ... 41

4. Frame Header .. 44

4.1 The FRAME Statement ... 44
4.2 The SEQUENCE Statement ... 44
4.3 Frame Header Options ... 45
4.4 The ACCESS Statement ... 46
4.5 The CONTROLLING FRAME Statement ... 47
4.6 The SWAP-FILE Statement .. 47

5. Data Division.. 48

5.1 Data Division Structure ... 48
5.2 Data Definitions ... 48
5.3 Picture Clauses ... 50
5.4 Value Clauses ... 51
5.5 Redefinition's ... 53
5.6 The Print Format (PF) Construct .. 53
5.7 The File Definition (FD) Construct.. 62

6. Window Division ... 63

6.1 Window Division Structure ... 64
6.2 Window Formats & Operator Facilities .. 65
6.3 Control Structure ... 69

Global Speedbase Development Manual V8.1 Page 4 of 238

6.4 The Routines Section.. 75
6.5 Processing Database Records ... 78
6.6 Window Construct Syntax .. 80
6.7 Programming Notes .. 94
6.8 Example Order Entry Program ... 95

7. Procedural Statements... 96

7.1 Structure .. 96
7.2 Screen Management Statements ... 97
7.3 Report Printing Statements .. 104
7.4 Database Access Statements .. 105
7.5 Arithmetic Statements ... 112
7.6 The MOVE Statement ... 113
7.7 Transfer of Control Statements .. 116
7.8 Conditional and Iterative Statements ... 118
7.9 Table Handling .. 124
7.10 The SUSPEND Statement .. 125
7.11 Global Cobol Support .. 127

8. Speedbase System Routines ... 127

8.1 B$CHK - $BASYS Presence Check ... 127
8.2 B$LOD - Load Speedbase System Area .. 127
8.3 B$OPN - Open Database .. 128
8.4 B$FEX - Execute Frame ... 128
8.5 B$STA - Return Database Status ... 129
8.6 B$ST2 - Return Extended Database Status .. 130
8.7 B$PRC - Close Print File ... 130
8.8 B$CDB - Close Database ... 130
8.9 B$DSC - Clear Baseline .. 131
8.10 BXCL, BXSH - Get, Release Exclusive Access ... 131
8.11 B$WRJ - Right-justify Field ... 131
8.12 B$RBL - Database Re-index Facility .. 131

9. Speedbase System Variables .. 134

9.1 $PRUN - Printer Unit-id ... 134
9.2 $PGNO - Current Page Number ... 134
9.3 $LINO - Current Line Number ... 134
9.4 $RSPG - Restart Page Number .. 134
9.5 $PHLT - Printer Halt Suppress Flag ... 134
9.6 $FUNC - Accepted Function Number ... 135
9.7 $MODE - Current Window Operating Mode .. 135
9.8 $FWFR and $BKFR - Frame-id to Load ... 136
9.9 $FNTX0 and $FNTX() - Keytop Names .. 136
9.10 $FNBY0 and $FNBY() - Function-key Values .. 136

Global Speedbase Development Manual V8.1 Page 5 of 238

APPENDICES

Appendix Description Page Number

A Speedbase Compiler .. 138

A.1 Compiler Dialogue ... 140

B Compiler Error and Warning Messages .. 144

C Sample Application... 166

D EXIT and STOP Codes ... 177

D.1 EXIT Codes ... 177
D.2 STOP Codes ... 179

E Speedbase Text Editor ... 185

E.1 Editor Facilities .. 185
E.2 Edit Phase .. 187
E.3 Direct Commands.. 190
E.4 Executable Commands .. 192
E.5 Regenerating a Window ... 198
E.6 Generating New Windows .. 203
E.7 Error and Warning Messages ... 205

F Dictionary Maintenance Utility .. 208

F.1 Running the Utility .. 208
F.2 Establishing a New Meta-dictionary .. 209
F.3 Amending the Meta-dictionary ... 212
F.4 Printing the Dictionary Report .. 221
F.5 Generating the Dictionary .. 224
F.6 Clearing the Meta-dictionary .. 229
F.7 Creating a Meta-dictionary ... 230
F.8 Auto-sequence Indexes ... 232

G Speedbase Memory Allocation ... 234

Foreword

Global Speedbase Development Manual V8.1 Page 6 of 238

0. Foreword

This manual describes the Speedbase Development System, a high-level programming
language and associated utilities for use by developers of commercial application products.

Chapter 1 introduces Speedbase, explaining the capabilities and underlying concepts of the
language. Chapter 2 provides a summary of the facilities of the Speedbase database
management system. For a full account, see the Speedbase Presentation Manager Manual.
Subsequent chapters then treat each aspect of the language in detail. The utilities are
documented in the appendices.

In order to gain a fast appraisal of Speedbase, the following chapters are recommended:

Speedbase Development Language Overview Chapter 1
Speedbase Database Manager Chapter 2
Window Division Chapter 6

The Speedbase Development System is distributed with a sample application system, described
in Appendix C. Following a review of the above chapters, we recommend that you study both
the source and running frames of this application. The remaining chapters in this manual may
then be used for reference purposes.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 7 of 238

1. Speedbase Development Language Overview

1.1 Capabilities
The Speedbase Development Language is a high level compiled programming language which
allows extremely rapid development of commercial data processing systems. It consists of a
number of very high level constructs, which are used to specify interaction between stored data
and the user. To make maximum use of the available facilities, this data will normally be stored
in a Speedbase database, which provides full relational control and retrieval facilities.

Speedbase has dramatically expanded the functionality of traditional development languages
such as Cobol, while maintaining upward compatibility. Speedbase encompasses the
functionality of both Assembler and Cobol, and statements from these languages may be
interspersed with Speedbase high level facilities.

As a programming language, Speedbase has been aimed at the data processing professional
and is not regarded as an end-user product. It has been designed to facilitate rapid
development of complex business systems, the design of which would be far beyond the
capabilities of most computer end-users. Speedbase may, of course, be used to develop
relatively simple applications, but its main strength lies in its ability to control and integrate large
volumes of diverse business data.

This data control function is performed by a run-time environment known as the Speedbase
Presentation Manager, a network structured dbms integrated with a sophisticated windowing
system which has been designed and optimised specifically for use on mini and microcomputer
systems. All frames written using the Speedbase Development Language are automatically
interfaced to the Speedbase Presentation Manager which is present whenever Speedbase
frames are executed.

Speedbase provides the following capabilities:

● High level window constructs are used to define operator dialogue and provide a powerful,

consistent and simple end-user interface. This includes features such as window overlays,
POP-UPs, dynamic function key facilities, split-screen scrolling, partially scrolled records and
automatic window sequencing;

● Automatic enquiry mode facilities allow data records to be retrieved by any of up to sixteen

indexes for each record type. These facilities operate within all application frames using the
database;

● High level Print Format construct defines report layouts. This construct defines the print

layout and automatically generates the MOVE statements required to assemble the print
line. Spooling, page throw conditions and printing restarts are also handled automatically;

● Instant access by each frame to up to four complete databases, each containing up to 36

separate record types (files) and up to 90 indexes. Database open and close procedures are
automatically performed by Speedbase;

● Fast database accessing verbs including READ, FETCH and GET. Retrieval of data records

may take place either directly or via each of up to 16 indexes associated with each record

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 8 of 238

type. FETCH FIRST, LAST, NEXT, and PRIOR are supported, allowing records to be
retrieved in both ascending and descending index order;

● Speedbase supports three generations of language constructs in a single development

environment. A single source frame can contain assembler instructions (2GL), Cobol
instructions (3GL), and fourth generation (4GL) constructs such as windows;

● Fast, single pass compiler containing an integral linkage editor, which directly generates

executable frames;

● Full Data Division implementation including Cobol FD constructs to allow interfacing to

traditional indexed and relative sequential files. BASED variable declarations are also
supported for system programming applications;

● Frames written using Speedbase are automatically multi-user, with record level locking.

Speedbase applications may be implemented on either micro or mini computers providing
simultaneous access to more than a hundred screens. Over sixty different computer
hardware systems are currently supported, and both source and object frames and user

data are 100% compatible across this entire range;

● Speedbase supports local area network (LAN) implementations, and allows databases to be

dispersed across networks with up to twenty-six file servers, supporting hundreds of
screens. Record level locking is supported across the entire network, thus allowing LAN
implementations without frame modifications;

● Speedbase supports the storage of its database in a series of C-ISAM files in a Unix file

structure. When stored in this form the database may be accessed by other Unix application
programs written in languages such as Informix. A program produced by the Speedbase
Development System may access databases in either the usual Global System Manager
(GSM) format or in the Unix format, or both.

1.2 Basic Concepts
Speedbase application systems consist of programs known as frames. Each frame is an

individually loadable object program, which will perform a particular task within the application,
such as data entry and maintenance of a particular record type, or the production of a report.
Each frame will usually require access to one or more Speedbase databases, and these are
normally opened by the Speedbase menu program before execution.

Each Speedbase frame will usually consist of one or more windows in which data will be

presented to, and accepted from the operator. Windows are used to present a particular view of
the data stored within a Speedbase database, and provide enquiry, data-entry and maintenance
facilities for this data. Complex frames are simply built up from a series of these windows, each
window performing some aspect of the overall task.

For example, an order entry frame might consist of three windows. The first window would be
used to select a particular customer, the second would allow data-entry of order header details
such as delivery address, and the third window would allow entry of individual order detail lines.
Each window would normally also provide enquiry and update facilities. More complex tasks can
then be built up from even longer series of windows.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 9 of 238

Windows are specified by using non-procedural code, and quite complex applications can be
produced in this way. It is quite usual, however, to code procedural instructions to perform
additional specialised processing, such as application specific validation routines. Entry-points
are provided to allow this during many processing stages. It is even possible for procedural
code entirely to "take over" control of the frame.

When procedural logic is required, it may be written using traditional Cobol statements.
Speedbase also provides assembler statements, which may be used for highly technical
programming tasks. All of these statements can be coded within the same source frame, and
this gives the programmer an extremely flexible development environment.

Owing to the power of the Speedbase high level facilities, frames tend to be small. A typical
Speedbase frame would take up less than two pages of code. A source program file therefore
normally contains many individual frames, which are compiled together. The Speedbase
compiler produces a single executable object file for each frame in the source program. These
object frames can then be executed after any required databases have been opened.

The Speedbase compiler contains an integral linkage editor, which is used to link any required
system routines into the object frames. It is usual, however, for these routines to reside in a
service module which is automatically loaded when the frame is executed.

The service module contains most of the system routines normally used by frames, such as the
routines used to perform database I/O and screen manipulation. A large fraction of the service
module consists of a series of page-able monitor overlays which although permanently resident
are outside the user memory space.

Most Speedbase frames will therefore easily fit into available memory. Particularly large frames
can, however, be segmented using a feature called dependent frames. Dependent frames can

automatically access all data items and I/O channels resident in higher levels of the overlay
structure, and need only a single statement to be specified. This feature allows complex overlay
structures to be established during the course of development, and needs little prior planning or
design.

Speedbase also provides high-level facilities for the production of reports. Using the PF
construct, complex reports can be produced with very little effort. The PF construct generates

print-lines automatically, handles page throws, provides for spooling, and takes care of a variety
of error conditions. This construct will normally be used for the development of more
complicated reports, more straightforward listings being produced by Speedquery, the

Speedbase Query System.

Speedquery provides a generalised screen-driven method to access the information stored on a
Speedbase database. Speedquery allows end-users to view data in quite sophisticated ways,
and to produce either on-line or printed output. This same facility can also be used by
professional developers to produce pre-formatted enquiry and report frames.

The most striking feature of Speedbase applications is their consistent "look and feel". All
frames operate using the same powerful conventions, and provide the same operator facilities.
This means that once an operator has learned to use a single Speedbase frame, little effort is
needed to understand the use of the rest of the application, or any other Speedbase application.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 10 of 238

1.3 Introduction to the Language Structure
Each Speedbase frame is made up of six main sections:

Frame Header Area identifies the frame, and defines the order in which the frame will be

executed.

Data Division is used to create database I/O channels, and to define other

variables used by the frame. Reports are also defined here using the
PF construct.

Window Division is used to define the screen formats by which the data will displayed,

and accepted from the operator. It may contain many individual
windows, which are called at various stages of processing. The
windows are normally invoked automatically when the frame is run,
and each window is executed in a predetermined sequence.

Procedure Division contains procedural instructions which may be used to define

any task. When coded, the division completely takes over control of
the frame, and may be used to execute windows under application
frame control.

Load Division provides a convenient entry-point from which frame initialisation

tasks may be performed.

Unload Division provides a convenient entry-point from which any frame termination

tasks may be performed.

Of the above sections, only the frame header area is required and all other sections are
therefore entirely optional.

When a frame is executed, the Load Division, if present, is executed first. This allows the
programmer to introduce application code to perform any special initialisation tasks.

If a Window Division has been coded, this is normally executed next. This causes each window
to be entered in turn. Within each window, the operator may perform operations such as record
addition, maintenance and enquiries.

If, however, a Procedure Division has been coded this is executed instead of the Window
Division. Any windows coded within the Window Division can then be executed directly under
the control of the Procedure Division.

The Unload Division is executed on completion of either the Window or the Procedure Division.
This division can be used to perform any termination task, such as completing a complex
transaction update.

The Frame Header and Data Division are therefore non-procedural. The Window Division is
partly procedural, in that it allows instructions to be coded within a special section of each
window called the Routines Section. This section is used to perform specialised tasks such as
field validation, and non-standard updates. The three remaining divisions (Procedure, Load and
Unload Divisions) are wholly procedural.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 11 of 238

A typical frame will normally contain simply the Frame Header Area and Window Divisions. The
header area would be used to create I/O channels for any record types referenced in the
database dictionary, and all other processing would be controlled within the Window Division.
Speedbase frames usually contain few procedural instructions and quite powerful frames can be
produced using no procedural code at all.

Where traditional procedural statements are needed, they can be introduced into the source
program at many points. Normally Cobol-like statements would be used but, if necessary,
assembler code can also be used. This ability to "mix and match" traditional code with fourth
generation constructs provides an extremely flexible development environment. Speedbase
frames are therefore used in a wide variety of environments, ranging from system software
applications to the most complex of commercial systems.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 12 of 238

2. Speedbase Database Manager

2.1 Introduction
Before effective use can be made of the Speedbase Development Language, an in-depth
understanding is required of the Speedbase Database Manager. Many functions of commercial
application systems can be handled automatically by designing systems to take advantage of
the new facilities offered by Speedbase. This chapter should therefore be considered essential
reading for all potential designers of systems to be written using Speedbase.

2.2 Background
Before addressing detailed issues, it is worthwhile examining the role of commercial data
processing systems generally. Most organisations, irrespective of size or ultimate purpose, are
heavily involved in the exchange and manipulation of information. As the size and complexity of
organisations has grown, so has the need to process accurately an increasing volume of data.

The difficulty of processing manually such large volumes of data has led to the introduction of
computerised information systems. And as organisations have introduced and benefited from
such systems, increased competitiveness has placed their rivals under pressure to follow suit.
This process has been so effective that few commercial organisations are now viable without
heavy reliance on computerised data processing systems.

The demand for further improvements in information systems has, however, by no means
diminished. Only a few years ago, systems based on batch processing, providing weekly or
even daily turn-around, were considered quite adequate. Today, developers are under intense
pressure to produce systems that not only provide instantaneous access to up-to-the-minute
data, but also permit that data to be viewed in a variety of different ways, at a variety of differing
levels. To further complicate matters, the race is also on to integrate many different types of
information into this schema, to provide a complete model of the organisation to which the data
belongs.

It is not impossible to provide these kinds of facilities using traditional computing techniques
such as indexed and relative sequential file access methods. The resulting systems are,
however, notoriously difficult and therefore costly to produce, and almost impossible to modify in
any fundamental way.

At this point consider Speedbase. The essential purpose of any database management system
is to provide a framework in which diverse information can be rapidly collected, modified and
retrieved in an organised and integrated manner. Speedbase achieves this purpose by
concentrating on the natural relation-ships that exist between data.

For example, consider the simple order entry system in Figure 2.2a. This example contains
three data relationships between four data records.

The customer record and order header record are related in the sense that one customer may
have a number of outstanding orders. Conversely, a group of orders exists that belong to a
given customer. This one-to-many relationship is referred to as a master/servant relationship
(i.e. the customer record is a master to a group of order header records).

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 13 of 238

Figure 2.2a - Simple Order Entry System - Record Relationships

A similar master/servant relationship also exists between the order header and order line
records (i.e. an order is composed of a number of line items). This relationship also exists
between the stock and order line records.

There is nothing new about these kinds of data relationships, they pre-date the invention of the
computer by thousands of years. In traditional DP systems these relationships are implied by
processing rules (i.e. procedural code). An implementation using traditional methods would
probably call for the creation of four separate files, each containing one record type. Copious
quantities of code would then be produced to:

● Open and close the files, checking that the versions of each file are correct and dealing with

exception conditions.

● Ensure that orders can only be placed on pre-existing customers (i.e. that order lines refer to

existing orders and stock items).

● Ensure that stock and customer records cannot be deleted while orders are still active, etc.,

etc.

Most of this code would need to reside in each program to guarantee data integrity. A database
management system permits of a different approach. Once the relationships between various
records in a database have been defined, the responsibility for maintaining this kind of data
integrity is completely assumed by Speedbase. This removes considerable functionality from
application frames, making them easier to create and modify.

It is a mistake, however, to regard Speedbase as merely a new technique for simplifying
application programs to reduce their size. The emphasis is on treating an organisation's data as
a common, highly-integrated resource. Simply using Speedbase to automate individual
applications may be extremely useful, but it is unlikely to maximize the potential of the database
approach.

2.3 Speedbase DBMS Overview
The Speedbase database management system controls the storage, retrieval and modification
of data in an unlimited number of databases. It forms part of the Speedbase Presentation
Manager and is permanently resident in each user partition requiring database access. The
Speedbase Presentation Manager performs four major functions:

2.3.1 Relational Integrity

Customer Stock

Order Header

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 14 of 238

Speedbase ensures that the integrity between related records is maintained by suppressing
invalid I/O requests. Roll-ups of numeric data between related records are automatically
performed using the GVA (Group Value Accumulator) / GVF (Group Value Field) facilities as
described in section 2.6.3.

2.3.2 Index Management
Each record type may have up to sixteen separate indexes. As records are added, deleted or
modified these indexes are dynamically maintained by Speedbase. All indexes are bi-directional
and may therefore be read in ascending and descending order.

2.3.3 I/O Support
Speedbase supports ten main I/O verbs:

WRITE Add a record to the database
REWRITE Modify an existing record
DELETE Logically remove a record from the database
FETCH/READ Randomly retrieve record via any index
FETCH/READ NEXT Retrieve next record sequentially via index
FETCH/READ PRIOR Retrieve prior record sequentially via index
FETCH/READ FIRST Retrieve first of group of records via index
FETCH/READ LAST Retrieve last of group of records via index
GET Relative (direct) record retrieval
UNLOCK Relinquish record lock

The FETCH and READ verbs differ only in their treatment of related records. The FETCH verb
will retrieve only the target record, whereas the READ verb will retrieve the target record with all
of its associated master records. Variations of these verbs are also provided to retrieve a
specific servant record set (e.g. all invoices for a specific customer).

2.3.4 Utility Support
Utilities are provided to support database backup and restore, rebuild and re-organisation,
conversion, status and size estimation functions. These utilities are documented in the
Speedbase Presentation Manager Manual.

2.4 The Database Life-Cycle
A Speedbase database is initially defined using the Speedbase dictionary maintenance utility
$SDM, documented in Appendix F. The dictionary stores information about the contents of each
data record, the relationships data records may have to each other, and the indexes associated
with each record.

Using this utility, a database may be defined to contain up to thirty-six separate data record
types of varying lengths. Each record may have up to sixteen separate indexes associated with
it, up to a maximum of ninety indexes per database. In addition, each record may act as a
servant record to up to sixteen other master records, allowing a comprehensive network of
relationships to be implemented.

Once the dictionary has been produced, a new, empty database may be created using the
Speedbase database generation utility. This establishes the database on one or more devices,
and creates internal database linkages. Few practical limitations apply to the size of the created

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 15 of 238

database. A small test database may be created occupying as little as 100 Kbytes, while its
production version might easily exceed 150 Mbytes.

Before records may be written to, or read from the database, it must be opened, and this is
normally done by a menu program. A menu program can open up to four databases before
transferring control to application frames. Since the databases will already be open when each
application frame is run, there are usually no file open/close overheads incurred when frames
are loaded. This leads to exceptionally fast application loading, and improved response for the
user.

When a database dictionary is initially created, it is assigned a generation number. Whenever
changes take place to the database design, the dictionary is assigned a new generation
number, which the compiler includes in all frames requiring access to the data-base. This is
checked against the generation number of the database opened at run-time, which ensures that
frames match the database in use.

A new generation number is automatically assigned by the Speedbase dictionary maintenance
utility when any data record layout is modified, added or deleted, any index is modified, added
or deleted, any change takes place to relationships between records within the database, or any
GVA/GVF relationship is added, changed or deleted.

The Speedbase generation utility uses the new dictionary either to create a new empty
database, or to convert an existing database to the new format. It is important to note that when
this is done, all frames accessing the new database must be recompiled before they can be
executed.

2.5 Indexing Capabilities
Each record may be indexed by zero to sixteen separate indexes consisting of an optional
primary, unique index and up to fifteen secondary indexes. Each index in turn may be
composed of up to eight separate fields which do not have to be contiguously located within the
data record.

As records are added to the database, Speedbase automatically maintains these index
structures. It also incrementally re-organises indexes as the need arises, thus avoiding overflow
chains and corresponding performance degradation. A Speedbase database therefore does not
require frequent re-organisation.

Primary index keys are regarded by Speedbase as uniquely identifying a given record. The
optional primary index key is used to establish and maintain record relationships, and may
therefore not be modified. Any attempt to modify a record's primary index key during a rewrite
will cause the offending frame to be aborted. Secondary indexes, however, may be modified,
and always allow duplicate entries.

Index keys may contain computational fields, but when used must not be negative. The key

values are ordered in strict ASCII collating sequence, and the introduction of negative
computational numbers will therefore not provide the expected index order. Index keys may not
start with a high-values byte (i.e. #FF).

All indexes maintained by Speedbase are bi-directional (i.e. may be read forward or backwards)
using the FETCH NEXT and FETCH PRIOR statements.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 16 of 238

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 17 of 238

2.6 Record Relationships - Masters and Servants
Speedbase allows master/servant relationships to be defined between record types within a
single database. Relationships between records may be established within a network structure
(i.e. each servant record may be linked to up to sixteen master record types). The following
example shows how the various record types in a simple order entry system might be related:

Figure 2.6a - Master/Servant Record Relationships

In the above example, each customer may have a number of orders, thus indicating a
master/servant relationship between these records.

A similar relationship also exists between the territory record and the order header record. Each
order header record may in turn have a number of order line records. The order header record
therefore acts as a servant to the territory and customer records, and as a master to the order

line record. The servant records relating to a specific master (e.g. order lines within an order
header) are called a servant set.

The masters relating to a particular servant may be accessed implicitly using the READ
statement, or explicitly using FETCH or GET statements. The servant set relating to a specific
master are retrieved by a FETCH statement using an appropriate primary or secondary index.

When a servant record is linked to a master, the fields making up the master's primary index
must also be stored on the servant. These fields, as stored on the servant record, are called the
master access key. The master access key defines which particular master record the

servant belongs to. This same key is also used by the Speedbase rebuild utility to relink records
during total database reorganisation.

The relationship between a master and servant record is not fixed. Servant records may be

relinked to new masters as the need arises, and this is achieved by simply amending the master
access key. Speedbase then automatically unlinks the record from the old master and links it to

the new one. Defining relationships between records has the following effects.

2.6.1 Linkages
Speedbase establishes pointer fields on the servant record which point directly to each of its
master records. This linkage is direct and allows for extremely fast access to these master
records. Using the READ verb, a servant record may then be read with all of its master records
in one statement. This ease of access often avoids the need for duplication of data at the
servant record level.

Territory Customer Stock

Order Header

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 18 of 238

This feature is particularly useful during serial processing of records (e.g. during report printing).
Rather than writing procedural code to fetch related records at key breaks, processing may
proceed at the lowest level servant record, and corresponding master records are automatically
retrieved.

2.6.2 Integrity
Where a relationship is specified, Speedbase ensures that master records are always correctly
linked to associated servants. A servant record simply cannot be written to the database without
the prior existence of appropriate master records. Similarly, a master record cannot be deleted
until all of its servant groups are empty. These checks ensure that application frame errors are
trapped and corrected at development time.

2.6.3 GVF/GVA Processing
Numeric fields residing on servant records can automatically be accumulated into one or more
corresponding fields on associated master records. The numeric field stored on the servant
record is known as a GVF, Group Value Field. This field is added automatically to one or more
GVAs, Group Value Accumulators, when a WRITE, REWRITE or DELETE operation takes
place. GVFs are normal computational numeric fields stored on the servant record. They may
be accessed and modified as required.

Speedbase automatically maintains GVA fields to ensure that they equal the sum of the
corresponding GVFs. During a REWRITE instruction, GVA fields are modified to reflect any
changes in the value of GVFs.

GVF/GVA processing is also performed when a record is relinked to a new master during a
REWRITE. In this instance the value of the GVF field is transferred to the new master at the
same time as new linkages are established. Speedbase will also automatically handle the
instance where a record is not only relinked to a new master, but GVF values have also been
changed.

GVF/GVA processing is handled by Speedbase at a system level and is therefore extremely
quick. The construct has very wide applicability and may be used to replace explicit procedural
updates during data entry and updates, which could normally only be performed by batch
processes.

Note that GVA fields are held in a special systems area of the record, see section 2.9.4,
whereas GVF fields are part of the user area of the record. A field may not therefore be both a
GVF and a GVA.

In the above example, GVF/GVAs could be usefully employed to:

● total units on order (order line GVF to stock record GVA)

● total value of order (order line GVF to order header GVA)

● total orders outstanding (order header GVF to customer GVA).

GVA values are automatically re-established by the Speedbase rebuild utility. This means that
complex application recovery routines do not have to be written for each new system. Where
possible it is therefore advantageous to use GVF/GVA constructs in preference to explicit
updates.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 19 of 238

Care must be taken when designing a database that the GVA values of master records cannot
overflow even when large numbers of servants are added. A GVA field will overflow when the
computational size of the field is exceeded. Since this is usually several times larger than the
displayed size of the field, a considerable margin for error is implicitly provided. If, despite this, a
GVA overflow does occur, the database will need to be rebuilt or restored.

2.7 Multi-User Access - Locking
A Speedbase database may be updated simultaneously by many users. Integrity of the data
stored is ensured by the use of locks at record level. Speedbase allows records to be locked in
two ways, exclusively and update-protected. These locks are automatically provided whenever
a record is retrieved from the database.

Exclusive locks A record can be exclusively locked by only one frame at a time. Exclusively

locking a record gives the frame the ability to rewrite or delete the locked
record. Indeed, if an attempt is made to rewrite or delete a record that is
not exclusively locked, the offending frame will be terminated with a stop
code. In the remainder of this manual, the term "lock" designates this type
of full, exclusive lock.

Placing a full lock on a record therefore indicates the intention of the

frame to update it. Since two frames updating a record simultaneously

would cause unpredictable results, Speedbase stops other frames from
retrieving the record for update purposes. A lock therefore confers update

rights to the locking frame. Conversely, it removes the ability of other

frames to gain update rights while the record remains locked.

Update-Protection A record may be update-protected by several frames at the same time, and

for this reason this lock is sometimes referred to as a non-exclusive lock.
Placing update-protection on a record does not provide update rights to the

locking frame, but simply stops any other frame from updating the record.
Once protected, the record cannot therefore be re-written or deleted by any

frame. This type of lock is referred to as a protect lock in the remainder of
this manual.

Records should therefore only be locked if they are to be updated or deleted. If the only

intention is to stop anyone else from updating the record, then the record should be protected.

This has some implications when processing record structures, which is discussed in the next
section.

2.7.1 Locking Record Structures
Some consideration must now be given to processing records that form part of a structure (i.e.
are related). This may best be illustrated by use of an example:

Figure 2.7a - Master/Servant Relationships and Locking

Order Header Stock Record

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 20 of 238

In the above example a master/servant relationship exists between the order header and stock
records, and the order line record. Whenever an order line record is added to the database, it is
therefore linked to both an appropriate order header and stock record. Which particular order

and stock records it is to be linked to is defined by the master access keys present on the order
line record.

When a new order line record is added to the database, it is therefore necessary to ensure that
its associated masters exist. In this example, the order line must relate to an existing order
header and be for a product that exists in a stock record. The only way to ensure this in a multi-
user environment is to FETCH and LOCK or PROTECT the appropriate records before issuing
a WRITE instruction. Simply performing a look-up, without a lock, leaves the way open for
another concurrently executing frame to delete the required master record before the WRITE
instruction is completed.

To overcome this potential problem, the record must therefore be locked or protected. If the
master record will not be explicitly re-written then protection will suffice. This has the advantage
of allowing other partitions to add servants to this master at the same time, which is not possible
if a full lock is used.

Following successful addition of a servant, the linked master records cannot be deleted.
Speedbase maintains a count of the number of servant records linked to each master, and
while this count is non-zero, the record is considered to be active. The same considerations
apply during a REWRITE. If a master access key is modified prior to a REWRITE instruction,
then it is essential that the new master record is locked or protected.

Thus, the golden rule is that master records about to be linked to a servant by WRITE or
REWRITE instructions must be locked or protected. This ensures that these records cannot be
deleted by another frame during the update process, and avoids the possibility of deadlock
occurring. If, during a WRITE or REWRITE operation, Speedbase detects that a required
master record has not been locked or protected by the application frame, then a recovery will be
attempted.

During this recovery, Speedbase will attempt to retrieve the required master records from the
database and lock them so that the update may continue. If this can be done, the update will be
concluded successfully, following which the offending frame will be terminated with a stop code.

If this process fails, either because the required master record does not exist, or is permanently
locked, then the operation will be terminated unsuccessfully, and the frame terminated with a
stop code. The database will be corrupted in this event, necessitating a restoration or rebuild.

It is important to note that although writing or re-writing a record will normally cause that record
to become unlocked, the lock status of any associated master records will be unaffected by the
operation.

As discussed, master records about to be linked to a servant record must be locked or
protected at the time of the WRITE or REWRITE instruction. No such requirement exists,
however, when a servant record is deleted. Unlinking a master record as a result of a delete, or
re-write when a master access key is changed, does not require the master record to be locked
in any way.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 21 of 238

Exclusively locking a given master record will therefore prevent other partitions from adding

further servant records to its group, but will not prevent deletions of records from that group.

Given that these records may have GVF options, this means that GVAs residing on a master
record may be modified by Speedbase, even while locked or update-protected.

The system area of a data record, which contains all GVA fields, is therefore in effect treated as
a separate record and managed entirely under the control of Speedbase. This strategy has
been implemented to reduce the number of concurrent locks required during typical update
sequences, and thus optimises access to the database during extensive multi-user operations.

2.7.2 Record Retrieval Locking Options
Whenever a record is retrieved it is usually fully locked so that other partitions are unable to
update it. This avoids the possibility of two users simultaneously reading, modifying and
updating a record, which would cause the modifications made by one of the users to be lost.

It is therefore necessary to specify whether a full lock or just protection is required when a data
record is retrieved, and this is achieved by means of the NOLOCK, PROTECT and RETRY
clauses. These clauses may be specified on each of the record retrieval verbs (i.e. READ,
FETCH and GET) and are described as follows.

NOLOCK instructs Speedbase that the target record is not to be locked or protected. The

record is therefore retrieved regardless of its lock status. If it is retrieved using the
NOLOCK option, it cannot later be rewritten.

PROTECT indicates that update-protection is to be placed on the record. If successful, the

record will be protected following retrieval, which ensures that it cannot be re-
written or deleted by any other frame.

RETRY instructs Speedbase to retry retrieval following a locked record condition. It is

coded:

RETRY n

where n is a numeric integer in the range -1 to 127, which indicates the number of

retries to attempt in the event of a locked record condition.

If neither the NOLOCK nor the PROTECT clause is specified, then the record will be retrieved
with a full, exclusive lock thus conferring update rights to the retrieving frame.

A locked record condition can arise in only two ways, when a protect lock is requested and the
record is already fully locked, and when a full lock is requested while the record is protected or

fully locked. In this event, Speedbase will wait and retry the operation a number of times as
specified by the RETRY clause.

If n is positive, Speedbase retries the retrieval operation that number of times. On each retry

Speedbase will display a LOCK message, including the name of the locked record, on the base-
line of the screen. Each retry will take up to approximately two seconds, depending on system
loading. When the number of retries specified has been exhausted, an exception condition will
be returned which must be trapped by the frame using an ON EXCEPTION statement.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 22 of 238

If the number of retries coded is -1, this indicates to Speedbase that no exception logic has
been coded to deal with the condition. RETRY -1 therefore results in an indefinite number of
retries which will continue until the operation is successfully completed, or the frame is aborted.
RETRY -1 must therefore be used with great care, since its indiscriminate use can lead to frame
deadlocks. If neither the RETRY nor NOLOCK clauses are coded the retrieval instruction
defaults to RETRY 8.

The NOLOCK, PROTECT and RETRY clauses thus allow a variety of conditions to be dealt
with. If the target record will not be re-written, the NOLOCK clause should normally be used.
This avoids a frame unnecessarily suspending other partitions requiring the same record. Most
reporting frames would normally retrieve records using the NOLOCK option.

If either a full or protect-lock is required but no code has been written to handle the possible
record locked exception, RETRY -1 should normally be coded. Under most other conditions, the
default RETRY 8 should be appropriate.

2.8 Database Access Statements
This section introduces the database access statements used to perform I/O transfers to and
from the database. This section is concerned with the underlying processing of these
statements, rather than the precise syntax, which is covered in Chapter 7.

2.8.1 The I/O Channel
Before any input or output operations can be performed for any record, an I/O channel must first
be established within the application frame. This channel consists of a record control block,
which is similar in concept to a Cobol FD, and a data record area. This data record area is used
to perform all transfers of data to and from the database.

I/O channels are established by the ACCESS statement, described in Chapter 4. The access
statement is a compiler directive, which causes it to compile an I/O channel into the frame for
each designated record type. Using this statement, it is also possible to create multiple I/O
channels for the same record type, and this is also discussed in Chapter 4.

The fields within the record area established by an access statement may be referenced by
instructions, like the MOVE statement, just like any other data items. The record area is always
pre-initialised by the compiler, and will contain binary zeros, decimal zeros or spaces depending
on the types of its component fields.

2.8.2 Concept of the Current Position
Speedbase maintains information on the status of each I/O channel within the frame. As data
records are written and retrieved from the database, Speedbase establishes a current record
position for each record type. This record position is used to determine which record will be
retrieved during sequential processing such as FETCH NEXT or PRIOR.

When a frame is first loaded from disk, all the I/O channels are established at an imaginary
point one record before the beginning of the data record area. An initial READ NEXT instruction
will therefore retrieve the first record in sequence of the specified index. This operation
advances the current record position. The current record establishes a position within each of
the record's indexes. This position will clearly differ depending on which index is being used. For
example, customer number 1, with a name of "Zettech" would presumably be first when viewed
through the customer number index, but somewhere near the end of the name index.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 23 of 238

All I/O operations re-establish the current position in each of the indexes associated with the
data record. It is therefore possible to read a series of records via one index, switching to
another mid-stream. The current record position is not affected by unlocking the data record.

2.8.3 Database I/O Operations
Speedbase supports ten basic I/O operations:

DELETE Deletes currently locked record

REWRITE Rewrites the currently locked record

WRITE Writes a new record to the database

READ/FETCH Retrieves a specific record corresponding to specified

index key value

READ/FETCH FIRST Retrieves the first record with key value equal to or

greater than that specified

READ/FETCH NEXT Retrieves the next record in the sequence of he
specified index

READ/FETCH LAST Retrieves the last record with key value equal to or

less than that specified

READ/FETCH PRIOR Retrieves the preceding record in the sequence of the

specified index

GET Retrieves a record using its Relative Record Position (RRP)

UNLOCK Release lock from one or all data records

Of the above statements, the UNLOCK statement is not a true I/O operation since no data
transfer actually takes place. All other operations affect the current record position as described
in section 2.8.2.

The DELETE statement allows a previously retrieved and locked record to be removed from the

database. This process entails the dismantling of indexes referencing the record, after which
the data record is returned to a list of free records. This free record "slot" may then be re-used
during subsequent WRITE statements.

If the record being deleted has master records, linkages to these records will also be
dismantled. This causes the master record's servant group count field (SGC) to be
decremented. Any GVF fields will also be subtracted from the corresponding master record's
GVA fields.

The REWRITE statement allows a modified record to be re-written to the database. A record

that is to be re-written must previously have been retrieved, and must be exclusively locked at
the time the instruction is executed. The processing that takes place for this instruction depends
on just what modifications have been made to the record. If any indexes, other than the primary

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 24 of 238

index, have been changed, the pre-existing index entries are removed and new entries built to
reference the record.

If any master access keys have been changed, the record is unlinked from the prior masters
and linked to the new masters as specified by this key. Such a change may also involve dealing
with any GVF/GVA relationships between the re-written record and its masters.

The WRITE statement adds a new record to the database. This process includes a check to

see if the record's optional primary index already exists on the database, and if this is the case,
an exception condition will be returned. Processing continues by allocating the next available
free data record slot from a "free list". If none is available, an exception condition will again be
returned.

Indexes are then established for the record. Following this, linkages are created to any master
records associated with the written record, and GVF fields are added to their corresponding
GVA fields.

Before the data record is finally written to the database, the system area part of the record is
filled with binary zeros, #00. This ensures that all GVA fields have a zero value when the record
is initially written. Any values previously existing in these fields will therefore be lost by this
operation.

The above three statements can therefore all cause processing to take place of masters
associated with the target record. Such processing may be required to simply update the
servant group count (SGC) field on the master's data record, or may be more complex
GVF/GVA updates. It is important to note that all the I/O required to process each master
record actually takes place within the record area in the appropriate I/O channel. If the DELETE,
REWRITE or WRITE statements are to be used, an I/O channel must therefore be established
for each of the target record's masters.

The DELETE and WRITE statements always require I/O on all the target record's masters. The
REWRITE statement will require I/O on master records if any master access key has been
modified or any GVF has been changed. To perform this processing, the system area of each
master record is read, updated as necessary and re-written to the database. This process takes
place within the record area of the appropriate I/O channel for each master, and therefore

updates any system area data previously stored there.

The READ and FETCH statements are used to retrieve records from the database via a

specified index. These statements operate identically except for the processing of any
associated master record. The FETCH statement will retrieve only its target record, whereas
the READ statement will retrieve its target record and any master records for which I/O

channels have been established.

The master records retrieved by the READ statement are always returned unlocked and the

instruction will release any previously existing locks on those I/O channels. The main use of the
statement is therefore within read-only functions such as reporting, where locks are not normally
required.

The READ and FETCH statements may be used for sequential or direct indexed access to the
database. READ/FETCH FIRST/LAST statements are used to retrieve the first or last record
corresponding to a specified key value. The READ/FETCH NEXT or READ/FETCH PRIOR

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 25 of 238

instructions may then be used to retrieve records sequentially from the current record position.
Records may be retrieved in ascending or descending index key order.

The GET statement is used to facilitate direct access to the database using a Relative Record

Number (RRN). The RRN specifies the relative position a record occupies in the data record
area, and access using this number is therefore direct, without the need for intermediate index
look-ups. While the GET statement therefore operates very quickly, it is not significantly faster
than sequential processing using the FETCH NEXT statement.

The UNLOCK statement is used to unlock a data record which has previously been locked by a

successful READ, FETCH or GET statement. The statement is used to relinquish the locked
status of a record, allowing it to be updated by another partition. The statement can be used to
unlock a particular I/O channel, or can be used to relinquish all locks currently in force within

the frame.

2.8.4 Retrieving Records within Structures
This section discusses the retrieval of records which form part of a structure (i.e. are related). It
explains how the database access verbs can be used to get from one record type to others.
Retrieving a given record can be accomplished by means of the GET or FETCH instructions.
The GET instruction allows the target record to be retrieved when its RRN position is known.
The FETCH instruction is used when one of the record's index key values is known, facilitating
access via any of the record's indexes.

Whenever a data record is written to the database it is linked to any master record types
declared when the dictionary was created. Links are created on the written record which point
directly to the record's masters. When the READ statement is used to retrieve a record, these
links are used to retrieve the master records at the same time as the target record. There are
three ways of accessing the master records for a given servant:

● Using the READ statement, the target record may be retrieved at the same time as any

associated masters. The READ statement first performs a FETCH on the target record, and
then retrieves the associated master records using direct links. The retrieved master records
will always be unlocked following this operation.

● The primary key value of each master record is always stored on its servant records.

Therefore, if the servant record is first retrieved, each master record may then be retrieved
using a FETCH instruction via the master's primary index.

● The processing performed by the READ statement may also be implemented explicitly.

Once the target servant record has been retrieved, GET statements may be coded using the
links stored on the servant. The data names allocated to these links are explained in Section
2.9.4.

Retrieving records at a higher relational level in the database is therefore achieved either via

the master record's primary index, or directly using the links stored on the servant record.

Retrieving records at a lower relational level in the database is always done by use of indexes.

If, for example, you need to retrieve all the invoices for a given customer, the invoice record
must have an index starting with the customer number, and invoice records are READ or
FETCHed by reference to this index.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 26 of 238

Another way of stating this is that the master access key must also be the most significant
portion of at least one index on the servant record. This index can be any of the record's
primary or secondary indexes.

The FETCH and READ statements have been extended to simplify retrieval of servant record
groups using indexes. This is achieved by use of the KEY clause within the READ and FETCH
statements. The key passed using this clause may be shortened to select only a given servant
group. This short key facility is explained further in Chapter 7.

2.8.5 I/O Error Handling
Most of the above statements can fail with exception conditions. Where the execution of a
statement can result in an exception, this must be trapped in the frame code using an ON
EXCEPTION, or ON NO EXCEPTION statement. The various exception conditions which can
arise may then be distinguished by testing the system variable $$COND. For convenience all
possible exception conditions generated by the database manager have been listed in Table
2.8a below:

Exception Condition

$$COND

A data record is found permanently locked during the execution of any READ,
FETCH or GET statement. The record has been retrieved and placed in the data
record area, but is not locked.

1

Requested record key not found during a READ or FETCH operation. If the
instruction is READ/FETCH FIRST, NEXT, LAST or PRIOR, the next record in the
sequence of the selected index is returned. Otherwise no action takes place.

2

A READ/FETCH FIRST, NEXT, LAST or PRIOR failed because the requested
record key did not exist. The next record in sequence was then found to be
permanently locked. This is a combination of both conditions 1 and 2 occurring
simultaneously.

3

End or start of file condition has occurred during a READ/FETCH, FIRST, NEXT,
LAST or PRIOR. At end of file, the data record area is filled with high values
(#FF's). At start of file the data record area is filled with low values (#00's).

4

The DELETE verb has attempted to delete an active record (i.e. a record which is
linked to a group of servants). No processing has taken place.

5

A duplicate primary index key would result from execution of the WRITE verb. No
processing has taken place.

6

Data area full condition. No free data records are available to honour a WRITE

7

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 27 of 238

request (i.e. a "file full" condition).

The GET verb specified a relative record number which is deleted.

8

Table 2.8a - Database Manager Exception Conditions

2.9 Global Database Structure
Unless your computer is running under the Unix operating system, your Speedbase database
consists of three, four or five files, stored on disk. If you are running Unix you have the option to
store your Speedbase data in the Unix file structure. A Global Speedbase database (i.e. one
stored in the Global System Manager (GSM) file structure rather than a Unix file structure)
consists of a data dictionary file, a main index file and one, two, or three datafiles. The names of
the files are as follows, where xxxxx is the database name:

File-id Description

DIxxxxx Data Dictionary

DBxxxxx Main Index File

DBxxxxx1 Data-file 1

DBxxxxx2 Data-file 2 (optional)

DBxxxxx3 Data-file 3 (optional)

Table 2.9 - Global format Speedbase Database Files

2.9.1 Database Dictionary
The database dictionary contains a description of the fields stored on each record, complete
with details of associated indexes and relationships with other records in the database. The
dictionary is created by the Speedbase dictionary maintenance utility, see Appendix F.

The five-character database name may vary for different copies of the same database. The
database dictionary also contains a database ID, which is compiled into frames during

compilation. At run-time, this ID, as compiled into the frames, is checked against the ID of the
database to ensure that the correct database has been opened, and an error is reported if these
IDs do not match. The database dictionary must be located on the same unit as the main index
file.

2.9.2 Main Index File
This file contains index data for all records stored within the database. It is created when the
database is initially established using the Speedbase generation utility.

2.9.3 Datafiles 1, 2 and 3
These files contain the data records stored within the database. Each file contains one or more
contiguous record areas for each record type which are allocated at database creation time. A
record area must be wholly contained within a single datafile (i.e. may not span volumes). Only
datafile 1 necessarily exists, since all thirty-six possible record types may be accommodated
within it. Datafiles 2 and 3 would normally be used to distribute the database over several
physical devices, either for performance or space availability reasons. All three datafiles may
occupy separate physical volumes to provide optimised access performance.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 28 of 238

2.9.4 Data Record Structure
A data record area may contain space for up to eight million data records. Speedbase maintains
a list of free data records within this area, which are allocated when new records are written to
the database. Records are returned to this free list when deleted, and are eventually re-used.

Data records are normally accessed via an index using READ or FETCH instructions. Direct
access is, however, possible using the record's Relative Record Number (RRN). When a record
is initially added to the database, it is written to the next free data record "slot" which is
identified by the RRN. The record remains in this position until it is deleted, or the database is
reorganised using the data-concentration option of the Speedbase generation utility.

In some particularly performance-critical applications it may be desirable to access records by
RRN rather than an index. Care should be taken however since the RRN specifies a record
location rather than a particular record. In the instance where a record is deleted and the
resulting free "slot" re-used by a subsequent WRITE, access by RRN will, of course, retrieve
the new record. It should also be noted that RRNs change whenever the Speedbase database
is restored or conversion utilities are used.

READ/FETCH NEXT/PRIOR instructions, using an index, will usually provide faster
performance. The reasons for this are beyond the scope of this manual but confirm that RRN
accessing would not be used in typical commercial applications. Each data record is composed
of two distinct parts, the user data area and system area. The user data area contains all fields
specified, up to but excluding the first GVA field. The system area contains all GVA fields.
Figure 2.9a shows the complete data record layout:

ST1

LINK1

. . .

LINKn

User data

GVA area

SGC

ST2

Figure 2.9a - Data Record Structure

2.9.4.1 ST1: Status Code 1 ($rtST1)

All data records begin with a PIC 9(2) COMP status code. This is either positive to indicate the
record is in use, zero to indicate the record has never been used, or negative to indicate the
record was once in use, but has since been deleted and returned to the list of free records. The
status code holds the number of the minor backup cycle during which the record was last
modified, and is used to control incremental back-ups. The data-name of this field is $rtST1,

where rt is the two-character record ID specified in the ACCESS statement. This field may be

examined by application frames but must not be modified.

2.9.4.2 Linkn: Link to Masters ($rtLNK(n))

The Relative Record Number (RRN) of each linked master record is stored on the servant data
record. One 9(6) COMP (3 byte) RRN exists on the data record for each master record. A
record associated with three masters will therefore contain three 9(6) COMP RRN links,
meaning a storage overhead of nine bytes per record. Which master each link relates to is
specified when the dictionary is created using the Speedbase dictionary maintenance utility.

Specified fields

User Area Systems Area

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 29 of 238

These fields may be accessed using the name $rtLNK(n) where rt is the record ID of the

servant record and n is the master number as declared using the Speedbase dictionary
maintenance utility. These links may be used to provide direct access to master records using
the GET verb.

RRN accessing using these direct links has been implemented primarily for system
programming purposes and is included in this manual for the sake of completeness only. The
implementation of the READ verb, which retrieves a data record inclusive of all master records,
performs the same function as a FETCH on the servant record followed by GETs (with
NOLOCK) on each of the required masters. Furthermore, the READ verb executes faster than a
series of individual GETs.

If, despite this, your application would benefit from using RRN accessing using these linkages,
do not under any circumstances attempt to modify these links. Speedbase does not check to

see if you have, and doing so results in database corruption.

2.9.4.3 Specified Fields

User-specified fields, as defined using the Speedbase dictionary maintenance utility, follow any
master links. The size of this part of the record area is determined directly from the picture
clauses assigned to each field. An 01 group level field is automatically generated by the
compiler which includes all these data items, including GVA's. The name of this group field is
the same as the record ID. This field allows redefinitions of the specified fields from within the
Data Division, should this be necessary.

2.9.4.4 SGC: Sub Group Count ($rtSGC)

This 9(6) COMP field stores a count of the attached servant records (i.e. the number of records
to which it acts as master). When this count is non-zero, the record may not be deleted. Any
attempt to do so will cause an exception condition to be returned. This count cannot be modified
by an application frame.

2.9.4.5 ST2: Status Code 2 ($rtST2)

This PIC 9(2) COMP status code indicates the status of the system part of the data record. The
code is either zero to indicate no changes have ever taken place to the system area, or positive
to indicate the back-up cycle during which the system area was last updated. Status code value
is undefined if the record is deleted (i.e. ST1 is negative).

2.10 Unix C-ISAM Database Structure
If your Speedbase database is stored in a Unix file system it has a special file structure. In this
case the Speedbase database consists of a data dictionary file and a schema file, both stored in
the usual Global System Manager (GSM) file structure, and in addition, a special index file and
several datafiles and index files stored in the Unix file structure. The names of the files are as
follows, where xxxxx is the database name and rt1 to rtn are up to thirty-six record types:

File-id Description File format

Dixxxxx Data Dictionary Global

DBxxxxx Schema File Global

DBxxxxx Special Index file Unix

DBxxxxxrt1.dat C-ISAM data file for rt1 Unix

DBxxxxxrt1.idx C-ISAM index file for rt1 Unix

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 30 of 238

DBxxxxxrt2.dat C-ISAM data file for rt2 Unix

DBxxxxxrt2.idx C-ISAM index file for rt2 Unix

DBxxxxxrtn.dat C-ISAM data file for rtn Unix

DBxxxxxrtn.idx C-ISAM index file for rtn Unix

Table 2.10a - Unix Speedbase Database Files

The data dictionary is created by the application developer using the dictionary utility of the
Speedbase Development System. The data dictionary is stored in the GSM file structure and is
identical with that for a Global Speedbase database as described in section 2.9.1.

The schema file is stored in the GSM file structure and is used by the database manager to
retain details of the C-ISAM data and index file parameters. It is not accessible to application
programs. The special index file is stored in the Unix file structure and is used by the database
manager to retain the details required to provide the advanced indexing facilities of Speedbase.

Each database record type is stored in its own C-ISAM datafile. These datafiles are accessible
to other Unix software although you must not update (i.e. write to these files) as to do so would
interfere with the operation of Speedbase itself. The structure of the data within the datafile is
identical with that described in section 2.9.4 for a Global Speedbase database datafile.

Associated with each C-ISAM datafile is a C-ISAM index file. These files are provided for the
use of Unix programmers who wish to write software to read the datafiles in various special
ways. For example, you might wish to extract name and address information from a customer
record in order to do a mailshot using a Unix word-processing product. In introducing C-ISAM
indexes you must ensure that you do not interfere with the operation of the Speedbase
database manager. For example, you must allow duplicate index entries because these are a
common feature of a Speedbase database.

2.11 Restrictions

2.11.1 File Sizes
All file sizes are calculated in 512 byte (0.5 Kbyte) blocks. The main index file may contain up to
four million index blocks, giving a maximum file size of 2000 Mbyte. The minimum size of the
main index file must be sufficient to accommodate one block for each index managed by the
system, and one further block for a control area. A database containing twenty indexes
therefore requires a minimum area of twenty-one blocks (i.e. 10.5 Kbyte).

A database may consist of one, two or three further files which contain data records. Data
records are located in a contiguous space within these files, known as areas. An area may
contain space for up to eight million data records, and each data file is subject to a maximum
size of 2^31 - 1 bytes (i.e. the largest number containable in a 9(9) COMP field). This figure
again exceeds 2000 Mbyte.

There is, however, a restriction on the placement of areas within a given data file. Speedbase
requires that each record area starts within the first 32 Mbyte of the data file. The actual size of

the record area is then limited only by the maximum file size of 2000 Mbyte.

Since three data files may be generated for a given database, this allows 96 Mbyte (3x32
Mbyte) of data area to be allocated as required. If particularly large record areas are required,

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 31 of 238

these can be placed at the end of each data file to comply with this restriction. This approach
therefore allows three virtually unlimited record areas to be allocated with a total of 96 Mbyte of
smaller areas, and is therefore unlikely to cause difficulties in practical implementations.

2.11.2 Record Types/Sizes
A database may contain thirty-six separate record types, each of varying lengths. The absolute
maximum record size that may be allocated is 32 Kbyte, but overall frame size limitations would
indicate a smaller practical limit. Record sizes exceeding 4 Kbyte are not recommended unless
you can be certain this will not cause frame size problems within the application.

The Speedbase rebuild and generation utilities are affected by record sizes, and if very large
record sizes are allocated, may not run on target machines with a limited user partition size.
This is further detailed in the Speedbase Presentation Manager Manual.

Speedbase allows data records to span physical sectors, and makes no attempt to block data
records so that they are exact multiples or divisors of the target disk sector length. If you know
the physical sector size of the target computers, some small performance improvement can be
achieved by blocking data records. This is done simply by introducing a filler into the data
record's definition to expand it to the appropriate length. Note that allowance must be made for
the system fields appended to the record by Speedbase - see Section 2.9.

The performance gains achieved by blocking data records are, however, very limited and not
normally noticeable in practical implementations. Measured against this must be the increased,
wasted storage space and therefore the probability of increased disk head movement during
indexed random accessing.

2.11.3 Key Extract Area Limitations
Whenever Speedbase retrieves a data record, it copies certain significant fields from the target
record into a special system area. This Key Extract (KE) Area is used to assemble both index
and master access keys from their component fields. The KE area is also used to copy the
numeric value of each GVF on the data record.

When the data record is subsequently re-written, Speedbase compares the KE area with the
record area to be re-written and takes appropriate action. If, for instance, an index key has been
changed, Speedbase will delete the existing index entry and create a new one. If a GVF value
has been modified, Speedbase will adjust the corresponding GVAs on the master records. If a
master access key has been modified, the master record will be re-linked as appropriate.

The actual size of the KE area for a given record is therefore determined by adding the lengths
of each index key, master access key and GVF. The following example shows a calculation for
a record with three indexes, two linked masters and five GVFs. The index key sizes of the
record are 16, 24 and 35 bytes. The primary indexes of the master records are 15 and 10 bytes
long. The record has five GVFs, each 9(6,2) COMP (i.e. four bytes each) see Figure 2.11a:

Index, Key, GVF Segments Bytes

Primary Index 3 16

Secondary Index 1 2 24

Secondary Index 2 2 35

Master Access Key 1 2 15

Master Access Key 2 1 10

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 32 of 238

5 GVFs (e.g. each 9(6,2) COMP) 5 20

Totals 15 120

Table 2.11a - Example Key Extract Area

This example record therefore requires a KE area of 120 bytes. During the compilation process,
this space will be allocated automatically, as each I/O channel is created.

The maximum size of the KE area is limited in three respects:

Maximum Length of the KE area is limited to 256 bytes.

Maximum Number of Segments is limited to 64. For the purposes of this calculation,

each GVF is regarded as a segment. Where a field
has multiple GVF relations, this is counted as a single
segment. In the example, 15 segments are defined.

Field Placement All index, master access and GVF fields must be

amongst the first 125 fields on the data record as
defined using the Speedbase dictionary maintenance
utility.

2.11.4 Indexation
Each data record may have up to sixteen indexes, up to a total of ninety indexes for all records
residing in a database. If, for example, the database contains thirty record types, each may
have three indexes. Each index may be composed of between one and eight (inclusive) fields
known as index key segments. The total length of each index key must be between one and
forty-seven bytes inclusive.

2.11.5 Relations
Each data record may act as a servant to zero to sixteen (inclusive) master records. The
number of servant record types that may be linked to a given master record is not restricted.

2.11.6 GVF Fields
GVF/GVA relationships can only exist between related records. The number of GVFs that may
be declared for one record is limited to sixty-four as well as overall KE area limitations.

2.11.7 GVA Fields
GVA fields must be declared together at the end of the data record. These fields are included in
a special part of the data record known as the system area. The GVA part of the system area
may not exceed 127 bytes. This is calculated by simply summing the lengths of each GVA
declared for a given record. For example, this would allow a record to contain 25 PIC 9(9,2)
GVAs.

2.11.8 Multi-Database Access
Up to four database dictionaries can be specified when compiling a frame, and this therefore
allows any one frame access to a maximum of four databases. A menu program is also
restricted to opening up to four databases simultaneously.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 33 of 238

2.12 Performance Hints
There is one guaranteed way to bring a Speedbase database to its knees and this is achieved
by introducing large numbers duplicate index key values. Under no circumstances should a

database be designed in which any index could contain numerous index keys that are identical.
By numerous we mean any number over a hundred, with even fewer if the index keys
themselves are longer than say twenty bytes.

When lists of identical keys build up in the index structure, the lack of differentiation between
the keys means that higher level indexes cannot be properly built. When this occurs, sections of
the index start to behave similarly to overflow chains, displaying similar degradation
characteristics. In extreme circumstances, when thousands of duplicate keys exist in an index,
write, re-write and delete performance can drop from the millisecond to the minute timescale.

To avoid this situation, simply extend any index that might generate substantial numbers of

duplicates with some variable that will provide greater key discrimination. For example, it might
be useful to index a stock record by say, responsible department. Rather than leaving it there,
append the stock number to this index. This will have a significant effect on performance and
make the index more useful.

Another important consideration is to ensure that a partial rebuild is performed from time to time
to rebuild and optimise the indexes. This is particularly important when the database is large
and/or volatile. We recommend that an index rebuild should be performed on a monthly basis,
more often if degradation becomes apparent.

It is also important to understand the effect of creating records with multiple indexes, especially
when significant numbers of records are being stored. For example, in a record type with 10,000
records each index will typically require four or five random I/O operations to write. So if you
design such a record type with sixteen indexes, it is going to take at least seventy-five random
I/O operations to write, and this is not going to be instantaneous in a multi-user situation. It is
also often forgotten that it will take exactly as many I/O operations to delete the record as to
write it.

The effect of linking a large number of masters to a record type is not as pronounced, but
should also be considered. Each linked master typically adds two I/O operations to each write
and delete operation, but this does not vary with file record volumes.

Taking the above points into consideration during database design will help you to avoid the
basic pit-falls, and should give you a high-performance database system.

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 34 of 238

3. Language Structure

This chapter deals with the structure of Speedbase frames and is arranged in four sections.
Section 3.1 describes the elements, such as character sets and symbols, that make up the
Speedbase Development Language. Section 3.2 describes how source code lines should be
presented, and Section 3.3 describes the physical layout of the various divisions that may be
coded within a frame. Section 3.4 describes the processing associated with these divisions and
the order in which they are executed.

3.1 Language Elements

3.1.1 Character Set
The character set is an ASCII 8-bit code with the top bit set to zero, see Table 3.1a:

Classification

Members

Digits ASCII 0 to 9

Letters ASCII A to Z, a to z, $

Alphanumerics ASCII 0 to 9, A to Z, a to z, $, -

Table 3.1a - The Character Set

Blank is represented by b in this document. Other special characters will be introduced later.

3.1.2 Symbols
A symbol must start with a letter and be followed by any number of alphanumeric characters.
Normally the first six characters of each symbol must be unique throughout the frame, the
compiler ignoring the seventh and subsequent characters, apart from listing them. Symbols are
used for data names, section names, paragraph names, entry names, frame names and file
names. The letter $ should not be used in a symbol created by the application frame since it is

employed in symbols used by GSM software. In addition there are eight reserved words in

Speedbase and these should not be used as symbols. They are:

DEPENDING
FILLER
HIGH-VALUES
LOW-VALUES
NEXT
SPACE
SPACES
USING

Other language words such as IF, PIC and NOT can be used as symbols, although it is
recommended that they be avoided in the interests of clarity.

3.1.3 Character Strings
A character string may be made up of any combination of the graphic ASCII characters (i.e.
those with a numeric equivalent in the decimal range 32 to 126) When coded, the string
appears as:

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 35 of 238

"character string"

For example:

"HELLO WORLD"

is a character string containing the eleven characters:

H E L L O b W O R L D

The compiler assumes that frames have been entered on computers with industry-standard tab
settings at character positions 9, 17, 25... etc., and any tab characters are replaced with the
appropriate number of blanks.

Note that in some countries the ASCII lower case character codes are used for different
alphabets, for example Greek or Cyrillic.

3.1.4 Integers
Integers must be in the range -32768 to +32767. The plus sign is optional when an integer is
coded.

3.1.5 Numeric Strings
Numeric strings are character strings consisting of:

● optional leading blanks, followed by ...

● an optional + or - sign, followed by ...

● 1 to 15 digits, which may be omitted if the decimal point is present. These in turn are

followed by ...

● an optional decimal point which, if present, must be followed by between 1 and 7 digits

followed by ...

● optional trailing blanks.

The total number of digits must not exceed 18. Examples of valid numeric strings are:

-3
3.14159
+1246
-0.120
.7

The strings:

3.
3.1b4159

+-12

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 36 of 238

.7-
+b9

are not valid numeric strings. Programmers familiar with Cobol should note that in Speedbase a

string of ASCII blanks is not a numeric string, and such a string cannot therefore be used as a

display numeric zero.

3.1.6 Standard Numeric Strings
When a number is converted to character form, either for output or for storage in a display
numeric variable, it assumes the format of a standard numeric string. In such a string:

● leading zeros will always be replaced by blanks (except in the units position)

● the sign will be omitted if positive

● at least one digit will always precede the decimal point

● there will be no trailing blanks

● if the number is defined as fractional, a decimal point and the number of decimal places

specified will be printed, even if the value is an integer.

For example, if a field is defined as signed with two digits before the point and two after, then:

3 becomes bb3.00

 +02.13 becomes bb2.13

.1 becomes bb0.10

 -.2 becomes b-0.20

-21.43 becomes -21.43

3.1.7 Hexadecimal Strings
A hexadecimal string is coded as a # sign followed by pairs of ASCII "digits" in the ranges 0-9,
A-F inclusive. The number of digits in the string must be even, since each digit pair makes up a
single byte. For example:

#07

is a single byte string, representing the ASCII bell character, and:

#FFFF

is a two-byte string, with each bit set to 1.

3.1.8 Standard Date Strings
Date items are always stored within the frame as three-byte computational numbers (i.e. 9(6)
COMP). When a date item is displayed or accepted from the operator, the format DD/MM/YY is
used. The internal representation of this date is established by the calculation:

(YY * 10,000) + (MM * 100) + (DD * 1)

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 37 of 238

3.2 Source Code Layout

3.2.1 Comments
Two types of comments may be coded, help text and frame code comments. Frame code
comments are preceded by an asterisk and may be coded on a separate line or following any
language statement. These comments are simply ignored by the compiler.

Help text is introduced by a backslash character \ which must be the first significant character
on the code line. Help text must be coded immediately after the WINDOW statement and is
treated differently from normal comments in that the text following the backslash character is
saved as part of the frame file. This text is displayed as a help window when the user keys
<HLP><HLP>.

3.2.1 Statement Format
A Speedbase statement, including comments, consists of a single line of up to 72 characters.
Statements may not be continued onto the next line, neither may more than one statement
appear on a line. The individual constituents of a statement (e.g. language words, variables,
strings and comments) must be separated from each other by one or more blanks or tabs but
apart from this consideration the spacing within a line is unimportant. However, the following
conventions result in a tidy, readable listing:

Paragraph names and the following should start in column one:

PF
01
77
FD
DATA DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION
ROUTINES DIVISION
FRAME
ENDFRAME
WINDOW
ENDWINDOW
FORMAT
ENDFORMAT
ACCESS
ENTRY
SECTION

Other statements should begin in column nine, except:

● Statement within the window and PF constructs;

● The level numbers (02 to 49) used in group data definitions. These should be suitably

indented to make the data structure clear;

● The VALUE statement, which should be coded underneath the preceding PIC statement.

The PIC statement itself should begin in column 33;

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 38 of 238

● Each TO statement which should be aligned with the TO of its GO TO DEPENDING ON

statement;

● Statements within a conditional or iterative structure. These should be indented an additional

four spaces for each level of nesting, to highlight the frame structure;

● Comments should start in column 41 in the procedure division, and 49 in the data division,

except "across the page" comments which should start in column 1.

3.2.3 The Page Statement
The PAGE statement causes the compiler to skip to the head of the next page on the frame
listing. It is coded:

PAGE "title"

The statement is coded in the source file on a new line, on its own. When the optional title is

coded, this will be printed on the current and subsequent pages.

3.2.4 The Copy statement
Copybooks may be included within source frames by the use of the COPY statement:

COPY name [SUBSTITUTING "text"] [SUPPRESS]

where name is the one or two-character alphanumeric name of the copybook to be copied into

the frame. The SUBSTITUTING clause allows a parameter string in the copybook to be
replaced by the characters specified by text. A parameter string is specified within the copybook

by coding a string of one or more "&" characters. When the book is copied, these characters
are then replaced by the specified text.

The library from which the specified book is to be copied is specified at compilation time. Up to
three copy libraries can be processed by the Speedbase compiler. When the same copybook
name is present in more than one library, it is copied from the first library in which it is present.
The copied book may itself contain further COPY statements, which may be nested to a
maximum of seven levels.

3.3 Frame Structure
Speedbase frames are entered using the Speedbase editor $SDE, or another suitable text
editor. Each source file may contain 1 to 99 individual units known as frames. When the source

file is compiled each results in an executable object frame which runs under the control of the
Speedbase Presentation Manager. Each is introduced by the FRAME statement and ends with
the ENDFRAME statement. The last statement in the source file must be ENDSOURCE. All
other Speedbase language statements are optional.

3.3.1 Speedbase Frame Skeleton
The main divisions of a Speedbase source frame file are:

FRAME frame-id

[Frame Header Area]

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 39 of 238

[DATA DIVISION]
[WINDOW DIVISION]
[PROCEDURE DIVISION]
[LOAD DIVISION]
[UNLOAD DIVISION]

ENDFRAME
[......
More frames

......]
ENDSOURCE

3.3.1.1 Frame Header Area

The Frame Header Area contains options which control various aspects of the frame's
execution. Examples of this are the SEQUENCE statement, which specifies the order in which
individual frames are to be executed.

3.3.1.2 DATA DIVISION

The Data Division is used to define data-items used by the frame. For example, print layouts
may be constructed using the print format (PF) construct.

3.3.1.3 WINDOW DIVISION

The Window Division is used to define interaction with the operator and may contain one or
more window constructs. These define the fields to be displayed and accepted from the
operator, and may also contain procedural routines to perform specialised processing within
each window. The Window Division is normally executed automatically when the frame is run.

3.3.1.4 PROCEDURE DIVISION

The Procedure Division takes control of the frame after initialisation. It contains instructions
which define the operation of the frame, and may be used, for instance, to sequence the order
of windows displayed. It suppresses automatic invocation of the Window Division, allowing the
programmer to assume full control over the operation of the frame.

3.3.1.5 LOAD DIVISION

The Load Division is used to perform initialisation tasks (e.g. the opening of files). Control is
transferred to the first statement of the Load Division when the frame is run.

3.3.1.6 UNLOAD DIVISION

The Unload Division is used to perform close-down tasks (e.g. the closing of files). The Unload
Division is executed on termination of the frame.

3.4 Control Structure
Frames are executed under the control of the Speedbase Presentation Manager. A menu opens
the required databases prior to execution and performs authorisation checking. Thereafter,
frames may either return control to the menu, or may transfer control to other frames.

The Speedbase Presentation Manager creates a data area, called $BASYS, in the high memory
region of the user partition known as the user stack. $BASYS contains the system variables
used by Speedbase frames and the special frame loader which controls the initialisation of
frames when they are executed. $BASYS may also be loaded explicitly by a call to the routine

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 40 of 238

B$LOD, see Section 8.2. Once $BASYS is loaded, it remains on the user stack until the end of
the user's session.

Once $BASYS has been invoked, Speedbase frames may be executed directly from the GSM
READY prompt, or from any menu. Most frames, however, require access to one or more
databases which must be opened before any I/O activity can take place. While it is possible for
a frame to open the required databases itself, databases are normally opened before frame

execution.

Menus provide a convenient way of executing Speedbase frames, ensuring that $BASYS is
present, and automatically open up to four databases before executing a selected frame. Once
a database has been opened, it remains open until control is returned to GSM. When a series
of frames is executed the databases therefore remain open until the last frame completes.
Because this eliminates file-open overheads, Speedbase frames can be loaded very quickly.

Once a frame has been loaded, execution proceeds under the supervision of a system program
known as the frame controller which performs certain initialisation tasks, then causes the

various elements of the frame to be executed in the following sequence:

Service Module containing system routines required by the frame is loaded if

not yet present.

Screen Initialisation The screen is optionally cleared, and the optional

screen header displayed.

Load Division The optional Load Division is then executed. This allows the

application programmer to specify further initialisation tasks,
such as the opening of FDs.

Main Processing If a Procedure Division has been coded, it is now executed.

Windows coded within the Window Division may be explicitly
invoked by procedural statements within the Procedure
Division. Otherwise, if no Procedure Division has been coded,
the Window Division is automatically executed and the first
window invoked.

Unload Division Following completion of main processing, the optional Unload

Division is executed. This allows the programmer to specify
termination tasks such as closing FDs.

Frame Termination The frame controller then performs the termination

tasks. If a print file was opened during execution of the frame
(by invoking the PF construct), it is closed. Any remaining
locks outstanding on the databases are relinquished. Control
is then passed to another frame, or a STOP RUN is
executed.

If a STOP RUN statement is executed by the frame controller on termination, any open
databases are automatically closed and control is returned to GSM. If the frame was executed
from a menu program, GSM will normally cause this menu to be re-displayed.

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 41 of 238

A frame may complete normally, or an exception condition may occur during processing.
Exception conditions may be reported by the Load, Procedure and Unload Divisions by
executing an EXIT statement with any exception number at the highest level of control (e.g.
EXIT WITH 1). If no Procedure Division is coded, the Window Division is executed instead, and
this division can also return exception conditions.

Normal completion of a frame occurs when all the divisions complete without reporting an
exception, and this is called a forward exit. An exception condition reported by any division

always causes the frame to be terminated, and this is called a backward exit from the frame.

The processing that takes place during a backward exit depends on which division reported the
exception:

● If an exception is reported by the Load Division, the frame termination tasks described

above are immediately performed. It should be noted that the Window, Procedure, and
Unload Divisions are not executed under these circumstances.

● If an exception is reported by the Window or Procedure Divisions, the Unload Division is

immediately executed. The frame termination tasks are then performed.

● If an exception is reported by the Unload Division, only the normal frame termination tasks

are performed.

It is possible to cause immediate termination of the frame by executing a STOP RUN instruction
at any time. This causes all further processing to be cancelled, and an immediate exit to GSM
takes place. Although Speedbase will ensure that the database is properly closed under these
circumstances, other termination tasks will not take place. The STOP RUN is therefore not

recommended as a normal method of terminating a frame, and should be used as a last resort
only.

3.4.1 Creating a Chain of Frames
When a frame terminates, control is normally returned to GSM, which in turn usually re-invokes
the initiating menu. It is possible, however, to specify that another frame is to be executed
instead. On termination, this causes the specified frame to be loaded and executed just as if the
operator had returned to a menu, and explicitly run the frame from it.

This can be useful in a number of instances. For example, a batch run may consist of a number
of separate frames which must be run in a particular sequence. Equally, a complex data-entry
task may be too big to fit into memory, and may need to be segmented into separate frames.

The order in which a series of frames is to be executed is specified using the sequence
statement. This statement is coded in the frame header area, and allows two frame IDs to be
specified. For example, coding:

SEQUENCE frame1, frame2

causes frame1 to be executed on abnormal completion (i.e. backward exit) and frame2 to be

executed following normal completion (i.e. forward exit). Using this statement, therefore, chains
of frames can be built up, each frame calling another in turn.

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 42 of 238

The sequence statement therefore normally specifies the names of the actual frames to be
loaded on termination. It is possible, however, to simply return control to a menu, and this is
achieved by coding the special frame-id EXIT. For example coding:

SEQUENCE EXIT, frame2

causes an exit to the menu to take place on abnormal completion, and causes frame2 to be

executed on successful completion. If the sequence statement is omitted, an exit takes place
following both successful and unsuccessful completion.

When control is passed to another frame using the sequence statement, the databases remain
open, but any record locks outstanding are released. The incoming frame will overwrite the
memory area occupied by the preceding frame so that data processed by that frame is not
accessible to the next frame. The transfer of data between frames is achieved by use of
overlayed structures, as described in detail in Section 3.5.

3.5 Managing Overlay Structures
Because of memory constraints, it is sometimes necessary to segment a single function into a
number of frames, allowing it to fit into available memory. For example, consider an order entry
function which, to overcome this, has been split into three components. Frame one might deal
with the creation of order header information, frame two with entry and update of order lines,
and frame three with creating factory orders.

There are two ways in which these frames could be organised. As described above, the
simplest solution is for each frame to call the next, using the sequence statement. Once the first
frame has completed successfully, the second is invoked, and so on.

This approach is quite simple, but has the limitation that no information can be passed. It is also
important to note that since each frame will physically occupy the same memory area, the I/O
channels are lost as each successive frame is loaded. This means, for example, that the
second frame would have to re-read the order header record from the database to continue
processing.

3.5.1 Dependent Frames
A more elegant solution involves the creation of a root frame on which the three order entry
frames will all be dependent. This root frame contains the I/O channels and other common
information to be shared by the dependent frames. The dependent frames are then compiled so
as to occupy the memory area immediately following the root frame, so that executing the
dependent frames would not cause the root to be overwritten.

Dependent frames are implemented using a variation of the frame statement. For example,
coding:

FRAME frame2 DEPENDENT ON frame1

specifies that the current frame, frame2, is dependent on frame1, which is therefore the root

frame. When frame2 is compiled, the compiler checks the memory region used by frame1 which

therefore requires this frame to be online during compilation.

The memory area of the dependent frame automatically follows on from the root frame. All the
symbols defined and accessed within the root frame are automatically global to the dependent

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 43 of 238

frame, meaning that all variables and I/O channels in the root frame are directly accessible.
Processing then commences by executing the root frame. The root frame in turn loads and
executes each dependent frame using the EXEC statement.

The EXEC statement causes the specified frame to be loaded and executed. On termination of
the dependent frame, its sequence statement, if any, is executed. If the statement has been
omitted, control is returned to the statement immediately following the EXEC in the root frame.
Otherwise, the dependent frame passes control to the frame-id specified in the sequence
statement of the dependent frame, causing the next dependent frame to be loaded and
executed.

Returning to the above example, let us assume that the order entry function has now been split
into four frames, a root frame, an order header frame, a detail line frame, and a factory order
frame. The root frame would contain the I/O channels and other variables that are to be shared
between the dependent frames. When the root frame is executed, it would then invoke the first
dependent frame using the EXEC statement.

The processing that then follows depends on whether any of the dependent frames have a
sequence statement. If this statement has been omitted, control will be returned to the root
frame as each dependent frame terminates, and the root frame would therefore need to EXEC
each dependent frame in turn.

By using the sequence statement, it is possible for the dependent frames simply to pass control
to each other. Control is then returned to the root frame when the entire sequence of dependent
frames has completed. For example, consider the following sequence statements coded for
each of the three dependent frames:

FRAME2 (Order Header) SEQUENCE EXIT, FRAME3
FRAME3 (Order Line) SEQUENCE FRAME2, FRAME4
FRAME4 (Factory Order) SEQUENCE FRAME3, EXIT

Control will be returned to the statement following the EXEC command in the root frame in two
ways, as a backward exit from FRAME2, or a forward exit from FRAME4. Note that the exit
from a dependent frame never passes back an exception, irrespective of whether a forward or

backward exit actually took place. If it is important for the root frame to distinguish between
these, the dependent frame could set a switch in the data division of the root frame before
returning control.

This process is shown diagrammatically in Figure 3.5a below:

Figure 3.5a Executing a Chain of Dependent Frames

Root frame

Frame 2 Frame 3 Frame 4

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 44 of 238

It is therefore important to note that control is not necessarily returned from the frame that was
initially EXECed. Dependent frames can be implemented on multiple levels. For example, a
dependent frame may itself have further dependent frames and so on. It is important, however,
that each frame uses the sequence statement to invoke only frames at the same level in the
overlay structure, and that the EXEC statement is used only to call overlays at the next level.
This avoids inadvertently leaving memory areas uninitialised.

It is also important to note that recompilation of the root frame will require recompilation of all

its dependent frames. This is because recompilation of the root may change its size (and

therefore the location of variables and entry-points), meaning that the dependent frames will
have been compiled using the wrong addresses. It is therefore a good idea to combine the root
and dependent frames in a single source file, so that they will always be compiled together as a
single unit.

If either of the above two rules is broken, the frame manager will terminate the loaded frame
with a stop code.

3.5.2 Controlling Locks in Overlayed Structures
As described earlier in this chapter, locks in force on database records are automatically
released when a frame terminates. It should be noted, however, that only locks on local I/O

channels are released in this way. A local I/O channel is one that is declared using an

ACCESS statement in the Data Division of the terminating frame. I/O channels declared in other
frames (e.g. a root frame) will not be affected.

In overlayed structures, I/O operations within a dependent frame may take place on I/O
channels resident in a root frame. On termination of the dependent frame, these locks are

retained, and only those locks in force on I/O channels within the terminating frame are

released. The locks retained by the root frame will be released when it, in turn, terminates.

This can be put to good effect when designing overlay structures. By placing I/O channels at the
appropriate level, I/O channels and their locks may either be released or retained automatically
as processing continues. It should be noted, however, that the UNLOCK statement will release
locks for both local I/O channels and I/O channels defined higher in the structure.

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 45 of 238

4. The Frame Header

The Speedbase Frame Header consists of a FRAME statement, which introduces the new
frame, followed by a number of optional statements. It is coded:

FRAME frame-id [DEPENDENT ON frame-id1] ["frame-title"]

[SEQUENCE back-frame, forward-frame]

[NOCLEAR] [NOHEADER | SHORTHEADER]
[ACCESS [dbid:] rtid [rt2.... rtn]]

[CONTROLLING FRAME]
[SWAP-FILE [nnnnn]]

4.1 The FRAME Statement
The FRAME statement introduces the frame and assigns it a name. It is coded:

FRAME frame-id [DEPENDENT ON frame-id1] ["frame-title"]

The frame-id specifies the name by which this frame will be known, and is identical to the file-id

of the generated object code file. The frame-id must start with an alphabetic character, and may

be followed by up to five alphanumeric characters. When the compiler detects the frame
statement, it opens a new code file on the assigned object unit as specified by frame-id. If a file

of the same name already exists, it is immediately deleted.

The DEPENDENT ON clause is used to indicate that this frame is an overlay which is
dependent on frame-id1, which must have been compiled using the CONTROLLING FRAME

statement. This causes the frame to be compiled at a start address immediately following the
root frame. All variables, I/O channels, sections and entry-points defined in the root frame
automatically become global to the current compilation. This clause is therefore used for the
construction of frame overlays, which is discussed in detail in Section 3.5.

When coded, the optional frame-title is displayed as part of the frame header line on the first

line of the screen. The frame-title is also displayed by the GSM $LIB utility when frames are

packaged into program libraries.

4.2 The SEQUENCE Statement
The SEQUENCE Statement specifies the next frame to be loaded following termination. It is
coded:

SEQUENCE back-frame, forward-frame

where back-frame and forward-frame are the frame-ids of frames to be executed following

unsuccessful or successful completion respectively. The frame designated by back-frame will

be loaded and executed if the current frame completes unsuccessfully. The frame designated
by forward-frame will be loaded and executed if the current frame completes successfully.

The frame IDs specified in the sequence statement are not checked by the compiler, since the
referenced frames may not necessarily be included in the current compilation. If the frame
cannot be found on the program residence unit ($P) at run-time, the offending frame will be
terminated with a stop code.

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 46 of 238

It is important to note that the frame IDs specified do not have to be frames produced by the
Speedbase compiler. Any loadable program can be invoked by the sequence statement, and
this includes GSM system utilities, programs written using Global Cobol, and job management
streams. It should also be noted that the STOP RUN statement ignores the frame IDs specified
in the sequence statement, and immediately terminates the frame, returning control to GSM.

When the sequence statement passes control to a new frame, any databases open will remain

open, although any active locks outstanding will be released. It should be noted that FDs open

on termination will also remain open, and any locks explicitly established on these files by use of
the LOCK statement will also remain in force. The onus is therefore on the application
programmer to ensure that any FDs used are properly closed.

A frame is regarded as having completed successfully if no exception is returned by the
divisions coded within the frame. Unsuccessful completion is indicated by an exception being
passed back by any of the Window, Procedure, Load or Unload divisions. An exception may be
passed back from the Procedure, Load or Unload Divisions by coding EXIT WITH 1 at the
highest level of control.

When no Procedure Division has been coded, the Window Division is automatically executed.
This causes the first window coded within the division to be invoked. Under these
circumstances, an exception condition can be passed back by the operator keying <ABO> at
any field within the window. An exception condition can also be returned by application code
terminating the window. This is explained in more detail in Section 6.5 of this manual.

The special frame-id "EXIT" may be coded for either the back or forward frame-ids. When this is
done, further frames are not loaded on termination, and the frame simply performs an

unconditional EXIT at its highest level of control. This would normally cause an exit to the menu
to be executed. This process also automatically closes any databases opened by the partition.

If the sequence statement has been omitted, an exit to GSM will take place as described above,
irrespective of whether normal or abnormal completion occurred. Omitting the statement
therefore has the same effect as coding:

SEQUENCE EXIT, EXIT

It is possible to modify the frame IDs coded in the sequence statement at run-time, and two
system variables have been provided for this purpose. The two PIC X(6) variables $BKFR and
$FWFR respectively contain the back-frame and forward-frame IDs coded in the in the
sequence statement. Either variable may be amended at run-time to a new frame ID, or to the
keyword "EXIT" using the MOVE statement. See Section 9.8

4.3 Frame Header Options
Three options may be coded within the frame header to control initialisation and termination
processing. These are coded:

[NOCLEAR] [NOHEADER | SHORTHEADER]

4.3.1 The NOCLEAR Option
The NOCLEAR option suppresses the clearing of the screen during frame initialisation. This
allows a screen to be built up progressively by a number of frames executed in sequence. It
should be noted that the clear operation is only suppressed by this statement if it is operating in

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 47 of 238

formatted mode. If scrolled mode processing is in force, the screen is cleared regardless of this
option.

4.3.2 The NOHEADER Option
The NOHEADER option suppresses the display of a screen header on the first line of the
screen. Normally, a header line is displayed which consists of the following fields:

Frame ID as coded in the FRAME statement
Frame Mode mode in which the frame is being executed
Frame Title title as coded in the FRAME statement
Operator ID operator's initials as keyed during sign-on
Date system date, $$DATE

4.3.3 The SHORTHEADER Option
The SHORTHEADER option causes a truncated header to be displayed on the first line of the
screen. This header consists only of the Frame ID and the Frame Mode.

4.4 The ACCESS Statement
The ACCESS statement creates an I/O channel for one or more record types residing on a
Speedbase database. It is coded:

ACCESS [dbid:] rtid [rt3 ...rtn]

or:
ACCESS [dbid:] rtid SUBSTITUTING "rt2"

where dbid is the ID of the dictionary as specified during compilation, and rtid is the name of the

record type for which an I/O channel is required. The first form allows I/O channels to be
created for a number of records. The second form is used to create an I/O channel for a record
type using a different record ID, specified by rt2.

The statement creates a record area in a similar manner to the Cobol COPY construct. Details
of the required record layout are extracted from the database dictionary as specified by dbid.

When dbid is not coded, the dictionaries are searched in the same order as specified to the

compiler. The first record found with the specified record-id is then loaded.

By using the SUBSTITUTING clause, an I/O channel can be created using a record-id that
differs from the default record id in the dictionary. For example, the statements:

ACCESS DB1:CU
ACCESS DB1:CU SUBSTITUTING "C2"

would cause two I/O channels to be created for record type CU, with the second named C2.
Each field defined within the record type, and all system variables associated with the record
would also start with the substituted record-id, C2. This allows two customer records to be
processed independently within the same frame. The use of further access statements for
record type CU would permit as many customer records as required to be processed
simultaneously.

If an accessed record type is to be written, rewritten or deleted, it is essential that all master
records linked to it are also declared in an access statement. This is because the system area

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 48 of 238

of these master records may need to be updated during database I/O processing. It should be
noted that where multiple I/O channels are established for the same record type, any system
area updates resulting from servant I/Os will take place in the first declared I/O channel.

4.5 The CONTROLLING FRAME Statement
The CONTROLLING FRAME statement must be coded if the frame being coded will act as a
controlling frame. The instruction causes the Speedbase compiler to save the frame's symbol
table which is required during the subsequent compilation of frames that are dependent upon it.
If the statement is omitted, a compilation error will result during the compilation of subsequent
dependent frames.

4.6 The SWAP-FILE Statement
The screen image buffer associated with a pop-up window may be incorporated in the
application frame or may optionally be stored in a swap file on disk. The storage of pop-up
buffers on disk can reduced significantly the storage requirements of the frame. To make use of
this option the SWAP-FILE statement is coded in the frame header. This keyword causes the
Speedbase compiler to allocate space for pop-ups within the disk swap file rather than in the
application frame for all pop-ups in the frame and any frame dependant on it, whether or not
these dependant frames are part of the current compilation.

A particular pop-up window may be excluded from the disk swap file by use of the $OPT NSW
compiler option, see section 6.6. Note that pop-ups wider than 85 characters are always
excluded from the disk swap file. When the root frame is executed the Speedbase database
manager allocates a disk file of size 32kb on logical unit BAW. This logical unit should be
assigned, usually in a menu, before the frame is executed.

The swap file is named BAWxxxxn where xxxx is the operator-id and n is the operator's

partition number. The swap file is deleted automatically on frame termination. The size of the
swap file may be coded explicitly in the header:

SWAP-FILE nnnnn

where nnnnn is the size of the swap file in bytes, in the range 1 to 65535 inclusive. You are

recommended to use only the default size of 32767 bytes or the size 65535 bytes in order to
minimize the possibility of disk fragmentation.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 49 of 238

5. The Data Division

The optional Data Division is used to define data items accessed later within the frame. As
described in Chapter 6, data items may also be implicitly declared by use of Window construct.
The Data Division may contain the following:

Data Definitions Definitions of working storage variables used for calculation

or other purposes. BASED items, used to implement
parameterised subroutine CALLs, may also be defined.

Print Format (PF) constructs Used to define printed report layouts.

File Definitions FD constructs to allow access to traditional index-sequential,

relative-sequential and text files.

5.1 Data Division Structure
The optional Data Division is introduced by the header:

DATA DIVISION

The end of the Data Division is indicated by the start of one of the following Procedural
Divisions or the end of the frame:

WINDOW DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION
ENDFRAME

Data declarations, FD and PF definitions may be coded within the Data Division in any order.
The Global Cobol LINKAGE SECTION header statement is not supported by the Speedbase
Development Language. Linkage Section items may be declared anywhere within the Data
Division by use of the BASED clause.

5.2 Data Definitions
The Speedbase compiler provides the usual Cobol data definition facilities. The language
supports level 77 elementary items, as well as level 01 group items which can themselves be
subdivided into elementary items, or as many as 19 levels of subgroup.

5.2.1 Defining Level 77 Elementary Items
Level 77 elementary items, which are not subdivided, may be defined in the data division by
coding:

77 data-name [REDEFINES name-1][OCCURS n] picture clause [BASED name-2]

The data-name must be a symbol, you cannot use the reserved word FILLER in its place. If an

OCCURS clause is present the quantity n must be an unsigned positive integer. The optional

REDEFINES clause allows you to redefine a previously declared item whose data-name you
specify as name-1. An item with a REDEFINES clause is known as a redefinition. The optional

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 50 of 238

BASED clause enables you to declare a special type of item known as a based area whose

location is determined from the contents of the pointer whose data-name is name-2. The

statement establishes one or more elementary items whose attributes are determined by the
picture clause. When the OCCURS clause is omitted, a single item is set up, when present,
space is allocated for a table of n such items.

5.2.2 Defining Group Items
Group items, which are subdivided, are introduced by a level 01 data item, followed by any
number of subordinate items, level 02 to level 49. Groups may be defined anywhere within the
data division. The level 01 item is defined by coding:

01 data-name [REDEFINES name-1] [OCCURS n] [BASED name-2]

The quantities data-name, name-1 and name-2 should be supplied as symbols, as necessary. If

it is not required to refer to the group explicitly the reserved word FILLER may be coded for the
data-name. If an OCCURS clause is present the quantity n must be an unsigned positive

integer. The optional OCCURS clause allows you to set up a table, each entry of which has the
format of the data area described by the group. If the clause is omitted just a single occurrence
of the group will be established. When the clause is present space is allocated for a table of n

such groups.

Following the level 01 definition, the remaining subordinate items are declared by statements of
the form:

level-number data-name [OCCURS n] [picture clause]

The level-number must be two digits in the range 02 to 49 inclusive. The data-name should

normally be a symbol, although if it is not required to refer to the item explicitly you may supply
the reserved word FILLER instead. If the OCCURS clause is present n must be an unsigned

positive integer.

If the picture clause is omitted, the item forms a subgroup containing all the following items up

to, but not including, the next item with an equal or lower level number. If the definition does not
contain an OCCURS clause, a single occurrence of the subgroup will be established. Where the
clause is present space is allocated for a table of n such subgroups.

If the picture clause is coded then the item is elementary and is treated in exactly the same

way as a level 77 elementary item. If the definition of a group or subgroup contains an
OCCURS clause then it is termed a repeating group. No subordinate definition within a

repeating group may itself contain an OCCURS clause. This means that any tables defined by
repeating groups are one-dimensional only.

5.2.3 Example

01 AREA
 03 A PIC X * Elementary item
 03 B OCCURS 20 PIC X * Table of 20 elementary items
 03 C * Subgroup of AREA

 05 C-1 PIC X * Elementary item in C
 05 C-2 * Subgroup in C
 07 C-2-1 PIC X * Elementary item in C-2
 07 C-2-2 OCCURS 5 PIC X * Table of 5 elementary items in C-2
 03 D OCCURS 10 * Repeating group of AREA

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 51 of 238

 05 D-1 PIC X * Elementary item in D
 05 D-2 * Subgroup in D
 07 D-2-1 PIC X * Elementary item in D-2
 07 D-2-2 PIC X * Elementary item in D-2
 03 E * Subgroup of AREA
 05 E-1 PIC X * Elementary item in E
 05 E-2 OCCURS 8 * Repeating group in E
 07 E-2-1 PIC X * Elementary item in E-2
 07 E-2-2 PIC X * Elementary item in E-2

Figure 5.2.3a - Group Data Definition Example

Figure 5.2.3a shows a level 01 group named AREA, with the level numbers of subordinate data
items suitably indented so that the structure of the data is readily apparent. The lines with a
picture clause (e.g. PIC X) all define elementary items, or in the case of B and C-2-2, a single
entry of a table of such items. Note how a table, C-2-2, can itself be part of a subgroup. It could
not of course be part of a repeating group, because no item within such a group can itself
contain an OCCURS clause.

The example shows how subgroups and repeating groups can themselves contain subgroups.
Subgroup C contains subgroup C-2, and repeating group D contains subgroup D-2. A subgroup
can contain repeating groups (e.g. E contains E-2). The only combination which is not possible

is for a repeating group to contain another repeating group, because of the OCCURS clause
limitation.

5.3 Picture Clauses
The picture clause has the general format:

PIC type[(qualifier)] [COMP]

where type indicates the type of item being declared, qualifier its precision or length and the

COMP phrase applies to computational items only.

5.3.1 Character Pictures
The picture clause for a character item is:

PIC X(length)

where length is the number of characters required. If the length is 1, PIC X may be coded.

5.3.2 Display Numeric and Computational Pictures
The display numeric and computational variable picture clauses are written in one of the
formats:

PIC 9(p) [COMP]

PIC S9(p) [COMP]

PIC 9(p,q) [COMP]

PIC S9(p,q) [COMP]

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 52 of 238

where p is the number of digits before the decimal point, in the range 1 to 15, and q is the

number after the decimal point in the range 1 to 7. The sum p+q must not be greater than 18. If

S is coded the variable is signed. If p is 1, PIC 9 or PIC S9 may be coded. If COMP is coded the

variable is computational, otherwise it is display numeric. A computational variable occupies 1
to 8 bytes, the actual number being a function of p+q as tabulated in Table 5.3.2a:

p+q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Size 1 1 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8

Table 5.3.2a - Size of Computational Variables

Because arithmetic working is in binary, computational items are themselves binary and are
capable of containing numbers greater than the size implied by p. Also, they can always hold

negative numbers even if their picture clause states that they are unsigned. The actual range of
values that a computational variable can assume is termed its capacity. It is capacity, rather

than the format specified in the picture clause, which determines when overflow occurs during
arithmetic operations and moves to computational fields.

Note, however, that if you attempt to DISPLAY a computational item containing a value which
does not agree with its picture clause, overflow will occur. Similarly, the picture information is
used in validating computational input obtained using the ACCEPT operation so it is impossible
to input a computational value which does not agree with the receiving field's picture clause.

5.3.3 Pointer Pictures
A pointer is a data item, two bytes long, in which the location of a data item or program
statement can be stored. The value of a pointer must be between 0 and 65535 (64 Kbytes - 1).
It is represented by true binary notation. The low address byte of a pointer is the most
significant and its senior bit is not interpreted as a sign bit but is considered to represent the 32
Kbyte unit position. To indicate that a data item is a pointer, code the picture clause:

PIC PTR

5.3.4 Date Pictures
The picture clause for an item which will contain a date is coded as follows:

PIC D
 or:

PIC DATE

This causes the compiler to generate a PIC 9(6) COMP item.

5.4 Value Clauses
A VALUE clause can be used to initialise an elementary item defined in working storage,

providing that item is not part of a repeating group. The formats of the VALUE clause are as
follows:

VALUE "character string" * Format 1 (see below)

VALUE #hexadecimal string * Format 2 (see below)

VALUE numeric string * Format 3 (see below)

VALUE ZERO * Format 4 (see below)

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 53 of 238

VALUE LOW-VALUES * Format 5 (see below)
VALUE HIGH-VALUES * Format 6 (see below)
VALUE SPACE or SPACES * Format 7 (see below)

These formats are described in detail in the following sections.

5.4.1 Value Clauses for Character Items
Elementary character items may be initialised using formats 1, 2 and 4 to 7. Formats 1 and 2
only initialise the number of bytes specified by the string, whereas formats 4 to 7 initialise the
whole of the item to ASCII zeros, LOW VALUES, HIGH VALUES, or ASCII blanks respectively.
Several VALUE clauses may be specified following a data definition, in which case the values
are concatenated. For example:

77 A PIC X(10)
VALUE "ABC"
VALUE "XYZ"

VALUE SPACES

causes the first 6 bytes of A to be set to ABCXYZ and the remaining 4 bytes to be set to blanks.
Note that the coding of VALUE SPACES in this example is unnecessary since uninitialised
rightmost bytes of character items are set to blanks by default. If the character variable being
initialised contains an OCCURS clause it is treated as a single long character string during
VALUE clause processing.

5.4.2 Value Clauses for Display Numeric Items
For elementary display numeric items formats 1, 2 and 4 to 6 are valid. Format 1 converts the
string specified to a standard numeric string and initialise the item to this value. Format 2
initialises the item to the value specified, left justified and padded with LOW-VALUES if
necessary. Formats 4 to 6 initialise every byte of the item to ASCII zero, LOW-VALUES, or
HIGH-VALUES respectively. Note that if the data definition contains an OCCURS clause a
separate VALUE clause must be coded to initialise each occurrence. The first VALUE clause
sets up occurrence 1, the second occurrence 2, and so on.

5.4.3 Value Clauses for Computational Items
For elementary computational items formats 2 to 6 are valid. If format 2 is used the hexadecimal
string specified must establish every byte of the item and no more. Format 4 initialises every
byte of the item to binary zeros. Format 5 initialises each byte to binary zeros and format 6
initialises each bit to binary ones. Note that if the data definition contains an OCCURS clause a
separate VALUE clause must be coded to initialise each occurrence. The first VALUE clause
sets up occurrence 1, the second occurrence 2, and so on.

5.4.4 Value Clauses for Date Items
A format 2 or 3 VALUE clause can be used to give a date field a specified numeric or
hexadecimal value. A format 1 VALUE clause, where the character string is a valid long or short
date in dd/mm/yyyy format, will cause the date field to be initialised to the internal format

representation of the date specified.

5.4.5 Bytes Not Initialised by Value Clauses
All bytes not themselves set up by VALUE clauses, are initialised to binary zeros if the

elementary item containing the bytes belongs to a repeating group. If the item does not, then
the bytes are set up according to the data type established by its picture clause:

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 54 of 238

● Uninitialised bytes within character items are set to ASCII blanks

● Uninitialised display numeric items are set to ASCII zero - note that this is an invalid value

unless the item is an unsigned integer

● Uninitialised computational items are set to binary zeros

● Pointer items are set to LOW-VALUES

Data items appearing within a redefinition do not cause any initialisation to take place.

5.5 Redefinitions
A redefinition is a level 01 group or level 77 elementary item (e.g. B) which redefines the
storage occupied by another data item (e.g. A). A redefinition is introduced using the
REDEFINES clause in the data definition:

01 B REDEFINES A [OCCURS n]

 03 etc.
 03 etc.

or:
77 B REDEFINES A [OCCURS n] PIC etc.

The data item being redefined (e.g. A) may itself have been declared as level 77, level 01, or
indeed as any of the subordinate levels from 02 to 49. It may also be the filename or map-name
labeling a file or map definition. However, it must have been defined previously in the data

division, or be one of the in-built system variables described in Chapter 9.

The size of B in bytes should be no greater than that of A. If this rule is broken, the compiler
flags the first subordinate item of B occupying storage outside that allocated to A with a warning
message. If either B or A is a data definition with an OCCURS clause, then the size of the item
for the purposes of this comparison is considered to be the length in bytes of the total table
defined by the OCCURS clause.

5.6 The Print Format (PF) Construct
The PF construct is used to define printed report layouts. A frame will normally contain a
number of PF constructs, each of which defines one or more print lines which are printed
together in the report. The construct defines both the source of each data item to be printed,

and the destination of that item within the print line. During execution, the construct

automatically causes these source fields to be moved to their appropriate positions in the print
lines. These print lines are then written to the printer as normal.

The PF construct provides the following functionality:

Print File is automatically opened when the construct is first executed.

Output may be directed to one of a number of printers or may
be spooled to any random access device. This print file is
automatically closed when the frame finally terminates.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 55 of 238

Print Line Construction The construct automatically causes the construction of print

lines at run time. This process causes source fields to be
moved to their assigned locations within these lines. Any field
conversion from internal to display formats also takes place
automatically.

Page Throws automatically take place when required. This causes

any page trailer and header lines to be printed. No special
logic is required within the frame to deal with these
conditions.

Automatic Restarts are provided, allowing any report to be re-printed

starting from a given page. The system also deals with any
printer hardware problems, allowing re-assignment of the
output device during printing.

The PF construct is executed by means of the PRINT verb, which may be coded in any of the
frame's Procedural Divisions. Reports may be printed on blank listing paper, or on pre-printed
forms. Special stationery may be selected by using the MOUNT verb, which is also used to
specify non-standard form lengths. The construct may be used to produce reports of virtually
any complexity. Even troublesome printouts such as combined Remittance Advice and Cheques
can be handled with remarkable ease.

5.6.1 Basic Principles

5.6.1.1 Print Segments

The first task in coding a report print frame is to analyse the desired output. The purpose of this
analysis is to determine which lines are always printed together (i.e. in sequence). These
groups of lines are known as print segments, each segment being coded as a single PF

construct. This is perhaps best illustrated by reference to a simple example report layout:

The above example consists of two header lines, a single detail line, and a report total line
which is printed at the end of the report. Since the two header lines are always printed together,
this constitutes a single report segment. The detail line and report total lines are printed
independently of each other and therefore constitute separate print segments. This example
therefore consists of three print segments and requires three PF constructs to be coded.

5.6.1.2 Fixed and Floating Segments

The location in which a segment is to be printed within a page may be fixed or may float over an
area of the page. Returning to the above example, the header lines making up the report will
always be printed in a fixed position (e.g. starting at line one of each page). The detail and total
lines are printed in a floating area, which covers the rest of the page.

Sample Report Customer Listing Date 01/05/89 Page: 1

Cust No Customer Name Suburb Balance

XXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX 99999.99

Report Total 99999.99

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 56 of 238

This area or position in which a particular print segment may be printed is coded as part of the
PF construct. Whenever a print operation takes place, the current line position on the page is
checked. If this current line position is within the defined area, then all is well, and the segment
is simply printed. If the current position is before the start of the print area, the paper is
advanced until it is within the print area. If the current line position is beyond the area specified
for the print segment, a page throw automatically takes place.

5.6.1.3 Header and Trailer Print Segments

Several print segments may be related, and this relationship is coded as part of the PF
construct. This relationship specifies the sequence in which PF constructs will follow each other.
Two relationships may be specified by the HEADER and TRAILER options.

These options are invoked when a page advance needs to take place. Whenever printing a
segment would cause an overflow of its designated print area, a page advance will occur.
Before actually skipping to the next page, any trailer segments specified will first be printed. A
page advance then occurs, after which any header segments are printed. Returning to the
above example, the header lines segment will therefore be printed automatically whenever
printing a detail or total line segment would cause a page throw to occur.

5.6.2 General Format
The general format of the PF construct is as follows:

PF rt [HEADER r1] [TRAILER r2]

[START FROM l1 [TO l2]]

or..
[START AT l3]

.......
detail Lines

.......
ENDFORMAT

5.6.3 The PF Statement
The PF statement introduces the Print Format construct and assigns it a record-id, shown
above as rt, which must be composed of an alphabetic character followed by any alphanumeric

character. This ID is later used to differentiate between references to existing variables and
variable declarations within the PF construct detail lines. It should therefore be unique (i.e. not
referenced by an ACCESS or RF Statement).

The HEADER option allows a header PF to be selected. This header will be printed whenever a
page throw is required. The record-id r1 specifies the ID of the header PF construct to be used.

This header PF construct must be coded previously within the current frame's Data Division.

The TRAILER option allows a trailer PF to be selected. This format will be printed whenever a
page throw is required. The trailer PF will be printed before a page advance takes place. The

PF construct describing the trailer must have been coded previously within the current frame's
Data Division.

5.6.4 The START Statement
The optional START statement specifies the area of the page where the PF may be printed.
This area is identified by line number, shown as l1 through l3 above. The first line of each page

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 57 of 238

is always counted as line one. Line numbers must be coded as numeric literals in the range 1 to
99 inclusive.

The line numbers specified by the START statement indicate the start and end line numbers
from which the PF may be printed. For example, an end line number of 50 means that a PF

print may take place at a point up to line 50. If the PF has three print lines, this means that lines
50, 51 and 52 would be used for printing.

The statement has two formats. The START FROM format allows the lower line number limit to

be specified. The optional TO clause may then be coded to specify the end line number of the
area. When coded, this end line number may not be less than the start line number. If the TO
clause is omitted, the end line number will be calculated at run time as follows:

page length - length in lines, current segment - 6

if no trailer PF is coded, or:

trailer start line number - length in lines, current segment

if a trailer PF is coded. If the latter calculation leads to an invalid line number the prior
calculation will be performed, as if no trailer PF had been coded.

The START AT format of the start statement simply specifies the same line number for both

start and end lines. The statement:

START AT 1

is therefore functionally equivalent to the statement:

START FROM 1 TO 1

If the START statement is omitted, START FROM 1 is assumed.

5.6.5 PF Detail Lines
The optional START statement is followed by a sequence of detail lines. Each detail line may
consist of zero or more text-items which are simply moved into the print line when the PF

construct is executed. These may be followed by an optional data-item which may be a field

definition, or a reference to a previously declared field.

The general format of a text-item is:

n1 n2 "text to be printed"

The general format of a data-item is:

n1 n2 name [picture clause] [ADD (name-2)][FMT "options"]

where n1 and n2 above represent the line and column number co-ordinates where the item is to

be printed, name is the data-name of a declared or referenced field, picture clause specifies the

format of the field as it is printed, the ADD option specifies automatic addition to numeric field

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 58 of 238

name-2 and FMT "options" causes the data-item to be formatted for printing according to Table

5.6a.

5.6.5.1 Line and Column Numbers

The line number n1 specifies the line number relative to the start of the print segment on

which the item is to be printed. The first line number is always counted as 1. The line number
must be in the range 1 to 99 inclusive.

The column number n2 specifies the position at which the leftmost character of the item is to be

printed. This column number must be in the range 1 to 132 inclusive. The last column number
at which data may be printed is column 132. If this right margin is exceeded, the compiler will
generate an error message.

Each time a new line number is declared, the Speedbase compiler automatically generates a
print line within working storage. For example, if a print segment contains two lines, two 132
character print lines will be created. The spacing between the lines is not significant in the

allocation of print lines. If data is to be printed only on lines 1, 3 and 5, three print lines will be
allocated. The compiler "remembers" that a line advance is necessary before printing lines 3
and 5. When this PF construct is printed, five lines will therefore be output to the printer. The
maximum number of print lines that may be declared for a single PF construct is sixteen,
exclusive of line spacing.

The order in which the line numbers is declared is significant. The compiler requires that they

must be declared in line number order. It is therefore not permissible to begin by coding say the
fifth line of the print segment, and then to code earlier lines.

5.6.5.2 The Data-Name

The data-name is always a variable name. This variable name may be either a reference to a

variable which has been declared elsewhere, or may be a declaration for a variable stored

within the print line. If the data-name coded, name, begins with the two-character record ID

coded in the PF statement, then it is treated as a declaration. Otherwise it is treated as a
reference to an existing variable.

Referencing an existing field causes the compiler to treat that field as a source. The compiler

then generates code to cause this source field to be moved to the target location in the print

line. The target location in the print line is defined by the line and column number coded for the
item.

5.6.5.3 The Picture Clause

When a referenced field is coded, the field's picture clause is optional. If the picture clause is
omitted, then it defaults to the picture clause of the referenced item. If a picture clause is coded,
then this represents the picture clause of the item as it will appear in the print line. The

picture clause must be of an appropriate type, so that a valid move instruction may be
generated. Valid combinations are documented as part of the MOVE statement in Chapter 7.

Any field name beginning with the record-id coded in the PF statement is treated as a field
declaration within the print line. The variable name coded must be unique to the frame and may
be used as part of MOVE and other procedural statements to address the print line directly.
Declared variables always require a picture clause which determines the length and other
attributes of the field and are used to allow fields to be calculated or formatted in a special way
prior to printing. Procedure Division code is written to perform this function, which then moves

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 59 of 238

the field directly into the print line prior to issuing the PRINT statement. A declared field can be
the target of an arithmetic statement, and indeed can be used like any other working storage
field.

5.6.5.4 The Add Option

The ADD option causes the field being printed to be added to an accumulator as part of the
execution of the PF. The option is used for the calculation of report sub-totals and totals. Since
ADD is an arithmetic operation its source variable must be numeric computational. Since
declared variables are always display items, this means that it can only be used as an option for
referenced fields. The target of the ADD option, shown as name-2 above, must also be a

numeric computational field. This field must previously have been declared, normally as a
working storage item within the Data Division.

Whenever a PF construct containing an ADD option is executed, the value of the source field is
added to the option's target. This target can then later be used as the source of a PF construct
used to print a total line. Only one ADD option is permitted for each data item. If multiple levels
of totaling are required, the PF construct printing a sub-total may itself contain an ADD option to
calculate report totals. This process can be repeated indefinitely to calculate any number of
totaling levels.

5.6.5.5 The FMT Option

Option

Condition

Print Formatting

As input

As printed

B field = 0 Blank when zero 00.00

C field < 0 Trailing CR -12.34 12.34CR

< Enclosed in () (12.34)

- Trailing - 12.34-

D field > 0 Trailing DR +56.78 56.78DR

> Enclosed in () (56.78)

+ Trailing + 56.78+

, None Comma insertion 90123 90,123

$ None Leading dollar 45.67 $45.67

0 Zero fill 8.90 0008.90

* Asterisk fill 1.23 ***1.23

L Date only Long date DD/MM/YYYY DD/MM/YYYY

Table 5.6a - The Print Formatting Options

FMT "options" is used to cause special formatting of the printed output. Table 5.6a lists the five

groups of options. You may specify no more than one option from each group in any set of
options. Examples of invalid options would include:

BC<+,$
->+*
BCD,0*

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 60 of 238

Examples of valid sets of options and the resultant print formatting are as follows:

Options

Field as Input

Field as Printed

BCD, -678.90 678.90CR

0.00

+1234.56 1,234.56DR

B<, +789.01 789.01

-7890.12 (7,890.12)

B-+$, +345.67 $345.67+

$890.12 $890.12-

-+0 +345.67 00345.67+

-8901.23 08901.23-

CD* +456.78 **456.78DR

-901.23 **901.23CR

Table 5.6b - Examples of Print Formatting

5.6.6 Example Report

FRAME REPORT "CUSTOMER LISTING"
SEQUENCE MENU MENU

ACCESS CU * Create I/O channel to CUST record
DATA DIVISION
77 T-RTOT PIC 9(6,2) COMP * Working-storage field for report total
*
PF H1 * Print format for 2 header lines
START AT 1
01 01 "Sample Report Customer Listing"
01 37 "Date:" 01 42 $$DATE
01 51 "Page:" 01 56 $PGNO
03 01 "Cust No Customer Name"
03 38 "Suburb"
03 53 "Balance"

ENDFORMAT
*
PF D1 HEADER H1 * Print format for detail line
START FROM 5 *
01 01 CUSTNO * Customer number
01 11 CUNAME * Customer name
01 38 CUSUBB * Customer suburb
01 51 CUBAL ADD(T-RTOT) * Customer balance
ENDFORMAT
*
PF T1 HEADER H1

02 01 "Report Total" 02 51 T-RTOT
ENDFORMAT
*
PROCEDURE DIVISION
*
DO

FETCH NEXT CUIDX NOLOCK
ON EXCEPTION FINISH
PRINT D1

ENDDO
PRINT T1

EXIT
ENDFRAME

Figure 5.6c Sample Report-Printing Frame

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 61 of 238

The frame listed in Figure 5.6c is all that is required to print the report example from section
5.6.2, repeated above. The frame includes three PF constructs each defining a print segment of
the example report. PF H1 defines the header lines of the report, PF D1 the detail line and PF
T1 the total line.

In PF H1 the statement START AT 1 means that this PF will only ever be printed starting at the
first line of the page. This is followed by a number of text items which lay out the fixed text of
the heading lines. Two systems variables, $$DATE and $PGNO will also be printed. These
variables contain the system date and current page number respectively. Whenever a page
throw is required, the variable $PGNO is automatically incremented.

PF D1 contains the layout of the detail line and consists of references to fields on the customer
record, CU, so picture clauses are not therefore required. The field CUBAL is followed by the
ADD option to accumulate the total balance of all customers in the field T-RTOT.

PF T1 contains the layout of the total line, which consists only of the text "Report Total" and the
balance of all customers, accumulated in T-RTOT. The first line number declared for this PF is
line two, meaning that a one-line advance will take place before the PF is printed. The same
principle can also be used to achieve double line spacing.

Both the detail and total line print formats have defined PF H1 as their header. Whenever
printing D1 or T1 would cause a page throw, header H1 will therefore be printed first. This will
also take place when the first PRINT statement occurs, thus forcing out the header PF on to the
first page of the report.

The Procedure Division contains all the code necessary to "drive" the frame. It starts by
establishing a DO loop. The FETCH NEXT statement then reads each customer record
sequentially. The PRINT statement causes this record to be printed and the total balance
accumulated into the variable T-RTOT.

An end-of-file condition ultimately occurs and is trapped by the following ON EXCEPTION
statement. The FINISH verb in this statement transfers control to the end of the DO loop, where
the total line is printed. The EXIT statement returns control to the Speedbase Presentation
Manager, which re-loads the menu program.

Sample Report Customer Listing Date 01/05/89 Page: 1

Cust No Customer Name Suburb Balance

XXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX 99999.99

Report Total 99999.99

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 62 of 238

5.6.7 System Variables used for Printing
The following system variables relate to PF handling:

Name

Explanation

$PRUN

Printer unit ID. This PIC X(3) variable specifies the printer unit which is to be used to
output reports generated by the PF construct. This ID is initially set up to the unit
"$PR", but may be changed to some other random access device unit ID. If
changed, this unit ID remains in force until the end of the current session.

$PGNO

Current page number. The page number of the page currently being printed on is
stored in this 9(4) COMP variable. The page number is automatically set to zero
when the printer is opened in response to the first PRINT statement in the frame. It
is automatically incremented whenever a page throw takes place. $PGNO may be
referenced in a PF construct to print the current page number on each page. It must
NOT be modified by the application frame.

$LINO

Current line number within the page. This 9(4) COMP variable indicates the number
of lines that have so far been printed within the current page. It is set to zero when
the printer is initially opened, and reset as page throws occur. It is automatically
incremented as lines are output to the printer. It must NOT be modified by the
application frame.

$RSPG

Restart page number. This 9(4) COMP variable indicates the first page number from
which re-printing should commence. The variable normally contains zero to indicate
that printing should not be suppressed. The variable is reset to zero whenever the
printer is closed. A restart option may be provided within a print frame by setting it to
the page number from which re-printing should commence.

$PHLT

Printer halt suppress flag. This 9 COMP variable is used to control the print interrupt
feature. When printing normally commences, the following message is displayed:

 Type <Ctrl G> to halt printing

During a print run, the operator may then interrupt printing by keying <Ctrl G>.
Printing may then be restarted, directed to another device or suppressed. If
suppressed, the program will normally continue processing, but without producing a
report. Moving -1 to $PHLT also allows the operator to suppress printing, but in this
event the frame will be terminated by issuing a STOP RUN instruction.

Moving the value 1 to $PHLT suppresses the interrupt feature. It should be noted
that any changes made to $PHLT remain in force until the end of the session.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 63 of 238

5.7 The File Definition (FD) Construct
The Global Cobol File Definition (FD) statement is supported by the Speedbase compiler to
permit access to traditional ISAM, RSAM and TFAM files. These facilities would not normally be
used in an Speedbase application, as the Speedbase database access method and PF
construct provide enhanced functionality.

FD constructs have been provided solely to allow interfaces to existing GSM file-based
applications to be implemented. The syntax and operation of FD constructs is described in
detail in the Global Cobol Language Manual.

Please note that the ORGANISATION Statement required in the COBOL implementation for the
text file access method (TFAM) is not required by the Speedbase compiler, and should not be
coded.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 64 of 238

6. The Window Division

This chapter describes the structure and operation of the Window Division. Section 6.1 provides
a brief overview of window functionality, section 6.2 defines the structure of windows. Section
6.3 describes the layout of windows and the facilities provided for the operator. Section 6.4
explains how windows are controlled, describing the processing that takes place when a
window is invoked. The Routines Section and the processing of database records are described
in sections 6.5 and 6.6. Section 6.7 covers the syntax of the window construct in detail, followed
by section 6.8 in which special programming facilities and considerations are discussed.
Appendix C provides examples of the facilities described in this chapter.

A window defines the screen format by which a particular record type may be presented to, and
accepted from the operator. The processing involved in this is handled by a window manager,
which normally allows operations such as record addition, selection, maintenance, deletion and
enquiries to take place. The window manager provides the following facilities:

Multiple Windows A screen may contain any number of windows. These may

co-exist on the screen, overlay each other, or pop-up during
processing.

Window Sequencing The sequence in which windows are invoked is either

automatic or specified in the application program.

Scrolled Windows A window may be fully, partially or non-scrolled. A scrolled

window may display up to twenty records. Scrolled and non-
scrolled windows may co-exist on the same screen.

Enquiry Facilities Records may be retrieved via any index, and may be paged

in both ascending and descending order.

Processing Routines Routines Section entry-points allow procedural code to

be performed during window execution.

Optional Fields All fields within a window are optional, and can be

suppressed at run-time in the Routines Section.

Colour Support All windows automatically support colour and monochrome

facilities on appropriate terminals.

Re-entrant Processing The window manager allows windows to be invoked from a

window already executing.

Function Key Support Keyboard operations are carried out using function keys.

Using the <HLP> key, a menu of currently enabled functions
is automatically displayed, allowing the operator to select an
appropriate function.

Dependent Windows Windows can be restricted to operate only on a given set of

records, (e.g. invoices for a given customer).

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 65 of 238

Automatic Validation Input fields are automatically validated for type and converted

to the appropriate format.

6.1 Window Division Structure
The optional Window Division is introduced by the statement WINDOW DIVISION and is
followed by one or more window constructs. The Window Division is terminated by the start of
the next division, or by the ENDFRAME statement. A skeleton of the Window Division is shown
below:

[WINDOW DIVISION]

[$OPT NSW]
WINDOW id [USING rt [DEPENDENT ON rt2]]
[window-options]
window-body
[ROUTINES SECTION]

ENDWINDOW

...more windows...

Each window defines fields that will be displayed and accepted for a particular record type
known as the target record. This target record type must be stored on a Speedbase database.

The window will then normally allow such operations as addition, maintenance, deletion and
enquiry to take place on this target record type.

Each window may also contain a Routines Section, in which additional, application-specific

procedures may be coded. The Routines Section contains a number of entry-points, which are
called during processing of the window. These entry-points allow, for example, additional
validation to be performed on accepted fields, and may be used to perform additional updates
on completion of each transaction.

A window may occupy all or part of the screen. An example of a typical window, as it appears
on the screen, is shown in Figure 6a. A screen may be constructed from many such windows,
and these windows may overlay each other during the course of processing.

When a frame is run, the first window is normally executed automatically. However, if a
Procedure Division has been coded, it is executed instead and windows are then executed
under its control. Procedural statements provide control over window display, clearing and data
entry functions.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 66 of 238

6.2 Window Formats and Operator Facilities

6.2.1 Window Formats

Figure 6.2a - A Typical Speedbase Window

Figure 6.2a shows a typical Speedbase window as it appears on the screen. This window
contains two quite separate areas, known as the scrolled and non-scrolled areas. In the

example, the scrolled area is located in the top portion of the window and currently contains

eight records, TR01 to TR08.

The scrolled area of the window therefore contains a number of "slots" in which a record may be
entered or displayed. Each one of these is called a Record Display Area (RDA). Thus the
example window has eight RDAs, each of which is currently occupied by a record. The cursor is
always positioned on one of these RDAs, and when this contains a record, it is called the
current record.

Given the limited size of screens, it is often not possible to display a complete record in the
scrolled portion of the screen. To overcome this, windows can also contain a non-scrolled

area. This area is used to display those fields from the current record which could not be

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 67 of 238

accommodated in the scrolled region. In the example, purchase and sales history fields are
displayed for the current record, TR01.

The non-scrolled area is optional and, when used, does not need to occupy any particular
position on the screen. Equally the scrolled area is optional, may be placed anywhere on the
screen and may be as large as desired, each record using as many lines as required. When
scrolling is not needed, windows may also be laid out in traditional vertical form, so that only a
single record is shown at a time.

6.2.2 Operator Facilities
The operator controls a window using the functions shown in Table 6.2b. These functions are
invoked using the terminal's function or control keys, which are set up using the Speedbase
customisation utility, $BACUS. Twenty functions have been provided to allow the operator to
perform a variety of tasks:

Mnemonic

Description

$FUNC

RET Accept current field, select record 0

UF1 User Function 1 1

UF2 User Function 2 2

UF3 User Function 3 3

NXT Go to next window 4

PGE Forward-page window 5

BPG Back-page window 6

UP Back one record (Uparrow) 7

DWN Forward one record (Downarrow) 8

SKP Skip fields to next tab-stop 9

ABO Abort program 10

BCK Terminate window (Back to prior) 11

CLR Clear the window 12

DTE Delete current record 13

HME Cursor home 14

BFL Back one field 15

ENQ Enquiry mode - select index 16

INS Insert record 17

UDL Undelete record 18

MOV Move record 19

Table 6.2b - Window Operations (Keystrokes)

The result of using each of these functions is as follows:

<RET> The RETURN key is used to complete entry of a field, or to accept the default

displayed. RETURN is also used to select an existing record in the window for
further processing, such as maintenance or deletion.

<UF1> The <UF1>, <UF2> and <UF3> keys are used to invoke special program-

dependent functions coded within the application frame. For example, <UF1>

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 68 of 238

might be used to display a pop-up stock enquiry window from within an order-line
entry window.

<UF2> The <UF1>, <UF2> and <UF3> keys are used to invoke special program-

dependent functions coded within the application frame.

<UF3> The <UF1>, <UF2> and <UF3> keys are used to invoke special program-

dependent functions coded within the application frame.

<NXT> The NEXT key indicates completion of the current window and causes the next

window in sequence to be executed. It is normally used to indicate successful
completion from a repeating window.

<PGE> The PAGE key causes the next page of records to be displayed in ascending key

value within the current window. If the window is empty, the first page of records is
displayed.

<BPG> The BACK-PAGE key causes the preceding page of records to be displayed in

the current window. If the window is empty, the last page of records is displayed.

<UP > The UPARROW key moves the cursor from the current record to the record display area

(RDA) immediately above it. If used at the first RDA the window is scrolled down
one record.

<DWN> The DOWNARROW key moves the cursor from the current record to the

immediately following RDA. If used at the last RDA the window is scrolled up one
record.

<SKP> The SKIP key skips over fields, up to the end of the record or the next tab-stop

field. All skipped fields are processed as if the operator had keyed <RET>.

<ABO> The ABORT key is used to abort the frame.

<BCK> The BACK key is used to terminate the current window, and usually transfers

control back to the preceding window in the frame. If there is no preceding window
in the frame, it is usually terminated as if <ABO> had been keyed.

<CLR> The CLEAR key clears data from the current window.

<DTE> The DELETE key causes the current record to be deleted, and removed from the

window. The window is normally scrolled into the position previously occupied by
the deleted record, so that there are no "gaps" in the display.

<HME> The HOME key is used to position the cursor at the first record displayed in the

window. If already at the first record, the cursor is positioned at the last record
displayed.

<BFL> The BACKFIELD key is used to step back to the preceding field in a record.

<ENQ> The ENQUIRE key causes the window to be cleared, and enquiry mode to be

entered. The cursor is positioned on the first field of the currently selected index. If

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 69 of 238

<ENQ> is keyed again, the next available index is selected, to change the order in
which records will be displayed. Use of the <PGE> or <BPG> keys displays the
first or last page of records in the order of the selected index. The operator may
also specify a starting position for this display by entering part or all the index key.

<INS> The INSERT key is used to insert a record before the currently displayed record. The

window is normally scrolled apart to create a blank RDA, after which the operator
may enter the new record. Note that on re-display the inserted record will be
displayed in its index order, which will not necessarily place it in the same position
relative to other records.

<UDL> The UNDELETE function is used to re-create the record deleted by the last delete

operation. The record is displayed at the current record position.

<MOV> The MOVE function is used to change the order in which records are displayed,

where an auto-sequence index is in use.

The type of processing taking place determines which functions may be used. For example, the
delete function has no meaning when a record is being added. In order to select any of the
currently available functions, an experienced operator will normally use the appropriate function
key. The less experienced operator may key <HLP> to make use of the help facility.

When <HLP> is keyed, a menu of the currently available functions is displayed together with the
associated key-top names from the operator's keyboard. The operator may then choose an
appropriate function from this menu. If <HLP> is keyed again, the help text stored in the frame
is displayed as a help window. Any function-keys that may be described in the help window are
labeled with the appropriate key-top name. For example, a help-text phrase mentioning the
<NXT> function could have the key-top "End" in place of <NXT>, so that the operator may see
exactly which key to use on the keyboard in use at the time.

6.2.3 Enquiry Facilities
In order for the enquiry facilities to operate, the target record type must have at least one index.
Most records have more than one index by which they may be retrieved (e.g. a customer record
could be indexed by customer number as well as name). All enquiries operate using one of
these indexes, and the index currently in use is known as the current index.

The current index specifies the order of displayed records when the window is paged. If, for
example, the current index is the customer name index, then records would be displayed in
name order. When a window is first entered, one of the record's indexes is designated as the
current index. This is often the primary index, but another may be specified within the window
construct. The operator may, however, select a different index by using the <ENQ> key, which
clears the window and causes enquiry mode to be entered. The cursor is then placed on the
first field of the current index, which allows the operator to see which index is in use. Keying
<ENQ> again simply selects the next index available on the record.

The operator may then use the paging operations <PGE> or <BPG> to display the first or last
page of records via the selected index. Alternatively, the operator may key in all or part of the
index followed by <PGE> or <BPG>, and in this case only records following the requested index
keys will be displayed. For example, keying "B" <PAGE> would display all customers who have
a name starting with an ASCII value of "B" or greater (e.g. BURNS, COLLINS). Keying <RET>

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 70 of 238

instead of <PGE> causes the window manager to search for an exact match only, and if not

found, to output an error message.

Once one or more records have been displayed on the screen, the operator may use the <UP >
and <DWN> keys to move the cursor onto another record within the window. Alternatively,
keying <PGE> or <BPG> displays the next or prior page of records from that last displayed.

These facilities provide a mechanism for selecting a record from the database. Once the cursor
has been positioned on the required record, the operator may key <RET> to select it for
maintenance, or may key <DTE> to cause the record to be deleted. These operations are
explained in more detail later in this chapter.

The operator may key the index values to be searched for only when the record display area is
blank, and this is normally achieved by keying <ENQ>. The <ENQ> key clears all data from the
window, thus conforming to this rule. The enquiry facilities therefore operate in different ways
depending on whether or not a record is displayed in the current record display area.

When there is a current record, the operator may page forward or back as previously described,
or may use the <UP > and <DWN> keys to select another record within the window.
Alternatively the operator can use the <RET> or keys to select the current record for
maintenance or deletion.

When there is no current record, the operator may key in all or part of the required index key,
and then retrieve records corresponding to this entered key value. Again, the <UP > and
<DWN> keys may also be used to move to another record display area within the window.

The <PGE>, <BPG>, <UP > and <DWN> keys may be used at any time, even when record
addition or maintenance is in progress. When used, these keys cause the record maintenance
or addition to be completed, just as if the operator had keyed <SKP>, where after the operation
specified by the key takes place.

6.3 Control Structure
When a frame is first executed, the first window is usually invoked by the frame controller. If a
Procedure Division is coded it is executed instead and has full control of the further processing
of windows.

6.3.1 Basic Functions
All detailed operations of a window are controlled by a system routine called the Window

Manager. The window manager looks after low-level functions such as cursor positioning, field

display and accept, database I/O operations and record locking. Only three high-level
statements are therefore necessary to control the operation of windows at run-time. These are:

DISPLAY Displays the window form (i.e. fixed text and/or data).

CLEAR Clears the entire screen, a specific window, or clears only the data
from a specific window.

ENTER Transfers control to the window, which may then perform its various

tasks, such as enquiry and maintenance.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 71 of 238

6.3.1.1 DISPLAY

This statement is used to display either the window form, and/or to display data (i.e. a record)
within this form. The window manager keeps track of the status of all windows within a frame.
When a frame is first entered, clearly none of the window forms are as yet displayed. The
display of the window form normally takes place automatically when it is entered, or displayed.

This normally means that windows are activated (i.e. the window form displayed) as the need
arises. It is possible, however, to over-ride this by explicitly activating numerous windows using
the display verb with the TEXT option. When a window is activated, a box is displayed around
the area occupied by it and the various text items are displayed within this area. If the window is
a POP-UP, the image under the window is saved prior to this display. This allows the screen to
be reset to its original state when the POP-UP window is later cleared.

6.3.1.2 CLEAR

This statement has three variants. Normally the clear statement clears all windows from the
screen (i.e. both the window form and any displayed data). The clear statement may be used,
however, to clear a specific window, which must be active when the instruction is executed.
Clearing a specific window, also known as window removal, usually causes the area
underneath it to be reset to the screen background colour. However, if the cleared window is a
POP-UP, then the image that existed underneath the window before it was activated is
redisplayed, causing the screen to be reset to its original state.

6.3.1.3 ENTER

This statement causes a window to be executed. When a window is entered, the operator is
normally able to add, maintain or delete a number of records. Enquiries may also be performed
in order to select a record from the database for maintenance or deletion.

During this processing, routines coded in the Routines Section may be called to perform various
tasks such as field validation. Provided these routines do not detect errors, the record will then
be written, or rewritten, to the database. This normally concludes processing and control is
returned to the statement immediately following the ENTER statement. Alternatively, the
operator may abort the window by keying <BCK> or <ABO>, which is regarded as an abnormal
exit, and causes an exception condition to be returned.

6.3.2 Window Processing Modes
Windows operate in a number of modes during the different stages of processing. These modes
are listed in Table 6.3a below:

Mode

Description

Function

$MODE

ENQ Enquiry Initiate an enquiry 1

DSP Display Display existing record 2

MNT Maintenance Modify existing record 3

DEL Deletion Delete existing record 4

EDT Edit Create new record from existing 5

ADD Addition Add new record 6

INS Insertion Insert new record 7

Table 6.3a - Window Processing Modes

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 72 of 238

6.3.2.1 ENQ and DSP Modes

ENQ and DSP Enquiry and display modes operate together. Enquiry mode operates when the
operator initiates an enquiry, and display mode is used to display the results of this enquiry.
During enquiry mode, the operator may key in all or part of the record's index fields as
previously described in Section 6.2.3. Then, keying <RET> or <PGE> or <BPG> initiates a
search for records containing the required index keys. If any records are found, display mode is
activated and the retrieved records are displayed on the screen. While in display mode, the
operator may move the cursor between displayed records, or display follow-on pages of
records, using the <PGE> and <BPG> keys.

6.3.2.2 MNT Mode

MNT Maintenance mode allows the user to maintain the currently displayed record. The record
is first retrieved and displayed and is usually selected by keying <RET> with the cursor
positioned on it. In this mode, the operator may amend all non-protected fields on the record, on
completion of which the record is re-written to the database.

6.3.2.3 DEL Mode

DEL Delete mode operates when the user requests the deletion of an existing record. The
operator normally instigates a deletion by placing the cursor on the required record, and then
keying . As for MNT mode, this record will first have been retrieved using enquiry and
display modes. Upon deletion, the record is simply deleted from the database, and the resulting
"gap" in the window is removed by scrolling the following records.

6.3.2.4 ADD and INS Modes

ADD and INS Add and insert modes are both used to add a new record to the database. The
only difference between these modes is that add mode is used to add a record at the end of the
displayed list of records, whereas insert mode is used to insert a new record before another
record in the window. The operator enters add mode by placing the cursor on a blank record or
by keying <CLR>, and enters insert mode by keying <INS>. Other than these minor differences,
processing is identical, and these modes are only distinguished to allow the application
programmer to perform any additional processing required for record insertion. This is further
discussed in section 6.7.

If the record to be added has a primary index, a check will usually take place to ensure that the
record does not already exist. If it does, the operator will be prompted:

Record Key already exists; Enquire? :

Keying Y to this prompt causes the record to be retrieved and displayed just as if the operator
had used the enquiry functions to achieve this. In add and insert modes, the operator may enter
all non-protected fields in the record, on completion of which the record is written to the
database.

6.3.2.5 EDT Mode

EDT Edit mode is used only for windows that do not access the database, for example a
window that is used to accept parameters for a print program. These windows can operate only
in add and edit modes. The difference between these modes is that add mode initialises data-
items as each field in the record display area is processed, whereas edit mode does not. Add
mode therefore always starts with an empty Record Display Area, whereas edit mode starts
with a displayed RDA. Edit mode therefore acts similarly to record maintenance in maintenance

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 73 of 238

mode. Edit mode is selected by simply displaying the various fields in the record using the
display verb, after which the window is entered in the usual way.

6.3.2.6 Summary of Modes

These functions are essentially all that ever occurs in an on-line commercial application system.
Records are initially created, retrieved many times, sometimes being modified, and are then
finally deleted when no longer relevant. Complex on-line processes are simply built up from a
number of such functions.

Consider, for example, an order-entry application. The first task is to determine which existing
customer the order belongs to. This is achieved by a window using enquire and display modes
on the customer record. This is then followed by a window which either identifies an existing
order-header record (ENQ and DSP modes again), or allows a new one to be created (ADD
mode).

Individual detail lines are then processed by a further window where new order lines are created
(ADD mode). Existing order lines might also be reviewed (ENQ & DSP modes) and possibly
maintained (MNT mode).

Specialised windows may be constructed by disabling certain modes. By disabling the ENQ
mode, the operator is restricted to data-entry of new records. Disabling ADD mode means that
only existing records can be processed. Equally, the window may be made to perform enquiries
only.

6.3.3 The Processing Cycle
The operations that take place during the processing of a single record are collectively called
the window processing cycle, which is outlined in Figure 6.3b:

I/O

ADD

INS

DEL

MNT

DSP

ENQ

Start

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 74 of 238

Figure 6.3b - The Window Processing Cycle

When a window is entered, either ADD or DSP modes will normally be activated. If the current
Record Display Area (RDA) is not in use, ADD mode will be activated. If the RDA is in use (i.e.
a record is currently displayed) DSP mode is activated. Direct entry into ENQ mode will only
take place if the RDA is empty and ADD mode has been suppressed.

On entry into the window, an initial mode is therefore selected automatically by the window
manager. The operator may then use the <UP > and <DWN> keys to move between record
display areas, or use the <PGE> and <BPG> keys to display follow-on pages. Other functions
such as <CLR> may also be used. After some initial cursor-key activity, the operator can only
do one of the following things:

● Abort the window using the <ABO> or <BCK> keys.

● Move the cursor to a blank RDA to add a new record (ADD mode).

● Place the cursor on a record in the window and key:

<RET> to select the record to maintain it (MNT mode)
 <DTE> to delete the record (DEL mode)
 <INS> to insert a record at the current RDA (INS mode).

Ignoring EDT mode for the moment, the action starts once ADD, INS, MNT or DEL mode is
entered. The processing steps involved in these modes are discussed below:

ADD and INS modes The operator may enter each unprotected field in turn,

accepting or overiding defaults as required. Once the last
field has been entered, the record is automatically written to
the database.

MNT mode The operator may amend any unprotected fields on the

record, after which the record is rewritten to the database.

DEL mode The record is automatically deleted from the database and

removed from the screen.

After any of the above I/O operations, the optional Process Routine is executed. Several other
entry-points are provided in addition to the process routine within the optional routines section.
These entry-points allow the application programmer to add application-specific code which is
executed during the window processing cycle. A detailed description of these may be found in
section 6.4. The Process Routine has been included in this section because it is particularly

PROCESS
ROUTINE

End

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 75 of 238

useful. It is called at the end of the processing cycle and may be used to perform additional
tasks, such as writing an entry to an audit log.

After the optional process routine has been executed, the window will normally exit, returning
successful completion. Instead of exiting, it is possible to pass control to further windows, and
this is discussed in the following section.

6.3.4 Creating Chains of Windows
Each window in the Window Division may be executed individually under the control of the
Procedure Division. Chains of windows can be constructed, however, in much the same way as
chains of frames. Each window may contain a sequence statement which specifies the next
window to execute following successful or unsuccessful completion. For example, coding:

SEQUENCE W1, W3

will cause control to be transferred to window W1 on unsuccessful completion (backward exit),
and otherwise to window W3 (forward exit). The keyword "EXIT" may also be coded in this
statement, and this causes control to be returned. Omitting the sequence statement is the same
as coding:

SEQUENCE EXIT, EXIT

which causes control to be returned under all circumstances.

By using the sequence statement, several windows may therefore be executed before control is
finally returned. Any of the windows in the sequence may actually return control, provided the
sequence statement permits this. If it is important to know which window actually returned

control, this can be achieved by setting a flag within the routines section.

A chain of windows will therefore complete successfully or unsuccessfully, and this will cause
control to be returned. If the window was invoked using the ENTER statement within the
Procedure Division, control will be returned to the statement immediately following it. If
unsuccessful completion occurred, this will be indicated by an exception condition, which may
be trapped by an ON EXCEPTION statement within the Procedure Division. If no Procedure
Division was coded, control will be returned to the frame manager.

6.3.5 Controlling Window Exits
It is important to note that the operator may abort a window at any time using the <BCK> or
<ABO> keys, which causes unsuccessful completion to be returned. The <BCK> key causes
the backward exit specified in the sequence statement to be taken, and this is normally used to
transfer control back to the preceding window. If enabled, the <ABO> key ignores this backward
exit, immediately terminating window processing. If no back-window-id is coded the treatment of
<BCK> and <ABO> is identical.

Complex processes usually consist of a number of windows each performing a stage in the
overall task. The conditions under which windows may follow each other on successful
completion can often be important. For example, consider an order entry frame composed of
three windows, the first used to maintain order header information, the second used to amend
item lines, and the third used to enter optional delivery schedules.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 76 of 238

In this example, the item-line and delivery schedule windows would need to repeat in order to
allow multiple lines to be entered. Furthermore, it is necessary to ensure that an order header
has been established before any item lines can be processed. This control is achieved using the
REPEAT option.

When the REPEAT option is not used, successful completion will take place after a record has

been added, inserted, selected, maintained or deleted. Following deletion the status of the I/O
channel is undefined. For all other functions, the processed record is still present in the I/O
channel, but is unlocked. The REPEAT option is used to control both when a forward exit may
take place, and the lock status of the I/O channel at that point. It has three variants:

REPEAT (with no other clauses) causes the window processing cycle to be repeated

indefinitely, and no forward exit is therefore possible.

REPEAT UNTIL NEXT causes the window to be repeated until the operator keys <NXT>.

When this clause is coded, the operator can key <NXT> at any time during window processing,
and this means that the status of the I/O channel will be undefined.

REPEAT UNTIL CURRENT RECORD specifies that a current record is required before a

forward exit may take place. This option is often used to select a record for further processing,
such as selecting a customer prior to entering an order. This clause has two effects, it stops a
forward exit from taking place following deletion, and it causes the record lock to be retained.

Returning to the above example, the REPEAT UNTIL CURRENT RECORD option would be
used in the header window to ensure that an order header record is returned locked on
successful completion. The REPEAT UNTIL NEXT option would be used by the item-line
window to allow a transfer to the third window at the operator's discretion.

6.4 The Routines Section
A ROUTINES SECTION may be coded for each window containing a number of entry-points
called during the processing cycle. Any valid procedural instruction, as documented in Chapter
7, may be coded within the section, including window management statements such as ENTER
and DISPLAY. It is therefore permissible to enter or display other windows from within the

Routines Section, providing these are not currently executing. The entry-points provided

by the routines section are divided into two types, entries called during field level processing,
and entries called during record level processing, see Table 6.4a:

Routine

Description

Function

Level

B-name Before field Suppress optional fields Field

V-name Validate field Perform extra validation Field

D-name Default routine Default field contents Field

R-FETCH Record fetch Reject retrieved records Record

R-SELECT Record select Suppress selection Record

R-DELETE Record delete Suppress deletion Record

R-WRITE Record write Suppress record write Record

R-REWRITE Record rewrite Suppress rewrite Record

R-PROCESS Record process Extended processing Record

R-TERM Record terminate Release locks Record

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 77 of 238

Table 6.4a - Routines Section Entry-Points

Each of the above routines may return an exception to the window manager using the EXIT
statement. EXIT WITH 1 has a general "incorrect - do not proceed" meaning. Other exit
conditions are also used, and these are further explained below.

6.4.1 The Before Routine
The Before Routine is called immediately before the field is accepted or displayed. Returning
control with exit condition 1 (i.e. performing EXIT WITH 1) causes the field to be suppressed.
When suppressed, the area on the screen normally occupied by the field is cleared, and no
further processing takes place for it. Note that Before routines are not called in ENQ mode
processing. Returning control with exit condition 2 causes the field accept operation to be
suppressed as if the PRO option were coded.

6.4.2 The Default Routine
The Default Routine is called before a field is processed and allows a default to be provided.
Note that the routine is only called during ADD and INS modes, since fields are regarded as
pre-initialised during MNT mode. The default is simply MOVE'd into the field and the operator
may accept or change it. Before moving a default value into the field, the default routine should
check that the field has not already been initialised. Uninitialised fields will be set to spaces if
character fields and zero for computational and display numeric fields. It is also important to
note that this routine is not called in Maintenance mode.

[Earlier versions of this manual included the phrase: It is also important to note that this routine
is called during record maintenance. In maintenance mode, most if not all of the fields will
already contain correct values by virtue of having been read from disk. The routine should
therefore ensure that new defaults are only provided when necessary. If no default is provided
by the routine, exit condition 1 should be returned.]

6.4.3 The Validation Routine
The Validation Routine is called immediately after a field has been accepted, and may be used
to perform additional validation such as range checks. Returning exception 1 indicates that the
field is invalid, and causes it to be re-input. Note that the validation routine is called even if it is
not possible to ACCEPT the field (e.g. a protected field).

6.4.4 The Fetch Routine
The Fetch Routine is called whenever the window manager fetches a record from the database.
The routine may be used to create derived fields before the record is displayed. Where special
display formats are required, the routine may also be used to convert fields from database to
external formats. It is called immediately after retrieval of the target record, but before any other
processing has taken place.

The routine can also be used to suppress the retrieval of certain records, such as suppressing
inactive customers. This is achieved by returning exit condition 1, and causes the window
manager to proceed as if the record did not exist. This allows a selection of records to be
displayed during enquiry operations.

6.4.5 The Select Routine

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 78 of 238

The Select Routine is called when the operator attempts to select a record, usually to enter
MNT mode. The record will already have been fetched and is displayed. The routine may be
used to stop the operator from selecting the record, and this is achieved by returning exit
condition 1. For example, this might be useful to stop the operator from attempting to amend an
invoiced order.

6.4.6 The Delete Routine
The Delete Routine is called after the operator has keyed to delete the current record,
but before the deletion is performed by the window manager. The routine may reject the
deletion request by returning exception condition 1. For example, this may be required to stop
the deletion of an invoice before it has appeared on a statement.

The routine may also be used to remove unwanted servant records. For example, when the
operator requests the deletion of an order header, the routine might automatically delete all
servant order lines thus allowing the deletion to succeed.

6.4.7 The Write Routine
The Write Routine is called immediately before a new record is written to the database during
ADD or INS mode. The routine may be used to complete fields on the record, before it is
actually written (e.g. calculate the extended value of a line item). Returning exit condition 1
returns the operator to the last input field on the record, and suppresses the write operation.

6.4.8 The Rewrite Routine
The Rewrite Routine is called immediately before an existing record is re-written to the
database during MNT mode. This routine is otherwise identical to the write routine.

6.4.9 The Process Routine
The Process Routine is called after processing has been completed (i.e. on completion of ADD,

INS, EDT, MNT or DEL modes). It may be used to perform additional updates, such as writing
details of the transaction to an audit log. The system variable $MODE may be examined by the
process routine to determine in which mode the record was processed if this is important, see
Section 6.3.2.

When the routine is called, the record that has just been processed by the window manager is
still contained within the I/O channel. The fields of the record may therefore be examined by the
routine. It is important to note, however, that the I/O operation (i.e. write, rewrite or delete) will
already have taken place. In the case of deletion, this means that the record no longer exists on
the database at the time that the process routine is called.

Following ADD, INS, and MNT modes, the current record in the I/O channel will normally be
locked, to ensure that it is not modified or deleted while the process routine executes. For ADD,
INS and MNT modes, the record will be locked exclusively. For SEL mode the record will be
protected (locked non-exclusively) unless the LOCK or NOLOCK options are in force.

Returning Exit condition 1 (i.e. performing an EXIT WITH 1) from the process routine returns
unsuccessful completion of the window, and causes the back-action to be taken as defined by
the window's optional Sequence statement. It should be noted that this has no effect on the
processing of the last transaction, which will already have been written to the database.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 79 of 238

Returning Exit condition 2 causes window processing to be terminated just as if the operator
had keyed a series of <BCK> keys to terminate the current series of windows as defined by the
window's sequence statement. Where no sequence statement has been coded, the effect of
this is identical to returning exception condition 1.

6.4.10 The Terminate Routine
The Terminate Routine is called when the operator terminates record processing in MNT, EDT,
ADD or INS modes by keying a function such as <BCK>, <HME>, <CLR>. It may be used, for
example, to release locks established by earlier, now aborted, record processing, such as may
have occurred within the window's validation routine. System variable $FUNC may be examined
to determine the function used to terminate record processing. Note that the variable $MODE is
not defined when the R-TERM routine is processed. Note that the R-TERM routine must not be
used to unlock any window target record type.

6.5 Processing Database Records
This section discusses the operation of the window construct when used to process records
with masters. The locking requirements of such records are discussed in section 6.5.1 with an
explanation of the automatic retrieval that takes place in display mode. Section 6.5.2 describes
the operation of dependent windows, used to process subsets of records.

6.5.1 Locking Master Records
As described in Chapter 2, special locking requirements exist when processing records that are
linked to master records. For example, consider the following structure:

In the above structure, the Order Line record has two masters, the Order Header record and the
Stock Record. When an order line record is added to the database, these masters must be
locked before the I/O operation takes place. This ensures that a master record is not deleted by
another user while the order line record is being added to the database.

Similar considerations also exist when maintaining a record. If for example, the stock number
can be changed during maintenance, the new stock record must be locked before the order line

is written to the database. Ensuring that these master records are correctly locked is the
responsibility of the application programmer, and the simplest way to achieve this is to code

FETCH statements in the validation routines of the appropriate fields.

If fields that are not stored on the target record are displayed (e.g. the display of the stock
description from the stock record within the line item window) the application programmer must
also ensure that the appropriate stock record is retrieved during processing. The simplest way
of dealing with these "off-record" fields involves naming these record types as part of the
window statement definition, and this is discussed in section 6.6.1.

Another method of fetching these additional records is to write a fetch routine in the routines
section. The fetch routine will be called by the window manager each time a target record is

Order Header

Order Line

Stock Item

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 80 of 238

retrieved. Associated records can therefore be retrieved within this routine by coding an
appropriate FETCH or GET statement.

This does, of course, have some bearing on performance. If it is necessary to retrieve, for
example, eight associated records for each line within the window, then this will be much slower
than just retrieving the displayed target record. When coding scrolled screens this can be
particularly important, given that a number of records, and all their masters, will need to be
fetched.

In order to improve paging performance within scrolled screens it is a good idea to place these
fields within the non-scrolled area. These non-scrolled fields are only displayed once when the
window is paged, in order to display the current record. The associated records then only need
to be fetched once, improving performance considerably.

With this approach, a before routine should be coded for the appropriate off-record fields. This
routine is called immediately before the field is displayed, and should therefore contain the fetch
or get operation needed to retrieve the record. As record displays always take place in display
mode, it is only necessary to perform these I/O operations in this mode.

6.5.2 Dependent Windows
A window generally allows access to all records of a particular type stored on the database. For

example, a window processing invoice records will normally allow all invoices on file to be
processed, subject only to the operation of the fetch routine within the routines section. It is
quite a usual requirement however, for a window to process a subset of those records only, for
example, allowing access only to invoices for a particular customer.

This requirement exists in many data-processing functions. For example, an invoice entry
program composed of an invoice header window and a detail line window would have this
requirement. When the invoice line window is entered, it should provide access only to the

detail lines for the current invoice.

Dependent windows provide the facilities to achieve this effect. When the window construct is
coded, dependency on a higher level record within the database is established using the
WINDOW statement. For example:

WINDOW W1 USING IN DEPENDENT ON CU

This statement introduces the window W1, with a target record type IN (invoice record). The
DEPENDENT ON clause restricts the operation of the window to a subset of records, in this
case to those invoices that belong to record CU (customer record).

When the window is entered, an enquiry will return only invoice records that belong to the
current customer record. The window manager does this by examining the I/O channel of the
customer record, and thus determines which particular customer record is currently being

processed. Only invoices that belong to this particular customer can then be retrieved or added.

Before entering window W1, a customer record must therefore be established, and this is done
simply by reading the required customer record, using either the FETCH or READ statements.
Alternatively, a preceding window may be used to do this (e.g. a selection window operating on
customer records) which must be entered before the invoice window is executed.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 81 of 238

Dependent windows can only operate if on the target record an index exists which starts with
the same fields as the primary index of the "Dependent On" record type. For example, if the
primary index of the customer record is the customer number, then an index must exist on the
invoice record that also starts with this customer number. Such an index is needed to enable
the efficient retrieval of invoices for the customer. If such an index does not exist, dependency
cannot be used.

This implies that there is a master/servant relationship between the records, but there is no
requirement for a formal linkage since all processing is performed using indexes. This feature
operates simply by prefixing the indexes declared for the target record with the primary index of
the "Dependent On" record type. The window manager then checks all retrieved records to
ensure they conform to this prefix.

When processing dependent windows, the fields of the controlling key are moved automatically
into the appropriate fields of the target record at the start of record processing. This saves the
application programmer the task of initialising these fields before the record is written to the
database.

6.6 Window Construct Syntax
The window construct is coded within the Data Division. Its general format is as follows:

[$OPT NSW]
WINDOW id [USING rt1 | rtidx [rta rtb... rtn] [DEPENDENT ON rt2 | (fielda, ... fieldn)]]

[\window help-text [$TR-key]]

[SEQUENCE id1 [Clear-opt], id2 [Clear-opt]]

[POP-UP | QREM]
[EDT] [ADD] [INS] [ENQ] [SEL] [MNT] [DEL] [UDL]
[REPEAT [UNTIL [NEXT | CURRENT RECORD]]]
[LOCK | NOLOCK]
[SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]]

[SBOX]
[LINE l1 [l2 ... l8]]

[BASE AT line col]

[ENABLE [NXT] [ABO]]
[DISABLE [SKP] [CLR] [HME]]
[AUTOPGE | AUTOBPG]
[LI CL Longname LI CL Name Pic Options...]

(Detail Lines)

[ROUTINES SECTION]

(Routines Section entry-points)

ENDWINDOW

The construct is introduced by the WINDOW statement and may optionally be preceded by the
compiler directive $OPT NSW. If coded this directive causes the compiler to exclude the
window from the disk swap file. You may wish to exclude a pop-up from the swap file, see
section 4.6, if it is important for it to be displayed and removed in the shortest possible time. The
WINDOW statement is followed by optional window help-text. This in turn is followed by a

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 82 of 238

number of optional clauses which specify a number of run-time parameters, such as in which

modes the window may be operated. The window-body is then introduced by an optional

header line (shown as LI CL Longname... above). This is in turn followed by the actual text and
data fields to be displayed and accepted. The optional Routines Section may then be coded.

This section contains additional procedural code which is executed during window processing.
The ENDWINDOW statement indciates the end of the window construct, which may be
followed by further window definitions, or the Procedure, Load or Unload Divisions.

6.6.1 The Window Statement
The WINDOW statement introduces the window construct and specifies its target record type. It
is coded:

WINDOW id [USING rt1 | rtidx [rta rtb... rtn] [DEPENDENT ON rt2 | (fielda, ... fieldn)]]

where id is a unique two-character window-id by which the window is identified, rt1 is the name

of the target record, and rta to rtd are master records to be fetched with the target record rt1. rt2

is the record-id of the record type upon which displays are dependent unless a field list, fielda,

... fieldn is defined. A default index, rtidx may be specified as the default index for use in

enquiries by coding an index name instead of rt1.

The window-id is a two-character alphanumeric name which must start with an alphabetic
character, and is used to reference the window during processing, such as when using the
ENTER verb. It must therefore be unique amongst the windows declared within the frame, and
should not be the same as any record-id referenced by the ACCESS statement.

The optional USING clause specifies that the record-id of the window's target record type is rt1,

access to which must previously have been declared using the ACCESS statement. When used
instead of rt1, the index name rtidx simultaneously defines the record-id and default current

index by which records are to be retrieved using the <PGE> and <BPG> operations. If the
record-id is coded, the first index defined for that record in the database dictionary will be used
as the default index.

Up to four master records which are to be retrieved with the target record are specified by rta to

rtd. Whenever the window manager fetches the target record, these master records will also be

retrieved, in much the same way as the READ verb. This facility is used to display fields that are
not stored on the target record (e.g. when displaying the stock description from the stock record
within order line items). Note that records retrieved using this facility will be unlocked.

This facility can only be used for records that are directly linked to the target record type. If this
is not the case, the same effect can be achieved by coding a fetch routine within the routines
section. This routine must then perform the necessary fetch or get operations to cause the
required records to be retrieved.

Omitting the USING clause indicates that the window is not associated with records residing on
the database. The window will therefore operate in ADD and EDT modes only, and any
necessary I/O operations will have to be explicitly coded within the frame.

The optional DEPENDENT ON clause has two different uses. If coded in conjunction with
record type rt2, it restricts access to the group of records belonging to record rt2, which must be

established before the window is executed. For example, it may be desirable to process only

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 83 of 238

those invoices that belong to a given customer. This is achieved by first reading, or creating that
customer record, and then invoking the invoice window.

When the DEPENDENT ON clause is used with record-id rt2, only indexes that begin with the

primary index of rt2 will be used to retrieve the target record type. In other words, an index must

start with the same fields as the primary index of the master record. Returning to the example,
enquiries can use only those indexes that start with the customer number. This allows the
window manager to get straight to the invoices belonging to the customer without having to
scan through the entire file. If no such index exists this clause may not be used. If index rtidx is

specified instead of rt1, it must also meet these criteria.

The DEPENDENT ON clause may instead be followed by a list of fields containing the
significant portion of the index key upon which the operation of the window will be dependent.
For example, coding:

WINDOW W1 USING IN DEPENDENT ON (Z-CUST)

makes the operation of this window dependent on the value contained in field Z-CUST, which
must be set up before the window is entered.

When compiling this statement, the compiler searches for an index which starts with index
segment named INCUST, which must have the same picture clause as the field Z-CUST. The
important point here is that the last four characters of the field name serve to identify the
corresponding index key segment as stored on the target record. These requirements are
conceptually similar to the establishment of Master Access Keys, described in Appendix F.

Where a list of fields is coded to define dependent operation, each field must be defined in the
same order as at least one index supported by the target record type. The picture clause of
each field must match the picture clause of the corresponding index key segments, and the
specified fields must be located in contiguous memory locations. For example, let us create

an order line item window which shows only the order lines for a given order. Given that the
order line record contains an index composed of:

Customer Number OLCUST X(4)
Order Number OLORDN X(5)
Stock Number OLSTCK X(8)

we must specify a window which is dependant on both the customer and order number fields.

This should be done by coding the following in the Data Division:

01 Z-KEY * Dependency key for order lines
 03 Z-CUST PIC X(4) * - Customer number
 03 Z-ORDN PIC X(5) * - Order number

The Window Statement would then be coded:

WINDOW W1 USING OL DEPENDENT ON (Z-CUST, Z-ORDN)

During compilation, the compiler identifies the appropriate index from the names of the specified
field segments, and checks that the picture clauses are identical. At run time, it is then
necessary to move the required customer and order numbers into Z-CUST and Z-ORDN
respectively, prior to entering the window.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 84 of 238

6.6.2 Optional Clauses
A number of optional clauses may be coded following the WINDOW statement. These are:

[\window help-text [$TR-key]]

[SEQUENCE id1 [Clear-opt], id2 [Clear-opt]]

[POP-UP | QREM]
[EDT] [ADD] [INS] [ENQ] [SEL] [MNT] [DEL] [UDL]
[REPEAT [UNTIL [NEXT | CURRENT RECORD]]]
[LOCK | NOLOCK]
[SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]]

[SBOX]
[LINE l1 [l2 ... l8]]

[BASE AT line col]

[ENABLE [NXT] [ABO]]
[DISABLE [SKP] [CLR] [HME]]
[AUTOPGE | AUTOBPG]

6.6.2.1 Window Help-text

Window help-text lines have the backslash character \ as the first significant character on the

line, must be contiguous, and follow immediately after the WINDOW statement. Key-top names
may be embedded in the help-text by coding $TR-key where key is any of the function-key
mnemonics listed in Table 6.3b. For example, to display the help-text "Key End for next window"
you should code "\Key $TR-NXT for next window". The help window is displayed when <HLP>
is keyed twice (i.e. <HLP><HLP>).

6.6.2.2 Sequence Clause

This clause defines the sequence in which the window is to be executed. It is coded:

SEQUENCE id1 [Clear-opt], id2 [Clear-opt]

where id1 is the window-id to be entered on unsuccessful completion of the window, and id2 is

the window-id to be entered following successful completion of the window. The keyword EXIT
may be coded for either id1 and/or id2, and this causes the window manager to return control

on completion, instead of executing a further window.

Clear-opt specifies a window clearing action to be taken on completion of the window and may

be one of the following:

CLR Clear Screen. The screen is totally cleared, leaving only the screen header

displayed.

CLW Clear Window. The window is removed from the screen. If the window is a

POP-UP, the prior image is re-displayed. Otherwise the area occupied by
the window is over-written with spaces in the window background attribute.

CLD Clear Data. Data displayed within the window is cleared. If the sequence

statement is omitted, an exit will take place both on successful and
unsuccessful completion, and no clearing action will take place.

6.6.2.3 Clearing controls

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 85 of 238

The POP-UP and QREM clauses are used to control the way a window is cleared from the
screen. The POP-UP clause causes the screen image under the window to be saved when it is
activated. When the window is cleared using the CLW option (see below) or the CLEAR
window statement, this image is re-displayed, thus resetting the screen to its prior state.

The QREM clause is used to improve clearing performance. When a ordinary window (i.e. not a
POP-UP) is removed using the CLW option or CLEAR window statement, the area underneath

it is cleared by displaying spaces. This can take some time, especially if the window is large.
The QREM clause causes the window to be removed using the clear-to-end-of-line facility,
which operates much faster, but also has the effect of clearing the area to the right of the
window. This option should therefore only be used when the area to the right of the window is
otherwise unused.

6.6.2.4 Mode Enabling Clauses

This section describes the following optional processing modes:

EDT
ADD
INS
ENQ
SEL
MNT
DEL
UDL

If none of the above clauses is coded, defaults are allocated as follows. If the USING clause

has been coded in the window statement (i.e. the window operates on a target record type) all
clauses other than EDT and UDL are enabled. Otherwise only the ADD clause is enabled.
These defaults are over-ridden by coding any of the above clauses which are described below:

6.6.2.4.1 The EDT Clause

The EDT clause enables edit mode, used only on windows that do not operate on a target

record type and should not be used in scrolled windows. It allows the data fields processed by
the window to be pre-initialised using the display verb and entry into the window then allows the
operator to edit the displayed fields as a whole. This clause is typically used in windows which
accept run-time parameters (e.g. those required in a print program). Coding EDT automatically
enables ADD mode.

6.6.2.4.2 The ADD Clause

The ADD clause enables add mode, normally entered when the cursor is positioned on a blank

record. This allows the operator to enter the fields on the record, on completion of which a new
record is written to the database. Unless this mode is enabled addition of new records cannot
take place, so only existing records can be processed by the window.

6.6.2.4.3 The INS Clause

The INS clause enables insert mode which allows a new record to be inserted before an

existing record displayed in the window. When the operator keys <INS>, the window is scrolled
apart to create a new blank record display area into which the new record can be inserted.
Since the insert instruction requires existing records to be displayed, the INS clause also
enables ENQ and DSP modes. ADD mode is also enabled by this instruction.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 86 of 238

6.6.2.4.4 The ENQ Clause

The ENQ clause enables enquiry and display modes. Enquiry mode is activated whenever a

database search is initiated, and is therefore required in order to display existing records within
the window. This mode is also entered explicitly when <ENQ> is keyed. If the database search
is successful, display mode is activated in order to display the retrieved records.

If the ENQ clause is not coded, the user will be unable to retrieve and display records from the
database, and is therefore restricted simply to adding new records. Since enquiry mode requires
a target record type, the window statement must contain the USING clause.

6.6.2.4.5 The MNT Clause

The MNT clause, when coded, the operator may key <RET> to select the current record for

maintenance. Unprotected fields on the record may then be edited, on completion of which the
record is re-written to the database. Since maintenance operates on existing records, ENQ and
DSP modes are automatically enabled.

6.6.2.4.6 The SEL Clause

The SEL clause allows an existing record to be selected from the window. This clause is coded

when a window is used for selection purposes only, an example of this being the selection of a
customer prior to invoice entry. It is used instead of the MNT clause when no maintenance is to
take place on the selected record. The window manager suppresses record editing and the re-
write of the record that would otherwise take place. Since record selection operates on existing
records, ENQ and DSP modes are automatically enabled. Unless the SEL clause is coded, the
operator is able to position the cursor on a different record within the display, but is unable to
select it.

6.6.2.4.7 The DEL Clause

The DEL clause allows the operator to select a record for deletion by placing the cursor on the

required record, which is then deleted by keying <DTE>. If this clause is omitted, record
deletion is disabled. Since deletion operates on existing records, ENQ and DSP modes are
automatically enabled.

6.6.2.4.8 The UDL Clause

The UDL clause allows the operator to undelete the last deleted record by keying <UDL>.

Coding this clause causes the compiler to create an area within the frame which will contain a
copy of the last deleted record. Keying <UDL> activates ADD or INS mode, each field on the
record being moved from the saved area instead of being accepted from the operator. The UDL
clause automatically activates ADD, INS, ENQ, DSP and DEL modes.

6.6.2.4.9 Programming Notes

If the window does not have a target record type (i.e. the USING clause was not specified in

the WINDOW statement) the window may only operate in ADD and EDT modes. Coding any of
the clauses INS, ENQ, SEL, MNT, DEL, UDL will therefore result in an error during compilation.

The MNT and SEL clauses are mutually exclusive, and may not be coded for the same window.
The SEL clause means that MNT mode is not to be entered following selection of a record.

Coding SEL alone means that the window may only be used to do an enquiry and select a
particular record. This option is often used to set up a controlling record for use by a
subsequent dependent window (e.g. to select a given customer prior to processing that
customer's invoices in a subsequent window).

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 87 of 238

If ENQ is the window's only valid mode, the processing cycle described earlier in this chapter
can never complete, since the window simply stays "stuck" in enquiry mode. However, if the
REPEAT UNTIL NEXT clause was coded, the operator will be able to use the <NXT> key to
indicate successful completion. Otherwise, successful completion cannot occur.

6.6.2.5 Record Status Controlling Clauses

The following clauses control record lock status and window termination. They are coded:

REPEAT [UNTIL [NXT | CURRENT RECORD]]
LOCK | NOLOCK

6.6.2.5.1 The REPEAT option

The REPEAT option causes the window to loop until a terminating condition is reached. If the

option is not coded, successful completion will be returned following a single processing cycle.
When the REPEAT clause is coded on its own, the processing cycle will continue indefinitely,
and no successful exit is therefore possible.

6.6.2.5.2 The REPEAT UNTIL NXT option

The REPEAT UNTIL NXT option enables the <NXT> key, and allows the operator to indicate

completion of the window at any time.

6.6.2.5.3 The REPEAT UNTIL CURRENT RECORD option

The REPEAT UNTIL CURRENT RECORD option specifies that a current record is required

before successful completion is permitted. When coded, this option ensures that a valid target
record is contained in the I/O channel, and this record will be locked in accordance with the
locking options discussed in the following section. This option must therefore be coded
whenever the status of the I/O channel on successful completion is important.

Note that this option has no effect on the operation of the <ABO> and <BCK> keys, which may
be used to force unsuccessful completion of the window at any time. The status of the I/O
channel on unsuccessful completion of a window is therefore undefined under all

circumstances.

6.6.2.5.4 The LOCK and NOLOCK option

The LOCK and NOLOCK options are used to specify the lock level required when a record is

selected without further processing. When a record is added, deleted, or maintained a full
(exclusive) lock is always placed on the record. The locking options are therefore only used with
the SEL option described in section 6.6.2.4.

When the SEL option is coded, a selected record will normally be delete-protected (non-
exclusively locked) so that it cannot be deleted by another concurrently executing frame. Coding
the LOCK option causes a full lock to be placed on the record. Coding the NOLOCK option
suppresses locking of the target record.

Note that the record lock, specified using the above options or as defaulted, is normally
released on completion of the window. It will only be retained if REPEAT UNTIL CURRENT
RECORD is coded. The lock status of the I/O channel following unsuccessful completion is
undefined.

6.6.2.6 The SCROLL statement

The SCROLL statement is used to define a scrolled region within the window. It is coded:

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 88 of 238

SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]

where n1 is the number of records in the scrolled area, each of n2 contiguous lines. The

number of columns in which the window is arranged for vertical split scrolling is defined by n3

and the offset between these columns by n4.

The scroll statement specifies that the data fields defined later within the window are to be

scrolled, thus allowing multiple records to be displayed within the window at once. Note that text

fields are never scrolled, and are therefore always displayed at the coded line and column

positions.

The number of records to be displayed is defined by variable n1. Normally, each record will take

up only one line within the display, but multi-line records can be specified by using the BY n2

clause. Thus, if the scrolled region is to contain eight records, each using two physical lines on
the screen, the following would be coded:

SCROLL 8 BY 2

The scrolled region would therefore occupy sixteen lines (8 x 2).

The Window Manager allows this scrolled region to be split vertically into several columns, and
this is achieved by the SPLIT clause. The number of columns into which the scrolled region is to
be split is specified by variable n3, and the vertical displacement between the two columns is

specified in characters by variable n4. For example, consider a scrolled region split into three

columns:

 AAAA AAAAAAAAAAAA GGGG GGGGGGGGGGGG MMMM MMMMMMMMMMMM
 BBBB BBBBBBBBBBBB HHHH HHHHHHHHHHHH NNNN NNNNNNNNNNNN
 CCCC CCCCCCCCCCCC IIII IIIIIIIIIIII OOOO OOOOOOOOOOOO

 DDDD DDDDDDDDDDDD JJJJ JJJJJJJJJJJJ PPPP PPPPPPPPPPPP
 EEEE EEEEEEEEEEEE KKKK KKKKKKKKKKKK QQQQ QQQQQQQQQQQQ
 FFFF FFFFFFFFFFFF LLLL LLLLLLLLLLLL RRRR RRRRRRRRRRRR

This scrolled region contains eighteen record display areas (areas AAAA to RRRR), each taking
up one line. The region has been split into three columns, and the offset between the columns
is twenty characters. This is coded:

SCROLL 18 BY 1 SPLIT 3 OFFSET 20

The BY 1 clause could be omitted, since this is the default.

The SCROLL statement applies to all the following data fields coded within the window, except
those with the NSC option - see Section 6.6.4.2. It is normal for a window to contain both
scrolled and non-scrolled fields, and these do not necessarily have to be coded in order. For
example, the window may have a few scrolled fields, followed by a few non-scrolled fields, and
ending again with scrolled fields.

6.6.2.6 The SBOX and LINE Statements

Column 1 Column 2 Column 3

Offset

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 89 of 238

All windows are displayed with a box around the outer extremities of the displayed text and data
items. The dimensions of the box are calculated by the Speedbase compiler so that the top and
bottom lines of the box are immediately above and below the first and last used display lines
respectively. The vertical lines of the box are normally displayed two characters before and after
the first and last used column respectively. Fields should therefore start at, or after, character
position three on the screen, and should not be placed higher than line two, or line three if a
screen header is also displayed.

6.6.2.6.1 The SBOX Statement

The SBOX statement causes the box to be drawn immediately to the left and right of the first

and last used column positions, thus creating a slightly narrower box than would normally be
produced. This allows data and text to be displayed from column position two as opposed to
column three. If used, the SBOX statement must be coded prior to any text or data item
definitions.

6.6.2.6.2 The LINE Statement

The LINE statement specifies horizontal lines which will be joined to the vertical lines of the

window's box. It is coded:

LINE l1 [l2 ... l8]

where l1 to l8 are up to eight line numbers at which lines are to be drawn.

6.6.2.8 The BASE AT Statement

The BASE AT statement specifies the window position offset. It is coded:

BASE AT line col

where line col is the line and column position of the top left-hand corner of the window (e.g.

coding BASE AT 9 20 places a window 8 lines down and 19 characters towards the right of the
screen).

6.6.2.9 The ENABLE Statement

The ENABLE statement is used to enable the <NXT> and <ABO> functions. Coding:

ENABLE ABO

has the effect of enabling the Abort function, which allows the operator to abort a chain of
windows. This function avoids the user having to key <BCK> several times in order to terminate
a series of windows.

Windows supporting MNT mode normally cause the operator to enter maintenance mode on
selection, before the next window is entered. Coding:

ENABLE NXT

allows the operator to select the current record using the <NXT> key while in display mode. The
window manager then automatically skips through all the fields on the record just as if the
operator had keyed <RET> in response to each field. This feature is useful when processing
master/servant windows, when maintenance is not necessarily carried out within the initiating
window.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 90 of 238

6.6.2.10 The DISABLE Statement

The DISABLE statement allows the <SKP>, <CLR> and <HME> options to be disabled. It is
coded:

DISABLE [SKP] [CLR] [HME]

The statement simply removes these function keys during processing of the window. This is
useful in simple windows such as menus, where functions such as <CLR> could cause
confusion.

6.6.2.11 The Auto-page Statements

The AUTOPGE and AUTOBPG statements cause a page or back-page operation to occur
when the window is initially entered, as if <PGE> or <BPG> had been keyed. These options are
useful, for example, in enquiry windows, where it is often convenient to display the first or last
page of records on entry. The options are mutually exclusive, and operate only when a clear
(i.e. empty) window is entered.

6.6.3 The Window Body
The window body contains details of the text and fields that are to be displayed and accepted
within the window, and may contain options that control its general layout. The format of the
window body is as follows:

LI CL Longname LI CL Name Pic Options...

(Detail Lines)

The window body may be introduced by a comment line which may be helpful in laying out the
source code. The compiler will ignore any line at the start of the window body that begins with
the characters LI. This is then followed by the window's detail lines which are described in the
following section.

6.6.4 Window Detail Lines
The detail lines define both the window's form (i.e. fixed text items with their boxes) and data
items (i.e. variables that are to be displayed and accepted). A detail line consists of one or more
text items, and/or one or more data-items. Text items specify fixed text which will be displayed
at a fixed position on the screen. Data-items specify variable data which may be accepted and
displayed on the screen in various positions.

6.6.4.1 Text Items

Text items are used to display fixed text on the screen at a given line and column position. The
general form of a text-item is as follows:

line col "text"

where line is the line number (counting the top line as 1) at which the text is to be displayed, col

is the column number at which the text is to be displayed, and text is the text to be displayed at

that position, as offset by the BASE AT statement. For example, coding:

10 20 "Customer #"

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 91 of 238

would cause the characters Customer # to be displayed on the screen at line 10, column 20.

Fixed text items are normally displayed on the screen when the frame is executed. The basic
screen form, composed of all the text items, boxes and lines of all the coded windows within the
frame is displayed in this way, providing the operator with an "empty" screen. Text items are
always displayed at the coded line and column positions, and are therefore unaffected by the
SCROLL verb.

Line and column numbers must both be unsigned positive integer literals. Line numbers may be
coded from 2 to 46 inclusive. Column numbers may be coded from 2 to 127 inclusive, so long
as the item being displayed, as offset by the BASE AT statement, would not cause column 131
to be exceeded.

6.6.4.2 Data Items

A data-item specifies a variable that is to be displayed and/or accepted from the screen. The
general form of a data item is:

line col name [options]

Where line col is the line and column number at which the item is to be displayed, as offset by

the BASE AT statement, name is the variable name of the item to be displayed and/or

accepted, and options consists of one or more option clauses which specify how the item

should be processed.

6.6.4.2.1 Line and Column Numbers

Line and Column Numbers must be unsigned positive integer literals. Line numbers may be
coded in the range of 2 to 46 inclusive. Column numbers may be coded in the range 2 to 127
inclusive, as long as the item displayed would not cause column 131 to be exceeded. It should
be noted that the line and column position coded will be modified at run-time by the operation of
the SCROLL verb, as documented earlier in this chapter, and offset by the BASE AT statement.

6.6.4.2.2 Variable Name

The Variable Name is a reference to an existing variable that has previously been declared

within the Data Division or by an ACCESS statement.

6.6.4.2.3 Field Options

Field Options may be coded following the picture clause in order to affect the way the field is
processed at run-time These are:

DIS Display only field, the field is only displayed
PRO Protected field, the field cannot be entered or amended
NOE No-edit field, the field may not be amended
NUL Null allowed (i.e. the field may be left blank)
TAB Stops the cursor at this field after a <SKIP>
CHK Perform duplicate record check after this field
UF1 Enable UF1 when this field is accepted
UF2 Enable UF2 when this field is accepted
UF3 Enable UF3 when this field is accepted
NSC The field is non-scrolled in an otherwise scrolled window
CNV Lower-case characters to be converted to upper-case
YN Yes/No validation to be performed on field input

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 92 of 238

TXT A text item specified in the form of a variable
RJF Right-justify field
FMT Specifies the display formatting to be applied to the field
HOT Specifies field auto-inputs without need to key <RET>.
TTL Display field using display attribute 5 (Titles).
ERR Display field using display attribute 8 (Error message).
A12 Display field using attribute 12.
A13 Display field using attribute 13.
A14 Display field using attribute 14.

These options are discussed below.

6.6.4.2.3.1 DIS Option

DIS (Display) is similar to a protected field in that the operator will not be able to modify it. The

display option is used, however, to indicate that the field contains valid data and should not be
initialised during ADD mode. If despite this, a default routine has been coded, then this will
nevertheless be called.

6.6.4.2.3.2 PRO Option

PRO (Protected) specifies that the field may not be modified by the operator under any

circumstances. During ADD mode, the field will be initialised to binary zeros, spaces or "0". If a
default routine has been coded, it will be called to initialise the field instead.

6.6.4.2.3.3 NOE Option

NOE (No Edit) prohibits the user from modifying the field in MNT and EDT modes, but allows

normal access to the field during ADD mode. It is used to protect fields that may not be changed
after the record has been written.

6.6.4.2.3.4 NUL Option

NUL (Null allowed) specifies that the field may be left blank, in the case of a character field, or

zero, in the case of a numeric field. In the case of dates, this option allows a null date, " / / ", to
be entered. If this option is not coded the window manager will re-input the field if any blank or
zero values are entered, or defaults accepted by the operator.

6.6.4.2.3.5 TAB Option

TAB causes the cursor to stop at the current field whenever the <SKP> key is used, and

therefore acts as a tab-stop. This allows fields to be arranged in blocks within the window,
allowing the operator to skip from one block to the next. If the TAB option is not used in the
window, then the <SKP> operation will automatically jump to the last field.

6.6.4.2.3.6 CHK Option

CHK causes a duplicate-record check to take place during processing of the associated field in

ADD and INS modes. This option is used to check that the record being created does not
already exist on the database. In effect, a duplicate key check takes place using the index key
entered so far. If this key is found and ENQ mode is enabled, the baseline message:

Record key already exists - Enquire?

is displayed. The operator may then enquire on the duplicate record. This option should be
coded after all primary index key fields have been entered. This option is particularly

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 93 of 238

recommended for maintenance programs, since it allows the operator a fast way of enquiring on
records without having to use the ENQ key to switch between modes.

6.6.4.2.3.7 UF1 Option

UF1 enables the use of the <UF1> key when the associated field is accepted. If coded, a

validation routine should be written within the routines section, which should examine system
variable $FUNC to check whether this key had been entered, and if so, take the appropriate
action.

6.6.4.2.3.8 UF2 Option

UF2 enables the use of the <UF2> key when the associated field is accepted.

6.6.4.2.3.9 UF3 Option

UF3 enables the use of the <UF3> key when the associated field is accepted.

6.6.4.2.3.10 NSC Option

NSC specifies that the field is not to be scrolled within a window coded using the SCROLL

clause. If the SCROLL clause has not been specified, all fields are automatically non-scrolled,
and there is therefore no point in coding this option. Option NSC is used to define those fields
that will be displayed in the non-scrolled portion of the window, as described in section 6.2.1.

6.6.4.2.3.11 CNV Option

CNV specifies that any lower-case characters input are to be converted to upper-case before

the field is validated, or any other processing is carried out.

6.6.4.2.3.12 YN Option

YN causes the field to be re-input unless it is Y or N.

6.6.4.2.3.13 TXT Option

TXT specifies that the field variable is to be displayed as text in the scrolled-text attribute unless

the TXT option is immediately followed by the NSC option, in which case it is displayed in the
non-scrolled-text attribute. This option is used where the text to be displayed varies under
program control.

6.6.4.2.3.14 RJF Option

RJF causes the field to be accepted, stored and displayed in right-justified form.

6.6.4.2.3.15 FMT Option

FMT "options" specifies the output formatting to be applied to the field. Table 6.6a lists the five

groups of options.

6.6.4.2.3.16 HOT Option

HOT Field entry terminates as if <RET> entered when last byte of the field is keyed. This saves

having to key <RET> for the field.

Option

Condition

Output Formatting

As input

As output

B Field = 0 Blank when zero 00.00

C Field < 0 Trailing CR -12.34 12.34CR

< Enclosed in () (12.34)

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 94 of 238

- Trailing - 12.34-

D Field > 0 Trailing DR +56.78 56.78DR

> Enclosed in () (56.78)

+ Trailing + 56.78+

, None Comma insertion 90123 90,123

$ None Leading dollar 45.67 $45.67

0 Zero fill 8.90 0008.90

* Asterisk fill 1.23 ***1.23

L Date only Long date DD/MM/YYYY DD/MM/YYYY

8 Date only Short date 8 byte input DDMMYYYY DD/MM/YYYY

6 Date only Short date 6 byte input DDMMYY DD/MM/YY

Table 6.6a - The Output Formatting Options

You may specify no more than one option from each group in any set of options. Examples of
invalid options would include:

BC<+,$
->+*
BCD,0*

Examples of valid sets of options and the resultant output formatting are as follows:

Options

Field as Input

Field as Output

BCD, -678.90 678.90CR

0.00

+1234.56 1,234.56DR

B<, +789.01 789.01

-7890.12 (7,890.12)

B-+$, +345.67 $345.67+

$890.12 $890.12-

-+0 +345.67 00345.67+

-8901.23 08901.23-

CD* +456.78 **456.78DR

-901.23 **901.23CR

Table 6.6b - Examples of Output Formatting

6.6.4.3 Data Item Processing

The processing applied to each data item depends on the mode the window is operating in at
the time, the field options in force, and the operation of the field level routines within the routines
section. The usual order of events is as follows:

1 The before-routine is executed to suppress the field

2 The field is initialised, to spaces or low-values, if it is being processed for the first time in

ADD or INS modes

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 95 of 238

3 The default routine is executed to allow a new value to be placed in the field

4 The field is displayed and accepted

5 The validation routine is executed

6 If the CHK option has been coded for the field, a duplicate key check takes place at this

time

The field options cause some steps to be omitted. The DIS option disables field initialisation,

step 2, and stops the field from being accepted in all modes other than ENQ. The PRO option

prevents the field from being accepted in all modes other than ENQ. The NOE option prevents

the field from being accepted in MNT and EDT modes. The CHK option causes step 6 to take

place. The UF1, UF2 and UF3 options enable the corresponding keys if the field is accepted.

Consider the effect the various modes have on the processing of data items:

ENQ starts an enquiry and data entry of index key fields

DSP displays existing records from the database

MNT causes modification of an existing record

DEL causes deletion of an existing record

ADD causes creation of a new record

INS causes creation and insertion of a new record

EDT causes creation of a new record by editing an existing one

In ENQ mode the before-routine is not called, since index key fields may not be suppressed at

run time. The current index fields are accepted irrespective of options NOE, DSP and PRO.

In DSP mode, fields within the record are display-only. The before-routine is called to suppress

display of certain fields, the validation and default routines being ignored. If it is necessary to
default certain fields prior to display, this should be done using a fetch routine in the routines
section. The field options have no effect on processing during DSP mode.

In MNT mode, fields coded with NOE, DSP and PRO options are not accepted. It should be

noted, however, that the default routine is called. This feature may be used to re-calculate a
protected field, such as a line total, during the maintenance process. If a field is neither
accepted nor re-defaulted using its default routine, then it will not be redisplayed during

processing.

In DEL mode, no field-level processing takes place.

In ADD and INS modes, fields coded with DIS and PRO options are not accepted. Fields coded

with the DIS option are also not cleared at step four. If the CHK option has been coded, a
duplicate key check will take place at step six.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 96 of 238

In EDT mode, fields coded with DIS, PRO and NOE options are not accepted.

6.6.5 The Routines Section
The optional Routines Section is coded immediately following the window body. It is introduced
by the header:

ROUTINES SECTION

The routines section consists of a number of routines which are called during the various stages
of window processing. Each routine is identified by a special label which determines when
during the processing cycle it will be executed by the window manager.

Each routine may contain any of the procedural instructions described in Chapter 7, and on
completion of processing must return control to the window manager by executing an EXIT
instruction. The various routines that may be coded are described in detail in section 6.5.

6.7 Programming Notes

6.7.1 Insert Mode Utilisation
INS mode is provided for use with auto-sequenced indexes, described in Appendix F. It is of
limited use with ordinary indexed records since the position at which a record is inserted within
a set of records is always determined by the index order. If INS mode is enabled within a
window using a normally-indexed record structure, the operator will still be able physically to
insert a record within the window, but on redisplay this record will appear in its normal index
order.

6.7.2 Memory Considerations
The code generated by the window construct is very compact, and the only major consideration
in program design lies in the use of pop-up windows. When pop-ups are activated, the screen
image under the window is saved for later re-display. The Speedbase compiler makes space
within the frame memory area for this purpose, which therefore reduces the space left for other
tasks.

The memory area set aside equals three times the number of characters occupied by the pop-
up, including it's box. This will be of some concern when very large pop-ups are used. For
example, a pop-up measuring 20 lines by 60 characters will reduce the remaining available
memory area by 3600 bytes (20 x 60 x 3).

When memory space is tight, it is therefore a good idea to keep the dimensions of pop-ups as
small as possible. This will also reduce the time taken physically to display and remove the pop-
up from the screen.

When very large record types are used, the undelete (UDL) option may also cause memory
problems. This option causes the Speedbase compiler to create an area into which the last
deleted record is copied, which will therefore reduce available memory by the size of the target
record type.

6.8 Example Order Entry Program

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 97 of 238

Appendix C describes an example order entry program which makes use of the window facilities
described in this chapter. This sample program forms part of the demonstration program
S.DEMO which is distributed with the Speedbase Presentation Manager and the database
DBDEMON.

New users of Speedbase are encouraged to review this sample program, referring back to this
chapter in order to gain an understanding of the principles of window operation and other
features of the Speedbase Presentation Manager.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 98 of 238

7. Procedural Statements

This chapter describes the procedural statements that may be coded in a Speedbase
Development Language frame. The chapter has been organised into three main sections.
Section 7.1 explains where procedural instructions may be coded, and explains the use of
sections, labels and called entry-points. Procedural statements are then explained in detail
within their various classifications in the subsequent sections.

7.1 Structure
The statements described in this chapter can be coded in four divisions within each frame.
These are:

WINDOW DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION

Within the window division, procedural statements are introduced by the routines section
statement. Elsewhere within the frame, procedural statements are introduced by the procedure,
load and unload division statements. If the window division is to be used it must be coded first.
The procedure, load and unload divisions may be coded in any order.

Each of the divisions may contain any of the procedure statements supported by the
Speedbase compiler, described later in this chapter. The divisions are simply regarded as entry-
points which are called as execution of the frame proceeds. This is explained in Section 3.4.
Subroutines coded in one division may be performed, called or jumped-to from code in any
other division, and this allows common routines to be shared as required.

7.1.1 Sections and Paragraphs
A section is introduced by the statement:

SECTION section-name

where section-name is a symbol as defined in Section 3.2.2.

A paragraph name is established by coding any valid symbol immediately followed by a full stop.
For example:

SYMBOL.

Paragraph names may either be coded on their own line or may precede any procedure
statement. Only one paragraph name may be coded on a line. Once established, paragraph and
section names may be used as the target of the PERFORM and GOTO statements.

Paragraph names are also used to identify routines within the routines section. These special
paragraph names are prefixed by a single character and a hyphen (i.e. V- to indicate when,
during window processing, they should be executed). It should be noted that these special
paragraph names cannot be performed or jumped to. If it is necessary to call such a routine, a

further section name or paragraph name should be coded.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 99 of 238

7.1.2 Parameter-Passing Subroutine Calls
Parameters may be passed to subroutines by coding an ENTRY statement as the first
statement of the routine:

ENTRY entry-name [USING A B ...]

where entry-name is a symbol as specified in Section 3.2.2. Each operand A, B, etc. in the

optional USING clause above must be a BASED item. These items must be defined as either
level 01 or level 77 within the data division. Items at an intermediate level (i.e. levels 02-49)
cannot be used as parameters within this statement.

Up to seven operands may be coded for an entry statement. These operands are passed to the
routine by means of the CALL statement as follows:

CALL entry-name [USING A B ...]

The number of parameters coded in the call must be the same as the number of parameters
expected by the corresponding ENTRY statement.

7.2 Screen Management Statements
This section describes statements used to accept and display information on the screen. These
statements are:

DISPLAY Display a field or complete window
ERROR Display an error message
ACCEPT Accept a field
ATTRIBUTE Set current display attributes
CLEAR Clear a window or the entire screen
ENTER Execute a window

7.2.1 The DISPLAY Statement
Three forms of the DISPLAY statement are available:

DISPLAY name [AT line col | SAMELINE] [FMT "options"]

DISPLAY name [LINE line COL col | SAMELINE] [FMT "options"]

DISPLAY WINDOW window-id [TEXT]

where name is a text literal or the name of the variable to be displayed, line and col are the line

and column position on the screen at which the variable is to be displayed, FMT "options"

defines the output formatting for the field and window-id is as defined in the WINDOW
statement.

The first two forms of the statement are used to display individual variables on the screen. The
last form is used to display complete windows. The following discussion applies to the first two
forms of the display statement.

7.2.1.1 Displaying Fields

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 100 of 238

The first two forms of the display statement cause the contents of the variable name to be

displayed at the coded line and column positions. If no line or column position is coded, the
display operation takes place at the baseline (i.e. the last line of the screen). The display
operation will normally take place at the start of the baseline (i.e. at column 1) unless the
SAMELINE option is coded. If the SAMELINE option is coded the display takes place after any
immediately preceding baseline display or accept.

If the display statement is a baseline display (i.e. no line or column numbers are coded) the
display takes place using display attribute 7, otherwise it takes place using the current display
attribute in force, as documented in Section 7.2.4.

FMT "options" is used to format the field as displayed. Table 7.2a lists the five groups of

options.

Option

Condition

Output Formatting

As input

As output

B field = 0 Blank when zero 00.00

C field < 0 Trailing CR -12.34 12.34CR

< Enclosed in () (12.34)

- Trailing - 12.34-

D field > 0 Trailing DR +56.78 56.78DR

> Enclosed in () (56.78)

+ Trailing + 56.78+

, None Comma insertion 90123 90,123

$ None Leading dollar 45.67 $45.67

0 Zero fill 8.90 0008.90

* Asterisk fill 1.23 ***1.23

Table 7.2a - The Output Formatting Options

You may specify no more than one option from each group in any set of options. Examples of
invalid options would include:

BC<+,$
->+*
BCD,0*

Examples of valid sets of options and the resultant output formatting are as follows:

Options

Field as Input

Field as Displayed

BCD, -678.90 678.90CR

0.00

+1234.56 1,234.56DR

B<, +789.01 789.01

-7890.12 (7,890.12)

B-+$, +345.67 $345.67+

$890.12 $890.12-

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 101 of 238

-+0 +345.67 00345.67+

-8901.23 08901.23-

CD* +456.78 **456.78DR

-901.23 **901.23CR

Table 7.2b - Examples of Output Formatting

7.2.1.2 Displaying Windows

The third form of the display statement is used either to display the screen form (i.e. fixed text)
and/or variable data contained within a window. When the TEXT keyword is coded, only the
fixed text will be displayed, and the window will become active. When the TEXT keyword is
omitted, only the variable data within the window will normally be displayed. However, if the
window has not yet been activated, the text portion of the window will first be displayed, thus
activating it.

DISPLAY WINDOW window-id TEXT statement is often used to activate a number of windows

at the start of a frame so that the complete, but so far empty screen is displayed prior to
processing. When this is not done, windows are activated as required, for example when

executed using the ENTER statement.

DISPLAY WINDOW window-id statement is used to display the data fields within a window.

The various fields defined within the window must be initialised prior to the display operation.
The most frequent use of the display statement without the TEXT option is to initialise a window
prior to entering it in EDT mode, explained in Chapter 6, or to refresh a record that is currently
displayed.

Note that this statement provides no control over scrolled windows. If it is used to display data
into a scrolled window, this data will be displayed into whichever Record Display Area happens
to be current. It is therefore not possible to use this statement to display successive RDAs
within a window.

While this statement can be used to display data within a window associated with a target
record type, care must be taken to ensure that the I/O channel of the target record type
matches with the data being displayed. The simplest way to ensure this is not to use the

statement in such windows for any purpose other than to refresh the currently displayed record.

The display statement may be used within the routines section, and thus cause re-entrant calls
on the window manager. If however any attempt is made to display a window that is currently
executing, such as when attempting to display a window from its own routines section, the
frame will be aborted with a stop code.

7.2.2 The ERROR Statement
The ERROR statement is used to display an error. It is coded:

ERROR message

where message is a text literal or variable error message. When executed, the ERROR

statement causes the console bell to sound, and the message is displayed on the baseline. This

message is always displayed using display attribute 8.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 102 of 238

7.2.3 The ACCEPT Statement
The ACCEPT statement is coded as follows:

ACCEPT name [AT line col | LINE line COL col | NEWLINE]

[keys] [CNV] [NUL] [YN] [RJF] [FMT "options"]

where name is the variable to be accepted, line and col are the screen position at which it is to

be accepted, keys is a list of function keys enabled for the accept operation, CNV, NUL, YN and

RJF are input options and FMT "options" specifies the formatting to be used when the accepted

field is re-displayed. Where line or col are variables, these must be 9(4) COMP. If no line or

column position is coded, the accept operates at the baseline immediately after any previous
baseline displays, unless the NEWLINE clause is coded, in which case the baseline is cleared
before the accept operation takes place.

If CNV is coded, lower-case characters are converted to upper-case before re-display. Unless
NUL is coded a null reply causes the field to be re-input. If YN is coded the field is re-input
unless the reply is Y or N. If RJF is coded, the field is displayed and stored in right justified form.
The accept operation first displays the contents of the variable name at the requested position.
The accept process may consist of the operator modifying or accepting the displayed default, or
keying an entirely new field value. The accept is normally completed by keying <RET>, after
which the new field value is returned in name. If FMT "options" has been coded the field is

formatted according to the set of options specified before being re-displayed, see Table 7.2a.
Function keys other than <RET> can be enabled by coding a list of keys, see Table 7.2c. Of the

function keys, <RET> is always enabled in order to allow the completion of the accept
operation. All the other functions are enabled by coding the appropriate mnemonic. For
example, coding:

ACCEPT field AT 02 20 NXT BCK

causes the field to be accepted at line 2, column 20, and allows the use of the <NXT> and

<BCK> keys to return an exception.

7.2.3.1 Successful Completion

Successful completion of the accept operation takes place when the operator enters, accepts or
modifies the displayed default value and keys <RET>.

7.2.3.2 Exception Conditions

An Exception Condition is returned if the operator keys any of the enabled function keys. When
any function keys are enabled, an ON EXCEPTION statement must be coded immediately
following the accept statement. When the accept statement returns an exception, the system
variable $FUNC will contain a value between 1 and 19, see Table 7.2c. If more than one
function key is enabled, $FUNC should be examined to determine which was used.

If a function in the range 10 (Abort) to 19 (Move) is keyed, any input so far keyed by the
operator is always discarded and the contents of the variable name is unchanged. The

accepted variable can therefore only change if the accept operation is terminated with a function
in the range 0 (Return) to 9 (Skip).

Mnemonic

Normal Usage

$FUNC

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 103 of 238

RET Accept current field, select record 0

UF1 User Function 1 1

UF2 User Function 2 2

UF3 User Function 3 3

NXT Go to next window 4

PGE Forward-page window 5

BPG Back-page window 6

UP Back one record (Uparrow) 7

DWN Forward one record (Downarrow) 8

SKP Skip fields to next tab-stop 9

ABO Abort program 10

BCK Terminate window (Back to prior) 11

CLR Clear the window 12

DTE Delete current record 13

HME Cursor home 14

BFL Back one field 15

ENQ Enquiry mode - select index 16

INS Insert record 17

UDL Undelete record 18

MOV Move record 19

Table 7.2c - Function Key Mnemonics

7.2.3.1 Programming Notes

The accept operation makes use of a number of additional function keys which are used during
field editing, such as character insertion and deletion. In addition, the user may use the <HLP>
key during the accept operation, and this causes two types of help to be displayed.

The first help window contains a menu of the currently enabled functions, listed in the same
order as in the accept statement. It is therefore useful to enable function keys in the order that
places the most important functions first in this help menu.

The second help window appears if the users keys <HLP> again. This time the help message
displayed is the one coded prior to the accept statement. When designing the frame, it is
therefore important to pay attention to its layout, so that sensible help messages are displayed
at each accept operation.

7.2.4 The ATTRIBUTE Statement
The ATTRIBUTE statement is used to select the current display attributes for use in field
displays and accepts. It is coded:

ATTRIBUTE n

where n is a numeric literal or 9(4) COMP attribute type number. The attributes used in the

display of fields and text items are those set up by the operator with the Speedbase
customisation utility and listed in Table 7.2d.

Type

Description

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 104 of 238

1 Scrolled data fields in the current record

2 Scrolled data fields in other records (de-emphasised)

3 Text items within the scrolled area (emphasised)

4 Text items outside the scrolled area (de-emphasised)

5 Title line at top of screen (line 1)

6 Help text and function key menu

7 Base line messages

8 Error messages

9 Lines and boxes

10 Non-scrolled data fields

16 Currently accepted field

17 Screen background colour

18 Window background colour

Table 7.2d - Attribute Types

Table 7.2d describes the types of fields that may be displayed, and their associated type
numbers. Using the Speedbase customisation utility, different display attributes are allocated to
each field type. For example, field type 1, which is used to display scrolled fields within the
current record, might be assigned the attributes bright blue on black. Therefore, if the statement
ATTRIBUTE 1 is coded, the following fields are displayed bright blue on black. When an accept
takes place the field is always re-displayed on completion using the current attributes set up in
the previous attribute statement.

Thus the field types shown above represent a customised set of video facilities, which are to be
used whenever fields of that type are displayed. The video facilities for a given field type are
referred to as an attribute set which is identified using the associated field type or attribute

number.

When a display takes place on the baseline (i.e. when no line or column number is coded)
attribute 7 is always used. If a line and column are coded, the display takes place using the
current attribute. Displays using line and column positions are referred to as formatted

displays in the rest of this section.

When a frame is first entered, the current attribute is set to attribute 10, the attribute normally
used to display non-scrolled data-fields. If no other action is taken, all formatted displays in the
frame take place using this attribute. It is possible, however, to change the current attribute
using the ATTRIBUTE statement. For example, executing the statement:

ATTRIBUTE 1

changes the current attribute to attribute 1, and causes all further formatted displays to be
performed using this attribute.

Any of the attributes listed in Table 7.2d may be selected using the ATTRIBUTE statement, with
the exception of attribute 16. This attribute is used by the accept operation in order to highlight
the currently accepted field. It is important to note that the current attribute only controls the
attribute in which a field will be re-displayed after an accept operation. During the accept

operation the field will always be shown in attribute 16.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 105 of 238

Note that setting the default attribute has no effect on the operation of the window manager
which always "knows" what type of fields it is displaying, and therefore automatically selects the
appropriate attribute.

7.2.5 The CLEAR Statement
The CLEAR statement is used to remove data from a particular window, to completely remove a
window, or to completely clear the screen. It is coded:

CLEAR [WINDOW window-id [DATA]]

where window-id is the ID assigned by the window statement.

If the CLEAR statement is coded without a window-id, the entire screen is cleared, thus de-
activating any currently displayed windows. If the screen contains a screen header, this will be
re-displayed as part of the clear operation. Otherwise, the screen is entirely cleared of all data
and text.

When the CLEAR statement is coded with a window-id, the specified window is removed from
the screen. If the window is a POP-UP, the screen-image under the window at the time it was
activated is re-displayed. Otherwise, the area under the window is cleared back to screen
background attribute 18.

When CLEAR window-id DATA is coded, only the data items displayed within the specified

window are cleared. After this instruction is executed only the fixed text portion of the window is
displayed.

7.2.5.1 Programming Note

A CLEAR statement may be executed in the routines section, causing a re-entrant call on the
window manager. If an attempt is made to clear a window that is currently executing, the frame
will be terminated with a stop code. This error is most commonly made when using the CLEAR
statement without a window-id, since this causes all windows to be cleared.

7.2.6 The ENTER Statement
The ENTER statement causes a window to be executed. It is coded:

ENTER WINDOW window-id [line:col]

where window-id is the ID assigned by the window statement. This normally allows the operator

to add, select, maintain, or delete one or more records stored on a database. The functions
actually available to the operator will depend on the options coded for the window. These
options are described in detail in Chapter 6.

The optional line and col clause is used to define a new position on the screen for the window,

and thus allows the window to be dynamically positioned. The variables define the top left-hand
corner of the window, and may be coded as constants or as 9(4) comp variables. If either line or
column number is zero, then the window will revert to its normal position.

7.2.6.1 Successful Completion

Depending on the options specified in the window construct, one or more records may have
been processed, and the window will have been successfully completed. Control will be

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 106 of 238

returned on successful completion only when this is permitted by the window's sequence
statement. This statement is described in section 6.3.4.

7.2.6.2 Exception Conditions

Unsuccessful Completion occurs when the window is aborted by the user keying <ABO> or
<BCK> or by the window's process routine returning any exception. When the <ABO> function
is keyed, or any exception other than 1 is returned by the process routine, control is immediately
returned to the statement following the ENTER instruction. Otherwise the window specified in
the sequence statement, if any, is entered next.

These conditions can be differentiated by testing the system variable $$COND. If $$COND=1,
<BCK> was keyed, if $$COND=2, <ABO> was keyed. If an exception is passed back by the
window's process routine, this exception number will also be passed back in $$COND. These
exception conditions must be trapped by coding an ON EXCEPTION statement immediately
following the ENTER verb.

7.3 Report Printing Statements

7.3.1 The PRINT Verb
The PRINT verb is used to print a PF construct. It is coded:

PRINT pf [NEWPAGE]

where pf is a record ID defined by a PF statement in the data division. Processing of the PRINT

verb proceeds as follows:

If the verb is being used for the first time within the frame, a print file is opened. This process
automatically causes any headers defined by the PF construct to be printed.

If the printer's current line position is before the start-line number coded for the PF, an
appropriate paper advance takes place. If printing the PF would cause its end-line number to be
exceeded, or the NEWPAGE option has been coded, a page advance will take place. This
process involves printing any trailer PF constructs, followed by a page throw, which is in turn
followed by the printing of any header PFs.

The print lines are then assembled as specified by the PF construct. This causes all text and
data-items to be moved to the print lines, which will include conversions of computational fields
to display format. If any ADD options were coded, these are also processed at this time. The
assembled print lines are then output to the printer, after which they are cleared with spaces.

The PRINT statement can fail if an overflow condition takes place. This can occur when
executing an ADD option, or when converting computational numbers to display format. In this
event the program will be terminated with Program Check 11 - Overflow. This condition cannot
be trapped within the application program. It is therefore essential that output fields are made
sufficiently large to accommodate any printed variables.

 7.3.2 The MOUNT Verb
The MOUNT verb is used to load non-standard stationery on the printer. It is coded:

MOUNT description LENGTH n USING pf

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 107 of 238

where description is that of the form to be mounted, n is the length of the form in print lines, and

pf is the record-id which is to be used to produce a test alignment pattern.

The MOUNT verb should be executed before the first PRINT operation using the desired form
takes place. The MOUNT verb causes a print file to be opened, and establishes a new form
length. The output device specified may be a real printer or a print spooler.

In either case, the output from the program will eventually be printed. When printed, the
operator is prompted as follows:

UNIT nnn description

where nnn is the unit number assigned to the physical printer on which the output is eventually

printed, and description is as coded in the MOUNT verb. Once the operator has indicated that

the appropriate forms are mounted, the alignment PF indicated by the MOUNT statement will be
printed. This is then followed by the prompt:

UNIT nnn IS ALIGNMENT OK?

If the operator confirms this prompt, the mount statement will complete. Otherwise, the
alignment pattern will be repeated, until the operator indicates correct alignment.

The rest of the report is then produced as normal. Stationery may again be changed by
executing a further MOUNT verb. When printing of the report is complete the operator is
automatically requested to replace normal stationery by the prompt:

UNIT nnn REPLACE STANDARD STATIONERY

The MOUNT verb can fail if the print unit is a real printer and the operator indicates inability to
mount the required form. This exception condition can be trapped by coding an ON
EXCEPTION statement immediately following the MOUNT verb.

7.3.3 Report Printing in Dependent Frames
As discussed earlier, the printer will be closed automatically on frame termination. Note,
however, that the printer is always closed by the frame that opened it (i.e. if the printer is
opened by the root frame, then it will be closed when the root frame terminates). If opened by a
dependent frame, then it will be closed when that dependent frame terminates.

7.4 Database Access Statements
This section describes statements used to access the database:

WRITE Adds a record to the database
REWRITE Modifies an existing record
DELETE Logically remove a record from the database
FETCH/READ Randomly retrieve record via any index
FETCH/READ NEXT Retrieve next record sequentially via index
FETCH/READ PRIOR Retrieve prior record sequentially via index
FETCH/READ FIRST Retrieve first of group of records via index
FETCH/READ LAST Retrieve last of a group of records

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 108 of 238

GET Relative (direct) record retrieval
UNLOCK Relinquish record lock

7.4.1 The WRITE Verb
The WRITE verb causes a single record to be added to the database:

WRITE rt [LOCK]

where rt is the name of record type defined in an ACCESS statement. The statement causes

the record stored in area rt to be added to the database. It changes the current record position

so that the next FETCH NEXT/PRIOR instruction will retrieve the record immediately following
or preceding the written record.

When rt is a servant record to one or more master records, these records must previously have

been retrieved and must be locked when the WRITE instruction is executed.

If the LOCK clause is coded the record will be exclusively locked following successful
completion. If the LOCK clause is omitted, the record will be unlocked following this operation.

7.4.1.1 Successful Completion

The system part of the data record stored in area rt will have been zeroed, and the new record

added to the database. Indexes and linkages to any master records will have been established,
and any GVA fields residing on the target record's masters will have been updated. The
updates of these master records take place within the corresponding data record area within the
application program, and therefore causes these GVA fields to be "refreshed". The lock status
of these master records remains unchanged following successful completion.

7.4.1.2 Exception Conditions

If no free data records exist at the time the call is performed, an exception code will be returned.
If writing the record would lead to a duplicate primary index key, an exception code will be
returned. If the required master records are not locked at the time of the instruction, the frame is
terminated with a stop code. If the operation causes the database to exhaust its free index block
pool, the frame is terminated with a stop code. If any of the indexes to be created begins with a
HIGH-VALUES byte (i.e. #FF) the frame is terminated with a stop code.

7.4.2 The REWRITE Verb
The REWRITE verb allows a previously retrieved and exclusively locked record to be re-written
to the database:

REWRITE rt [LOCK]

where rt is the name of record type defined in an ACCESS statement. In order to REWRITE a

data record, it must previously have been retrieved, and must be exclusively locked at the time
the instruction is executed. The statement is used to update a record, and causes the record
stored in area rt to be re-written to the database. If the LOCK clause is coded, the record will be

exclusively locked, following successful completion, or unlocked following unsuccessful
completion of the re-write. The nature of the update that takes place is dependent on the fields
on the data record that were modified:

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 109 of 238

If any fields comprising secondary index keys were modified, the existing index entries
referencing the data record are deleted, and new index entries established. The primary index
key may not be modified by this instruction.

If any fields comprising master access keys were modified, the record is unlinked from the
previously existing master records, and linked to the new masters. These new master records
must be locked or protected at the time the verb is executed.

If any GVF field has been modified, the corresponding master record GVA fields will be similarly
amended. This process will also occur if any master access key has been changed. This
process takes place within each master record data record area as discussed in the previous
section.

The REWRITE instruction only re-writes the user-data part of the record. Modification of GVA
fields residing on the re-written record will therefore have no effect.

7.4.2.1 Successful Completion

The user part of the data record stored in area rt will have been re-written to the database.
Indexes and linkages to any master records will have been amended as necessary, and any
GVF field changes reflected in their target GVAs. The lock status of any master records
remains unaffected following successful completion, whereas the target record will be unlocked
unless the LOCK clause has been specified.

7.4.2.2 Exception Conditions

If an attempt has been made to modify the primary index key of the record, the frame will be
terminated with a stop code. If the record to be re-written is not locked, the frame will be
terminated with a stop code. If any new master records are not locked/protected at the time of
the instruction, the frame will be terminated with a stop code (some later versions of Speedbase
will generate an exception under these conditions). If index modification causes the database to
exhaust its free index block pool, the frame will be terminated with a stop code. If any of the
indexes to be created begin with a HIGH-VALUES byte (i.e. #FF) the frame will be terminated
with a stop code.

7.4.3 The DELETE Verb
The DELETE verb logically removes a previously retrieved and locked record from the
database:

DELETE rt

where rt is the name of record type defined in an ACCESS statement. In order to DELETE a

data record, it must previously have been retrieved, and must be exclusively locked at the time
the instruction is executed. The record to be deleted may not have an active servant group (i.e.
it may not act as a master to any servant records).

7.4.3.1 Successful Completion

Deletion of a record causes all index entries referencing it to be removed, following which the
record is unlinked from any associated master records. This process includes removal of GVF
values from their corresponding GVA fields. The statement causes the data record to be
returned to a free list of data record "slots". These free slots may then subsequently be re-used
by the WRITE instruction.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 110 of 238

7.4.3.2 Exception Conditions

If the record has an active servant record group, an exception condition will be returned, and no
action will have taken place. If the record is not locked when the instruction is executed, the
frame will be terminated with a stop code.

7.4.4 The READ and FETCH Verbs
The READ and FETCH verbs both retrieve data records via a specified index:

READ | FETCH [option] idx-name [KEY key-value | idx-name2] [lock-option]

where option is one of FIRST, NEXT, LAST or PRIOR. The index via which retrieval is to take

place is determined by idx-name. Since index names are always unique, this also defines the

target record type to be retrieved. An optional index key-value may be coded following the KEY

clause. This specifies the required key value, or range of key-values to be returned by the verb.
Alternatively, the KEY clause may include an index name, idx-name2, in which case the record

is retrieved via index idx-name according to the key value of the last record accessed in the I/O

channel specified by idx-name2. The optional lock-option is one of NOLOCK or PROTECT, and

may also include the optional RETRY clause.

The FETCH verb always retrieves the target record only, whereas the READ verb will retrieve
the target record with all master records for which an I/O channel has been established. The
master records so retrieved are always returned unlocked. In all other respects these verbs are
identical. The following discussions therefore apply equally to the READ and FETCH verbs.

The FETCH instruction, without an option, is used to retrieve a record with a particular index
key. The required index key may be explicitly coded using the KEY clause, or may be placed
into the appropriate fields within the data record. If the requested key is found, the record is
retrieved. Otherwise an exception is returned and no further processing takes place.

The FETCH FIRST instruction retrieves the first record in the sequence of the requested index.
When the KEY clause is coded, the first record equal to or greater than the requested key is
returned. The retrieved record key is checked and an exception condition generated if this does
not match the requested key value. If the KEY clause is not coded, the first record within the
specified index is retrieved.

The FETCH LAST instruction retrieves the last record in the sequence of the requested index.
When the KEY clause is coded, the last record equal or less than the requested key is returned.
The verb then checks the retrieved record key, generating an exception condition if this does
not match the requested key value. If the KEY clause is not coded, the last record within the
specified index is retrieved.

The FETCH NEXT instruction retrieves the next record in the sequence of the specified index. It
is therefore used to retrieve records sequentially by ascending key value. If the KEY clause is
coded the retrieved record key is checked. If this key does not match the requested key, an
exception condition is returned.

The FETCH PRIOR instruction retrieves the preceding record in the sequence of the specified
index. It is used to retrieve records sequentially by descending index key value. If the KEY
clause is coded the retrieved record key is checked. If this key does not match the requested
key, an exception condition is returned.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 111 of 238

The FETCH, FETCH FIRST and FETCH LAST instructions are therefore used to retrieve
randomly a record via a selected index. The FETCH NEXT and FETCH prior instructions may
then be used retrieve further records sequentially in the order of this index.

7.4.4.1 The Key Clause

The optional KEY clause may be used to specify a key value required from the operation. If the
KEY clause is omitted from the FETCH verb, the required key will be assembled from the
appropriate fields within the data record. No other operations (i.e. FETCH FIRST, LAST, NEXT
and PRIOR) require a key value. If coded, however, the supplied key is matched against the
returned key and if these differ an exception condition is returned.

When the KEY clause is used, the length of the specified key is significant if shorter than the
actual key length of the index. If a short key is used in a FETCH instruction, it will be extended
to the right with binary zeros, and the retrieval will then either succeed or fail on the basis of this
extended key. In all other instructions, the key length as passed is used to determine if a
corresponding record key has been found.

7.4.4.2 The NOLOCK, PROTECT and RETRY Clauses

These clauses are used to specify whether a record lock is required when the record is
retrieved, and if so the action to take if the required record is already locked. These clauses are
described in detail in section 2.7.

7.4.4.3 The FETCH Statement

The FETCH statement is used to retrieve a record with a specific index key value. This key
value may either be explicitly coded using the KEY clause, or may be placed into the
appropriate field within the data record area prior to execution. If a short key value is passed, it
will be extended to the right with binary zeros prior to the lookup.

7.4.4.3.1 Successful Completion

If an index key value is found on the database corresponding to the requested key, the data
record is read into its record area. This changes the current record position to the record so
retrieved. In the event that more than one record exists with the required key value, the first
record in sequence will be returned. The sequence of records containing duplicate keys is
determined by their relative position (i.e. in RRN order).

If NOLOCK was coded, the record will be unlocked. If PROTECT was coded, the record will be
delete protected. Otherwise the record will be exclusively locked.

7.4.4.3.2 Exception Conditions

If the requested index key value is not found, an exception condition is returned, and no
processing takes place. In this event, the data record area as established prior to the instruction
remains unchanged. If the target record was locked, and the NOLOCK option was not coded, a
locked record exception is returned and the data is returned unlocked.

7.4.4.4 The FETCH FIRST and FETCH LAST Verbs

The FETCH FIRST/LAST verbs perform a random lookup to retrieve the first/last record in the
sequence of the specified index. If no KEY clause is coded, the first/last record within the
specified index is returned. If the KEY clause is coded, the first/last record with a corresponding
key value is returned. The FETCH FIRST statement returns the first record with a key value not

less than the requested key. The FETCH LAST statement returns the last record with a key

value not greater than the requested key.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 112 of 238

If the KEY clause is coded, the index key of the retrieved record is matched against the
requested key. This match takes place on the basis of the actual length of the key specified in
the KEY clause. If the retrieved key differs from the requested key an exception is returned.
Note that the operation will have completed successfully in all other respects.

7.4.4.4.1 Successful Completion

A data record is retrieved as requested. If NOLOCK was coded the record is unlocked. If
PROTECT is coded the record is delete protected. Otherwise the record is exclusively locked. If
the KEY clause is coded, a record corresponding to the requested key value has been
retrieved. The operation will have changed the current record position.

7.4.4.4.2 Exception Conditions

If the target record was locked, and no NOLOCK option is coded, a locked record exception is
returned and the data record is returned unlocked. If the retrieved record did not correspond to
the requested key value specified in the optional KEY clause, a record key not found exception
is returned. Note that the above exceptions can occur simultaneously.

The FETCH FIRST/LAST verbs can experience an end/start-of-file exception condition, when
no equal-or-greater/equal-or-smaller key exists. The data record area will be filled with LOW-
VALUES, #00s, in a start-of-file condition and HIGH-VALUES, #FFs, in an end-of-file condition.

7.4.4.5 The FETCH NEXT and FETCH PRIOR Verbs

These verbs allow sequential retrieval of records in the sequence of the specified index. The
FETCH NEXT instruction retrieves records in ascending index key order, whereas the FETCH
PRIOR instruction retrieves records in descending index key order.

If the KEY clause is coded, the index key of the retrieved record is matched against the
requested key. This match takes place on the basis of the actual length of the key specified in
the KEY clause. If the retrieved key differs from the requested key an exception will be
returned. Note that prior to version 8.1 the data record is returned locked (if so requested)
following a key mismatch. In V8.1 and later the next/ prior record is always returned unlocked,
irrespective of the requested lock.

7.4.4.5.1 Successful Completion

The next/preceding record in sequence will have been retrieved as requested. If NOLOCK is
coded the record is unlocked. If PROTECT is coded it is delete protected. Otherwise the record
is exclusively locked. If the KEY clause is coded, a record corresponding to the requested key
value is retrieved. The operation will have changed the current record position.

7.4.4.5.2 Exception Conditions

If the target record was locked, and no NOLOCK option is coded, a locked record exception is
returned and the data record is returned unlocked. If the retrieved record did not correspond to
the requested key value specified in the optional KEY clause, a record key not found exception
is returned. Note that the above exceptions can occur simultaneously.

The FETCH NEXT/PRIOR verbs can experience an end/start-of-file exception condition when
an attempt is made to read past the last/first record. The data record area will be filled with
LOW-VALUES, #00s, in a start-of-file condition, and HIGH-VALUES, #FFs, in an end-of-file
condition.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 113 of 238

7.4.4.6 Using the FETCH Verb to Retrieve Servant Groups

The short key facility makes retrieval of servant record groups very simple. This is perhaps best
illustrated by an example:

SECTION U01-PROCESS-ONE-CUST
 *

FETCH FIRST INCUS KEY CUCUSN NOLOCK * Get 1st invoice
 ON EXCEPTION EXIT WITH 1 * None at all!
 DO * Process each invoice

 Process each invoice here ...

 FETCH NEXT INCUS KEY CUCUSN NOLOCK * Get next invoice
 ON EXCEPTION FINISH * Key break exception
 ENDDO * All invoices read
 EXIT * So just exit.

The FETCH FIRST statement retrieves the first invoice record. A short key has been passed
which contains only the customer number, whereas the index is composed of two fields (i.e. the
customer number and invoice number). The statement returns an exception condition if no
invoice is found for the customer. Otherwise, the first invoice record for the customer will be
returned.

A DO loop is then established in which the invoice is processed, which is followed by a FETCH
NEXT to retrieve the next invoice for the customer. The KEY clause causes Speedbase to test
the retrieved record. If the retrieved key does not match the supplied customer number, an
exception is generated. This is trapped on the next line, causing a transfer out of the DO loop. A
normal EXIT then takes place.

Similar principles can also be used to retrieve records in descending order. To achieve this, a
FETCH LAST instruction would have been coded, followed by an iteration of FETCH PRIORs.

7.4.5 The GET Verb
The GET verb allows the direct (i.e. non-indexed) retrieval of a record:

GET rt [KEY n] [lock-option]

where rt is the name of a record type declared in an ACCESS statement, n is the relative record

number to be retrieved, and lock-option is either NOLOCK or PROTECT.

The relative record number of the record to be retrieved may be specified by the KEY clause. If
the KEY clause is not used, the record last accessed is retrieved. If the KEY clause is specified
n must be a 9(6) COMP variable containing the RRN of the required record. The RRN specifies

the relative record position of the record to be retrieved. The first record stored is 0, the second
is 1 and so forth.

The lock-option shown above is optional but must be one of NOLOCK or PROTECT. The

optional RETRY clause may also be coded. These clauses are used to specify whether a
record lock is required when the record is retrieved, and if so the action to take if the required
record is already locked. These clauses are described in detail in section 2.8.

7.4.5.1 Successful Completion

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 114 of 238

The data record residing at the RRN is retrieved. If the NOLOCK option is coded the record is
unlocked. If the PROTECT option is coded the record is delete protected. Otherwise the record
is exclusively locked.

7.4.5.2 Exception Conditions

If the target record was locked, and the NOLOCK option was not coded, a locked record
exception is returned and the data record is returned unlocked. If the RRN specified is higher
than the last used RRN on file, an end-of-file condition is returned. In this event the data record
will be filled with HIGH-VALUES (#FFs). If the RRN specified a deleted record, an exception
condition is returned. The data record is retrieved under these circumstances, but is not locked
irrespective of the lock-option in force.

7.4.5.3 Programming Note

Speedbase keeps track of the highest RRN ever accessed for each record type stored in the
database, and this is known as the logical end-of-file. If a GET instruction specifies any record
past this point an end-of-file condition is returned, and the data record area is filled with HIGH-
VALUES (#FFs).

If the RRN specified is a deleted record, a data-transfer is performed and an exception condition
is returned. This facility has been provided for system programming purposes only. The
contents of the data record are modified by the DELETE verb, and cannot therefore be used to
perform recovery or other procedures.

7.4.6 The UNLOCK Verb
The UNLOCK verb is used to release a locked or delete protected record:

UNLOCK rt

where rt is the name of a record type declared in an ACCESS statement. The UNLOCK verb

may be used to unlock a record previously locked or protected by a FETCH, READ or GET
statement. The verb releases the lock of its target record so that updates may be performed on
it by other concurrent partitions. If the verb is executed when no current lock is in force, no
action takes place. The verb cannot therefore result in an exception condition.

Any pre-existing lock is usually automatically relinquished when any database I/O executes
successfully, such as when executing a FETCH. It is not therefore necessary to code explicit
UNLOCK statements before executing any of the database access verbs.

7.5 Arithmetic Statements
The arithmetic statements are listed in Table 7.5a:

Statement

Operation

ADD A TO B [ROUNDED] B + A  B

ADD A TO B GIVING C [ROUNDED] B + A  C

SUBTRACT A FROM B [ROUNDED] B - A  B

SUBTRACT A FROM B GIVING C [ROUNDED] B - A  C

MULTIPLY A BY B [ROUNDED] B x A  B

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 115 of 238

MULTIPLY A BY B GIVING C [ROUNDED] B x A  C

DIVIDE A INTO B [ROUNDED] B / A  B

DIVIDE A INTO B GIVING C [ROUNDED] B / A  C

Table 7.5a - Arithmetic Statements

In arithmetic statements, A may be a computational variable or literal. B may be a computational
variable or, if the GIVING clause is present, a computational literal. C may be a computational
or display numeric variable. No other combinations are valid.

7.5.1 Arithmetic Truncation and Rounding
If the result of an arithmetic operation contains more digits following the decimal point than are
contained in the receiving variable, the extra digits are truncated. However, if the ROUNDED
phrase was coded and the most significant digit thus truncated was 5, 6, 7, 8 or 9 then the least
significant digit of the receiving variable is incremented, otherwise it remains unchanged.

7.5.2 Overflow
Any arithmetic statement will suffer overflow if the result exceeds the capacity of a receiving
computational variable, or does not satisfy the picture of a receiving display numeric variable.
Overflow will also take place if the capacity of internal fields used to hold intermediate results is
exceeded.

You may check for overflow by coding the ON OVERFLOW statement as the statement

immediately following the arithmetic statement. If no such ON OVERFLOW statement is coded

and overflow occurs the program will be terminated with an error. If an arithmetic statement
suffers overflow it is suppressed and the receiving variable remains unchanged.

7.5.3 Examples
Suppose A and B are declared as PIC 9(2,1) COMP and PIC 9(2,2) COMP respectively. Then,
for the statement:

ADD 1 TO B GIVING A ROUNDED

if B = 3.42 we have 1 + 3.42 (i.e. 4.42) yielding A = 4.4 and if B = -4.75, we have 1 + -4.75 (i.e. -
3.75) yielding A = -3.8

Consider the division of B by A, where A = 1.1 and B = 0.28:

DIVIDE A INTO B GIVING A ROUNDED

We have 0.28/1.1 (=0.254545...) yielding A = 0.3.

To summarise, a useful rule to remember is that truncation is towards zero and that rounding,
when the digit involved is 5 or more, is away from zero.

7.6 The MOVE Statement
The MOVE statement is coded:

MOVE A TO B [C D...]

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 116 of 238

where A is a literal, figurative constant or variable and B, C, D..., etc. are variables. A maximum
of seven variables may follow the word TO. Where more than one variable follows TO the
content of A is moved, in turn, to each of these variables. In the simple move, MOVE A TO B,
execution depends on the data type of each operand. Table 7.6a shows that, of the 25 types of
move theoretically possible, 15 are supported.

MOVE to
From

PIC X

PIC 9 COMP

PIC 9

PIC PTR

PIC D

PIC X Yes No Yes No Yes

PIC 9 COMP No Yes Yes No Yes

PIC 9 Yes Yes Yes No Yes

PIC PTR No No No Yes No

PIC D Yes Yes Yes No Yes

Table 7.6a - Valid Data Types for MOVE A TO B

7.6.1 Character to Character Move
The contents of A are moved to B, one byte at a time from left to right. The leftmost (low
location) byte of A is copied to the leftmost byte of B, then the next byte of A is copied to B, and
so on. If A is shorter than B, then B is padded with rightmost blanks. If B is shorter than A the
MOVE stops once B has been filled. In this case character truncation, as distinct from the

numeric truncation described in section 7.5.1, occurs.

In addition, A may be a figurative constant, and you may code:

MOVE HIGH-VALUES TO B * Each byte set to #FF
MOVE LOW-VALUES TO B * Each byte set to #00
MOVE SPACE TO B * Each byte set to ASCII blank, #20
MOVE SPACES TO B * Each byte set to ASCII blank, #20

The A and B fields involved in a character to character move may overlap. Indeed, the following
example shows how overlapping fields may be used to set every byte of a long field to a
particular value, in this case ASCII E. This operation is called a ripple move and is useful for

initialising large data items:

 01 A
 03 A1 PIC X
 03 B PIC X(999)

 MOVE "E" TO A1

 MOVE A TO B

A special form of the MOVE statement allows processing of partial fields:

MOVE f1(s1:l1) TO f2(s2:l2)

where: f1 and f2 are non-indexed PIC X or Group Item variables.

s1 and s2 define the start position within f1 and f2.

l1 and l2 define the number of bytes to move from s1 and s2.

The above allows you to move all or part of a field as defined by the start position and length.
Start and Length may be coded as numeric literals or as computational fields. Note that start
and length MUST both be => 1, or unpredictable results will occur.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 117 of 238

7.6.2 Character to Display Numeric Move
This is treated like a character to character move as described in Section 7.6.1. You must be
careful that the number of bytes in the B field is sufficient since the move can result in the loss
of digits if character truncation takes place.

7.6.3 Character to Date Move
The date in standard form, "dd/mm/yy", "dd/mm/yyyy" (with or without the "/" separators), is
moved to the PIC 9(6) COMP date format. If the date is invalid (e.g. 31/02/89) the move will
result in an exception.

7.6.4 Computational to Computational Move
A is transferred to B, taking account of the precision of the two operands. If B is of lower
precision than A the difference in precisions will result in arithmetic truncation. If B is of
insufficient capacity to contain A, overflow will occur.

7.6.5 Computational to Display Numeric Move
A is converted to standard display numeric format according to the picture of B. If A is too large,
or is negative when B is unsigned, overflow will occur.

7.6.6 Computational to Date Move
As for computational to computational move.

7.6.7 Display Numeric to Character Move
This is treated like a character to character move as described in Section 7.6.1. You must be
careful that the number of bytes in B is sufficient or the move can result in the loss of digits if
character truncation takes place.

7.6.8 Display Numeric to Computational Move
A is converted to binary according to its picture clause and the result is stored in B. Arithmetic
truncation will take place if the precision of A is greater than that of B. If A is too large, or does
not contain a valid numeric string conforming to the picture clause of A, overflow will occur. It
will also take place if A is valid but B is of insufficient capacity to contain the result.

7.6.9 Display Numeric to Display Numeric Move
The numeric string A is converted to standard numeric string format in B. If A is too large, or
does not contain a valid numeric string conforming to the picture clause of A, or is negative
when B is unsigned, overflow will occur.

7.6.10 Display Numeric to Date Move
As for display numeric to computational move.

7.6.11 Pointer to Pointer Move
The contents of the two-byte pointer at A are transferred, unchanged, to the two-byte pointer at
B.

7.6.12 Date to Character Move

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 118 of 238

Converts the internal 9(6) COMP date format to the standard date 8 byte date string
"dd/mm/yy". In order to produce a long X(10) string in the form "dd/mm/yyyy", the MOVEL
(Move Long) verb should be used (i.e. MOVEL COMP-DATE TO LONG-DATE).

7.6.13 Date to Computational Move
As for computational to computational move.

7.6.14 Date to Display Numeric Move
As for computational to display numeric move.

7.6.15 Date to Date Move
The date A is moved to the date B.

7.6.16 Overflow
Overflow can occur, for the reasons described above, in the following types of move operation:

● computational to computational

● computational to display numeric

● display numeric to display numeric

● display numeric to computational

You may check for overflow during a simple move, or the last operation of a compound move,
by coding the ON OVERFLOW statement, see Section 7.7, immediately following the MOVE
statement. If no such ON OVERFLOW statement is coded and overflow occurs the program will
be terminated in error. This will also occur if ON OVERFLOW follows a compound move but the
operation suffering overflow was not the last. If a move operation suffers overflow it is
suppressed and the receiving variable remains unchanged.

7.7 Transfer of Control Statements

7.7.1 The GO TO Statement
GO TO unconditionally transfers control to a paragraph or section. It is coded:

GO TO A

where A is the name of a paragraph or section, or the name or a pointer set to address the first
executable instruction of a paragraph or section.

7.7.2 The GO TO DEPENDING ON Statement
The GO TO DEPENDING ON statement provides a switch capability. It is coded:

GO TO DEPENDING ON data-name
TO label-1
TO label-2

....
TO label-n

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 119 of 238

where label-1, label-2 label-n are paragraph or section names. The data-name must be the

name of a computational variable whose integral part, i, is in the range 1 to n when the

statement is executed. In this case control is passed to label-i as if the statement:

GO TO label-i

had been executed. If i is greater than n the results will be unpredictable since there is no upper

bound range checking.

7.7.3 The PERFORM Statement
The PERFORM statement passes control to a paragraph or section. It is coded:

PERFORM A

where A is the name of a paragraph or section, or the name of a pointer set to address the first
executable instruction of a paragraph or section. The statements beginning at the indicated
section or paragraph are executed until control is returned to the statement following the
PERFORM by an EXIT statement.

7.7.4 The CALL Statement
The CALL statement passes control to an entry point identified by the entry-name appearing in
an ENTRY statement. The ENTRY statement may reside either in the current compilation, or in
a compilation to be linkage edited with it. It is coded:

CALL A [USING B C ...]

where A is an entry name, or the name of a pointer set to address the first executable
instruction at the entry point. A maximum of 7 parameters may be passed in the optional USING
clause.

If the CALL statement does not possess a USING clause then neither must the ENTRY
statement. Otherwise the parameters in the two USING clauses involved must correspond one
for one. Each operand of a CALL statement's USING clause may be a variable, literal,
paragraph name, section name, or entry name. However, the figurative constants HIGH-
VALUES, LOW-VALUES, SPACE and SPACES must never appear.

Each operand in the target ENTRY statement must be of the same type as the corresponding
operand of the CALL statement, and must be defined as a based item. It may not be a

subordinate (level 02-49) item, nor the redefinition of such an item.

When a variable is passed as a parameter the corresponding ENTRY operand is a level 77

item or level 01 group describing the storage area the variable occupies.

If an integer literal is passed the corresponding ENTRY operand should be a level 77 item or

level 01 group describing a single PIC S9(4) COMP field. This will overlay the integer literal, and
must therefore be read-only.

If a character literal is passed the corresponding ENTRY operand is a level 77 item or level 01

group describing the character string. This will overlay the character literal and must therefore
be read-only.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 120 of 238

When a paragraph name, section name or entry name is passed, the corresponding ENTRY

operand should be a level 77 item or level 01 group describing a single PIC PTR field. This
pointer will address the paragraph, section or entry point in question, and must remain read-
only. The pointer form of the GO TO, PERFORM or CALL statement can then be used to
invoke the passed paragraph, section or entry point from the called routine.

7.7.5 The EXIT Statement
The EXIT statement causes control to be returned to the statement following the last
outstanding PERFORM or CALL statement. When a PERFORM or CALL is executed the

address of the following statement is stored on an internal stack. The previous contents of the
stack are "pushed down" so that a number of outstanding PERFORMs or CALLs can be nested.
When an EXIT is executed the top item in the stack is used to determine the statement to which
control is to be passed. This stack item is then made available for re-use and the stack contents
are "popped up".

The EXIT statement is therefore the dynamic end of a sequence of code entered by a

PERFORM or CALL. An explicit EXIT statement, rather than an implied exit at the end of a
paragraph, section or group of sections, makes code easier to follow and facilitates structured
programming. Note that an EXIT statement issued from the highest level of a program, causes
control to be passed to the next frame as defined by the Frame Header SEQUENCE statement.

7.7.6 The STOP RUN Statement
The STOP RUN statement causes immediate termination of the frame. Although Speedbase
ensures that any open databases are properly closed, other termination tasks, such as those
specified by the Unload Division, will not take place. It should be noted that a print file opened

using the MOUNT or PRINT statements will not be closed properly when a STOP RUN

statement is executed and, if spooled to disk, will be lost. This statement should therefore be
used with care, and would normally only be used following irrecoverable error conditions.

7.7.7 The Finish Statement
The FINISH statement can be coded anywhere within a DO loop, as described in Section 7.8.2.
It has the effect of transferring control to the statement following the next ENDDO, thereby
exiting from the loop in a clear and structured manner.

7.7.8 Prefixed Transfer of Control Statements
The transfer of control statements:

GO TO label

PERFORM label

EXIT
FINISH
STOP RUN

may be prefixed by IF condition, ON OVERFLOW, ON EXCEPTION, ON NO OVERFLOW and

ON NO EXCEPTION. See Section 7.8.1. The result is to make execution of the transfer of
control statement dependent on the condition defined by the prefixing clause. For example:

IF A ZERO GO TO LAB2
MOVE A TO B
ON OVERFLOW PERFORM AA223
DELETE GA

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 121 of 238

ON NO EXCEPTION EXIT

7.7.9 The EXEC Statement
The EXEC statement is used to load and execute a dependent frame. It is coded:

EXEC A

where A is the name of a dependent frame, which must have been coded to be DEPENDENT
ON the frame performing the EXEC statement. The statement causes the requested frame to
be loaded into memory, where upon it is immediately executed. Control is returned to the
statement following the EXEC when the dependent frame, or chain of dependent frames,
terminates execution.

The EXEC Statement never returns an exception. In the event that the dependent frame cannot
be loaded, for example because it could not be found, the frame is terminated with an EXIT
code.

7.7.9.1 Programming Note

The EXEC statement may only be used to call dependent frames. It Is not possible to EXEC a

Cobol program. Control may however be passed to such a program using the sequence
statement in the header of a non-dependent frame (i.e. one in which the DEPENDENT ON
clause is not used).

7.8 Conditional and Iterative Statements

7.8.1 Format of Conditional Structures
There are two basic formats for conditionals. Format 1 is:

IF condition | ON [NO] OVERFLOW | ON [NO] EXCEPTION

*
[OR statements | AND statements]

*
............ * Statements to be executed if condition true (group A)

*
[ELSE
*
............ * Statements to be executed if condition false (group B)]

*
END

Format 2 is:

IF condition | ON [NO] OVERFLOW | ON [NO] EXCEPTION

*
GO TO label | PERFORM label | EXIT | FINISH | STOP RUN

In format 1, if the statements in group A are not terminated by a GO TO, GO TO DEPENDING
ON, EXIT or STOP RUN, when the ELSE statement is encountered control is passed to the
statement following END. If the ELSE statement is missing there are no group B statements. In
this case if the group A statements are not terminated by an unconditional transfer of control,
when the END statement is met it is ignored and execution continues with the next statement.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 122 of 238

Similarly, if the group B statements are not terminated by a GO TO, GO TO DEPENDING ON,
EXIT or STOP RUN then, when their last statement has executed, control drops through the
END statement and continues with the next statement.

The statements ELSE and END must be coded on new lines and cannot be combined with
other statements.

Format 1 conditionals may be nested up to 32 times and contain iterative structures, see
Section 7.8.2. An END statement terminates the most recent conditional statement which has
not yet been matched by an END statement. An ELSE statement refers to the most recent
conditional statement which has not yet been matched by an END statement.

Format 2 conditional statements may appear within format 1 conditionals. Format 2 statements
always generate less code than the equivalent logic coded using Format 1.

7.8.2 Format of Iterative Structures
There are three formats for iterative structures (i.e. DO loops). Format 1:

DO
*
........ * Statements to be executed

*
ENDDO

Format 2:

DO WHILE condition

*
[OR statements | AND statements]

*
......... * Statements to be executed while the condition remains true

*
ENDDO

Format 3:

DO UNTIL condition

*
[OR statements | AND statements]

*
........ * Statements to be executed until the condition becomes true

*
ENDDO

In Format 1 the enclosed statements are executed over and over until some transfer of control
(such as GO TO or FINISH) causes an exit from the loop.

In Format 2 the enclosed statements are executed zero or more times, while the condition

remains true. The condition is tested before the first iteration, and then before each subsequent

iteration. As soon as it is not satisfied, the statement immediately following the ENDDO receives

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 123 of 238

control. It is possible therefore that the statements between DO and ENDDO may not be
executed at all.

Format 3 is similar to Format 2 except that the enclosed statements are executed only as long
as the condition remains false.

DO loops may be nested up to 16 times and may contain conditional structures. An ENDDO
statement terminates the most recent DO statement which has not yet been matched by an
ENDDO statement.

Condition Clause

Equivalent

Restrictions

A EQUAL B A = B A, B must either both be PIC X or PIC PTR
or,
if B is PIC 9 COMP then A may be PIC 9 or
PIC 9 COMP. One but not both may be
literal.

A NOT EQUAL B A NOT = B

A LESS B A < B

A NOT LESS B A NOT < B

A GREATER B A > B

A NOT GREATER B A NOT > B

A SPACES A SPACE A must be PIC X

A NOT SPACES A NOT SPACE

A HIGH-VALUES

A NOT HIGH-VALUES

A LOW-VALUES

A NOT LOW-VALUES

A ZERO A must be PIC 9 COMP or PIC 9

A NOT ZERO

A POSITIVE

A NOT POSITIVE

A NEGATIVE

A NOT NEGATIVE

A NUMERIC A must be PIC 9

A NOT NUMERIC

Table 7.8a - The Condition Clause

7.8.3 The Condition Clause
The condition clause that appears in IF and DO statements may assume any of the formats
summarised in the left-hand column of Table 7.8a. The mathematical symbols = > < may be
coded in the place of the words EQUAL, GREATER and LESS, respectively, and the figurative
constants SPACE and SPACES are synonymous. The conditions are divided into four groups,
depending on the restrictions which apply to the operand or operands.

Comparison of display numeric and computational items obeys the normal rules of arithmetic.
The comparison of character variables and pointers takes place, byte by byte, from the left-most
byte at the low address to the right-most byte at the high address. The bytes being compared
are treated, for the purposes of the comparison, as 8-bit unsigned numbers. If two strings of
unequal length are compared, the shorter will be considered to be extended to the right with
ASCII blanks. A figurative constant is treated as a character string of exactly the same length as
the variable with which it is being compared.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 124 of 238

The condition:

A NUMERIC

is true only if the variable A contains a valid numeric string which is compatible with the picture
clause of A.

The following three examples show the use of condition clauses in a Format 1 conditional,
Format 2 conditional and iterative structure:

IF COUNT > 100 * Format 1 conditional
MOVE 0 TO COUNT

END
*
IF NAME SPACES GO TO ASKRTN * Format 2 conditional
*

DO WHILE COUNT POSITIVE * Iterative structure
ADD -1 TO COUNT
PERFORM CALC

ENDDO

7.8.4 Compound Conditions
Compound conditions may be established by coding groups of one or more OR statements or
AND statements immediately following one of these eight initial conditional statements:

IF condition

ACCEPT... NULL
ON OVERFLOW
ON EXCEPTION
DO WHILE condition

ON NO OVERFLOW
ON NO EXCEPTION
DO UNTIL condition

The format of a compound condition is either:

initial conditional statement

OR condition-1

.......
OR condition-n

or:
initial conditional statement

AND condition-1

.......
AND condition-n

The first compound condition is true if any of the condition clauses it contains is satisfied, but

the second form is only true if all of the constituent conditions hold. Once sufficient conditions

have been evaluated to establish the result of the compound condition, no further conditions are
evaluated. It is not allowable to mix AND and OR statements in the group following the initial
conditional statement, and if you attempt to do so the compiler will flag any out-of-place
statement in error.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 125 of 238

Here are two examples using compound conditions:

IF COUNT > 100
OR COUNT NEGATIVE * Count zeroised if not

MOVE 0 TO COUNT * between 0 and 100
END
DO WHILE COUNT POSITIVE
AND NAME NOT SPACES
AND ERRFLAG ZERO

ADD -1 TO COUNT

PERFORM CALC
ENDDO

7.8.5 The ON OVERFLOW Statement
The ON OVERFLOW statement is used for checking for the overflow condition which may
result following an arithmetic statement, or a MOVE, DISPLAY or EDIT statement. ON
OVERFLOW must be coded as the statement immediately following the one generating the
condition to be tested. If this is not done and an overflow condition arises the frame is
terminated in error.

Note that the second of the two examples which follow shows the coding required if you simply
wish to ignore an overflow condition:

ADD COUNT TO ACCUM * Set ACCUM negative
ON OVERFLOW * If any count not
OR COUNT NEGATIVE * positive and in range

MOVE -1 TO ACCUM
END

ADD COUNT TO ACCUM * Ignore any
ON OVERFLOW * overflow condition
END

7.8.5 The ON EXCEPTION Statement
The ON EXCEPTION statement is used for checking for the exception condition that can be
returned as the result of CALL'ing or PERFORM'ing certain types of routine, database
processing or console I/O operations. ON EXCEPTION must be coded as the statement
immediately following the one generating the condition to be tested. If this is not done and an
exception condition arises the frame is terminated in error.

A CALL or PERFORM statement may not necessarily be liable to an exception condition.
Whether this is the case or not depends on the routine invoked by the statement. If it inevitably
returns control by means of an EXIT statement it will always return normal completion, and the
invoking CALL or PERFORM statement will never suffer an exception. However, it is possible,
and often very useful, to write routines which generate exception conditions to indicate when
special circumstances have arisen.

When an exception occurs the system variable $$COND, the condition number, is set to a
positive value. This is normally 1, except when the same statement can generate an exception
for a variety of different reasons. In this case $$COND assumes values 1, 2... and so on, each
of which distinguishes a different condition. System variable $$RES, the result code, may also
be established when an exception occurs, to give further information about the cause of the
exception.

If you need to process the condition number or the result code, handle $$COND and $$RES at
the very beginning of the logic introduced by your ON EXCEPTION statement. Normally you
should immediately save their values with MOVE statements, or branch on $$COND with a GO

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 126 of 238

TO DEPENDING ON, or code a sequence of IF statements. This is because the majority of
Global Cobol statements cause the values in $$COND and $$RES to be destroyed by the time
they return.

Note, in particular, that the statement:

DISPLAY $$COND

which you might be tempted to write for debugging purposes, should not in fact be used. If you

code it by mistake as part of your exception handling logic it will not have the desired effect
since $$COND will be reset before it comes to be displayed and all that will appear at the
console will be zero. The correct technique is indicated by the first example below. The second
shows the coding required if you simply wish to ignore an exception condition:

CALL EXRTN
ON EXCEPTION * If exception and

AND TESTFL POSITIVE * if test flag on
MOVE $$COND TO Z-WORK * computational work field
DISPLAY "EXCEPTION CODE " * displayed
DISPLAY Z-WORK SAMELINE * not $$COND

ELSE
DISPLAY "NORMAL COMPLETION"

END
*
DELETE RT * Delete record
ON EXCEPTION * ignore exceptions
END

7.8.6 The ON NO OVEFLOW and ON NO EXCEPTION Statements
These statements check for the reverse condition to those checked by the ON OVERFLOW
and ON EXCEPTION statements. For example:

ON NO OVERFLOW
statements to be executed when no overflow has occurred

END

They should be used in preference to the construct:

ON OVERFLOW
ELSE

statements to be executed when no overflow has occurred

END

7.9 Table Handling
A table consists of a number, n, of fixed length entries occupying contiguous storage. Each

entry is identified by its index, a number between 1 and n. The first entry has index 1, the

second index 2 and so on. Tables are defined by repeating groups or elementary items with
OCCURS clauses.

The table handling operations cause a rapid examination of the table to take place, a selected
field from each entry being compared with a key, whose length and value you specify. When
comparison takes place the key and the current entry are treated like character variables and
compared byte by byte from left to right.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 127 of 238

After the table handling operation completes you will either be returned the index of the entry
which satisfied your request or, if the request was not satisfied, a table operation exception.

7.9.1 The SEARCH Statement
The SEARCH statement is used to identify the first entry of a table equal in value to a supplied

key. It is coded:

SEARCH tc table key [entry-length]

where tc is the name of a table control area of the following format:

01 TC

 03 TCKEYL PIC 9(2) COMP * Supplied key length
 03 TCTERM PIC X * Supplied terminator
 03 TCINDEX PIC 9(4) COMP * Returned index

You must set up the key length and terminator yourself, but GSM will return the index field.

The table parameter is a variable identifying the location at which the search is to begin, and

key is a literal or variable containing the supplied key.

The fourth parameter, the entry-length, must be supplied if you are searching a repeating group,

when the key length and entry length will be different. It must be a 9(4) COMP integer. If the
parameter is omitted the entry length is assumed to be equal to the key length, as will normally
be the case if you search a table of elementary items.

The key field is assumed to be located at the start of each table entry, and the search operation
proceeds as follows:

● The first table entry is selected.

● If the first byte contains the terminator value, TCTERM, EXIT with 1 is returned and

processing terminates.

● If the key field (i.e. the TCKEYL bytes at the start of the entry) is equal to the key supplied

as the third parameter of the SEARCH statement, processing terminates normally.

● Otherwise the next entry is selected, using the fourth parameter or TCKEYL if it is omitted,

and processing continues as at the second step above.

On termination the index of the entry last processed is stored in the TCINDEX field. This will
either identify the first entry satisfying your request or, if an exception took place, it will identify a
dummy entry starting with the terminator value. You must ensure that such an entry is placed
immediately following the table if it is possible to search for a key which is not present,
otherwise GSM will continue examining the memory following the table, with unpredictable
results.

If there is a possibility that the key value is not present in the table the SEARCH statement
should be immediately followed by an ON EXCEPTION statement to process this condition. If
the ON EXCEPTION statement is not coded and the key is not present the frame is terminated
in error.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 128 of 238

7.9.2 The SCAN Statement
The SCAN statement is used to identify the first entry of a table whose value is equal to or

greater than a supplied key. It is coded:

SCAN tc table key [entry-length]

where tc, table, key and the optional entry-length parameter are as defined in Section 7.9.1.

SCAN functions identically to SEARCH, except that the criterion for terminating the search
normally is that the key field, the TCKEYL bytes at the start of each entry, should be equal to or
greater than the key supplied by the third parameter. If the fields involved are character data
items, the ASCII collating sequence determines the result of the comparison. If the fields are
both non-negative computational items of the same precision the result is determined by the
numeric value as you would expect. However, table scans involving negative or display numeric
keys, or computational keys of different precision, should be avoided since the outcome is
difficult to predict.

If it is possible that no key field in the table will satisfy the scan, you must delimit the table with a
dummy entry starting with a byte containing the terminator value, and you should follow the
SCAN statements involved with ON EXCEPTION statements to trap possible table operation
exceptions.

7.10 The SUSPEND Statement
SUSPEND causes the program to be suspended for a period of time. It is coded:

SUSPEND [seconds]

The optional seconds parameter is the name of a PIC 9(4) COMP variable or integer literal

containing the number of seconds for which the program is to be suspended. If the parameter is
omitted, or the value supplied is less than 1, the program is simply suspended for a brief period,
as if it had reached the end of its time-slice, allowing other processes to execute.

If characters are keyed at the console when a program is suspended, the suspend will be
cancelled so that the program can process the input if necessary.

7.10.1 Programming Notes
The SUSPEND statement should be used when you know your program cannot proceed until
some other user completes an activity. Since the only way of co-operating jobs communicating
is by means of shared files, a typical use of SUSPEND by, say, a special purpose spooling
program, might be as follows:

● Read the shared communications file to see if a report requires printing.

● If no report is available, execute a SUSPEND for 60 seconds, then repeat the first step.

● Otherwise, print the report, then update the communications file to indicate it has been

printed.

● Repeat this process.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 129 of 238

7.11 Global Cobol Support
The Global Cobol File Management Manual contains full information regarding the GSM
Relative Sequential and Indexed Sequential Access methods, both of which are supported by
the Speedbase compiler.

File sorting is also supported using the SORT, RELEASE and RETURN verbs which are
documented in the Global Cobol Language Manual.

The EDIT verb used for display editing of numeric fields is also supported within the language
syntax. This verb, which is provided for compatibility reasons, is documented in the Global
Cobol Language Manual.

Use of the above facilities requires the presence of a licenced copy of the system library
C.$MCOB during compilation, which must be specified as part of the compilation parameters. If
these statements are used without the presence of this system library, an "UNDEFINED CALL"
error messages will result during compilation.

8. Speedbase System Routines

Certain system routines distributed in the library C.$BALIB, listed in Table 8a, may be called
directly, and are documented in this chapter. Note that the routines must never be called by

frames operating in a Speedbase environment prior to V3.0.

Routine

Description

Parameters

B$CHK $BASYS Presence Check

B$LOD Load Speedbase System Area

B$OPN Open Database name unit lock-flag

B$FEX Execute Frame frame

B$STA Return Database Status $rt area1 area2

B$ST2 Return Extended Status $rt area3

B$PRC Close Print File

B$CDB Close Database name

B$DSC Clear Baseline

B$XCL Get Exclusive Access dbid

B$XSH Release Exclusive Access dbid

B$WRJ Right-justify Field window-id fld

B$RBL Database Re-index Routine dbid ...

Table 8a - Speedbase System Routines

8.1 B$CHK - $BASYS Presence Check
This routine may be called to test whether the Speedbase system area has been loaded onto
the user stack. The following statement:

CALL B$CHK

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 130 of 238

will execute successfully if $BASYS is present. An exception condition is returned if the system
area has not yet been loaded. There is no point in calling this routine from an executing frame,
since the system area must by definition already be present. It may be used by a Global Cobol
program in preparation for executing a frame.

8.2 B$LOD - Load Speedbase System Area
This routine causes the Speedbase system area $BASYS to be loaded onto the user stack. The
routine first checks to see if the systems area is present by calling B$CHK and, if it is, only the
console screen is cleared. Otherwise $BASYS is placed on the user stack and is loaded with
the appropriate customisation details from the T>nnn file, where nnn is the current terminal

number.

There is no point in calling this routine from an executing frame, since the system area must by
definition already be present. It may be used by a Global Cobol program in preparation to
executing a frame.

The routine is invoked by the parameter-less call:

CALL B$LOD

An exception will be returned if the routine was unable to load $BASYS. This may occur
because of I/O errors, insufficient room on the user stack, or because $BASYS could not be
found.

8.3 B$OPN - Open Database
This routine is used to open a database. The call is of the form:

CALL B$OPN USING name unit lock-flag

where name is the PIC X(5) name of the database to be opened, without the preceding "DB",

unit is the ID of the unit on which the main index file resides, and lock-flag is a 9 COMP variable

with the value 0 to allow shared access or 1 to provide exclusive access to the database.

The routine causes the designated database to be opened, placing a database access block of
at least 448 bytes on the user stack. The routine may be called several times to open a number
of databases. There is no restriction on the number of databases that may be opened using this
routine, subject only to memory restrictions.

Any databases opened may then be accessed by both the calling frame and/or subsequent
frames. The only requirement is that the database must be open before the first I/O operation
accessing it takes place. Databases remain open until specifically closed or a STOP RUN
condition occurs, when all opened databases are automatically closed.

This routine may be called from a Global Cobol program preparatory to running a frame. If this
is done it is essential that the Speedbase system area $BASYS is first loaded, and this must

be checked using the B$CHK or B$LOD routines.

8.3.1 Exception Conditions
The open call may fail for a number of reasons, and the systems variable $$COND may be
tested to discriminate between these as follows:

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 131 of 238

Exit code Description

21 Database is already open

22 Database not found or invalid file type

23 Database data-file not found or invalid type

24 Database is in use

25 I/O error

26 Insufficient memory available on user stack

Table 8.3a - B$OPN Exception Codes

Condition 23, data-file not found, is a common error often caused by invalid unit assignment.
The main index file contains the unit-id of each data-files which, if a logical unit-id, must be
correctly assigned prior to the call.

8.4 B$FEX - Execute Frame
This routine is used to load and execute a frame from within the Global Cobol environment. The
call:

CALL B$FEX USING frame

causes the frame, which must not be a dependent frame, to be loaded into memory and

immediately executed. This routine acts similarly to the Global Cobol CHAIN verb, in that the
incoming frame will overlay the memory region occupied by the calling frame, and control is
therefore never returned.

Prior to executing the call, it is essential the Speedbase system area $BASYS is present on the
user stack. This must be ensured by calling the B$CHK or B$LOD routines. B$FEX does not
return exceptions, so in the event that the requested frame is not found, processing is
terminated with an EXIT or STOP code.

8.5 B$STA - Return Database Status
This routine returns database status information for a specified record type. The call is of the
form:

CALL B$STA USING $rt area1 [area2]

where $rt identifies the record for which status information is required and area1, area2 are

areas into which this information is returned. $rt is an internal name for the I/O channel, where rt

is the name of the record-type as specified in the ACCESS statement. It is essential that the

record ID is prefixed by the $ symbol. Area1 returns information that is specific to the

requested record type. Its format is as follows:

01 A1 * Layout of Rec Status Block
 03 A1NAME PIC X(6) * Record Name
 03 A1RLEN PIC 9(4) COMP * Record Length
 03 A1RRN PIC 9(6) COMP * Record no (RRN) of last I/O
 03 A1LOCK PIC S9 COMP * I/O Channel Lock Status
 03 A1SIZE PIC 9(6) COMP * Size of extend in records
 03 A1FREE PIC 9(6) COMP * Number of free records

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 132 of 238

The field A1RRN contains the relative record number of the last I/O operation. The field
A1LOCK contains the current lock status of the I/O channel. This is either 0 (no lock), 1 (Protect
Lock) or 2 (Exclusive Lock). Field A1SIZE shows the total number of records of the requested
type that may be stored in the database and A1FREE how many of these are free for use by
subsequent WRITE operations.

If the optional second parameter area2 is passed, more general information relating to the

database as a whole is also returned. The format of area2 is as follows:

01 A2 * Layout of DB Status Block

 03 A2DBID PIC X(5) * Database ID
 03 A2DGEN PIC 9(4) COMP * Database Generation No
 03 A2NRCS PIC 9(2) COMP * Num Rec-types stored on DB
 03 A2BACY PIC X * Backup Cycle ID
 03 A2BASR PIC 9(2) COMP * Incremental Backup Serial No
 03 A2SIZE PIC 9(6) COMP * Size of Index Block Pool
 03 A2FREE PIC 9(6) COMP * No of free IDBs remaining

Field A2DBID and A2DGEN return the database-id and generation number. A2NRCS returns
the number of different record types stored within the database. Fields A2BACY and A2BASR
return the current backup cycle-id and incremental backup serial number respectively. The use
of these fields is described in the Speedbase Presentation Manager User Manual.

The fields A2SIZE and A2FREE relate to the common index pool which contains index data for
all record types stored within the database. The field A2SIZE contains the size of the index pool
in Index Blocks (IDBs), and A2FREE numbers the unused IDBs.

Note that the database for which information is being requested must be open at the time of the
call. If this is not the case the routine returns an EXIT 25550.

8.6 B$ST2 - Return Extended Database Status
This routine returns extended database status information for a specified record type. The call is
of the form:

CALL B$ST2 USING $rt area3

where $rt identifies the record and hence the database for which extended status information is

required and area3 is an area into which this information is returned. $rt is an internal name for

the I/O channel, where rt is the name of the record-type as specified in the ACCESS statement.

It is essential that the record ID is prefixed by the $ symbol. The format of area3 is as

follows:

 01 A3 * Layout of DB Status Block
 03 A3DBID PIC X(5) * Database ID
 03 A3DGEN PIC 9(4) COMP * Database Generation No
 03 A3NRCS PIC 9(2) COMP * Num Rec-types stored on DB
 03 A3BACY PIC X * Backup Cycle ID
 03 A3BASR PIC 9(2) COMP * Incremental Backup Serial No
 03 A3SIZE PIC 9(6) COMP * Size of Index Block Pool
 03 A3FREE PIC 9(6) COMP * No of free IDBs remaining

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 133 of 238

 03 A3DBNM PIC X(5) * Name of Database
 03 A3DBUN PIC X(3) * Unit id of Main Index File
 03 FILLER PIC X(9) * Reserved

Fields A3DBNM and A3DNUN allow you to determine the name and unit of the currently open
database which therefore allows you to close and subsequently re-open it using the B$OPN
call. These fields are additional to those included in Area2 of the B$STA routine.

8.7 B$PRC - Close Print File
This routine causes the print-file opened by a prior PRINT or MOUNT statement to be closed. It
is coded:

CALL B$PRC

The printer is normally closed automatically when the frame terminates. This call allows the
printer to be closed earlier where this is advantageous.

8.8 B$CDB - Close Database
This routine causes a database opened in the current session to be closed. It is coded:

CALL B$CDB USING db-name

The database db-name, which must be open at the time of the call, is closed. All locks

outstanding prior to the call are released. If the USING clause is omitted, all open databases are
closed.

8.9 B$DSC - Clear Baseline
This routine enables you to clear the baseline. The parameter-less call:

CALL B$DSC

causes any characters displayed on the baseline using the ACCEPT or DISPLAY verbs to be
removed from the screen.

8.10 BXCL, BXSH - Get, Release Exclusive Access
These routines allow you to gain or release exclusive access to a database, which must be
open at the time of the call. Code:

CALL B$XCL USING dbid

to gain exclusive access to the database dbid. The call causes the database to be re-opened in

exclusive mode. In the event that exclusive access cannot be granted because the database is
in use in another partition, exception condition EXIT 25524 is reported and should be trapped by
use of an ON EXCEPTION statement.

To relinquish exclusive control of database dbid, code:

CALL B$XSH USING dbid

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 134 of 238

which causes the database to be re-opened in shared mode. Note that the database dbid must

be open when either of these routines is called. If this is not the case STOP 25582 results.

8.11 B$WRJ - Right-justify Field
This routine causes a field accepted within a window to be right-justified. This is useful when
processing fields which may be numeric or character, depending on customisation. Coding:

CALL B$WRJ USING window-id fld

causes the character field fld to be accepted as a right-justified field during processing of the

window window-id. Make the call before the window is entered (e.g. in the Load Division). Right-

justification of the field stays in force until the frame terminates. Several field in the window
made be dynamically specified as right-justified by multiple calls of the routine.

8.12 B$RBL Database Re-index Facility
This routine allows the indexes of a single or all record types to be rebuilt. The rebuilding
process is functionally identical to a partial database rebuild as performed by the database
rebuild utility $BARBL. This system routine may be run from time to time to re-organise indexes
following heavy processing such as mass deletions or insertions in order to optimise
performance. The routine has the advantage that only a selected record type need be re-built,
thus potentially saving unnecessary re-building time of other record types.

The call is of the form:

CALL B$RBL USING dbid rcid opr col row

where:

dbid is the PIC X(5) Database ID of the database to be rebuilt, which must be open

with exclusive access prior to the call.

rcid is the PIC X(2) ID of the record type to be rebuilt. If this parameter contains

spaces then the indexes of all record types will be rebuilt.

opr is the PIC X operator response flag, which if set to "Y" will request a pause before

continuing. Otherwise this flag should be set to "N".

col is an optional PIC 9(2) COMP variable containing the column number at which the

status window is to be displayed. The column number must be in the range 1 to
34 inclusive. If this parameter is not provided, the default is column 17. Note that
this parameter, if coded, MUST be coded as a variable. A numeric literal must not

be coded.

row is an optional PIC 9(2) COMP variable containing the row number at which the

status window is to be displayed. The row number must be in the range 1 to 18
inclusive. If this parameter is not provided, the default is row 18. Note that this
parameter, if coded, MUST be coded as a variable. A numeric literal must not be

coded.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 135 of 238

Following the call, the status window will be displayed and the indexes of the designated record
type(s) are rebuilt. On successful completion control is returned without exception.

8.12.1 Programming Notes
The rebuilding process is memory intensive, and requires quite substantial amounts of memory
to perform quickly. We recommend that the routine is called from frames that contain only a
minimal amount of additional code. For this reason, we recommend that database opening and
closing and so forth is performed in a prior frame or overlay.

8.12.2 Exception conditions
The following exception conditions may be returned:

Exit code Description

1 Specified database was not open

2 Specified database was open non-exclusively

3 Database Dictionary was not found or in use

4 Database Dictionary file was of invalid file type

5 Database Dictionary file was corrupt

6 Database and Dictionary generations are different

7 Database is corrupt and cannot be rebuilt

8 Record ID supplied was invalid

9 Record ID supplied has no indexes

11 Insufficient memory to start re-indexation

12 Key Errors during re-index; database is corrupt

13 Unix C-ISAM channel cannot be opened

Table 8.12a - B$OPN Exception Codes

Any serious error detected during the re-building process will cause the routine to terminate with
a stop code. Note that this will leave the database in a partially rebuilt state, and a full re-build
should be performed before further processing using the database rebuild utility $BARBL.

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 136 of 238

9. Speedbase System Variables

This chapter describes the system variables supported by the Speedbase compiler and listed in
Table 9a. Unless specifically stated to the contrary, system variables must not be modified,

and must therefore be treated as read-only items by an application frame.

Variable

Description

Picture clause

$PRUN Printer unit-id X(3)

$PGNO Current page number 9(4) COMP

$LINO Current line number 9(4) COMP

$RSPG Restart page number 9(4) COMP

$PHLT Printer halt suppress flag 9 COMP

$FUNC Accepted function number 9(2) COMP

$MODE Current window operating mode 9 COMP

$FWFR Forward frame-id to load X(6)

$BKFR Backward frame-id to load X(6)

$FNTX0 Keytop name, <RET> key X(7)

$FNTX() Keytop name, functions 1-19 X(7)

$FNBY0 Function-key value, <RET> function X

$FNBY() Function-key value, functions 1-19 X

Table 9a - Speedbase System Variables

9.1 $PRUN - Printer Unit-id PIC X(3)
This variable specifies the printer unit which is to be used to output reports generated by the PF
construct. This unit-id is initially set up to the unit "$PR". It may be changed to any valid random
access or printer device unit number or logical-id (e.g. 220, 500, FLS, PR1). If changed, this
unit-id remains in force until the end of the current session.

9.2 $PGNO - Current Page Number PIC 9(4)
COMP
The page number of the page currently being printed on is stored in this variable. The page
number is automatically set to one when the printer is opened in response to the first PRINT
statement in the frame. It is automatically incremented whenever a page throw takes place.
$PGNO may be referenced in a PF construct to print the current page number on each page.

9.3 $LINO - Current Line Number PIC 9(4)
COMP
This variable indicates the number of lines that have so far been printed within the current page.
It is set to zero when the printer is initially opened, and reset as page throws occur. It is
automatically incremented as lines are output to the printer.

9.4 $RSPG - Restart Page Number PIC 9(4)
COMP
This variable indicates the first page number from which re-printing should commence. The
variable normally contains zero to indicate that printing should not be suppressed. The variable

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 137 of 238

is reset to zero whenever the printer is closed. A restart option may be provided within a print
frame by setting it to the page number from which re-printing should commence.

9.5 $PHLT - Printer Halt Suppress Flag PIC 9
COMP
This variable is used to control the print interrupt feature. When printing normally commences,
the following baseline message is displayed:

Type <Ctrl G> to halt printing

During a print run, the operator may then interrupt printing by keying <Ctrl G>. Printing may then
be restarted, directed to another device or suppressed. If suppressed, the frame will normally
continue processing, but without producing a report. Moving -1 to $PHLT also allows the
operator to suppress printing, but in this event the frame will be terminated by issuing a STOP
RUN instruction. Moving the value 1 to $PHLT suppresses the interrupt feature. Note that any
changes made to $PHLT remain in force until the end of the session.

9.6 $FUNC - Accepted Function Number PIC 9(2)
COMP
Following an accept operation, this variable returns the Speedbase function number of the key
used. The possible function numbers are shown in Table 9.6a below:

Mnemonic

Description

$FUNC

RET Accept current field, select record 0

UF1 User Function 1 1

UF2 User Function 2 2

UF3 User Function 3 3

NXT Go to next window 4

PGE Forward-page window 5

BPG Back-page window 6

UP Back one record (Uparrow) 7

DWN Forward one record (Downarrow) 8

SKP Skip fields to next tab-stop 9

ABO Abort program 10

BCK Terminate window (Back to prior) 11

CLR Clear the window 12

DTE Delete current record 13

HME Cursor home 14

BFL Back one field 15

ENQ Enquiry mode - select index 16

INS Insert record 17

UDL Undelete record 18

MOV Move record 19

Table 9.6a - Returned $FUNC Values

9.7 $MODE - Current Window Operating Mode PIC 9 COMP

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 138 of 238

The variable $MODE allows the current window processing mode to be discerned. A window
may operate in up to seven modes, listed in Table 9.7a below:

Mode

Description

Function

$MODE

ENQ Enquiry Initiate an enquiry 1

DSP Display Display existing record 2

MNT Maintenance Modify existing record 3

DEL Deletion Delete existing record 4

EDT Edit Create new record from existing 5

ADD Addition Add new record 6

INS Insertion Insert new record 7

Table 9.7a - Window Processing Modes

A full description of window processing modes may be found in Section 6.3.2.

9.8 $FWFR and $BKFR - Frame-id to Load PIC X(6)
These system variables specify the frame-id to be loaded following successful and unsuccessful
completion of the current frame respectively.

These variables are normally initialised by use of the frame header's SEQUENCE statement,
but may be modified by simply moving a new frame-id into the appropriate variable at run-time.

If the variable contains spaces, no frame is loaded on completion. Please note that this differs

from the Sequence statement, where the keyword EXIT must be coded to achieve this.

9.9 $FNTX0 and $FNTX() - Keytop Names PIC X(7)
These variables contain the keytop names allocated to each of the Speedbase functions by the
$BACUS customisation program. $FNTX0 corresponds to the keytop name used for <RET>,
Speedbase function zero, and $FNTX is an array containing the keytop names for Speedbase
functions 1-19, <UF1> through <MOV>. The entry number within the array corresponds to the
Speedbase Function number $FUNC as described in Table 9.6a above.

The variables contain the keytop names as customised using $BACUS for the current terminal,
and can be useful within operator prompts.

9.10 $FNBY0 and $FNBY() - Function-key Values PIC X
These variables contain the function-key values generated by the current terminal for each of
the Speedbase functions. $FNBY0 contains the code generated for the <RET> function, on
most terminals this is #0D. $FNBY is an array containing the key values generated for
Speedbase functions 1-19, <UF1> through <MOV>. The entry number within the array
corresponds to the Speedbase function number $FUNC as listed in Table 9.6a.

These variables may be used in combination with the TYP$ system routine. The TYP$ routine
allows you to place characters into the console's type-ahead buffer, which are then input during
subsequent accept operations. The format of the call is as follows:

CALL TYP$ USING area length

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 139 of 238

where area identifies the characters to be placed in the type-ahead buffer, and length is a PIC

9(4) COMP variable or numeric literal specifying the length of area.

It should be noted that TYP$ always places characters at the front of the type-ahead buffer,

from which characters are first retrieved by accept operations. If multiple calls on TYP$ are

required, you must therefore make these in reverse order.

The function key byte values may be used during window processing as well as normal accept
operations. For example, the following code segment would display a page of territory records
starting from TR10 in the demonstration system frame TERR:

CALL TYP$ USING $FNBY(5) 1 * 1 <PGE> Display next page
CALL TYP$ USING "TR10" 4 * 2 Key value "TR10"
CALL TYP$ USING $FNBY(16) 1 * 3 <ENQ> Enter ENQ Mode
ENTER WINDOW W1

Remembering that the type-ahead buffer must be filled in the reverse order to the operations
required, line 3 causes the <ENQ> function to be placed in the type-ahead buffer, and forces
the window into enquiry mode. Line 2 supplies the key value "TR10", and line 1 requests a page
operation from this key value. The window is then entered in the normal way.

9.10.1 Programming notes
The type-ahead buffer is limited to the size (normally) defined in the configuration file, and you
must not therefore attempt to save more characters than this. If you do, TYP$ will return
exception condition 3.

The type-ahead buffer may already contain characters keyed in by the operator. If this does not
leave enough room for your characters to be stored, TYP$ will return exception 2. In this event,
you could execute the BELL verb, which clears the type-ahead buffer as well as sounding the
console bell. You must then perform the TYP$ calls again.

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 140 of 238

Appendix A - The Speedbase Compiler ($SDL)

The Speedbase Development Language Compiler generates executable frames in a single-
pass compilation process. It processes a source file which may contain one or more individual
frames, producing executable frame files as its main output. Figure Aa provides a diagrammatic
view of the main input and output files processed by the compiler. Of these, only the frame
source and generated object frames necessarily exist, all other inputs and outputs being
optional.

The compiler may reference the records defined in up to four database dictionaries, details of
which are compiled into executable frames. The database dictionaries are created and
maintained using the Speedbase dictionary maintenance utility, see Appendix F. Each frame
may access any of the records defined in the dictionaries using the ACCESS statement, which
causes record layouts and other details to be copied into the application frame. This is a similar
concept to a Cobol copy library.

The Speedbase compiler contains an integral linkage editor which is invoked during compilation
if the need arises. Most frames will normally make use of a service module, which contains
most of the frequently used system routines. This module is loaded automatically whenever a
frame is executed, and therefore avoids linking system routines into each application frame.

When system routines not resident in the service module are used, the compiler automatically
links them into the frame. These routines may be system routines distributed in the Speedbase
routine library C.$BALIB, or any other compilation files or libraries created using the Global
Cobol compiler.

When a dependent frame is compiled, the controlling frame is used as an input during the
compilation process. The various field and I/O channel definitions are transferred to the
dependent frame, which allows it to access these items as if declared locally. The compiler may
also make use of up to four copybook libraries, which are accessed using the COPY statement.

The compiler can produce any number of object frames in a single invocation, limited only by
the size and number of free directory entries of the specified object device. A practical limitation
in the order of 50 to 99 frames per compilation therefore usually exists.

The created object frames are executed under the control of the Speedbase Presentation
Manager. The Presentation Manager contains routines which control the transfer of information
between the frame and screen or printer, such as those used to control video attributes. A
frame cannot be executed directly, but must run using a loader program, see Section 8.4, or a
menu. The menu opens the databases required, and manages service module loading prior to
running a frame.

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 141 of 238

$SDL
Complier

-linker

Frame source

Data Dictionary

Frame listing

Service module

Copy library

Controlling
frame

Compilation
library or
module

Frame

Figure Aa The SDL Compiler I/O Structure

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 142 of 238

A.1 Compiler Dialogue
The Speedbase compiler is invoked by using a menu entry set up for the purpose or by keying
$SDL at a menu or GSM READY prompt. The following is an example of dialogue which may
be used to compile the sample application listed in Appendix C:

GSM READY:$SDL
$A3 SOURCE:V3DEMO UNIT:S

$A3 OBJECT UNIT:$P SIZE:60000
$A3 DICTIONARY 1:DEMON UNIT:FLS GENERATION 6
$A3 DICTIONARY 2:<CR>
$A3 LISTING UNIT:$PR
$A3 COMPILATION OPTION:<CR>

The above dialogue specifies that the source file S.V3DEMO residing on logical device S is to
be compiled. Object programs are directed to the logical device $P, the program residence unit,
and are restricted to a maximum size of 60,000 bytes. The dictionary to be used in this
compilation is then specified. This dictionary, located on logical device FLS, is then found by the
compiler, which displays its generation number in confirmation.

No further dictionaries are required for this compilation, and this is indicated by entering <CR>
in response to the second dictionary prompt. A compilation listing is required, and this has been
directed to the logical device $PR. No further compilation options are specified.

Compilation of the frames in the source file S.V3DEMO then commences. As compilation of
each new frame begins, the following message is displayed on the screen:

COMPILING frame-id

where frame-id is as specified in each FRAME statement. If a file with this frame-id already

exists on the specified object unit, this message is appended by the following text:

OLD VERSION DELETED

Some care must therefore be taken that existing files are not inadvertently deleted. In most
installations it is wise to reserve a specific unit to act as object unit for Speedbase compilations.

The compiler therefore produces a number of individual object frame files on the designated
unit. It is good practice to combine these files into a program library immediately following
compilation. This is achieved using the $LIB Librarian utility which is described in detail in the
Global Cobol User Manual. The remainder of this section describes each of the Speedbase
compiler prompts in detail.

A.1.1 The Source Prompt
The SOURCE prompt is used to specify the file and unit-id of the source program file to be
compiled. The file specified must be a text file and must begin with an S. prefix. This prefix is
automatically assumed and should not therefore be entered. The unit-id specified may be any
logical or physical random access device.

A.1.2 The Object Unit and Size Prompts
The OBJECT UNIT prompt allows the specification of the object unit to which the generated
executable programs are to be directed. This unit may be any logical or physical random access
device. This is followed by the SIZE prompt. This prompt allows the specification of the

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 143 of 238

maximum size of each object file. This maximum must be large enough to contain the largest
single object program in the compilation. If <CR> is entered in response to this prompt, a default
of 60,000 bytes will be used and the object file truncated on completion of its compilation.

A.1.3 The Dictionary and Unit Prompts
The DICTIONARY prompt requests the name of up eight dictionaries to be referenced during
the compilation. The dictionary name is limited to five alphanumeric characters, the prefix DI is
assumed and should not therefore be entered.

This is followed by the UNIT prompt to allow the specification of the unit on which the dictionary
resides or is to be created. This unit-id may be any logical or physical random access device.
The generation number of the specified dictionary is then displayed.

It is possible that a dictionary may be invalid, owing to serious errors during dictionary
maintenance. If this is the case the compiler will display the following message:

$A3 INVALID DICTIONARY

In this event, the dictionary will have to be corrected before any further attempt is made to
compile frames using it.

A.1.4 The Listing Unit Prompt
The LISTING UNIT prompt allows the specification of the unit-id to which the program listing is
to be directed. The unit-id may be a logical or physical device, being a physical printer or
random access device used for spooling. If the unit-id entered is a printer (i.e. has a unit
number in the range 500 to 599) this device is simply opened.

If the unit-id entered is a random access device, the user is prompted for the file size, in bytes,
to be allocated. The size entered should be large enough to contain the entire listing for all
programs within the source file. If no size is entered, the largest possible spool file will be
created. This file will be truncated on completion of the compilation run.

The listing file created is of text-file format and can therefore be examined using the $INSPECT
utility. This listing file has a file name "L.file" where file is the name of the source file as entered

in response to the SOURCE prompt. If <CR> is entered in response to the LISTING UNIT
prompt, the default printer unit $PR will be selected. The production of the listing may be
suppressed altogether by entering <CTRL A> for this prompt.

A.1.5 The Compilation Option Prompt
The following compilation options may be specified:

ST Prints a symbol table for each program on the listing
BL Prints a binary listing showing generated object code
COP Copies selected member into target library
NCX Causes copybook content not to be listed
NSL Suppresses print of source program lines
LNK Used to specify compilation files for linkage editing
LM Specifies production of a linkage edit map
HIGH Specifies highest memory address that may be used
BASE Specifies an explicit base address
SD Enables Symbolic Debugging of the program using $DEBUG.

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 144 of 238

HT Specifies off-line storage of help text.

These options are further explained below:

A.1.5.1 The ST option

The ST option causes a symbol table to be printed on the program listing. The symbol table is
printed at the end of each compiled program. The table shows the symbol names declared
within the compilation with the appropriate addresses. This information is often useful during
program debugging.

A.1.5.2 The BL option

The BL option causes full details of generated object code to be printed on the compilation
listing. This object code is shown in hexadecimal form next to the corresponding source
program instructions. The principal use of this option is to allow patches to be produced for
application programs. If you have no intention of doing this, the option is best avoided since it
produces a somewhat cluttered listing.

Object code is always printed on the right hand side of the listing. In some circumstances the
generated code may not be printed exactly next to the source code line to which it belongs. For
example, in compound conditional statements where some code cannot be generated until the
entire construct has been processed.

The addresses for the targets of forward jumps and calls within the program are also not known
at the time these instructions are processed, and the listing file is printed. The addresses
printed in this case refer to the code address of the previous reference to the so far undeclared
entry. Similar considerations also apply to the use of HIGH-VALUES and LOW-VALUES
figurative constants, the location and length of which are not known until the entire program is
compiled.

A.1.5.3 The COP option

The COP option allows up to three copy libraries to be specified using the following dialogue:

$A3 COMPILATION OPTION:COP
$A3 COPY LIBRARY:name UNIT:unit-id
$A3 COPY LIBRARY:<CR>

where name is the name of the copy library and unit-id is the unit where the copy library resides.

The unit-id defaults to the unit-id of the program source file if <CR> is keyed. This dialogue

allows up to six copy libraries to be specified. As each is entered, there is a pause as the copy
library is opened and indexed.

A.1.5.4 The NCX option

The NCX option causes copybook content not to be listed within the frame listing.

A.1.5.5 The NSL option

The NSL option suppresses printing of source program lines to the compilation listing. Only
source lines on which errors occurred are printed.

A.1.5.6 The LNK option

The LNK option is used to specify up to four compilation files or libraries to be used during by
the link phase of the Speedbase compiler. Note that the specified compilation files and/or
libraries are only linked into each frame if actually referenced using the CALL statement. During

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 145 of 238

compilation, the Speedbase compiler keeps track of calls made on system library or other
external routines, and these are automatically linked into the program during the last phase of
compilation of each frame.

This facility will normally be used to link system subroutines, such as those required by the
EDIT and SORT verbs. It is, however, also possible for the developer to produce his own
subroutines or subroutine libraries using Global Cobol. The LNK option dialogue is shown
below:

$A3 COMPILATION OPTION:LNK
$A3 COMPILATION MODULE:module-name UNIT:unit-id
$A3 COMPILATION MODULE:<CR>

where module-name is the name of a compilation module or library, entered without the C.

prefix, and unit-id is the unit on which the module or library resides. If <CR> is entered in

response to the UNIT prompt, the unit-id will be defaulted to the object-unit previously entered.

A.1.5.7 The LM option

The LM option causes a link map to be printed at the end of each frame listing. This link map
shows the names of all modules linked into the object frame, with the addresses at which each
module was loaded.

A.1.5.8 The HIGH option

The HIGH option is used to control the use of memory. When you develop application software
products it is important to ensure that they will fit in the available user area on the user's
computer. You might, for example, decide to limit your frames to the use of a 50 Kbyte user
area. To do so, use the HIGH option with an address of C800. The HIGH option dialogue is as
follows:

$A3 COMPILATION OPTION:HIGH HIGH ADDRESS LIMIT #:high

where high is the first unused address, in hexadecimal (e.g. C800).

If you compile a frame which uses a higher address than you have specified with the HIGH
option, the ENDFRAME statement of the offending frame is marked with compiler error 291.
Note that in the compilation listing the ENDFRAME statement always includes the address of
the first free memory location following the frame. In this case the address will be greater than
you have specified in the HIGH option.

A.1.5.9 The BASE option

The BASE option allows an explicit base address to be specified. This is then used as a
program base for all frames in the compilation source. If it conflicts with either a specified
controlling frame or services module it is reset to the default and an error message is displayed.

A.1.5.10 The SD option

The SD option Causes symbolic debug tables to be compiled into the program thus allowing you
to use the symbolic debugging facilities of $DEBUG when testing your program.

A.1.5.11 The HT option

The HT option Causes help text to be stored offline. Offline help text is stored within the
program file but in such a manner that no program address space is used, thus making more
space available for application code. Note that programs compiled with option HT must be run

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 146 of 238

with Speedbase V8.1 or later. If run on earlier versions, the message " No help Available " will
be displayed in response to the <HLP> function.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 147 of 238

Appendix B - Compiler Error and Warning Messages

This appendix describes the error and warning messages produced by the Speedbase compiler.
All the messages listed may be printed as warnings or errors, depending on the context in which
the error occurred. The Speedbase compiler will attempt to produce an executable code file
irrespective of the seriousness of the errors detected during compilation, to avoid unnecessary

re-compilations during the development process.

Compilations containing warnings only are generally correctly executable, but should be
corrected as a matter of good practice. Programs compiled with errors must be corrected and

re-compiled before any serious attempt is made at system testing.

Most error messages indicate the exact location at which the error was detected by means of an
up-arrow character. This character points to the current source code segment being compiled at
the time of error detection and should be used as a guide only.

1 STATEMENT NOT RECOGNISED

A program statement is invalid (e.g. spelt incorrectly) or may not be used within current program
division (e.g. PERFORM in Data Division).

2 OPENING BRACKET "(" EXPECTED

An opening bracket is missing from a statement.

3 CLOSING BRACKET ")" EXPECTED

A matching closing bracket is missing.

4 UNSIGNED INTEGER EXPECTED

An unsigned integer value is either missing or invalid.

5 "ENDSOURCE" STATEMENT EXPECTED

The ENDSOURCE statement has not been coded as the last statement in the program source
file.

6 END OF LINE NOT SEEN

The code line is not terminated by an end-of-line or a comment. The rest of the line is ignored
by the compiler.

7 LISTING FILE SPACE EXHAUSTED

The listing file used to produce the compilation listing is full, or a non-recoverable error has
occurred on the printer. Further printing is suppressed, but the compilation will otherwise be
correctly concluded.

8 INVALID CHARACTER

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 148 of 238

The source program file contains an invalid character, such as lower case letters outside of
quotes, or an invalid end-of-line terminator.

9 TRAILING QUOTE MISSING

A trailing quote (") is missing from an embedded string literal. The rest of the source line is
taken to be part of the literal string.

10 SYMBOL TABLE PAGING ERROR

An irrecoverable I/O error has taken place during a symbol table swapping operation and the
compilation is aborted. Correct hardware problem before re-compiling.

11 INVALID SYTAB OPERATION REQUESTED

An invalid symbol table operation has been requested. Compiler internal error.

12 SYMBOL TABLE SPACE EXHAUSTED

The symbol table is full. This condition will arise if any single program requires more than
approximately 3750 symbols (e.g. data names, sections or labels, etc.) to compile. The only
recourse is to reduce the size of your program.

13 OBJECT OR WORK FILE IS FULL

This error may arise if the object file size specified as a compilation parameter was too small. In
this instance you should increase the size of the file.

14 LEVEL NUMBER EXPECTED

A Global Cobol data item level number in the range of 01 to 49 or 77 was expected but not
found.

15 VALID ONLY FOR LEVELS 01 AND 77

REDEFINES or BASED may only be coded for data items at level 01 or 77.

16 DATA-NAME EXPECTED

A data-name is expected within a Window construct. This name must be at least 3 characters
long.

17 INVALID SYMBOL

An invalid symbol has been coded or omitted altogether. Symbols must begin with a $ or a
character in the range "A" to "Z".

18 LEVEL NUMBER IS INVALID

A Global Cobol data item level number has been detected but is not in the range 01 - 49 or 77.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 149 of 238

19 DUPLICATE NAME DECLARATION

A symbol name has been declared twice within the program, or a variable has been defined with
the same name as a systems variable.

20 UNDECLARED DATA-NAME

The data-name specified as the target of a redefinition or base is undeclared.

21 "PIC" EXPECTED

The clause "PIC" is missing from, or spelt incorrectly in, a Global Cobol data item definition.

22 9, S9, X, D, OR PTR EXPECTED

An invalid picture clause has been coded or altogether omitted. Picture clauses must start with
9, S9, X, D or "PTR".

23 "BASED" INVALID WITH A REDEFINITION

A data item declaration cannot contain both the REDEFINES and BASED clauses.

24 BASE MUST BE A PIC PTR ITEM

The symbol specified as a base pointer in a data item declaration has not been given the picture
clause "PTR".

26 "PIC" INVALID FOR LEVEL 01

A level 01 data item declaration may not contain a picture clause.

27 INVALID PICTURE CLAUSE

The picture clause is present, but has been incorrectly coded. For example, PIC S99 instead of
PIC S9(2).

28 ARRAY MUST BE SINGLE DIMENSION

An attempt has been made to declare a two dimensional array, by coding an OCCURS clause
for an item which already belongs to an occurring group. This is not permitted.

29 ZERO LENGTH GROUP

A group data item does not contain any elementary data items, or only contains items which
themselves are of 0 length.

30 REDEFINITION IS TOO LONG

A redefinition is longer than the group it redefines. Valid code will be generated, but this is likely
to be a programming error.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 150 of 238

31 QUALIFIER ILLEGAL FOR PTR OR D

PIC, PTR or PIC D item is followed by an opening bracket "(".

32 COMMA (,) EXPECTED

A comma is missing from a statement.

33 "FRAME" OR "PROGRAM" EXPECTED

The first statement for all programs must be the FRAME or PROGRAM statement.

34 FRAME ID EXPECTED

A Frame ID has not been found after the FRAME or PROGRAM statement. Alternatively the ID
is an invalid symbol name.

36 "ENDFRAME" EXPECTED

An ENDFRAME or ENDPROG statement has not been coded as the last instruction in the
current program.

39 INVALID LINE OR COL NUMBER

The line or column number coded in a WINDOW statement would result in the display of
characters beyond permitted limits.

41 UNDEFINED RECORD ID

When this error is produced when processing the ACCESS statement, the coded record ID has
not been found in the dictionary. When produced while processing the WINDOW statement, the
record ID has not been earlier defined by an ACCESS statement.

45 DICTIONARY DRA/RCB LOAD FAILURE

A dictionary ACCESS'ed during compilation is corrupt. Try recreating the dictionary and then re-
compile. If the error does not disappear, an internal compiler error is indicated.

48 COMPILER INTERNAL ERROR

An internal error has arisen within the compiler causing it to abort.

51 INVALID RECORD ID

The record ID is either shorter than 2 characters or does not start with an alphabetic character.

64 OPTION NOT RECOGNISED

A Window construct option has been spelt incorrectly.

67 INCONSISTENT OPTION USAGE

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 151 of 238

An option is inconsistent with the items picture clause, or a number of options have been
combined illegally. For example, a protected field coded with option NUL.

68 "DIVISION" EXPECTED

The keyword DIVISION has been omitted or spelt incorrectly.

69 RECORD TYPE EXPECTED

A record type code has been omitted or is invalid.

72 DUPLICATE ACCESS FOR RECORD TYPE

The same record type has been coded twice in an ACCESS statement.

83 "ENDFORMAT" EXPECTED

The ENDFORMAT statement has been omitted.

85 INCONSISTENT PICTURE CLAUSE

A picture clause has been coded for a data item in the Window construct. This picture clause is
not the same as that of the referenced field. Either change it so it is correct, or omit it.

100 STATEMENT OUT OF CONTEXT

A statement has been misplaced. For example, Data Division statement within the Procedure
Division.

103 COMPILER INTERNAL ERROR

An internal compiler malfunction has been detected and the compilation will normally be
aborted. Keep copies of the compilation source code and dictionaries (if any) and contact your
support team.

106 COMPILATION ABORTED

The compilation has been aborted due to a serious error. This message will be preceded by
another explaining the cause of the problem.

107 FEATURE NOT SUPPORTED

The statement or option coded is not supported in this version of the compiler.

108 NEGATIVE WRNXT/OBJ LEN REQUEST

 Internal compiler error. Refer to error 103.

 111 ILLEGAL OPCODE/OPERAND/QUAL

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 152 of 238

An illegal operation code, operand or qualifier has been detected. Internal compiler error, refer
to error 103. Compiler versions 2.0 and earlier only.

112 OPERAND EXPECTED

A symbol or literal string was expected in the source program but not found.

113 INVALID NUMERIC STRING

A numeric literal has been coded incorrectly or omitted altogether.

114 HEX STRING EXPECTED

A hexadecimal string literal was expected, but not found.

115 HEX STRING MUST BE EVEN

A hexadecimal string has been found but has an odd number of characters. The last character
will be ignored to make the string even.

116 INVALID HEX STRING

A hexadecimal string is invalid in that it contains characters outside the range 0 - 9, A - F.

117 OPERAND IS NOT INDEXED

An attempt has been made to code an index for a data item which is not part of an occurring
group, or is not an occurring item.

118 INDEX EXPECTED, 1 ASSUMED

An index has been omitted from a data item which is part of an occurring group or is an
occurring item. An index of 1 will be assumed.

119 COMP VARIABLE OR INTEGER EXPECTED

A numeric variable or integer was expected but not found.

120 OPERAND CAN NOT BE INDEXED

An attempt has been made to index an item with a variable which is itself indexed. This is
illegal.

121 UNDEFINED SYMBOL

A coded symbol is undefined.

122 INVALID NUMERIC STRING

A numeric string literal has been coded incorrectly.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 153 of 238

123 "TO" EXPECTED

Self-explanatory.

124 INVALID OPERAND TYPE

A symbol of an incorrect type required for the specified operation has been coded. For example,
moving an entry name to a data-item, or a numeric field to a pointer item.

125 "GIVING" EXPECTED

Self-explanatory.

126 "ROUNDED" EXPECTED

Self-explanatory.

127 COMP OR DISP NUMERIC VARIABLE REQUIRED

A non-numeric variable or literal has been coded as the target of an arithmetic statement.

128 INVALID ARITHMETIC CONSTRUCT

An arithmetic statement has not been coded with a correct link Word (i.e. "FROM", "TO",
"INTO" or "BY"). Alternatively, an incorrect link word has been used for the particular statement.
For example, ADD A FROM B.

129 32 "IF" LEVELS EXCEEDED

IF statements may not be nested to a greater depth than 32. This limit has been exceeded.

130 NO MATCHING "IF"

An END statement has been found which does not correspond to a preceding IF statement. Too
many END statements have been coded.

131 "EXCEPTION" OR "OVERFLOW" REQUIRED

The ON statement must be followed by "OVERFLOW" or "EXCEPTION".

132 16 "DO" LEVELS EXCEEDED

"DO" statements may be nested to a maximum of 16 levels. This limit has been exceeded.

133 NO MATCHING "DO"/"ENDDO"

An ENDDO or FINISH statement has been found which does not correspond to a matching
"DO" statement. The FINISH statement may only be executed from within a DO loop.

134 DO "UNTIL" OR "WHILE" EXPECTED

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 154 of 238

If any program code follows the DO statement, then this must either be "UNTIL" or "WHILE".
Probably misspelling.

135 "AND"/"OR" MAY NOT BE MIXED

A compound IF or DO condition must be composed only of OR or AND relations. The compiler
has detected the use of both relations.

136 INVALID RELATIONAL OPERATOR

A relational operator is one of:

"=", "<", ">", "LESS", "EQUAL", "GREATER", "SPACE", "SPACES", "HIGH-VALUES",
"LOW-VALUES", "ZERO", "POSITIVE", "NEGATIVE" or "NUMERIC".

137 COND OPERANDS BOTH LITERALS

Both operands in an expression are literals, which of course means that the statement is not
really conditional. The statement will therefore always or never be "true".

138 INVALID CONDITIONAL ACTION

Valid actions that may be coded following an IF statement are:

GO TO, PERFORM, FINISH, EXIT or STOP.

The DEPENDING clause may only be used in an unconditional GO TO statement.

139 "ON" EXPECTED

The word ON was expected but not found.

140 "DEPENDING" VALID WITH GOTO ONLY

The DEPENDING clause may only be used within the GOTO statement. It has been incorrectly
used with the PERFORM statement.

141 "WITH" EXPECTED

Self-explanatory.

142 "WITH" OR "RUN" EXPECTED

Self-explanatory.

143 INCONSISTENT CALL/GOTO/PERFORM

A symbol has been the target of a GOTO, PERFORM and CALL instruction. Since the GOTO
and PERFORM statements require a label or section name, whereas the CALL statement
requires an ENTRY name, this is inconsistent. One of the preceding calls must be incorrect.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 155 of 238

145 "USING" EXPECTED

Self-explanatory.

146 SYSTEM GLOBAL USED IN COMPILE

A symbol has been defined in the program which contains a "$" character. This clashes with a
symbol that the compiler requires for internal purposes. The compilation will therefore fail.

147 "INTO" EXPECTED

Self-explanatory.

148 EDIT TARGET > 30 BYTES

The target of an EDIT statement exceeds 30 bytes. This is not permitted.

149 MAX EDIT SIZE IS 9(12,6)

The source operand in an EDIT statement has a picture clause larger than PIC 9(12,6) and
cannot therefore be processed.

150 9(4) COMP OPERAND EXPECTED

A statement has been coded which requires that the indicated operand has a PIC 9(4) COMP
picture clause. For example, EXIT with name.

151 IF LEVEL NOT ZERO

A section or entry statement was found while an IF statement was still outstanding. One or
more END statements have presumably been omitted.

152 DO LEVEL NOT ZERO

A section or entry statement was found while a DO statement was still outstanding. One or
more ENDDO statements have presumably been omitted.

153 LVL 01/77 BASED ITEM REQUIRED

Operands as targets of the ENTRY USING clause must be BASED and must be level 01 or
level 77 data items.

154 "PROCEDURE DIVISION" ASSUMED

The PROCEDURE DIVISION Header Statement has been omitted.

155 DUPLICATE DIVISION DECLARATION

The same Division Header Statement (e.g. PROCEDURE DIVISION) has been coded more
than once within the current program.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 156 of 238

156 UNDECLARED ENTRY/SECTION/LABEL

The target of a GOTO, PERFORM, or CALL statement is not defined in the program. The
offending symbol name is displayed in the error message.

157 "LINE"/"COL" EXPECTED

A DISPLAY or ACCEPT statement has omitted or incorrectly spelt the key word LINE or COL.

158 DISPLAY ITEM EXCEEDS 127 BYTES

The target of a DISPLAY or ACCEPT statement is longer than 127 bytes. This is not permitted.

159 "LINE" EXPECTED IN DISPLAY

The key word "LINE" is missing from DISPLAY or ACCEPT statement.

160 "COL" EXPECTED IN DISPLAY

The key word "COL" is missing from DISPLAY or ACCEPT statement.

161 UNDEFINED RECORD TYPE CODE

The record ID for a WRITE, REWRITE, DELETE or GET statement is not defined in an
ACCESS or RF statement.

162 RECORD TYPE CODE EXPECTED

The target coded for WRITE, REWRITE, DELETE or GET statement is not a valid record ID
code, but some other symbol.

163 ALL MASTER RECORDS REQUIRED FOR UPDATE

A WRITE, REWRITE or DELETE statement has been coded. All master records associated
with this record must previously have been referenced in an ACCESS statement.

164 "KEY" EXPECTED

Characters were found after the record ID in a GET statement, but this was not the "KEY"
clause. If an RRN is coded, it must be preceded by this key word.

165 KEY MUST BE 9(6) COMP

The key supplied as part of a GET statement must be 9(6) COMP.

166 "NOLOCK", "PROTECT" OR "RETRY" REQUIRED

Characters were found at the end of a READ, FETCH or GET statement, but these were not
the NOLOCK or RETRY options.

167 RETRY RANGE IS -1 TO 127

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 157 of 238

The retry option requires an argument in the range of -1 to 127. This value must be a numeric

literal.

168 DATABASE INDEX OR FD NAME EXPECTED

The READ and FETCH statement must be followed by an FD name or an index name
associated with an record declared by an ACCESS statement. All other I/O statements require
a record ID or FD name to be coded.

169 PF NAME EXPECTED

The PRINT statement must be followed by a PF construct record ID. The ID was either not
coded or not present in the current program.

170 POINT "AT" EXPECTED

Self-explanatory.

171 BASE "ON" OR "AT" EXPECTED

The BASE verb requires the key-word ON or AT. This was not coded for the instruction.

172 UNDECLARED DATA-ITEM

A routine has been defined in the Routines Section for a variable which has not been declared
within the window.

173 DUPLICATE ROUTINE DECLARATION

Two or more routines of the same type have been coded for the same field. This is not
permitted.

176 "LENGTH" EXPECTED

The LENGTH key word has been omitted or spelt incorrectly within the MOUNT statement.

177 MAX 16 PRINT LINES PER PF

The maximum number of print lines that may be created by a PF construct is 16. This limitation
has been exceeded.

178 PF LINES DEFINED OUT OF SEQUENCE

Print lines must be declared in order within a PF construct. See Chapter 5 for further details.

179 ITEM EXCEEDS COLUMN 132

A data or text item has been coded with a column number that would cause it to be printed past
column 132. This is not permitted.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 158 of 238

180 PF RECORD ID EXPECTED

The record ID specified in a PF statement HEADER or TRAILER clause is not a previously
defined PF record ID. These options can only refer to PF constructs coded previously within the
same Data Division.

181 START "AT" OR "FROM" EXPECTED

The PF construct START verb requires the key word AT or FROM. This has been omitted or
spelt incorrectly.

182 END LINE # PRECEDES START LINE #

The end line number in a PF construct START statements precedes the start line number. This
is not permitted.

183 NO PRINT LINES IN PF CONSTRUCT

A PF construct has been defined which contains no print lines. This will produce unpredictable
results.

184 INSTRUCTION BUFFER OVERFLOW

The instruction being compiled is so complex that the compiler's instruction buffer has
overflowed. No code will be generated for the instruction. This error should not occur and
indicates a compiler internal error. Contact your support team.

185 "FORMAT" EXPECTED

The key word FORMAT has been spelt incorrectly or omitted from the EDIT statement.

186 "ORGANISATION" EXPECTED

The ORGANISATION clause has been spelt incorrectly or omitted from the FD statement.

187 FD ITEM TOO LARGE/LONG

A parameter coded for an FD construct is either too long or has too great a value. For example,
a record length exceeding 32767 bytes.

188 INVALID FD ITEM

A parameter coded for an FD construct is invalid or omitted. For example, coding "ABC" as
record length.

189 INVALID ORGANISATION

The ORGANISATION IS statement in the FD was not followed by INDEXED-SEQUENTIAL,
RELATIVE-SEQUENTIAL or UNDEFINED.

190 "ASSIGN TO UNIT" EXPECTED

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 159 of 238

Self-explanatory.

191 "FILE" EXPECTED

The FILE clause has been incorrectly spelt or omitted from the FD construct ASSIGN
statement.

192 INVALID FD OPTION

An FD option has been coded which is invalid for the access method. For example, a KEY
statement with an UNDEFINED access method.

193 "KEY IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD construct.

194 "LENGTH IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD construct.

195 "SIZE IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD construct.

196 DUPLICATE FD OPTION

The same option has been specified twice within an FD. For example, two OPTION ERROR
statements.

197 "ERROR", "RESET", OR "IGNORE" REQUIRED

The FD OPTION statement is not followed by the key word ERROR or RESET or IGNORE.

198 "ON ERROR" EXPECTED

The FD ON statement is not followed by the key word ERROR.

199 INVALID ACTION FOR ORGANISATION

A FETCH statement or a READ PRIOR, READ FIRST or READ LAST statement has been
coded to access an FD. This is invalid.

200 (RE)WRITE FD "FROM" EXPECTED

A WRITE or REWRITE instruction has had the FROM key word spelt incorrectly or omitted.

201 LOCK FD "WAIT" EXPECTED

A LOCK statement contains characters after the area specification which is not the WAIT
option. Probably spelt incorrectly.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 160 of 238

202 FD NAME EXPECTED

An FD name defined in the Data Division was expected, but not found.

203 OPEN "OLD", "NEW", OR "SHARED" EXPECTED

An OPEN statement does not contain one of the options OLD, NEW or SHARED.

204 "TRUNCATE" OR "DELETE" EXPECTED

A CLOSE statement has characters at the end of the instruction which is not one of
TRUNCATE or DELETE.

205 BASED ITEM INVALID IN WINDOW

BASED variables, which includes most systems variables, may not be referenced within a
window.

206 INVALID/ILLEGAL VALUE ASSIGNMENT

A value assignment made for an item in the Data Division is invalid or illegal. For example,
attempting to add the value "ABC" to a numeric field.

207 VALUE ASSIGNMENT IS TOO LONG

A value assignment made to a character variable is longer than that character variable. Any
excess characters will be ignored.

208 COPYBOOK NOT FOUND

The book ID coded for a copy statement was not found in the copy libraries specified in the
initial compiler dialogue.

209 TOO MANY NESTED COPY STATEMENTS

A copy book may itself copy further copy books and so forth up to a maximum of eight nested
copies.

210 ".END" WITHOUT COPYBOOK

A .END statement has been found within the program source.

211 COPYBOOK NAME EXPECTED

The copybook name is missing from the COPY statement.

212 INVALID SUBSTITUTION VALUE

The target of the SUBSTITUTING clause in the COPY statement is invalid. The name must be
enclosed in quotes and no longer than eight characters.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 161 of 238

213 OPERAND TOO SHORT

The region code operand in the LOCK or UNLOCK statement is smaller than four bytes.

214 RECURSIVE CALLS ARE ILLEGAL

A CALL statement has passed the called entry-point as a parameter. This is illegal.

219 TOO MANY SYSTEM ROUTINES REQUIRED

The frame requires more than 127 compilation modules to be linked into the current frame.

220 TOO MANY GLOBAL SYMBOLS IN LINK

The frame requires more than 512 global symbols, which has exceeded the compiler global
table capacity.

221 DUPLICATE GLOBAL SYMBOL DETECTED

A global symbol is defined in two or more places within the current frame, and/or linked
compilation modules.

222 COMPILATION LIBRARY IS CORRUPT

One or more of the compilation files specified in the initial compiler dialogue is corrupt, and must
be replaced prior to re-compilation.

223 COMPILER INTERNAL LINKING ERROR

An internal error has arisen during the linkage edit phase of compilation. Contact your support
team.

224 PROGRAM SIZE EXCEEDS 32K

The current frame exceeds the 32K compiler limitation. The program must be reduced in size or
segmented into an overlay structure.

225 EQ/GT/GE/LT/LE/NE/8/16/EX OR NX EXPECTED

A conditional intermediate code instruction, such as $JUMP, has been coded with an invalid or
missing condition.

226 OPERAND IS WRONG FORMAT OR LENGTH

The indicated operand has a picture clause that is inconsistent with the coded statement, for
example coding a 9(6) COMP variable in an EXIT WITH statement.

227 UNSUPPORTED INTERMEDIATE CODE INSTRUCTION

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 162 of 238

The coded intermediate code instruction is invalid or unsupported by the compiler (e.g. $CC
31).

228 INVALID SVC CALL

The System Service number coded with the SVC statement is invalid.

229 KEYWORD "MAP" EXPECTED

This keyword has been spelt incorrectly or omitted.

230 INVALID DISPLAY MAPPING FUNCTION

The coded function is not recognised, or is invalid with other options coded in the statement.

231 TOO MANY ACCESS STATEMENTS

More than 64 I/O channels have been declared using the ACCESS statement. The program
must be segmented in order to allow access to more than 64 record types.

232 NO DICTIONARY OPEN

The dictionary ID coded in the ACCESS statement has not been opened during initial compiler
dialogue.

233 "DEPENDENT ON" EXPECTED

One or both of the above key-words has been spelt incorrectly or omitted.

234 DUPLICATE WINDOW DIVISION STATEMENT

The WINDOW DIVISION statement has been coded twice within the current frame.

235 "ENDWINDOW" EXPECTED

The ENDWINDOW statement has been spelt incorrectly or omitted

236 WINDOW ID EXPECTED

The window ID has been omitted or miscoded in the Window Statement. This ID must be 2
characters long.

237 "USING" EXPECTED

The USING clause has been omitted from the Window Statement.

238 RECORD OR INDEX NAME EXPECTED

A record ID or index name must be coded following the USING clause in the Window
Statement.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 163 of 238

239 UNDECLARED RECORD OR INDEX NAME

The ID coded following the USING clause in a Window Statement is not a record type code or
an index name. The ID has either been miscoded, or the record type has not been coded in an
ACCESS statement.

240 "DEPENDENT ON" EXPECTED

One or both of the above key-words is spelt incorrectly or omitted.

241 UNDECLARED MASTER RECORD ID

One of the master record types coded in the window statement is undefined. It has probably not
been coded in an ACCESS statement.

242 RECORD IS NOT A LINKED MASTER

The coded master record type is not directly linked from the target record type, and therefore
may not be used.

243 CONTROLLING RECORD ID EXPECTED

The ID coded following the DEPENDENT ON Clause is not a valid record ID.

244 UNDECLARED CONTROLLING RECORD ID

The controlling record ID coded following the DEPENDENT ON Clause Is undefined. It has
probably been omitted from the ACCESS statement.

245 RECORD HAS NO PRIMARY INDEX

The controlling record type coded following the DEPENDENT ON clause has no primary index,
and may not therefore be used.

246 NO INDEX MATCHES CONTROLLING RECORD

The target index does not have an index which starts with the same fields as the controlling
record's primary index key.

247 DEFAULT IDX CANNOT BE USED

The default index specified in the USING clause does not start with the same fields as the
controlling record's primary index key, and cannot therefore be selected.

248 "POP-UP" INVALID WITH "QREM"

These two options are mutually exclusive.

249 CAN'T SEQUENCE TO SAME WINDOW

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 164 of 238

The target of the Window construct's SEQUENCE statement must differ from the current
window ID. It is not possible for a window to go forwards or back to itself.

250 UNTIL "NXT" OR "CURRENT REC" EXPECTED

The repeat clause has been coded with an invalid option. One of the above two options must be
used.

251 NOLOCK INVALID WITH UPDATES

The NOLOCK option has been specified in a window that is to perform updates. The mode-
enabling clauses should be coded before the unlock statement.

252 OPTION REQUIRES TARGET RECORD

The option coded requires a target record type (as specified by the USING clause). For
example, the ENQ, enable enquiries clause requires that the window has a target record type
on which to enquire.

253 SPLIT n OFFSET n EXPECTED

One of the above keywords has been omitted or spelt incorrectly.

254 INVALID WINDOW DIMENSIONS

The line or column number coded, when combined with the effect of the data-item or text-item
length, the BASE statement and the SCROLL statement, has exceeded the permitted window
dimension. The permitted dimensions are columns 2 to 127 inclusive, and lines 2 to 46
inclusive.

255 BASE "AT" EXPECTED

The keyword "AT" has been omitted from the Window Construct BASE statement.

256 OPTION INVALID WITH TARGET RECORD

The indicated option is invalid for windows coded with the Window Statement's USING clause.

257 RECORD ACCESSED WITH SUBSTITUTION

The master record type coded after the USING clause in the Window Statement has a
substituted name (i.e. was declared in an ACCESS statement coded with the SUBSTITUTING
clause). This is not permitted.

258 SEL AND MNT ARE MUTUALLY EXCLUSIVE

Self-explanatory.

259 MUST BE CODED BEFORE LOCKING OPTION

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 165 of 238

The mode enabling clauses, ADD, ENQ, etc., must be coded before the LOCK and NOLOCK
window options.

260 MORE THAN 127 FIELDS IN WINDOW

More than 127 data items have been coded for a given window, thus exceeding this compiler
limitation. The window should be broken into a number of smaller windows.

261 NO DATA ITEMS IN WINDOW

The window contains no data-items, and can therefore only be displayed. Unpredictable result
will occur if the window is entered.

262 NO INDEX AVAILABLE IN WINDOW

The target record type has no index by which it can be retrieved.

263 DEFAULT INDEX FIELDS MISSING

A default index was coded in the window construct's USING clause, but none of the index fields
are coded as data-items.

264 TEXT ITEMS EXCEED 2K BYTES

Text items coded for the current window exceed the compiler buffer limitation of 2K. The
amount of text displayed in the window must be reduced.

265 UNDECLARED WINDOW ID

A window ID coded in a SEQUENCE, ENTER CLEAR or DISPLAY statement is undefined.

266 ROUTINES SECTION MISPLACED

The Routines Section has been coded outside of the Window Division.

267 "SECTION" EXPECTED

The keyword "SECTION" is required.

268 INVALID ROUTINE NAME

An invalid routine name has been coded in the Routines Section.

269 "WINDOW" EXPECTED

The keyword "WINDOW" has been omitted from the CLEAR, DISPLAY or ENTER statement.

270 INVALID ACCEPT STATEMENT OPTION

An invalid accept statement option has been coded.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 166 of 238

273 HELP COMMENTS ARE MISPLACED

Help text comments (i.e. help text preceded by a "\") may only be coded between the WINDOW
Statement and the first Window Construct Detail Line.

274 HELP COMMENTS MAY NOT BE BROKEN

Only one group of help text comments may be coded for each window, which may not be
interrupted by any intervening statements, including comment lines.

275 CONTROLLING "FRAME" EXPECTED

The key-word FRAME has been omitted or spelt incorrectly.

276 OBJECT FILE IS FULL

This limitation has been exceeded while writing the symbol table of a controlling frame to the
frame's object file.

277 CONTROLLING FRAME NOT FOUND OR IN USE

The controlling frame specified within the FRAME statement was not found or in use by another
partition.

278 PROGRAM IS NOT A CONTROLLING FRAME

The frame specified as a controlling frame was not compiled using the CONTROLLING FRAME
statement.

279 CONTROLLING FRAME IS CORRUPT

The symbol table stored in the controlling frame could not be retrieved because of corruption. It
should be recompiled.

280 DEPENDENT FRAMES SVCS MODULE DIFFERS

The controlling frame has been compiled using a different version of the compiler. It should be
recompiled.

281 DISABLE "SKP", "CLR", "HME" EXPECTED

The Window Construct's DISABLE clause has not been followed by one of the above function
mnemonics.

282 ENABLE "ABO" OR "NXT" EXPECTED

The window construct's ENABLE clause has not been followed by one of the above function
mnemonics.

283 DEP FRAME'S DICTIONARIES DIFFER

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 167 of 238

The dictionary(s) used to compile the controlling frame differ, or have been specified in a
different order, from the dictionary(s) now being used to compile the dependent frame

284 FIELDS MUST BE CONTIGUOUS

The field list specified as a controlling key within a dependent window is not located in
contiguous memory. Furthermore, the fields must be defined in the same order within the Data
Division as coded within the field list.

285 INVALID DISPLAY FORMAT

The display formats coded in a FMT clause are either invalid, or incorrectly combined.

286 VALID ONLY WITH NUMERIC FIELDS

The FMT option may only be used to re-format numeric fields.

287 INVALID WITH CHANGED PICTURE

The FMT option may not be used when a picture clause has been coded which differs from the
variable's defined picture clause.

288 "TXT" ONLY VALID WITH PIC X

The TXT Window option may only be coded for PIC X variables.

289 BASE ADDRESS CORRUPTS SVCS MODULE

The explicit base address entered at compile time would conflict with memory space occupied
by the services module. The base address has been increased to avoid corruption of this
module.

290 BASE ADDRESS CORRUPTS CONTROLLING FRAME

The explicit base address entered at compile time would conflict with memory space occupied
by the controlling frame. The base address has been increased to avoid corruption.

291 HIGH ADDRESS LIMIT EXCEEDED

The high address limit entered at compile time has been exceeded by the frame.

292 PRV8 REQUIRES DEPENDENT FRAME

Compiler option Privilege level 8 can only be assigned to Dependent Frames.

293 INVALID FOR DEPENDENT FRAME

The SWAP-FILE instruction may only be coded in non-dependent frames. When coded in the
root frame of an overlay structure this instruction automatically applies to all dependent frames
and it may not therefore be coded in them.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 168 of 238

294 INVALID SWAP-FILE SIZE

A swap-file size has been coded that is not a valid numeric, or is not in the range 1 to 65535.

295 SWAP-FILE SIZE EXCEEDED

The indicated pop-up would exceed the allocated size of the swap-file and the pop-up's screen
image will be stored in memory instead. To overcome this you should increase the size of the
swap file. This message will also result if you attempt to store a pop-up wider than 85 bytes in
the swap-file.

296 OPT "NSW" EXPECTED

The NSW clause has been omitted or spelt incorrectly.

297 UNBALANCED DO/IF STRUCTURE

The compiler has detected a DO.. ENDDO structure which is partly subject to an IF ... END
Structure. The IF ... END structure must either wholly enclose an DO ... ENDDO structure or
vice-versa.

298 COLON (:) EXPECTED

A colon is missing in the indicated position.

299 INVALID FOR LOCAL PF VARIABLE

The FMT and ADD options may only be used with referenced fields.

300 SOURCE FOR ADD MUST BE COMP

The source field for the ADD option must be a COMP variable. Note that the COMP
specification should only be on the original declaration of the variable not in the PF construct.

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 169 of 238

Appendix C - Sample Application

FRAME TERR "Sales Territory Entry & Maintenance" **********************
** **

*
ACCESS TR
*
WINDOW W1 USING TR **

** **
** S A L E S T E R R I T O R Y W I N D O W **
** **

*
\This window is used for the entry and maintenance of sales territory
\records. Information may be displayed in order of territory number,
\territory name or account manager. Also displayed is a reference
\and, in protected fields, the outstanding orders and cash.
*
REPEAT

AUTOPGE
*
LINE 4 13
BASE AT 5 16
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"
03 02 "Nmbr/Name"
 05 02 TRTRNO X(4) CHK NOE
 05 07 TRNAME X(20)
*
02 29 "__Total-Outstanding__"
03 29 "Order-Amnt"

 05 29 TROSOR S9(6,2) C PRO
03 40 " Cash-Amnt"
 05 40 TROSCH S9(6,2) C PRO
14 02 "Account Manager" NSC
 14 18 TRACMG X(15) NSC
15 02 "Reference" NSC
 15 18 TRREFN X(11) NSC
*
ENDWINDOW
ENDFRAME
PAGE "CUST CUST MAINTENANCE"

FRAME CUST "Customer Entry & Maintenance" *****************************
** **

*
ACCESS CU
*
WINDOW W1 USING CU **
** **
** C U S T O M E R W I N D O W **
** **

*
\This window is used for entry and maintenance of customer records.
\Information may be displayed in the order of customer number, name
\or contact. Also displayed is the customer address, telephone
\number and, in protected fields, the outstanding orders and cash.
*
REPEAT
AUTOPGE
LINE 4 13
BASE AT 5 15
SCROLL 8 BY 1 SPLIT 1 OFFSET 1

02 02 "Customer"
03 02 "Number/Name"
 05 02 CUCSNO X(6) CHK NOE
 05 09 CUNAME X(20)
02 31 "__Total-Outstanding__"

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 170 of 238

03 31 "Order-Amnt"
 05 31 CUOSOR S9(6,2) C PRO
03 42 " Cash-Amnt"
 05 42 CUOSCH S9(6,2) C PRO
14 02 "Address" NSC
 14 10 CUADD1 X(20) NSC
 15 10 CUADD2 X(20) NSC
14 32 "Contact" NSC
 14 40 CUCONT X(12) NSC
15 32 "Phone" NSC
 15 40 CUPHON X(12) NSC

*
ENDWINDOW
ENDFRAME
PAGE "STCK STOCK MAINTENANCE"
FRAME STCK "Stock Entry & Maintenance " *******************************
** **

*
ACCESS ST
*
WINDOW W1 USING ST

*
\This window is used for the entry and maintenance of stock records.
\Records may also be retrieved, in three different sequences:
\
\ stock number
\ stock description
\ primary supplier number.
\
\Also displayed is the retail price, quantity in-hand and reserved,
\stock levels 1,2,3 and, in protected fields, the outstanding
\quantities from sales and purchase orders.

*
AUTOPGE REPEAT
LINE 4 13
BASE AT 4 7
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
*
02 02 "Stock"
03 02 "Number"
 05 02 STSTNO X(6) CHK NOE
 05 10 STDESC X(20)
02 31 "Primary"

03 31 "Supplier"
 05 32 STSUP1 X(6)
02 43 "Retail"
03 43 "Price"
 05 40 STRCRP 9(6,2) C
02 51 "_____ Units ____"
03 51 "On-hand"
 05 51 STOHND S9(6) C
03 60 "reservd"
 05 60 STRSVD S9(6) C
14 02 "Outstanding Orders....."

15 02 "Purchase Orders" NSC
 15 18 STPORD S9(6) C NSC PRO
16 02 "Sales Orders" NSC
 16 18 STSORD S9(6) C NSC PRO
14 32 "Bin-No"
 15 32 STBINO X(6) NSC
14 44 "Price Level-1"
 14 58 STLVL1 9(6,2) C NSC
15 50 "Level-2" NSC
 15 58 STLVL2 9(6,2) C NSC
16 50 "Level-3" NSC

 16 58 STLVL3 9(6,2) C NSC
*
03 10 "Description"
ENDWINDOW
ENDFRAME
PAGE "INVC INVOICE ENTRY"

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 171 of 238

FRAME INVC "Sales Invoice Entry & Maintenance" ************************
** **

*
ACCESS CU TR IN
*
WINDOW W1 USING IN CU TR **
** **
** S A L E S I N V O I C E W I N D O W **
** **

*
\This window is used for the entry and maintenance of sales invoices.
\Records may be displayed in four different sequences:
\
\Invoice number, Invoice-Date, Customer number, and Territory number.
\
\When a new invoice record is created, you must enter the appropriate
\customer and territory numbers. If you are not sure of these numbers
\you may key $TR-UF1 at the customer number or territory number field
\to display a pop-up enquiry window.
*

REPEAT
LINE 4 13
BASE AT 4 11
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Customer"
03 03 "Number"
 05 03 INCSNO X(6) UF1 NOE
15 02 "Customer's Name :" NSC
 15 21 CUNAME X(20) NSC DIS
02 12 "Invoice"
03 12 "Number"

 05 12 ININVC X(6) CHK NOE
03 22 "Date"
 05 20 INDATE D
03 29 "Territory"
 05 31 INTRNO X(4) UF1
16 02 "Territory's Name :" NSC
 16 21 TRNAME X(20) NSC DIS
03 40 "GL-Code"
 05 40 INGLCD X(6)
02 51 "Invoice"
03 52 "Amount"

 05 49 INIAMT S9(5,2) C NOE
14 02 "Invoice Narrative:" NSC
 14 21 INDESC X(28) NSC NUL
*
PAGE
ROUTINES SECTION ***
** **
**
*
V-INCSNO. * VALIDATE CUSTOMER NUMBER...
 IF $FUNC = 1 * IF UF1

 ENTER WINDOW W2 * - ENTER CUSTOMER POP-UP
 ON EXCEPTION EXIT WITH 1 * EXCEPTION MEANS <BCK> KEYED
 MOVE CUCSNO TO INCSNO * ELSE SAVE SELECTED CUST #
 EXIT * ALL DONE
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH CUCSN KEY INCSNO PROTECT RETRY 3 * FETCH CUST REC & PROTECT IT
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Customer Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*

V-INTRNO. * VALIDATE TERRITORY NUMBER...
 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W3 * - ENTER TERRITORY POP-UP
 ON EXCEPTION EXIT WITH 1 * EXCEPTION MEANS <BCK> KEYED
 MOVE TRTRNO TO INTRNO * ELSE SAVE SELECTED TERR #
 EXIT * ALL DONE

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 172 of 238

 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH TRTRN KEY INTRNO PROTECT RETRY 3 * FETCH TERRITORY RECORD
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Territory Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*
D-INDATE. * DEFAULT INVOICE DATE
 MOVE $$DATE TO INDATE * TO TODAYS DATE
 EXIT *
*

ENDWINDOW
*
PAGE
WINDOW W2 USING CUNAM ********** C U S T O M E R P O P - U P *******
* **
*
\This optional window is used to select a customer during invoice
\entry. You may display customer records using the usual enquiry
\facilities, and select one from the displayed list.
*
POP-UP SEL

AUTOPGE
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
LINE 4 10
BASE AT 10 45
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
*
02 02 "Customer"
 05 02 CUCSNO X(6)
03 02 "Number/Name"
 05 09 CUNAME X(20)

 11 02 CUADD1 X(20) NSC
 12 02 CUADD2 X(20) NSC
*
ENDWINDOW
*
*
WINDOW W3 USING TRNAM ********** T E R R I T O R Y P O P - U P ****
* **
*
\This optional window is used to select a territory during invoice
\entry. You may display territory records using the usual enquiry

\facilities, and select one from the displayed list.
*
POP-UP SEL
AUTOPGE
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
*
LINE 4 10
BASE AT 10 45
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"

 05 02 TRTRNO X(4)
03 02 "Number/Name"
 05 09 TRNAME X(20)
11 02 "Account Manager" NSC
 12 02 TRACMG X(15) NSC
11 18 "Reference" NSC
 12 18 TRREFN X(11) NSC
*
ENDWINDOW
ENDFRAME
PAGE "CENQ CUSTOMER/INVOICE ENQUIRY"

FRAME CENQ "Customer Invoice Enquiry" ********************************
** **
**
*
ACCESS IN CU
*

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 173 of 238

WINDOW W1 USING CU **
** **
** CUSTOMER SELECTION WINDOW.. **
** **

*
\This window is used to select a customer using the usual enquiry
\facilities. Once a customer has been selected, the next window
\is used to display that customer's invoices.
*
SEL

SEQUENCE EXIT W2
REPEAT UNTIL CURRENT RECORD
*
LINE 3
BASE AT 4 6
02 02 "Customer Number"
 02 19 CUCSNO X(6)
02 30 "Name"
 02 36 CUNAME X(20)
04 02 "Contact"
 04 11 CUCONT X(12)

05 02 "Address"
 05 11 CUADD1 X(20)
 06 11 CUADD2 X(20)
04 33 "Telephone"
 04 44 CUPHON X(12)
05 33 "O/S-Order"
 05 46 CUOSOR S9(6,2) C
06 33 "O/S-Cash"
 06 46 CUOSCH S9(6,2) C
*
ENDWINDOW

PAGE
WINDOW W2 USING IN DEPENDENT ON CU ***********************************
** **
** INVOICE DISPLAY WINDOW.. **
** **
**
*
\This window is used to display invoices for the selected customer.
\Invoices are displayed in invoice number order.
*
SEQUENCE W1 CLW

REPEAT
ENQ POP-UP AUTOPGE
*
LINE 4
BASE AT 8 11
SCROLL 10 BY 1 SPLIT 1 OFFSET 1
02 02 "Invoice"
03 02 "Number"
 05 02 ININVC X(6)
03 11 "Date"
 05 09 INDATE D

03 18 "Description"
 05 18 INDESC X(28)
03 46 "GL-Code"
 05 47 INGLCD X(6)
03 57 "Amount"
 05 54 INIAMT S9(5,2) C
*
ENDWINDOW
ENDFRAME
PAGE "ORDER ORDER ENTRY "
FRAME ORDER "Order Entry and Maintenance" ******************************

** **
**
*
ACCESS CU TR OR OL ST
*
DATA DIVISION

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 174 of 238

*
77 STLVL REDEFINES STLVL1 OCCURS 3 PIC 9(6,2) C * TO INDEX PRICE LEVELS.
*
WINDOW W1 USING ORORD CU TR
*
\This frame is used for entry and maintenance of orders. The initial Order
\Header window may be used to select an existing order for modification or
\to create a new order. When a new order is created, you must enter the
\appropriate customer and territory numbers. If you are not sure of these
\numbers, you may key $TR-UF1 at the customer Number or territory Number
\field to display an enquiry window.

\
\The initial Order Header window is then followed by the Order Line window
\where lines belonging to the order may be created or displayed.
*
ADD MNT * ENABLE ADD,ENQ/SEL & MNT MODES
REPEAT UNTIL CURRENT RECORD * FWD EXIT ONLY WITH LOCKED RECORD
ENABLE NXT * ALLOW <NXT> FOR QUICK SELECTION
LINE 3 6
BASE AT 3 3
02 02 "Order Number"
 02 20 ORORDN X(6) CHK NOE

02 42 "Order Total"
 02 55 ORTOTL 9(6,2) C PRO
04 02 "Customer Number"
 04 20 ORCSNO X(6) UF1 NOE
 04 42 CUNAME X(20) DIS
05 02 "Territory Number"
 05 20 ORTRNO X(4) UF1 NOE
 05 42 TRNAME X(20) DIS
07 02 "Delivery Address"
 07 20 ORDAD1 X(20) TAB NUL
 08 20 ORDAD2 X(20) NUL

09 02 "Contact"
 09 20 ORCONT X(12) NUL
10 02 "Telephone"
 10 20 ORPHON X(12) NUL
07 42 "Order Date"
 07 56 ORORDT D NUL
08 42 "Required Date"
 08 56 ORRQDT D
09 42 "Price Code"
 09 63 ORPRCD 9 C NOE
10 42 "Notes"

 10 54 ORDLNO X(10) NUL
*
PAGE
ROUTINES SECTION **
** **

*
V-ORCSNO. * VALIDATE CUSTOMER NUMBER...
 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W3 * - ENTER THE CUST POP-UP
 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED

 MOVE CUCSNO TO ORCSNO * - ELSE SAVE SELECTED CUSTOMER #
 EXIT * - ALL DONE.
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH CUCSN KEY ORCSNO PROTECT RETRY 3 * FETCH CUST REC & PROTECT IT
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Customer Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*
V-ORTRNO. * VALIDATE TERRITORY NUMBER...
 IF $FUNC = 1 * IF UF1

 ENTER WINDOW W4 * - ENTER THE TERRITORY POP-UP
 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED
 MOVE TRTRNO TO ORTRNO * - ELSE SAVE SELECTED CUSTOMER #
 EXIT * - ALL DONE.
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 175 of 238

 FETCH TRTRN KEY ORTRNO PROTECT RETRY 3 * FETCH THE TERITORY RECORD
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Territory Locked or Not Found "* ELSE AN ERROR
 EXIT WITH 1
*
D-ORORDT. * DEFAULT ORDER DATE
 MOVE $$DATE TO ORORDT * TO TODAYS DATE
 EXIT
*
V-ORPRCD. * VALIDATE THE PRICE-CODE
 IF ORPRCD POSITIVE * MUST BE > 0

 IF ORPRCD < 4 EXIT * .. AND < 5
 END
 ERROR " Price Code must be in range 1 TO 3 "
 EXIT WITH 1
*
ENDWINDOW
PAGE
WINDOW W2 USING OL$SQ DEPENDANT ON OR ***************************************
** **
** O R D E R L I N E I T E M W I N D O W . . . **
** **

*
\This window is used to add line items to the current order, or to amend
\existing order lines. When a new order line is added, the stock number
\of the order line must be entered. If you do not know the appropriate
\stock number key $TR-UF1 at the Stock Number field to display the stock
\selection window.
\
\Keying $TR-NXT at any stage completes the order, and another order may
\then be entered or amended.
*

POP-UP * THIS WINDOW POPS UP
SEQUENCE EXIT CLW, EXIT CLW * EXIT TO PROCEDURE DIVISION
AUTOPGE * DISPLAY 1ST PAGE ON ENTRY
REPEAT UNTIL NXT * LOOP TILL <NXT> KEYED.
*
LINE 4
BASE AT 8 8
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Stock"
03 10 "Description"
 05 02 OLSTNO X(6) UF1 CHK NOE

03 02 "Number"
 05 10 OLDESC X(20) DIS
02 33 "Date"
03 33 "Reqd"
 05 31 OLDTRQ D
02 45 "Unit"
03 44 "Price"
 05 41 OLPRCE 9(5,2) C NOE
02 51 "Order"
03 52 "Qty"
 05 51 OLORQT 9(5) C NOE

02 62 "Line"
03 61 "Amount"
 05 58 OLLAMT S9(5,2) C DIS
PAGE
ROUTINES SECTION ***
** **
**
*
V-OLSTNO. * VALIDATE STOCK #
 MOVE ORORDN TO OLORDN * INITIALISE THE ORDER NUMBER
 MOVE ORTRNO TO OLTRNO * THE TERRITORY NUMBER

 MOVE ORCSNO TO OLCSNO * THE CUSTOMER NUMBER
 IF $FUNC = 1 * IF 1 KEYED..
 ENTER WINDOW W5 * - ENTER THE STOCK POP-UP
 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED
 MOVE STSTNO TO OLSTNO * - ELSE SAVE STOCK#
 EXIT * - ALL DONE.

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 176 of 238

 END *
 IF $MODE = 1 EXIT * SUPPRESS VALID'N IN ENQ MODE
 FETCH STSTN KEY OLSTNO PROTECT RETRY 3 * FETCH THE STOCK RECORD
 ON EXCEPTION * EXCEPTION MEANS...
 ERROR " Stock record Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
 END
 MOVE STDESC TO OLDESC * MOVE DESCRIPTION TO O/L RECORD
 EXIT
*
D-OLDTRQ. * DEFAULT DATE REQUIRED

 MOVE ORRQDT TO OLDTRQ * SET LINE DATE TO HEADER DATE.
 EXIT
*
D-OLPRCE. * DEFAULT UNIT PRICE
 MOVE STLVL(ORPRCD) TO OLPRCE * SELECT PRICE AS PER PRICE LEVEL
 EXIT * AND EXIT
*
V-OLORQT. * VALIDATE ORDER QUANTITY
 MULTIPLY OLORQT BY OLPRCE GIVING OLLAMT
 ON EXCEPTION * MAKE SURE NOT TOO BIG!!
 OR OLLAMT NOT POSITIVE * VALIDATE OUTSTANDING QTY AND

 OR OLLAMT > 99999 * CALCULATE LINE VALUE.
 ERROR " Invalid Qty or Price "
 EXIT WITH 1 * EXIT WITH 1 INDICATES INVALID
 END *
 EXIT * NORMAL EXIT MEANS ALL OK.
*
R-WRITE. * INITIALISE PRIOR TO WRITE
 MOVE OLORQT TO OLOSQT * O/S QTY = ORIGINAL QTY
 EXIT
*
ENDWINDOW

PAGE
**
** **
** MISC POP-UPS.... **
** **
**
*
WINDOW W3 USING CUNAM * C U S T O M E R P O P - U P
*
\This optional window is used to select a customer during entry of the
\Order Header window. You can display customer records using the usual

\Enquiry facilities, and select one from the displayed list.
*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
AUTOPGE
*
LINE 4 10
BASE AT 11 43
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Customer"

 05 02 CUCSNO X(6)
03 02 "Number/Name"
 05 09 CUNAME X(20)
 11 02 CUADD1 X(20) NSC
 12 02 CUADD2 X(20) NSC
ENDWINDOW
*
WINDOW W4 USING TRNAM * T E R R I T O R Y P O P - U P
*
\This optional window is used to select a Territory during entry of the
\Order Header window. You can display Territory records using the usual

\Enquiry facilities, and select one from the displayed list.
*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
AUTOPGE

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 177 of 238

*
LINE 4 10
BASE AT 11 42
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"
 05 02 TRTRNO X(4)
03 02 "Number/Name"
 05 09 TRNAME X(20)
11 02 "Account Manager"
 12 02 TRACMG X(15) NSC
11 18 "Reference"

 12 18 TRREFN X(11) NSC
ENDWINDOW
PAGE
WINDOW W5 USING STDES * S T O C K P O P - U P
*
\This optional window is used to select a Stock record during entry of
\order line items. You can display stock records using the usual
\Enquiry facilities, and select the required stock item from the list.
*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW

REPEAT UNTIL CURRENT RECORD
AUTOPGE
*
LINE 4 8
BASE AT 12 40
SCROLL 3 BY 1 SPLIT 1 OFFSET 1
02 02 "Stock"
03 02 "Number/Description"
 05 02 STSTNO X(6)
 05 09 STDESC X(20)
09 02 "Quantity on Hand" NSC

 09 22 STOHND S9(6)C NSC
10 02 "On-hand/Reserved" NSC
 10 22 STRSVD S9(6)C NSC
11 02 "Retail Price" NSC
 11 20 STRCRP 9(6,2)C NSC
*
ENDWINDOW
*
PROCEDURE DIVISION ***
** **
** ALL THE WINDOWS ARE CONTROLLED HERE! **

** **
**
*
AA-000. ENTER WINDOW W1 * ENTER ORDER HEADER WINDOW
 ON EXCEPTION EXIT WITH 1 * <BCK> EXIT..
*
 ENTER WINDOW W2 * ENTER LINE-ITEM WINDOW
 ON EXCEPTION * IGNORE <BCK>
 END *
 DISPLAY WINDOW W1 * REDISPLAY HEADER TO UPDATE
 GOTO AA-000 * THE ORDER TOTAL & RE-ENTER.

*
ENDFRAME
PAGE "REP01 STOCK STATUS REPORT"
FRAME REP01 "Stock Status/ Forward Orders Report" *********************
** **

*
ACCESS CU ST OL * CUST/STOCK/ORDER LINE RECS.
*
DATA DIVISION
*

77 Z-ORQT PIC S9(9) COMP * TOTAL # ON ORDER
77 Z-OSQT PIC S9(9) COMP * TOTAL O/S QTY
77 Z-LAMT PIC S9(9,2)COMP * TOTAL VALUE OF ORDERS
*
PF H1 * PRINT FORMAT FOR HEADER
START AT 1 * PRINT AT LINE 1 ONLY

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 178 of 238

*
01 01 "SPEEDBASE V3 DEMONSTRATION SYSTEM"
01 52 "STOCK STATUS - FORWARD ORDERS"
01 107 "DATE:" 01 113 $$DATE
01 123 "PAGE:" 01 128 $PGNO
03 10 "STOCK# DESCRIPTION"
03 40 "REQ-DATE ORDER# CUST# CUSTOMER NAME"
03 86 "ORDER-QTY O/S-QTY VALUE"
ENDFORMAT
*
PF D1 HEADER H1 * PRINT FORMAT FOR DETAIL LINE

START FROM 5 * PRINT FROM LINE 5 ONWARDS
*
01 10 OLSTNO * STOCK#
01 19 OLDESC * DESCRIPTION
01 40 OLDTRQ * DATE REQ'D
01 19 OLDTRQ * DATE REQ'D
01 50 OLORDN * ORDER NUMBER
01 58 OLCSNO * CUSTOMER NUMBER
01 65 CUNAME * CUSTOMER NAME
01 90 OLORQT ADD(Z-ORQT) * ORDER QUANTITY
01 100 OLOSQT ADD(Z-OSQT) * OUTSTANDING QTY

01 109 OLLAMT ADD(Z-LAMT) * LINE TOTAL
ENDFORMAT
*
PF T1 HEADER H1 * FORMAT FOR TOTAL LINES
START FROM 5 * PRINT FROM LINE 5 ONWARDS
*
01 40 "ON-HAND:-" 01 49 STOHND
02 40 "RESERVD:-" 02 49 STRSVD
01 58 "P-ORDRS:-" 01 67 STPORD
02 58 "S-ORDRS:-" 02 67 STSORD
02 87 "========" 01 87 Z-ORQT S9(7)

02 97 "========" 01 97 Z-OSQT S9(7)
02 107 "===========" 01 107 Z-LAMT S9(7,2)
03 01 ""
ENDFORMAT
PAGE
WINDOW S1 * A C C E P T O P T I O N S
*
\This frame produces the Stock Status Forward Orders report. It gives
\an example of the use of the PF construct in developing report pro-
\grams.
*

LINE 4
BASE AT 10 21
02 02 "First Stock# Required"
 02 32 S1STK1 X(6) NUL
03 02 "Last Stock# Required"
 03 32 S1STK2 X(6)
05 02 "Restart from page No"
 05 32 S1RSPG 9(4) C NUL
*
ROUTINES SECTION
*

V-S1STK1. * VALIDATE FIRST STOCK#
 FETCH FIRST OLSTN KEY S1STK1 NOLOCK* SEE IF ANY AT ALL..
 ON EXCEPTION * IF STOCK # DOES NOT EXISTS
 AND $$COND = 4 * AND IT'S END OF FILE
 ERROR " Invalid Stock Number " * - MUST BE INVALID
 EXIT WITH 1 *
 END
 EXIT
*
D-S1STK2. * DEFAULT SECOND STOCK#
 MOVE "ZZZZZZ" TO S1STK2 * CAN'T BE HIGHER THAN THAT.

 EXIT
*
V-S1STK2. * VALIDATE SECOND STOCK #
 IF S1STK2 NOT < OLSTNO EXIT * OK IF >= TO 1ST ITEM FOUND
 ERROR " No Items to Print " * ELSE NOTHING TO PRINT
 EXIT WITH 1

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 179 of 238

*
R-PROCESS.
*
 MOVE S1RSPG TO $RSPG * SET UP START FROM PAGE
 DO UNTIL OLSTNO > S1STK2 * PRINT EACH STOCK#
 MOVE 0 TO Z-ORQT Z-OSQT Z-LAMT * CLEAR TOTALS
 FETCH STSTN KEY OLSTNO NOLOCK * FETCH THE STOCK RECORD
 DO * NOW PROCESS EACH LINE
 FETCH CUCSN KEY OLCSNO NOLOCK * FETCH CUST RECORD
 PRINT D1 * PRINT THE LINE ITEM
 FETCH NEXT OLSTN KEY OLSTNO NOLOCK * GET NEXT LINE ITEM

 ON EXCEPTION FINISH * NO MORE FOR THIS ITEM
 ENDDO * ALL ORDER LINES DONE
 PRINT T1 * SO PRINT THE TOTALS
 ENDDO * DO THE NEXT STOCK#
 EXIT * REPORT FINISHED.
*
ENDWINDOW
ENDFRAME
ENDSOURCE

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 180 of 238

Appendix D - EXIT and STOP Codes

This appendix documents the EXIT and STOP errors that may occur during the running of a
Speedbase application. When the Speedbase Presentation Manager detects an error of this
type, the EXIT or STOP code is displayed at the baseline. Please report these error messages
to your software supplier.

D.1 EXIT Codes
This sections describes EXIT codes generated by the Speedbase Presentation Manager. EXIT
codes occur when an exception condition arises within your Speedbase application program
and the exception has not been trapped by an ON EXCEPTION or ON OVERFLOW statement.
This causes the following error message to be displayed:

$91 TERMINATED - EXIT nnnnn

The number nnnnn is the exit code, the meanings of which are described later in this section. It

should be noted that only exit conditions that are produced by the Speedbase Presentation
Manager are documented here. Those produced by the GSM and various system routines are
described in detail in the GSM Utilities Manual.

EXIT 25301 A window was terminated by the <BCK> function.

EXIT 25302 A window (or series of windows) was terminated by the use of the <ABO>

function.

EXIT 253nn An exception condition was returned by a window Process Routine in order to

terminate the window.

EXIT 254nn An accept operation was terminated using a function other than <RET>.

EXIT 25501 A record locked exception was returned following a GET, READ, or FETCH

statement coded without the NOLOCK clause.

EXIT 25502 Requested record key not found. The index key specified in a READ or FETCH

statement was not found. In sequential operations in V8.1 and later the next or
prior record is returned unlocked.

EXIT 25503 Exception conditions 25501 and 25502 have occurred simultaneously using the

READ or FETCH FIRST, NEXT, LAST or PRIOR statements.

EXIT 25504 An end-of-file or start-of-file condition has occurred when using a READ or

FETCH FIRST, NEXT, LAST or PRIOR statement. This condition can also occur
with the GET statement, when the requested RRN key is beyond the logical end-
of-file of the target record type.

EXIT 25505 An attempt has been made to DELETE a record with an active (i.e. non-zero)

servant record group.

EXIT 25506 The target of a WRITE statement contained a primary index key which already

existed on the database.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 181 of 238

EXIT 25507 A WRITE statement could not be completed because no free data records remain

in the database for the target record type.

EXIT 25508 The RRN key coded for a GET statement specified a deleted record.

EXIT 25511 A date conversion from display to computational format using a MOVE statement

failed because the display format date was invalid.

EXIT 25513 A MOUNT statement could not be fulfilled by the operator.

EXIT 25520 The routine B$CHK has detected that the Speedbase system area $BASYS is
loaded.

EXIT 25521 An attempt was made to open the same database twice using database open

routine B$OPN.

EXIT 25522 The database open routine B$OPN was unable to open the specified database

either because it was not present on the specified unit, or the file-type was
incorrect.

EXIT 25523 The data-file(s) belonging to a database could not be opened by the database

open routine B$OPN. This problem is usually caused by incorrect unit assignment.

EXIT 25524 A database could not be opened because it was already exclusively opened by

another partition.

EXIT 25525 An I/O error occurred during database open.

EXIT 25526 Insufficient memory on user stack to open database.

EXIT 25527 A call on B$OPN could not complete because the DB index file could not be

opened within the UNIX directory, and the resulting error was not trapped.

EXIT 25528 A call on B$OPN could not complete because a C-ISAM channel could not be

initialised, and the resulting error was not trapped. This may occur when
insufficient memory is available.

EXIT 25529 A duplicate key condition has been detected within a C-ISAM file and the resulting

exception was not trapped. The database should be rebuilt.

EXIT 25530 The system area $BASYS could not be loaded prior to executing a frame. This

occurs if the program $BASYS is not found, an I/O error occurs, or if there is
insufficient room on the user stack to load this module.

EXIT 25531 Invalid display formatting codes passed to qualifier definition routine B$QLN.

EXIT 25532 The display format codes passed to B$QLN specify positive or negative value

highlighting (<>DC+-) although the target operand's format is un-signed.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 182 of 238

EXIT 25542 An attempt has been made to run a frame compiled using the V4.0 development
system within the V3.0 Speedbase Presentation Manager.

EXIT 25543 An attempt has been made to execute a frame which is not at the anticipated

depth in an overlay structure. For example, this will happen when using the
SEQUENCE statement to transfer control between frames at different levels in an
overlay structure.

EXIT 25544 An attempt has been made to execute a dependent frame which was not compiled

with the currently loaded controlling frame.

EXIT 25546 The system area $BASYS could not be loaded prior to executing a frame. This

occurs if the program $BASYS is not found, an I/O error occurs, or if there is
insufficient room on the user stack to load this module.

EXIT 25547 A frame load has failed because the required program was not found, or was too

large to fit into the available memory. This exit condition will also result if an I/O
error occurs during loading.

EXIT 25548 The field name coded in a call on the B$WRJ right justification routine was not

found in the coded window-id.

EXIT 25549 A call on B$XCL failed because the routine could not provide exclusive access,

and the resulting exception was not trapped.

EXIT 25550 A call on B$STA or B$ST2 failed because the required database was not open,

and the resulting exception was not trapped.

EXIT 25551 XA$FAM exception condition caused by unusual UNIX file processing condition.

$$RES holds corresponding result code. This error will not occur in application
programs.

D.2 STOP Codes
This section describes STOP codes generated by the Speedbase Presentation Manager. STOP
codes occur when a serious processing condition arises within your application program, from
which recovery is not possible. This causes the following error message to be displayed:

$91 TERMINATED - STOP nnnnn

The number nnnnn is the stop code as listed and described in detail later in this section. Note

that only stop codes produced by the Speedbase Presentation Manager are documented here.
The GSM and various system routines also produce stop codes. These are described in detail
in the GSM Utilities Manual.

Note that certain STOP codes can arise during error checking performed by the Speedbase
Presentation Manager, and indicate that the database is corrupt. In this event the database
should be restored or rebuilt before any further processing is performed.

STOP 25301 An I/O operation has been performed on the I/O channel of a window's target

record type during execution of the window.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 183 of 238

STOP 25302 An unsupported I/O operation has been attempted by the window processor. This
error indicates a system software malfunction.

STOP 25303 A clear operation has been attempted on a window that has not yet been
displayed.

STOP 25304 A DISPLAY WINDOW . . TEXT statement has been executed when the text of the

window was already displayed.

STOP 25305 An attempt has been made to display a window using the DISPLAY WINDOW

statement while the I/O channel of the window's target record type did not contain
a record.

STOP 25306 A recursive call has been made on a window that is executing. For example, this

error will occur if a window is cleared from the routines section while still executing
as a result of a prior entry to the window.

STOP 25307 The index key length coded within a window does not match the key-length of the

target record type. This error should not occur when processing records stored on
the database.

STOP 25308 A CLEAR statement has been performed while windows are executing. This error

can also occur if a dependent frame without the NOCLEAR option has been
EXECed while windows are still active in the controlling frame.

STOP 25501 Database not open or generation number mismatch. This condition arises when a

database required by the loaded program is not open, or the open data-base has
a generation number different from that expected by the program. This error
occurs if old, superseded versions of programs are run.

STOP 25502 Rewrite or delete without current record. An application program has attempted to

REWRITE or DELETE a record which was not locked at the time the instruction
was executed.

STOP 25503 I/O area outside current partition. A database access verb has specified a data

record area which is not within the current program partition. Suspect program file
corruption or a compiler malfunction.

STOP 25504 Primary index key modification. A REWRITE instruction has attempted to modify

the target record's primary index key. This is illegal.

STOP 25505 Data record not locked. This stop code indicates an internal error within the

Speedbase DBMS. The M$DW I/O routine has detected a data re-write without
the presence of a record level lock.

STOP 25506 Master record not locked. A WRITE or REWRITE Instruction has taken place in

which master records to be linked to the target record were not locked. The DBMS
has recovered from this error and completed the I/O request correctly before
terminating the program with this code.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 184 of 238

STOP 25507 GET key is negative. The RRN specified in the GET verb's KEY clause was
negative. This is invalid. This error can also arise if a GET statement is coded
without KEY clause. This occurs when no I/O has so far taken place, or the last
retrieval returned an end-of-file or start-of-file condition.

STOP 25513 Illegal line or col. The line or column number coded as a variable in a DISPLAY or

ACCEPT... LINE statement is invalid. The number was either not positive or else
exceeded the boundaries of the screen.

STOP 25514 PF structure exceeds 16 levels. An attempt has been made to execute a PF

construct with more than 16 levels of headers or trailers using the PRINT
statement. The PF statement may specify a PF as a header or trailer, and this PF
may itself specify a further PF as a header or trailer. However, this is limited to a
maximum of 16 levels of PFs.

STOP 25515 An internal error has been detected within the database rebuild utility, and it is

likely that this is caused by an programming problem within this program. This
problem could alternatively be caused by extremely serious corruption within the
database or database dictionary files.

STOP 25530 An attempt has been made to run a frame directly, rather than using the $BA

command.

STOP 25540 An unsupported ACCEPT or DISPLAY statement call has been made by a Global

Cobol module linked into a Speedbase frame.

STOP 25541 An indexing error has occurred within a copy-library specified during a compilation

using $SDL. The copy-library is probably corrupt.

STOP 25550 An internal system error has occurred. You should write down the details from the

screen and note in detail what you were doing just before the stop code occurred.
This information should be forwarded to your software supplier for analysis.

STOP 25551 Speedquery was unable to find the database dictionary (or it was in use) on the

same volume as the database itself. Make sure that the dictionary is available to
Speedquery.

STOP 25552 An irrecoverable I/O error occurred while reading the database dictionary. This

probably means that the dictionary has become corrupted and should be restored
from backup. Care should be taken to ensure that the correct version is
recovered.

STOP 25553 Speedquery has exhausted the available memory during the execution of a critical

part of the query and was unable to recover. You should simplify the query or
increase the user partition size to obtain more memory.

STOP 25554 An irrecoverable I/O error has occurred while trying to read or write the query work

file. This could be caused by a bad track on the $P subvolume. You should verify
the volume before continuing.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 185 of 238

STOP 25555 Speedquery was unable to create a work file large enough for the current query.
You should allocate more file space on the current $P volume before restarting
the query.

STOP 25556 Speedquery has detected a corrupt database index. You should perform a rebuild

or a restore to recover the index file.

STOP 25557 Speedquery has detected that the database data files are corrupt. You should

perform a rebuild or a restore to recover the database.

STOP 25558 Speedquery has detected that the saved query file requested is corrupt. You

should perform a restore to recover the query from backup.

STOP 25559 Speedquery was unable to find the saved query requested.

STOP 25560 Incompatible saved query. Speedquery has detected that the database dictionary

has been modified since the query was saved. You must re-develop the query.

STOP 25561 Speedquery was unable to open the print file. This could be caused by a system

error, no room on the spool unit, or no room available on the $PR volume. Please
check before continuing.

STOP 25562 An irrecoverable I/O error occurred while trying to write to the print file. This could

be caused by a system corruption, lack of space on the spool unit, lack of space
on the allocated $PR subvolume, or a hardware error..

STOP 25563 The DX file created to hold the database structure is too small. This is caused by

an excessively complex database. Contact your software supplier with the details.

STOP 25564 A bad header was found in the dictionary. This may mean that the dictionary has

somehow become corrupted and will have to be restored from backup. Care
should be taken to ensure that the correct version is recovered.

STOP 25565 Speedquery was unable to read the dictionary. This may mean that the dictionary

has somehow become corrupted and will have to be restored from backup. Care
should be taken to ensure that the correct version is recovered. This error may
also be caused by a bad disk track, in which case you should verify the dictionary.

STOP 25566 An irrecoverable I/O error occurred while opening or closing the DX file. This could

be caused by a system corruption, a corrupt DX file, or a bad disk track. Verify the
subvolume, then delete the existing DX file. When re-started, Speedquery
automatically recreates the DX file.

STOP 25567 An irrecoverable I/O error occurred while reading or writing the DX file. This could

be caused by a system corruption, a corrupt structure file, or a bad disk track. You
should verify the subvolume then delete the existing DX file. When restarted
Speedquery will recreate the DX file.

STOP 25568 Insufficient room for the DX file on the database subvolume. Speedquery needs

4.5 Kbytes of spare space to create the DX file. You should allocate the space
then restart Speedquery.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 186 of 238

STOP 25569 An I/O error occurred while trying to read the list of available files on the $P

subvolume. This is usually caused by a corrupt directory. Please check and rectify
before continuing.

STOP 25570 An I/O error occurred while reading or writing the sort work file on the SQW

subvolume. Verify the subvolume before continuing.

STOP 25571 An internal system error has occurred while trying to perform a sort. You should

write down the details from the screen and note in detail what you were doing just
before the STOP code occurred. This information should be forwarded to your
software supplier for analysis.

STOP 25580 Speedbase was unable to open the pop-up image swap file required by the last

loaded frame. This will occur if there is insufficient free space on logical unit
"BAW", or if an I/O error occurs during opening of the swap-file.

STOP 25581 An I/O error has occurred during swap-file processing. This may be due to a disk

error.

STOP 25582 Using the BCDB, BXCL or B$XSH routines, an attempt was made to access a

database which was not open at the time of the call.

STOP 25583 I/O error in B$XFAM. The UNIX error result code will have been displayed

immediately before this stop code. This error will not occur in application
programs.

STOP 25584 Unsupported I/O Request in XA$FAM. Internal Systems Software error.

STOP 25586 The next free data-record slot was permanently locked during a WRITE operation.

The database should be restored or rebuilt before any further processing is
performed.

STOP 25587 Find exceeds 16 IDX Levels. A random index search has exceeded 16 levels of

index. The database should be restored or rebuilt before any further processing is
performed.

STOP 25588 Dummy high not found in IDB scan. The HIGH-VALUES index terminator was not

found during an index scan. The database should be restored or rebuilt before any
further processing is performed.

STOP 25589 GVA over/underflow. A WRITE, REWRITE or DELETE statement has caused a

GVA field to overflow on one of the associated Master records. GVA over-flow will
occur if the computational capacity of the field is exceeded. The database should
be restored or rebuilt before any further processing is performed.

STOP 25590 Link fails by permanent lock. A WRITE or REWRITE Instruction failed because

one of the master records to be linked was not locked. The DBMS recovery
procedure was then unable to recover from this error because the master record
to be linked was permanently locked by another partition. The database should be
restored or rebuilt before any further processing is performed.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 187 of 238

STOP 25591 Link fails by non-existent master. A WRITE or REWRITE instruction failed

because one of the master records to be linked was not locked. The DBMS
recovery procedure was then unable to recover from this error because the
master record specified by the master access key did not exist. The database
should be restored or rebuilt before any further processing is performed.

STOP 25592 Index key not found in delete. During the DELETE verb processing, all index key

entries referencing the record to be deleted are normally removed. The DELETE
verb was unable to find one of these index keys during processing. See Note 1.
The database should be restored or rebuilt before any further processing is
performed.

STOP 25593 Illegal index key. A WRITE or REWRITE verb has attempted to create an index

entry starting with a high-values byte (#FF). This is illegal. The database should
be restored or rebuilt before any further processing is performed.

STOP 25594 Free IDB pool exhausted. A WRITE or REWRITE instruction required a free index

block to complete an index key addition. The free index pool was however empty.
The database should be restored or rebuilt before any further processing is
performed.

STOP 25595 Link to unused or deleted IDB. An error has been detected where an index block

is incorrectly linked to a deleted or unused IDB. The database should be restored
or rebuilt before any further processing is performed.

STOP 25596 Irrecoverable I/O error has taken place during an IDB or data transfer. The

database should be restored or rebuilt before any further processing is performed.

STOP 25597 Negative IDB or data record. The IDB/data transfer routine within the DBMS has

detected a request for a negative record number. Internal error. The database
should be restored or rebuilt before any further processing is performed.

STOP 25598 File condition. A file condition has arisen during a data transfer to or from disk,

such as an attempt to transfer data to or from an area out-side the database file
extents. The database should be restored or rebuilt before any further processing
is performed.

STOP 25599 IDB and record key mismatch. An index entry has been read which does not

match the index key held on the record as stored on the database. The database
should be restored or rebuilt before any further processing is performed.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 188 of 238

Appendix E - The Speedbase Editor

The Speedbase editor utility $SDE, described in this appendix has two main functions. The first
is the traditional manipulation of text in a new or pre-existing text file. The other main function is
a specialist one and concerns the creation and modification of the window displays used in all
Speedbase applications. In other words, it is a text editor and a window editor.

$SDE is a full screen editor and allows you to add, delete, insert or modify text in any position

on the screen. The cursor is moved around the screen using the cursor keys, up, down, left,
right and the tab, back-tab and <RET> keys.

The editor allows the simultaneous manipulation of up to three text files, using the main text
buffer and two hold buffers. It provides facilities for you to copy and move blocks of text from
one buffer to another, and to delete blocks of text from a buffer. Buffers may be merged into
one another and may be copied to an external text file. Text from an external text file may be
merged into a buffer. You may swap to any buffer at any time, to inspect or edit its contents,
then move on to another buffer, using these buffer facilities to perform powerful and complex
editing functions.

The editor allows you to move forwards or backwards through the entire file without restriction
and has no requirement, as some editors do, for you to exit and restart the edit session. The
complexity associated with switching between modes (e.g. insert mode to overstrike mode)
common to most editors, has been eliminated. $SDE is always in overstrike mode, with function
keys used to insert characters, lines, or blocks of text anywhere in the file. The editor provides a
full backup of the original input file on completion of an edit session to ensure that in the event
of a system failure you may always return to the previous version of the text file.

Text searches are performed across the entire buffer from the current position, eliminating the
need to move to the top of the file to start a full search. All text searches may be terminated on
command, in the case of an incorrectly initiated search for example. The editor also provides a
very powerful global replace function with single or multiple replacements, in silent or full display
mode, with or without replacement validation. You may recover the last deleted line or block of
text, using the undelete and void block functions. A line may be duplicated, split, appended to
another line or centred on the screen.

This appendix is divided into seven sections. The introduction describes the major functionality,
benefits and restrictions of the editor. Section E.2 describes how to run the utility and enter or
exit its amendment phase. Section E.3 describes the direct commands of the editor in detail and
Section E.4 the executable commands. Sections E.5 and E.6 describe window editing in detail
and Section E.7 lists the error and warning messages which may appear during the amendment
phase.

E.1 Editor Facilities
The editor makes extensive use of the keyboard's cursor and function keys. These are set up
using the Speedbase Presentation Manager customisation utility. At any point in the operation
of the editor you may see which keys are available to carry out editing commands by keying
<HLP> to display the Speedbase help window. The commands recognised by the editor fall
naturally into two main groups, known as direct and executable commands.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 189 of 238

Direct commands are carried out directly a key is pressed. To see which keys are assigned to
each direct command simply key <HLP> while editing. A standard Speedbase help window is
displayed listing the commands available and the associated keytop names. Figure E.1a shows
the screen that results from keying <HLP> while editing the sample program S.V3DEMO,
including typical key-top names:

Figure E.1a - Direct Command Help Window

If you use the key labelled Execute a command, F9 in the above example, the editor enters
executable command mode. The cursor moves to the baseline and the command prompt is
displayed:

C:

You may reply with any of the executable commands listed in Table E.4a. A response of <RET>
or <BCK> returns the cursor to its original screen position.

E.1.1 Buffers
The editor has three buffers for the manipulation of text. Buffer 0 is the main text buffer into
which the input file is read on entry and must be the buffer in use at the end of the edit session.
Otherwise the buffers are identical and you may use any of the direct or executable commands,
except commands A and E, in any buffer. Commands allow you to move, delete, copy, save,
read and merge text into buffers and external files.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 190 of 238

E.1.2 Backup
The editor keeps a backup of the file you are editing on the same direct access volume as the
input file. At the end of the editing session the new version of the text file is given the name of
the input file which itself has the prefix of its file-id changed to B. For example, if you edit the
text file S.V3DEMO, at the end of the edit session the modified file is named S.V3DEMO and
the old version of it is named B.V3DEMO.

E.1.3 Automatic Insert
As you add text at the end of file, EOF for short, the editor extends the file automatically. This
eliminates the need for you to insert new lines in order to extend the file.

E.1.4 Restrictions
The editor assumes you are using a display terminal of 24 lines by 79 characters. If it finds a
line of greater than 79 characters it will automatically truncate it. Note that the Speedbase
compiler compiles 79 character lines but that the Global Cobol compiler truncates all lines
longer than 72 characters. The editor assumes that the terminal you are using has a TAP set up
using the Speedbase customisation utility.

You may only increase the size of your text file by 32K characters per editing session. When
you get to within 2% of this limit the editor issues the following warning:

Less than 2% available space - Please save

You should then use one of the instructions:

Save text Performs the same function as command E, end edit, but you remain in the
same edit window.

New file As above but allows you to edit a new input file.

End edit See Section E.3.18. and Section E.4.9.

Abandon See Section E.4.5.

If you fail to take the appropriate action, the editor will terminate the edit session once the
available space has been exhausted with the following message:

Edit output file exhausted

If you receive the above message during an important editing session, you could attempt to
recover the editor work file. The editor work file is named as follows:

$SDE nnb

where nn is the number of the user partition in which you are running the editor and b is the

buffer number. It occupies the same volume as the source file, and contains that part of the file
which has been correctly updated. You may use the $INSPECT command to merge this with
the remainder of the original source file, so that you can continue working from the point at
which the file space became exhausted. You should be aware of the difficulty of recovering the
work file and take heed of the warning message when issued.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 191 of 238

E.2 Edit Phase
To run the editor use the menu entry you have set up or key $SDE At the option prompt. The
initial screen is displayed and you enter the filename and unit:

Figure E.2a - The Initial Editor Screen

In response to the filename prompt you should enter the name of the required input file. Unless
you explicitly supply a prefix when you key the file-id, the editor assumes you are working with a
program source file and appends the S prefix by default. If, for example you reply V3DEMO, the
editor assumes you wish to create or modify source file S.V3DEMO. Note that you may not edit
a file with a B prefix because this is reserved by the editor for backup versions of edited files.

You then reply to the Unit Id prompt with the unit holding the input file. Logical or physical unit-
id's may be entered.

E.2.1 To Quit
To quit at this stage and return control to the monitor simply key <BCK> to either the Filename
or Unit Id prompt.

E.2.2 Creating a New File
When the input file you specify does not exist you are prompted to create a new file or reply N
to return to the filename prompt. If a new file is required, the editor creates it with a size of 32K

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 192 of 238

characters using the name specified, then enters the amendment phase. A blank screen is
displayed with the cursor in the top left hand corner and the message "Reached EOF" displayed
at the baseline. You may start entering text anywhere on the screen. Note that when the cursor
is at EOF the editor automatically appends lines to the file as you enter text.

E.2.3 Updating an Existing File
When the file specified on the initial screen is found, is valid and is not in use, details are
displayed of the old and new file size and the date the file was last changed. At the baseline the
following message is displayed:

Details OK (Y/N/Q) ?

Reply Y or <RET> to accept the details and enter the amendment phase, N to go back to the
filename prompt or Q to exit. If the details are accepted, the editor displays the first screen of
text from the input file. If the file does not contain a full screen of text the "Reached EOF"
message is displayed. The cursor is placed in the top left hand corner of the screen.

E.2.4 The Amendment Phase
After input of the required file details, the text screen is displayed. The first 23 lines of this
screen are used as a window into the input file, displaying those lines that can currently be
edited. The baseline, line 24, is a multiple purpose line used for the entry of editor commands
and the display of prompts, information, warning and error messages.

At any moment, the only text lines that may be changed by editing instructions are those that
appear on the current screen, referred to as a page. However the current screen may be moved
forward or backward within the file to make other lines available for modification.

E.2.5 Quitting the Amendment Phase
Two special editing instructions cause the editor to quit the amendment phase. Command E,
end edit, is used when you have satisfactorily completed an edit session. It causes the
remainder of the input file, if any, to be copied to the output file, and the input file, if present, to
be renamed with prefix B as the new backup file. Any previous backup file is deleted.

The output file is then given the same file-id as the original input file. For example, suppose you
reply V3DEMO in response to the filename prompt in order to modify source file S.V3DEMO.
Then, as a result of keying command E, the following happens:

● If a file named B.V3DEMO already exists on the volume containing S.V3DEMO it is deleted

● Then the existing S.V3DEMO is renamed B.V3DEMO

● Next, the new file containing the result of the edit session is itself renamed S.V3DEMO

Note that if on issuing this command there are active buffers (i.e. buffers that are in use) the
editor issues the following warning:

Buffers active - Are you sure (Y/N) ?

If you reply Y to this prompt the editing session is terminated. Any other reply causes the editor
to ignore the request and return to the amendment phase. Command A, abandon edit, may be
used if you decide not to keep the changes made during the current edit session and wish to

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 193 of 238

retain the original input file. The editor does not delete the original backup file or rename the
input file as it does for command E. You are prompted:

Are you sure (Y/N) ?

unless there are buffers active (i.e. in use) in which case you are prompted:

Buffers active - Are you sure (Y/N) ?

If you reply Y to these prompts the session is abandoned. Any other reply causes the editor to
ignore the request and return to the amendment phase.

E.3 Direct Commands
The editor recognises two types of commands, direct and executable commands, see Tables
E.3a and E.4a. Direct commands are executed using predefined function keys on the keyboard.
The key-tops shown in Table E.3a are typical examples, yours will probably be different and are
displayed when you key <HLP>.

Direct command

Example key-top

Appendix
section

Insert character Insert E.3.1

Delete character Delete E.3.2

Change case Control-C E.3.3

Clear to end of line Control-F E.3.4

Restore original line Control-R E.3.5

Save current buffer & continue End E.3.6

Next page Page Down E.3.7

Previous page Page Up E.3.8

Tab right Tab E.3.9

Tab left ^Tab E.3.10

Start/End of screen Home E.3.11

Insert line F5 E.3.12

Enter silent insert mode F4 E.3.13

Delete line F7 E.3.14

Undelete last deleted line Control-D E.3.15

Repeat last search F6 E.3.16

Execute a command F9 E.3.17

Save buffer & terminate editor Escape E.3.18

Table E.3a - $SDE Direct Commands

E.3.1 Insert character
Inserts a blank space at the current cursor position, which may be anywhere on the screen. On
insert, the text string to the right of the cursor is shifted across by one character without
affecting the rest of the line. A text string is defined to be a string of text delimited by two
spaces. Only the current line is affected.

E.3.2 Delete character

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 194 of 238

Deletes the character at the current cursor position.

E.3.3 Change case
Lower case a - z are changed to upper case A - Z and vice versa, at the current cursor position.

E.3.4 Clear to end of line
Clears the line from the current cursor position to the end of the line, leaving the cursor in the
same position.

E.3.5 Restore original line
If having edited a line you would prefer to restore its original contents use this command before
moving from the line or executing a command.

E.3.6 Save current buffer & continue
This command causes the contents of the current buffer to be saved on disk. Its use prevents
the loss of editing work in the event of a computer failure.

E.3.7 Next page
Fetches the next screen of 23 lines and displays it. If the end of the input file is reached, the last
page of the file is displayed with the message "Reached EOF" at the baseline.

E.3.8 Previous page
Fetches the previous screen and displays it. If the start of the input file is reached, the first page
of the file is displayed and the message "Reached TOF" is displayed at the baseline.

E.3.9 Tab right
Move the cursor to the next tab position. Tab positions are at columns 1, 9, 17 ... etc. If the
cursor reaches the end of line, a warning is sounded and the cursor left unchanged. If line wrap
around has been switched on, using command J, the cursor is moved to column 1, the first
column of the current line.

E.3.10 Tab left
Move the cursor to the previous tab position. If the cursor reaches the start of line, a warning is
sounded and the cursor position left unchanged. If line wrap around has been switched on,
using command J, the cursor will be moved to the last tab position of the current line.

E.3.11 Start/End of screen
Moves the cursor to column 79 of line 23 of the current screen or to column 1 of line 1 if already
there. This command therefore causes the cursor to toggle between the bottom right-hand and
top left-hand corners of the screen.

E.3.12 Insert line
Inserts a blank line before the current line and makes the inserted line the new current line. The
new line may now be edited as normal.

E.3.13 Enter silent insert mode

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 195 of 238

The screen is cleared from the current line to the end of the screen so that you can insert text
without the existing text scrolling down. To exit silent insert mode, key <ABO> and the following
text is redisplayed.

 E.3.14 Delete line
Deletes the current line. The rest of the screen is scrolled to take up the blank space.

E.3.15 Undelete last deleted line
Inserts before the current line a copy of the last line deleted. If the cursor has moved since the
deletion, the line is inserted before the new current line. This command may therefore be used,
in conjunction with the delete command, to move a line from one position to another or to make
several copies of a line.

E.3.16 Repeat last search
Repeats the last search performed, starting at the current column plus one. If no previous
search was performed by either command F, find string, or command R, replace string, a
warning is sounded and the command ignored.

E.3.17 Execute a command
Causes the editor to enter command mode. The command prompt, C: is displayed at the
baseline. Reply with one of the commands listed in Table E.4a or key <RET> to cancel the
command prompt.

E.3.18 Save buffer & terminate editor
The contents of the buffer are saved on disk and the editor terminates. The initial editor screen
is redisplayed as in Figure E.2a.

E.4 Executable Commands

Comman

d

Description

Appendix
section

! Display ruler E.4.1

+ Move forward nnnnn lines E.4.2

- Move backward nnnnn lines E.4.3

. Display information line E.4.4

A Abandon edit session E.4.5

B Swap to buffer N E.4.6

C Centre the current line E.4.7

D Delete block text E.4.8

E Save & end current edit E.4.9

F Find string E.4.10

G Go to the end of line E.4.11

H Copy text to buffer N E.4.12

I Enter silent insert mode E.4.13

J Switch wrap around on/off E.4.14

K Case insensitive Find String E.4.31

L Goto line nnnnn E.4.15

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 196 of 238

M Move text to buffer N E.4.16

N Save current file & fetch new E.4.17

O Output buffer N E.4.18

P Goto first (T) or last (B) page E.4.19

Q Enter window generation mode E.4.20

R Global replace E.4.21

S Display current buffer status E.4.22

T Split line into two E.4.23

U Define user keys F1, F2, F3 E.4.24

V Void the last delete block E.4.25

W Duplicate previous line E.4.26

X Merge new file into text E.4.27

Y Rename current buffer file E.4.28

Z Flush buffer N E.4.29

& Append characters prior to cursor to previous line E.4.30

Table E.4a - Executable Commands

To execute one of the commands listed above, key the direct command "Execute a command"
and reply to the baseline prompt:

C:

with the appropriate command. Certain commands prompt for further details. Some require a
number (e.g. command L; List Line) and others require a text string (e.g. command R; Global
Replace). For multiple character responses, key <RET> to terminate the input, but for single
character responses the editor automatically starts execution of the command as soon as it is
entered (e.g. command J; Wrap Around on/off).

E.4.1 Command !, Display ruler
The ruler is displayed at the baseline to show column numbers.

E.4.2 Command +, Move forward nnnnn lines
The display window is moved forward nnnnn lines. For example, command +1 causes the

display to move up one line so that the second line becomes the top line etc.

E.4.3 Command -, Move backward nnnnn lines
The display window is moved backward nnnnn lines. For example, command -1 causes the

display to move down one line so that the top line becomes the second line etc.

E.4.4 Command ., Display information line
Displays on the baseline the current line number, the number of characters in the file and the
space available for expansion, in characters.

E.4.5 Command A, Abandon edit session
Providing you are in buffer 0, the editor displays on the baseline the prompt:

Are you sure (Y/N) ?

unless there are buffers in use, in which case the prompt is:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 197 of 238

Buffers active - Are you sure (Y/N) ?

In case you keyed command A in error. You must reply Y to complete the abandon operation.
The editor terminates and the initial screen is displayed as in Figure E.2a. Note that none of the
changes made in the editing session are saved when you abandon the session. If you reply with
any other character the command is ignored and the editor returns to the window for further
editing.

E.4.6 Command B, Swap to buffer N
Swaps the editing session to buffer N. You may then proceed to edit the text in this buffer. The

buffer is displayed at the point at which you last left it.

E.4.7 Command C, Centre the current line
The current line is moved to line 12 of the screen and redisplayed with the surrounding lines. If
the editor is unable to centre the line, due to being near TOF or EOF, it attempts to centre the
line as close as possible and displays the message:

Reached EOF

or:
Reached TOF

E.4.8 Command D, Delete block text
The following message is displayed at the baseline:

Delete Block mode

Move the cursor to the start line and key <UF1>, usually F1. The start line number is displayed
at the baseline. Move the cursor to the last line to be deleted and key <UF1> again. The end
line number is displayed, the text block deleted and the baseline message "Delete Block -
Finished" is displayed. If the marked end line precedes the start line the baseline message "End
line before start line - Delete Block - Aborted" is displayed and the command ignored. The
delete block operation may be abandoned by keying <BCK> before marking the end line, and
its effect reversed by use of command V, Void the last delete block.

E.4.9 Command E, Save & End current edit
This command may only be used while in buffer 0, the main text buffer. The contents of the
buffer are saved on disk and the session is terminated. If other buffers are in use, the prompt:

Buffers active - Are you sure (Y/N) ?

is displayed in case you keyed command E in error. Reply Y to complete the end edit operation.
If you reply with any other character the command is ignored and the editor returns to the
window for further editing.

At the end of the session the input source file, if any, becomes the backup file, and the new file
becomes the current source file. The initial screen is displayed as shown in Figure E.2a.

E.4.10 Command F, Find string
You are prompted for the required search string, terminated with <RET>. The length of the
string is restricted to a maximum of 50 characters. A null response to the string prompt causes

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 198 of 238

the editor to repeat a search for the last entered string. If no previous search has been
performed, the command is ignored.

The baseline message "Searching" is displayed and the search commences at the current
cursor position. The search cycles through the entire file. On reaching EOF it continues from
the beginning of the file until reaching the original start, before deciding that the string cannot be
found.

If the string is found on the current screen, the cursor is moved to the start of the string. If found
on a new page, a new screen is displayed with the line containing the string centred, and the
cursor placed at the start of the string. If the string is not found, the baseline message:

String not found

is displayed and editing recommences at the original cursor position. The search may be
terminated prematurely by keying any key.

E.4.11 Command G, Go to the end of line
The cursor moves to the last non-blank character on the line.

E.4.12 Command H, Copy text to buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline prompt. The default is buffer 1.
Mark the start line by moving the cursor to it and keying <UF1>, usually F1. The line number of
the start line is displayed at the baseline. Move the cursor to the required end line and key
<UF1> again. The line number of the end line is displayed, the block of text is copied to the
buffer specified and the baseline message "Hold Block - Finished" is displayed. If the marked
end line precedes the start line the baseline message "End line before start line - Hold Block -
Aborted" is displayed and the command ignored. If the buffer already contains text, the editor
displays the baseline message:

Buffer in use - Text will be appended

and any text copied is appended to the existing text in the output buffer. If you key <BCK>
before marking the end line, the copy text operation is abandoned and the baseline message
"Hold - aborted" is displayed. If you attempt to copy text to the current buffer the baseline
message "Invalid - Currently in buffer N" is displayed and the command ignored.

E.4.13 Command I, Enter silent insert mode
The screen is cleared from and including the current line to the end of the screen. You may
commence editing at the start of the cleared area. The use of this command avoids the
necessity manually to insert blank lines for text to be inserted. To terminate silent insert mode,
key <ABO> and the screen is redisplayed from the current line onwards.

E.4.14 Command J, Switch wrap around ON/OFF
Allows the cursor to move past column 79, and move to the left of column 1. Entry of this
command toggles the switch on/off. The default on entry to the editor is wrap around off and the
cursor is stopped from moving right of column 79, and left of column 1. When on, moving to the
right of column 79 places the cursor at the start of the next line and moving to the left of column
1 places the cursor at the end of the previous line.

E.4.15 Command L, Goto line nnnnn

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 199 of 238

Reply with the required line number to the baseline prompt. If the required line is found on the
current screen, the cursor is moved to that line. If found on a new screen, the new screen is
displayed with the required line centred. If EOF is reached before finding the required line, the
last page of the file is displayed, and the baseline message "Reached EOF" is displayed. The
cursor is then placed on the last line of the file.

E.4.16 Command M, Move text to buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline prompt. The default is buffer 1.
Mark the start line by moving the cursor to it and keying <UF1>, usually F1. The line number of
the start line is displayed at the baseline. Move the cursor to the required end line and key
<UF1> again. The line number of the end line is displayed, the block of text is moved to the
buffer specified and the baseline message "Move Block - Finished" is displayed. If the marked
end line precedes the start line the baseline message "End line before start line - Move Block -
Aborted" is displayed and the command ignored. If the buffer already contains text, the editor
displays the baseline message:

Buffer in use - Text will be appended

and any text copied is appended to the existing text in the output buffer. On completion of the
move the screen is redisplayed with the block removed, with the cursor on the line before the
block. If you key <BCK> before marking the end line, the move text operation is abandoned and
the baseline message "Move - aborted" is displayed. If you attempt to move text to the current
buffer the baseline message "Invalid - Currently in buffer N" is displayed and the command

ignored.

E.4.17 Command N, Save current file & fetch new
The baseline message:

Saving buffer

is displayed. Once the file has been saved, reply to the baseline prompt:

New filename:

with the name of the new file. If it does not exist on the disk volume holding the input file the
editor prompts you to create it. The editor then displays the first page of the file which may itself
be edited.

E.4.18 Command O, Output buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline prompt. The default is buffer 1.
The contents of the required buffer are inserted before the current line. The screen is
redisplayed to show the new contents. If the buffer is empty, the baseline message "Buffer
empty" is displayed, and the command ignored. If you attempt to output text from the current
buffer the baseline message "Invalid - Currently in buffer N" is displayed and the command

ignored.

E.4.19 Command P, Go to first or last page
Reply to the baseline prompt with T for the top page, or B for the bottom page.

E.4.20 Command Q, Enter window generation mode

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 200 of 238

Used to create and modify the windows used extensively in Speedbase applications. If the
cursor is on the WINDOW statement line when command Q is keyed, a representation of the
window defined by the WINDOW construct is displayed. If the WINDOW construct contains
syntax errors the editor places the cursor on the line in error and displays a baseline error
message - see Appendix B for details. If the cursor is on any other line you are prompted for
details of the new window - see Section E.6.

E.4.21 Command R, Global replace
Reply to the baseline prompt with the search string. Then reply to the prompt "Wth:" with the
replacement string, terminated by <RET>. The length of the string is restricted to a maximum of
50 characters. The baseline prompt:

All Occurrences (Y/N)

is displayed next. If you reply N, only the first occurrence is replaced. Otherwise the editor
displays the baseline prompt:

Display On (Y/N)

If you reply N, the editor replaces all occurrences of the search string found without displaying
them as they are replaced. Otherwise the editor displays the baseline prompt:

Validate (Y/N)

If you reply N, the editor replaces all occurrences of the search string found. Otherwise the
editor pauses at each occurrence found, and displays the baseline prompt "Validate (Y/N/Q)".
Reply Q to terminate the replace command. Reply N to skip the occurrence found and search
for the next occurrence. Reply Y to replace the text string with the replacement string and
search for the next occurrence.

E.4.22 Command S, Display current buffer status
The baseline display shows the name and unit-id of the file being edited and the number, 0, 1 or
2, of the current buffer in use.

E.4.23 Command T, Split line into two
All characters from the current cursor position to the end of the line are moved to a new line
before the next line.

E.4.24 Command U, Define user keys, <UF1>, <UF2>, <UF3>
The three user function keys, <UF1>, <UF2>, <UF3>, may be assigned to any executable
command. For example, to assign the key <UF1>, usually F1, to command Q, reply 1 and then
Q to the baseline prompts. Note that key assignments remain in force only until the end of the
editing session. They apply to all buffers.

E.4.25 Command V, Void the last delete block
The last text block deleted is inserted before the current line. It may be restored any number of
times, anywhere in the buffer, not necessarily in its original position. If no text block has been
deleted during this edit session the editor displays the baseline message "Buffer empty" and the
command is ignored.

E.4.26 Command W, Duplicate previous line

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 201 of 238

A copy of the line preceding the current line is inserted before it. The duplicated line becomes
the current line.

E.4.27 Command X, Merge new file into text
Reply to the baseline prompts:

Merge filename: Unit Id:

with the filename and unit-id of the file holding the text to be merged. The editor reads the entire
contents of the merge file and inserts the text before the current line. The screen is then
redisplayed with the cursor at the first line of the merged text. If the size of the merge file
exceeds certain size constraints, the baseline message:

No room to read file

is displayed and the command is ignored.

E.4.28 Command Y, Rename current buffer file
Reply to the baseline prompt:

New filename:

with the filename you wish to use for the output file of the editing session. The original input file
to the editor remains unchanged on exit from the editing session instead of being renamed as
the backup file.

E.4.29 Command Z - Flush buffer N
Reply to the baseline prompt with the number, 0, 1 or 2, of the buffer you wish to flush. Reply to
the prompt:

Flush buffer N - Are you sure (Y/N) ?

with Y to cause the buffer to be flushed, or N to abort the command. On completion the editor
displays the message "Buffer flushed" and clears the screen if it is the current buffer. If the
buffer is already empty the editor displays the baseline message "Buffer empty" and the
command is ignored.

E.4.30 Command &, Append characters prior to cursor to previous line
The characters to the left of the current cursor position are moved to the end of the previous
line. Note that characters to the right of column 79 after the move are lost.

E.4.31 Command K, Case insensitive find operation
This operation allows you to perform a case insensitive search. The operation is identical to the
Find command (See section E.4.10), excepting that upper and lower case characters are
treated identically during the search.

E.5 Regenerating a Window
This section of the appendix deals with the modification of a window described by a WINDOW
construct in your source file. If you key command Q when the cursor is on a WINDOW
statement line, the editor enters window generation mode and displays a representation, or
template, of the window based on the statements in the window construct. For example, if you

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 202 of 238

key command Q when the cursor is on the line WINDOW W1 of FRAME CUST of the file
S.V3DEMO, a template of the customer window of the sample application is displayed:

Figure E.5a - The Customer Window Template

To see what functions are available, key <HLP> to display the usual Speedbase help window.
Table E.5b lists them and gives an example key-top for each. The editor keeps track of each
field in the template separately. If you move a field so that it partially or completely overlaps
another, the editor retains information about both. If the fields are subsequently moved so that
they do not overlap, they are correctly displayed. It is helpful to refresh the display in these
circumstances, which you can do by using the command "Draw boxes/lines" for example.

Note that the first scrolled line in the template of a scrolled window is highlighted. The
subsequent scrolled lines are for display purposes only and cannot be manipulated. If the
WINDOW construct contains syntax errors the editor places the cursor on the line in error and
displays a baseline error message - see Appendix B for details. Syntax errors must be corrected
before the window template can be displayed.

Window mode command

Example key-top

Appendix
section

Start/End of screen Home E.5.1

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 203 of 238

Move to next field/text item Tab E.5.2

Move to previous field/text item ^Tab E.5.3

Shift current item right Insert E.5.4

Shift current item left Delete E.5.5

Insert line F5 E.5.6

Delete line F7 E.5.7

Move current item Control-D E.5.8

Delete current item F4 E.5.9

Modify/Enter text items F2 E.5.10

Draw boxes/lines F1 E.5.11

Modify scroll details F3 E.5.12

Generate window source End E.5.13

Move entire window Page Down E.5.14

Select more fields Escape E.5.15

Insert selected fields F6 E.5.16

Abandon window & return to editor F9 E.5.17

Table E.5b - Window Mode Commands

E.5.1 Start/End of screen
Moves the cursor to column 1 of line 1 of the current screen or to column 79 of line 23 if already
there. This command therefore causes the cursor to toggle between the bottom right-hand and
top left-hand corners of the screen.

E.5.2 Move to next field/text item
The cursor moves to the beginning of the next field. The editor displays a baseline message
showing the line and column position of the field, "TEXT" if it is a text field, the field name,
picture and "SCR" if a scrolled data field and "NSC" if a non- scrolled data field.

E.5.3 Move to previous field/text item
The cursor moves to the beginning of the previous field. The editor displays a baseline
message showing the line and column position of the field, "TEXT" if it is a text field, the field
name, picture and "SCR" if a scrolled data field and "NSC" if a non-scrolled data field.

E.5.4 Shift current item right
The text or data item at or following the current cursor position is shifted one place to the right.
Note that the position of the item is defined by its first character. If this command is keyed with
the cursor positioned for example at the second character of an item, the next item is moved.
After the move the cursor is positioned on the first character of the moved item.

E.5.5 Shift current item left
The text or data item at or following the current cursor position is shifted one place to the left.
Note that the position of the item is defined by its first character. If this command is keyed with
the cursor positioned for example at the second character of an item, the next item is moved.
After the move the cursor is positioned on the first character of the moved item.

E.5.6 Insert line
Inserts a blank line at the current line. If the cursor is on or above the first line of the window
template the entire window moves down one line. If the insert would move any part of the

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 204 of 238

window off the screen the baseline message "Outside window boundary" is displayed and the
command ignored. Note that the editor reserves a blank line above and below the window
template for the box lines.

E.5.7 Delete line
Deletes the current line. If the line contains a text or data field the editor displays the baseline
message "Non blank line - Can't delete" and the command is ignored.

E.5.8 Move current item
The editor displays a baseline message showing the line and column position of the field,
"TEXT" if it is a text field, the field name, picture and "SCR" if a scrolled data field and "NSC" if
a non-scrolled data field. Move the cursor to the new field position and key "Move current item"
again. Reply to the baseline prompt:

Scrolled or Non-scrolled ?

with S for a scrolled item or N for a non-scrolled item. The default is S for a previously scrolled
field and N for a previously non-scrolled field.

E.5.9 Delete current item
Deletes the item beginning at the current cursor position. If no item begins at the cursor position
the baseline message "No item at this location" is displayed and the command is ignored.

E.5.10 Modify/Enter text items
If this command is keyed with the cursor placed anywhere within a text item, the editor
highlights the item and extends it to the beginning of the next field. It displays a baseline
message showing the line and column position of the field and "TEXT". Enter the new text and
terminate it by keying <RET>.

If this command is keyed with the cursor on an unoccupied character position the editor
highlights the available space, up to sixty characters. Enter the text and terminate it by keying
<RET>.

Having entered the new or modified text, reply to the baseline prompt:

Scrolled or Non-scrolled ?

with S for a scrolled item or N for a non-scrolled item. The default is S for a previously scrolled
field and N for a previously non-scrolled field. If you attempt to enter or modify text at a position
occupied by a data item the editor displays the baseline message "No room for text field" and
the command is ignored.

E.5.11 Draw boxes/lines
The window template is redisplayed with a box and the appropriate window background. Unless
the template is positioned at the edge of the screen the editor leaves a one-character border
between the template and the box. If there is insufficient space for this border it generates a
window with the SBOX statement.

Reply to the baseline prompt:

Line:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 205 of 238

with the line number of a line to be drawn in the box. Key <RET> to the default of line zero
when you wish to return to the template display. Note that the top line of the screen is line 1 and
that the editor calculates the correct line number for the LINE statement taking into account the
box position. To erase a line, overtype its line number with zero.

E.5.12 Modify scroll details
The window template is replaced by the prompt:

If you reply Y, the editor displays the prompts:

The defaults for these parameters are the existing values in the template. Having replied to
these prompts, or having replied N to the scrolled window prompt, the editor redisplays the
template using the new parameters.

E.5.13 Generate window source
The editor generates the appropriate WINDOW construct source code from the window
template as modified. The current text buffer is redisplayed with the new WINDOW construct in
place of the old and the new WINDOW statement line centred on the screen.

E.5.14 Move entire window
The baseline message "Move cursor to top left corner for window - key <BASE>" is displayed.
Move the cursor and key "Move entire window" again. The window template is redisplayed at
the new position. If the move would place any of the window off the screen the baseline
message "Window will not fit on screen - Aborted" is displayed and the command is ignored.

E.5.15 Select more fields
The window template is replaced by the prompt:

Reply with the name and unit-id of the Speedbase data dictionary from which you wish to select
more fields for the window. The editor displays a window listing the records in the dictionary
from which fields may be selected. The process of selecting fields is described in detail in
section E.6.

E.5.16 Insert selected fields
The editor displays a baseline message "Insert - " then the name of the first field available and
its description. Reply Y to insert the field, or N to display the next available. The fields available
for insertion must previously have been selected using the command "Select more fields". Reply
to the baseline prompt:

Scrolled on Non-scrolled:

with S for a scrolled item or N for a non-scrolled item. The default is S if the field was selected
as a scrolled field and N if it was selected as a non-scrolled field. The field is inserted at the
position occupied by the cursor when the command was keyed. If this would place part of the

Generate scrolled window:

Scroll by spilt offset

Dictionary: Unit:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 206 of 238

field outside the screen area the baseline message "Outside window boundary" is displayed and
the command is ignored. If no fields are available the baseline message "No more selected
fields" is displayed and the command ignored.

E.5.17 Abandon window & return to editor
The current edit buffer is redisplayed with the cursor located where it was when you keyed
command Q. No window source code has been generated and the text is as it was when you
keyed command Q.

E.6 Generating New Windows
This section of the appendix deals with the creation of a new window and the addition to your
source file of its WINDOW construct. The use of command Q puts the editor into window
generation mode. If you do so when the cursor is not on a WINDOW statement, the editor
displays the prompt:

If you reply Y, the editor displays the prompts:

The default for the number of records is 8 and for the latter three parameters is 1. Having
replied to these prompts, or having replied N to the scrolled window prompt, the editor prompts
for the name and unit of the dictionary from which you wish to extract details.

 E.6.1 Selecting a Record
The editor then displays details of the records available:

Generate scrolled window:

Scroll by spilt offset

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 207 of 238

Figure E.6.1a - Record Selection Window

If, for example, you select record CU, and give it the new ID C1, the list of fields available for
selection is displayed:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 208 of 238

Figure E.6.1b - Field Selection Window

Key <RET> to select a field for inclusion in the window. If the window is scrolled, reply S or N to
the baseline prompt:

Place in scrolled or nonscrolled area (S/N) ?

The editor places * to indicate your selection. Note that the order in which you select fields from
this list is the order they will appear in the WINDOW construct source code when the editor
generates it. Using the cursor keys you may select fields in any order. When you have done so,
key <NXT>. The window template is then displayed and may be modified as described in
section E.5. If you key <NXT> before selecting any fields a default template is generated using
all the available fields. When you are satisfied with your window template, key <NXT> and the
editor creates the appropriate source code and inserts it in the current buffer at the point at
which you keyed command Q.

If, when prompted for a dictionary name, either when first setting up the window, or when
selecting more fields for inclusion in the window, you key <RET> to the dictionary name prompt,
you get an opportunity to define local fields. The editor displays a window into which you enter
the field name, picture clause and description. These fields may be inserted in the window in the
usual way.

E.7 Error and Warning Messages

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 209 of 238

The error and warning messages described in this section are displayed at the baseline at
various stages in the editing session. They are erased on the next cursor movement.

Edit output file exhausted

There is no space in the buffer work file on disk to save the last change made. The editor
terminates automatically. You may attempt to recover the work file, see Section E.1.4.

End line before start line - Aborted

The end line specified in a command D, H, or M precedes the start line, which is invalid.

File already exists

When saving a buffer, this message informs you that the file already exists on the work
volume. Enter a new filename.

File in use or Invalid type - Reenter

The file entered is currently being accessed by another user, or it is not a valid text file.
Check and reenter a valid filename.

File not found or in use

The file required was not found on the requested volume, or is being accessed by
another user. Check and reenter.

Invalid key
Invalid command
Invalid function

The key, command or function used is invalid. Key <HLP> to display a Speedbase help
window listing the valid responses.

Invalid picture clause

See Section 5.3 for valid picture clauses.

Invalid scroll dimensions

The window will not fit within the screen dimensions with the scroll statement parameters
as specified.

Less than 2% available space - Please save

This warns that the main output file is short on available space. You still have at least
600 characters expansion left but you should save the current edit session and start
again as soon as possible.

No item at this location

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 210 of 238

There is no item to move at this cursor position. Move the cursor to the beginning of the
required field and try again.

No more selected fields

Either no fields have been selected for insertion, or all those selected have already been
inserted.

No room for text field

There is no room to specify a text item at the current cursor location.

Non-blank line - Can't delete

The editor only deletes blank lines. To delete individual fields, use the delete field
function.

Outside window boundary

Inserting a line at the current cursor location would cause part of the window to move off
the screen, which is invalid.

Return to Buffer 0

You may not end or abandon the edit session when in buffers 1 or 2.

No room for workfile - Press Return
Not enough space in directory

The editor does not have enough space in the current volume to create the workfile. It
requires space enough for the current input file size plus 32K. Check before continuing.

No room to read file
No room to output buffer

The editor has discovered that the available space in the buffer is insufficient to continue.
Use command . to check available space.

Unable to determine end of window

The window construct must be terminated by an ENDWINDOW, ROUTINES SECTION
or ENDFRAME statement.

Unable to fit in fixed area

The current field does not fit in the available non-scrolled area. Try placing it in the
scrolled area.

Unable to fit in scrolled area

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 211 of 238

The current field does not fit in the available scrolled area. Try placing it in the non-
scrolled area.

Unable to open dictionary

The editor has failed to open the specified dictionary file.

Unable to read dictionary

The dictionary file DIxxxxx specified is unreadable.

Unable to read work file

Suspect system corruption.

Window will not fit on screen

The window dimensions are outside the current screen range.

Work file in use - Try again later

The workfile the editor is trying to create already exists and is still in use. Check and
correct before continuing.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 212 of 238

Appendix F - Dictionary Maintenance Utility

The information about the structure of a Speedbase database is stored in a file called a data
dictionary. For example, the Speedbase V3.0 sample application database has a dictionary file
called DIDEMON. The dictionary is used by the Speedbase Presentation Manager utility
programs to control their access to your database. The dictionary is also used in the compilation
of your Speedbase application frames, see Appendix A.

Before you can compile your application you must therefore generate a dictionary and to do this
you use the dictionary maintenance utility $SDM, as described in this appendix. The structure of
the dictionary itself is unsuitable for the purposes of manipulation by a utility program, so for this
purpose the dictionary information is maintained in a structure called a meta-dictionary. Once
you have used the $SDM utility to establish the database structure you require, the meta-
dictionary is used to generate the dictionary itself, see Section F.5.

This paragraph should probably be ignored if you are reading this appendix for the first time.
The meta-dictionary is actually a special Speedbase database, and the dictionary maintenance
utility $SDM is itself therefore a Speedbase application. It therefore has its own dictionary,
DI$DICT, which is supplied with the Speedbase Development System, which you will use to
create your meta-dictionaries, see Section F.7. If you use $SDM to examine the special
DI$DICT dictionary you will see that it itself was generated using $SDM, from its own meta-
dictionary DI$dict.

F.1 Running the Utility
To run the dictionary maintenance utility, use the menu entry you have set up, or key $SDM at
the option prompt. Reply to the prompt:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 213 of 238

Figure F.1a - The Meta-dictionary Prompt

with the name and unit-id of the meta-dictionary you wish to maintain. Note that you must create
the meta-dictionary before running $SDM, by using the generation utility as described in Section
F.7. We suggest you adopt the convention that the name of the meta-dictionary defining the
dictionary DIXXXXX is DIxxxxx. For example, the meta-dictionary for the sample application

DIDEMON should be called DIdemon. The following sections describe how to create a new
meta-dictionary and how to amend an existing one.

F.2 Establishing a New Meta-dictionary
A new, empty meta-dictionary is created by using the generation utility as described in Section
F.7. Run $SDM and reply to the meta-dictionary prompts with the name and unit-id you used in
creating it. For example, if you have created an empty meta-dictionary called DItest on unit FLS
in order to define the details of a new Speedbase dictionary DITEST, the utility will display a
menu window as follows:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 214 of 238

Figure F.2a - Establishing the Meta-dictionary

If you wish to enter the details of the meta-dictionary reply 1, and the utility prompts for the
dictionary name and title. Since you are defining the details of dictionary DITEST on FLS you
should make these replies to the prompts, enter some text to describe the database and the
screen should look as follows, in Figure F.2b.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 215 of 238

Figure F.2b - Entering the Database ID and Title

Key <NXT> to display the window listing the database record types. You then proceed as
described in Section F.3, except that you will enter the various details rather than amending
existing details.

If, instead of entering the details by hand, you wish to load the meta-dictionary with details from
an existing dictionary, reply 2 at the establish meta-dictionary prompt. Enter the name and unit-
id of the dictionary from which you wish to load details. For example, you could create the meta-
dictionary DIdemon of the sample application by loading the dictionary DIDEMON provided.
Having created an empty meta-dictionary for the purpose, see Section F.7, reply with the
dictionary name DIDEMON and its unit- id to the prompts in Figure F.2c.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 216 of 238

Figure F.2c - Loading the Meta-dictionary

Key <RET> to continue and load the Didemon meta-dictionary from the DIDEMON dictionary.
Note that if you load a meta-dictionary from a dictionary produced prior to version three of
Speedbase, some fields will be blank (e.g. the record description field). You may of course
amend these blank fields. Once the meta-dictionary has been loaded in this way you may
amend it, as described in Section F.3.

F.3 Amending the Meta-dictionary
Once you have created your meta-dictionary its details may be amended. The examples in this
section make use of the sample application meta-dictionary, DIdemon. This is deliberately not
provided and before proceeding you should create it, if you have not yet done so, using the
steps documented in Section F.2.

To amend the sample meta-dictionary, run the dictionary maintenance utility, reply with
DIdemon and its unit-id to the initial prompts, and the utility displays the options window:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 217 of 238

Figure F.3a - Amending the Sample Meta-dictionary

Enter <RET> to amend the sample meta-dictionary. You may amend the database ID and title,
and the descriptive text. Key <NXT> and the utility displays a window listing the record types
defined in the sample application, see Figure F.3b.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 218 of 238

Figure F.3b - The Record-type Window

As with any Speedbase utility or application, you may key <HLP> to display a list of options and
key <HLP> again to display the Speedbase help window. If you key <HLP> after displaying the
record-type window the list of options is displayed:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 219 of 238

Figure F.3c - Help in the Record-type Window

Note the last option, move record. This is a special option which allows you to change the order
in which the record-types are stored and displayed. It makes use of a specialised feature of
Speedbase called an auto-sequence index, explained in Section F.8. If you make regular use of
the dictionary maintenance utility, you should assign a key to the move record function, using
the Speedbase Presentation Manager customisation utility.

You may now amend the record name, title and the description which is displayed in the non-
scrolled area of the window. To see the effect of the move record function, place the cursor on
the customer record and key <MOV>. Move the cursor to where you wish to insert the customer
record, above the territory record for example, and key <INS> (i.e. insert record). If you should
wish to abort the move after keying <MOV>, key <HLP>, move the cursor to the last line of the
help window, "Abort move", and key <RET>. Note that the order in which the records are
displayed is the order they are written to the dictionary, DIDEMON in this case, and therefore
also the order in which they are processed by the Speedbase compiler.

Move the cursor to the order header record and key <NXT>.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 220 of 238

Figure F.3d - The Linked Masters Pop-up

This pop-up window shows which records act as masters to the current record (i.e. the
customer and sales territory records in the case of the order header record). If you add a new
master in this window and the appropriate master access key fields are not present on the
record, when you key <NXT> to continue the utility displays the baseline prompt "Link fields are
needed for these masters. Create them? Y". If you reply Y it adds the appropriate fields to the
record. Otherwise you must delete the master relationship before continuing. Key <NXT> and
the fields on the order header record are displayed.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 221 of 238

Figure F.3e - Field Details

The fields which make up the primary index of the record are marked P in the Idx Seg column
(e.g. the order number field on the order header record). The order of the segments of the
primary index is therefore defined by the order in which the fields themselves are listed. To
change the order of the segments of the primary index you should make use of the move
function to change the order of the fields themselves.

If the field is part of any secondary index it is marked S in the next column. Fields are often
used in more than one record type and these are known as global fields. For example, the order
number, customer and territory fields on the order header record are used on the order line,
customer and sales territory records respectively. Global fields are marked G in the Typ (i.e.
type column).

The parameters of a global field (i.e. its name, title and picture) are maintained across the meta-
dictionary. Any change you make to one of these parameters is applied everywhere it is used.
For example, if you change the title of the customer field on the order header record from
"Customer" to "Customer number", the utility displays the baseline message "Warning: Field title
will be changed DB-wide from Customer" before doing so.

Global fields provide the links between a record and its masters and comprise the master
access key, see Section 2.6. If a field is part of any master access key it is marked Gl in the Typ
column. On the order header record, for example, the customer field is the master access key

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 222 of 238

to the customer record and therefore provides a link to it. Move the cursor to the last field on the
order header record, ORTOTL, the order amount field. Because this field is a GVA it is marked
A in the GVF/GVA column. Move the cursor to the GVA column and key <UF1>. The GVA pop-
up is displayed, see Figure F.3f.

Figure F.3f - The GVA Pop-up

The GVA pop-up shows which fields make up the GVA, in this case the single field OLLAMT
from the order line record. If you display the fields of the order line record you will see that the
field OLLAMT is marked F in the GVF/GVA column. If you select the field, by placing the cursor
on it and keying <RET>, then <SKP>, usually tab, the GVF pop-up is displayed:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 223 of 238

Figure F.3g - The GVF Pop-up

The GVF pop-up shows to which GVA fields the GVF field is added, in this case the order
amount field and the outstanding orders field on both the territory and customer records. Key
<NXT> to return to the field window and <NXT> to display the index pop-up:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 224 of 238

Figure F.3h - The Index Window

The index window lists the secondary indexes and the primary index, if any. Place the cursor on
the first secondary index, OLTRN and key <RET> to select it. Key <NXT> to display the list of
segments making up the index. When adding index segments you may key <UF1>, usually F1,
when prompted for the field name. This displays a pop-up window showing the fields available.
To select a field, place the cursor on it, key <RET> and its name is used automatically as the
index segment. Note that the primary index segments are displayed in the field window instead,
Figure F.3e.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 225 of 238

Figure F.3i - The Index Segment Pop-up

F.4 Printing the Dictionary Report
To print the dictionary report, run the dictionary maintenance utility, reply to the meta-dictionary
name and unit prompts and key <NXT> to display the maintenance options:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 226 of 238

Figure F.4a - Dictionary Maintenance Options

When you reply 2 to print the dictionary report, the utility displays the confirmation window:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 227 of 238

Figure F.4b - Confirming the Dictionary Report Print

Figure F.4c shows the beginning of the report on the sample meta-dictionary, DIdemon. The
database description and list of record-types is printed on the first page. This is followed by
information on each record-type in turn. In our example the first record-type is the territory
record.

The indexes are listed with their descriptions and a list of their index segments. For the territory
record the first index is the primary index TRTRN, with the single segment TRTRNO. Following
the list of indexes is a list of master and servant records. These are identified by the index
which provides access to them. For example, on the territory record, the invoice record is a
servant and access to it is by the index INTRN, which has segments INTRNO and INDATE. In
the case of a servant record it is possible that there is no index providing access to it, and this is
indicated by an ID of the form rt***, where rt is the servant record-type.

The index, master and servant list is followed by a list of the fields on the record, together with
the field attributes (i.e. name, index segment, type, title, picture, GVF/GVA and description). For
a GVF the names of its associated GVAs are printed after "To". For a GVA the names of its
associated GVFs are printed after "Fm", short for from.

Once you reply to the confirmation prompt, the report is printed. It may be interrupted, and
printed on a different printer or cancelled, in the normal way.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 228 of 238

DICTIONARY ID: DEMON Speedbase Sample Application GEN: 22 DATE:18/08/89 PAGE 1

===
 R E C O R D S U M M A R Y

===

 Record Record
 ID Name Record Title

 TR TERR Sales Territory
 CU CUST Customer
 IN INVC Sales Invoice
 ST STCK Stock Master
 OR ORDR Order Header

 OL ORDL Order Line

===
 T R T E R R Sales Territory

===

 This is the record which stores information about sales in

 each territory. The value of outstanding sales orders and
 cash is accumulated.

 Index IDX-Typ Index-Decription Index-Segments..

 TRTRN Primary Primary index, territory code TRTRNO
 TRNAM Secndry Territory name (sales area) TRNAME
 TRACM Secndry Account manager TRACMG

 INTRN Servant Territory code, Invoice date INTRNO/INDATE
 OLTRN Servant Territory, Order number OLTRNO/OLORDN
 ORTRN Servant Territory code, required date ORTRNO/ORRQDT

 Field Idx Ty Field-Title.. Picture GVF / GVA Field-Description

 TRTRNO P G Territory X(4) Territory code

 TRNAME S Sales Area X(20) Territory name
 TRACMG S Account Manager X(15) Account manager
 TRREFN Reference X(11) Reference
 TROSOR O/S Orders S9(6,2) Fm OLLAMT Accumulated orders
 TROSCH O/S Cash S9(6,2) Fm INIAMT Accumulated cash

Figure F.4c - The Dictionary Report

F.5 Generating the Dictionary
Once you have completed the amendments to the meta-dictionary you may generate the
dictionary itself. Run the utility, reply to the meta-dictionary name and unit prompts:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 229 of 238

Figure F.5a - Dictionary Maintenance Options

Reply 3 and reply to the database name, unit and size prompts to generate the dictionary:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 230 of 238

Figure F5b - Generating the Dictionary

The default size of the dictionary file is 150 Kbytes, which will be sufficient unless you have an
unusually large number of text records. Note that the dictionary file is truncated when closed so
that no disk space is wasted by using the default size. The utility displays the name and title of
the record type it is processing. Note that processing is terminated if any of the errors listed in
Section F.5.1 is detected. When the generation process is complete the utility displays the
report print window.

F.5.1 Dictionary Generation Error Messages
The error messages described in this section are displayed at the baseline when encountered
by the dictionary generation program. The generation process is terminated on detection of the
first error, which you must correct before trying again.

Dictionary file is full or I/O error

You have specified too small a dictionary file. Execute the generation option again using
a larger dictionary file size. Note that the default is 150 Kbytes which is usually enough.

Field must be numeric - See field field2

GVF/GVA field2 must be numeric.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 231 of 238

GVA fields not all placed at end of record

Move the GVA fields so that they form a contiguous set at the end of the list of fields.

GVF field declared after 125th field

You have more than 125 fields in the record. Move the GVF fields so that they occur
before the 125th position in the list of fields.

Inconsistent global field definition - See fields field1 field2

The picture clause of global field1 in the record being processed is different from that of

the same global field2 as defined elsewhere in the meta-dictionary.

Index key length exceeds 47 bytes

The fields which make up the segments of the index being processed exceed 47 bytes,
which is invalid.

Index key is composed of more than 8 segments

The index being processed has more than 8 segments, which is invalid.

Index key segment occurs past 125th field in record

You have more than 125 fields in the record. Move the fields used as index segments so
that they occur before the 125th position in the list of fields.

Invalid GVA field - also a GVF/index segment - See field field2

GVA field2 may not also be a GVF field or be used as an index segment.

Invalid GVF relation - See field field2

The GVA/GVF field corresponding to GVF/GVA field2 is either missing or has an

inconsistent picture clause.

Invalid linkage - Masters must be declared before all servants

The record currently being processed is linked to a master that follows it in the meta-
dictionary, which is invalid.

Invalid primary index key definition

Move the fields making up the segments of the primary key so that they form a
contiguous set at the beginning of the field list.

Key extract area exceeds 256 bytes

The GVF, master access key and index key fields exceed 256 bytes, which is invalid.
See Section 2.10.3.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 232 of 238

Linked master is missing or has invalid primary index

Check that the masters linked to the record currently being processed are present and
have a valid primary index.

Link field is missing or defined after 125th field

A master access key field is either missing or does not occur within the first 125 fields in
the field list, which is invalid.

Meta-dictionary contains more than 36 record definitions

No Speedbase database may have more than 36 record types.

Meta-dictionary is corrupt - Please rebuild using $BARBL

Use the Speedbase Presentation Manager rebuild utility $BARBL to rebuild the meta-
dictionary.

More than 90 indexes defined in the database

No Speedbase database may have more than 90 indexes.

No records specified in Meta-dictionary

You must define at least one record type.

Record definition contains no fields

Each record type must have defined at least one field.

Record has more than 16 indexes

No record type may have defined more than 16 indexes.

Record has more than 16 linked masters

No record may be linked to more than 16 masters.

Record has more than 32 GVF relations

A record may have no more than 32 GVF-GVA relations.

Record requires more than 64 index/MAK/GVF segments

The fields making up the segments of the key extract area must not exceed 64 in
number. See Section 2.10.3.

Sequence field $SEQ may not also have GVF relations

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 233 of 238

Do not define a sequence field to be a GVF.

Sequence field $SEQ may only occur in 1 index on each record

The sequence field $SEQ may be used in only one index in each record type.

System area fields (GVAs) exceed max length of 127 bytes

The sum of the lengths of the GVA fields on the record being processed plus 4 bytes
exceeds 127 bytes, which is invalid.

Zero length index key detected

One of the indexes on the record type being processed has a length of zero, which is
invalid.

$SQ index requires $SEQ field [9(9) COMP] as last segment

You must specify the index $SQ so that its last segment is the field $SEQ.

F.6 Clearing the Meta-dictionary
If you wish to clear the meta-dictionary you have been using, as an alternative to creating a new
one using the generation utility as described in Section F.7, run the utility, reply with the meta-
dictionary name and unit and key <NXT>:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 234 of 238

Figure F.6a - Dictionary Maintenance Options

Reply 4 to clear the meta-dictionary. Reply to the baseline prompt "Clear the Meta-dictionary -
Are you sure? N" with Y to continue or N to return to the option prompt. If you continue, the
utility displays the baseline message "Clearing Meta-dictionary, Please wait...".

When complete the utility displays the baseline prompt "Meta-dictionary cleared. ,". Key <RET>
to continue. The utility displays the baseline message "Please now re-organise it using
$BARBL". We recommend you do re-organise the meta-dictionary, using the Speedbase rebuild
utility $BARBL, in order to obtain the best performance when the meta-dictionary is re-used.

F.7 Creating a Meta-dictionary
The meta-dictionary is stored in the form of a Speedbase database and you may therefore use
any of the Speedbase Presentation Manager utilities with it. The meta-dictionary therefore has
its own dictionary which is supplied with the Speedbase Development System. This dictionary
has the special name DI$DICT.

To create a new, empty meta-dictionary, run the Speedbase Presentation Manager generation
utility $BADGN and reply to the source prompt with the special dictionary name DI$DICT, and
its unit:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 235 of 238

Figure F.7a - Creating the Meta-dictionary

The record numbers are initially set to the default of fifty and you should change them to those
shown in Figure F.7a, or to other suitable numbers. When you have done so, key <NXT> and
the file allocation window is displayed, as shown in Figure F.7b. Reply to the name prompt with
the name you wish to use for the meta-dictionary.

 For example, if you are creating the meta-dictionary for the sample application, as suggested in
Section F.2, you should reply "demon", to create the meta-dictionary DIdemon. Once the
generation process is complete the rebuild utility runs automatically to create the index file
required. Once the rebuild is complete the meta-dictionary is ready for use.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 236 of 238

Figure F.7b - Allocating the Meta-dictionary Files

F.8 Auto-Sequence Indexes
There are circumstances in which the sequence of records in a database is important. In the
meta-dictionary database, for example, the order of the record-type records is important. In the
field record, the actual position of a field relative to other fields is important, if for example the
field is a primary index segment. In an invoicing application the order of the detail lines within a
particular invoice is likely to be of significance.

To ensure that records are kept in a particular order you can make use of a special index
known as an auto-sequence index. This feature operates using a 9(9) COMP sequence number
field, which is optionally incremented by the database manager when a new record is written.
The sequence number field must reside on the data-record, and must therefore be declared
when defining the database dictionary. The field name must be of the form:

rt$SEQ

where rt is the record-type. $SEQ must be appended to a special index which is also defined

using the database dictionary. The index name assigned to this index must be:

rt$SQ

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 237 of 238

It is important to note that $SEQ must be the last segment defined for the index. Furthermore,
$SEQ may only be used within this particular index, and may not be a GVF or GVA field. The
index is otherwise a normal Speedbase index, and may therefore be used with the usual I/O
operations. When a record is written to the database, the database manager examines the
$SEQ field. If it is negative, it searches for the highest sequence number so far allocated. It
adds 65536 (i.e. 2^16) to this sequence number before the record is written. Important Note:
$SEQ must be set negative prior to the I/O operation.

If $SEQ contains any positive value, no special processing takes place, and the record is
written unchanged. Note that $SEQ is also examined during REWRITE as well as WRITE
operations. Setting $SEQ negative prior to a rewrite operation causes the next sequence
number to be assigned as before. Note that the window manager maintains the rt$SEQ field
automatically for I/O operations resulting from a window process.

A record may be inserted into a sequence by initialising $SEQ to an appropriate value prior to
writing or re-writing it. This facility is made use of by the Speedbase Presentation Manager
window manager move function, <MOV>. When you key <MOV>, to move a field in the meta-
dictionary for example, the record to be moved is first removed from the window and may then
be inserted in its new position, using the <INS> function. When you key <INS>, the window
manager examines the sequence number of the records before and after the insertion point and
allocates the moved record a sequence number between them. To do so it uses an algorithm
which optimises the number of insertions that may be made after a particular point at the
expense of the number that may be made before it.

F.8.1 Programming Note
Sequence numbers are allocated sequentially, and can run out. Where $SEQ is the only
segment of the $SQ index, it will be possible to write only 32767 records to the database before
the range of available sequence numbers is exhausted.

If the index contains segments before the $SEQ field, it will be possible to write 32767 records
for each occurrence of these preceding segments. For example, if the index for a invoice line
record is composed of both invoice number and $SEQ, it will be possible to write 32767 invoice
line records on each invoice.

If a write or re-write operation would exceed the available range, then processing depends on
whether $SQ is a primary or secondary index. If $SQ is the primary index, a duplicate primary
key condition results, and the I/O operation will have been suppressed.

If $SQ is a secondary index, the record will have been written to the database re-using the
highest possible sequence number (i.e. #7FFFFFFF) thus creating a duplicate key. No
exception condition results, but the order of the records sequenced by these duplicate keys will
be undefined.

If record deletions have occurred, "lost" sequence numbers can be reclaimed by providing an
application program to do so, provided that $SQ is not a primary index. It is better, however, to
design the application in such a way that the need for this does not arise.

Appendix G - Speedbase Memory Allocation

Global Speedbase Development Manual V8.1 Page 238 of 238

Appendix G - Speedbase Memory Allocation

#0000 to #0500

 Debug Area used by $DEBUG

#0500 to #0600

Index Key Extraction Area

#0600 - #3000

Services Module, $BASVC
Frame Controller
Basic Screen I/O and Help
Window Manager
Database Manager

#3000 onwards

Application Root Frame

Application Dependent Frame(s)

Free Memory

User Stack

Database Control Block(s)
 %BAdbid1

 %Badbidn

High memory
address

Speedbase System Area $BASYS

Figure Ga - Speedbase Memory Map

