

Global Development System Subroutines Manual V8.1 Page 1 of 120

 Global 16-bit Development System
 System Subroutines Manual
 Version 8.1

Global Development System Subroutines Manual V8.1 Page 2 of 120

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,
electrical, mechanical, photocopying,

recording or otherwise, without
the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development System Subroutines Manual V8.1 Page 3 of 120

TABLE OF CONTENTS

Section Description Page Number

1. Introduction .. ???

1.1 System subroutines .. ???
1.2 System Variables .. ???

2. Date and Time Subroutines ... ???

2.1 Date Conversion, DS-DT$, DL-DT$, DT-DS$ & DT-DL$... ???
2.2 Date to Day Number Conversion, DT-DY$ & DY-DT$... ???
2.3 Time of Day Routine, TIME$.. ???
2.4 Day of the Week Routine, DOWK$... ???
2.5 Time Conversion Routine, T-HMS$ & HMS-T$.. ???
2.6 Elapsed Time & Midnight Routines, SECS$, MIDN$ & MIDCH$... ???
2.7 Date Formatting Routine, FDAT$.. ???

3. Arithmetic and Data Conversion Subroutines .. ???

3.1 Random Number Generator, RAND$.. ???
3.2 Square Root Routine, SQRT$... ???
3.3 Zero Fill Routine, ZERO$... ???
3.4 Text/Print Line Conversion Routines, PRIN$ & TEXT$... ???
3.5 Table Sort Routines, TSRT$ & QSRT$.. ???
3.6 Hexadecimal to Binary Conversion, HX-BI$ & BI-HX$... ???
3.7 ASCII to EBCDIC Conversion, AS-EB$ & EB-AS$.. ???
3.8 Binary to Bit String Conversion, BI-BS$ & BS-BI$... ???
3.9 Binary Word String to Octal String Conversion, BI-OC$ & OC-BI$???
3.10 ASCII TO RADIX-50 Conversion, AS-RL$ & RL-AS$.. ???
3.11 Numeric, K, M or G String to Computational Conversion, NKM-C$???
3.12 Double Length Multiply and Divide, MULTI$ & DIVID$.. ???
3.13 Password Number Routine, PWNUM$... ???
3.14 Null Password Number Routine, PWNUL$... ???
3.15 Password Check Routine, PWCHK$.. ???

4. Program Management Subroutines ... ???

4.1 Customization Routine, CUST$... ???
4.2 Checking for Online Programs and Libraries, PROG$... ???
4.3 Quick Overlay Loading, QINDX$ & QLOAD$... ???
4.4 The Relocatable Loader, LOAD$... ???
4.5 Allocate Data on Stack Routine, SDATA$.. ???
4.6 Entry Point Routine, ENTRY$.. ???
4.7 Unload Routine, UNLO$... ???

5. System Management Subroutines.. ???

5.1 Exclusive Control Routine, GETX$, GETXN$ & RELX$.. ???
5.2 Start Foreground/Background Routine, START$... ???
5.3 Establishing an End of Job Routine, EOJ$... ???
5.4 Abnormal Exit Handling, EXIT$... ???
5.5 System Request Routine, CMND$.. ???
5.6 Inactive/Active Program Routines, LOGOF$ & NLOGF$.. ???
5.7 Partition Residency Routines, RESID$ & URESI$... ???
5.8 Write to Logfile, LOG$... ???

Global Development System Subroutines Manual V8.1 Page 4 of 120

5.9 Authorization Routine, AUTH$... ???
5.10 Free Space Management Routine, FREE$... ???
5.11 User Number and Operator-id Checking, OPID$ & USER$.. ???
5.12 Computer-id to Display Routines, CID-D$ and D-CID$.. ???
5.13 Return Operator Group Information, GROUP$... ???
5.14 Return Operators Full Name, OPNM$.. ???
5.15 Transient Overlay Loader, SBOVL$, OVLAY$, FPUSH$ and FPOP$???

6. Miscellaneous System Variables .. ???

6.1 Application Work Area, $$AREA ... ???
6.2 Exception Condition and Result Code, $$COND & $$RES ... ???
6.3 Today's Date, $$DATE... ???
6.4 Day of Week, $$DOWK ... ???
6.5 The Century Start Year, $$NCYR ... ???
6.6 Disable System Request Flag, $$INT ... ???
6.7 Current Program Information, $$EPT, $$PGM & $$RUN .. ???
6.8 Console Dimensions, $$LINE, $$WIDE & $$RWID ... ???
6.9 Standard Printer Page Size, $$PAGE ... ???
6.10 Standard Printer Line Width, $$PRIN.. ???
6.11 Seed for Random Number Generator, $$SEED ... ???
6.12 System Name, $$SNAM .. ???
6.13 Global System Manager Operating System Flag, $$SYSM ... ???
6.14 The Presentation Manager Flag, $$PM .. ???
6.15 Maximum Number of Users, $$ULEV ... ???
6.16 Global System Manager Version Number Indicator, $$VERS ... ???
6.17 Global System Manager Level Number Indicator, $$LEVN ... ???
6.18 American Processing Flag, $$USA ... ???
6.19 Program Volume-id, $$PVOL .. ???
6.20 Task Environment Indicator, $$TASK ... ???
6.21 Partition Number Indicator, $$PAR.. ???
6.22 User Number, $$USER .. ???
6.23 Multi-user Flag, $$MU .. ???
6.24 Master Node Indicator, $$MNID .. ???
6.25 Local Node Indicator, $$LNID .. ???
6.26 The Screen Number, $$SCNN .. ???
6.27 The Attached Library, $$LIB .. ???
6.28 The Operator-id, $$OPID ... ???
6.29 The Authorization Code, $$AUTH ... ???
6.30 The Supervisor Program Name, $$SVSR ... ???
6.31 The Release Program Area Flag, $$REL ... ???
6.32 The Library Index Pointer, $$INDE .. ???
6.33 The Default Menu Entry, $$MEDF .. ???

7. Special Coding Techniques ... ???

7.1 Attaching Program Libraries & Examining their Contents .. ???
7.2 Returning an Exception Condition ... ???
7.3 Terminating a Program with a Stop Code ... ???
7.4 Coding Routines with a Variable Number of Parameters ... ???
7.5 Operator-id and Authorization Vetting ... ???
7.6 Supervisor Programs .. ???
7.7 User-Written System Requests ... ???
7.8 SVC 14 - Search for Lowest Key ... ???

Global Development System Subroutines Manual V8.1 Page 5 of 120

8. Storage Management Facilities ... ???

8.1 Concepts and Terminology .. ???
8.2 Example Program using Storage Management .. ???

9. Scientific Calculation Facilities ... ???

9.1 Floating Point Numbers .. ???
9.2 Floating Point Conversion and I/O Routines ... ???
9.3 Scientific Calculations .. ???
9.4 Diagnostics ... ???
9.5 Scientific Subroutines ... ???
9.6 Advanced Scientific Programming ... ???
9.7 Scientific Calculations on pre-6.1 Systems ... ???

Global Development System Subroutines Manual V8.1 Page 6 of 120

APPENDICES

Appendix Description Page Number

A Included Routines .. ???

B Memory Page Subroutines .. ???

Chapter 1 - Introduction

Global Development System Subroutines Manual V8.1 Page 7 of 120

1. Introduction

1.1 System Subroutines
Global Cobol provides a number of powerful subroutines which extend the Cobol language with
a variety of commonly required functions. These subroutines, known as system subroutines,

are invoked by the CALL statement. For example:

CALL DOWK$ USING DATE DAY

might be used to determine which day of the week a given date represents.

1.1.1 System Routine Entry Names
The entry name of a system subroutine, which is of course a global symbol, always ends with a
$ character. Therefore, providing programmers do not create symbols containing the $
character, this convention guarantees that the name will not erroneously duplicate any other
name appearing in the compilation or linkage edit.

1.1.2 The Global Cobol System Library
System routines are held, together with the routines for the access methods, in compilation file
format in the system libraries. Routines from these libraries are incorporated in a program when
it is linkage edited.

It is an important feature of Global Cobol that only the system subroutines and access methods
that a program actually requires are included in it from the system libraries. The libraries can be
as comprehensive as is required without impacting on the size of programs at all. In particular,
the libraries can be expanded to contain new services without affecting existing programs in any
way.

Important Note: The Program Names of some System Subroutines have been changed

between V6.2 and V8.1. Any $LINK jobs that include explicit Program Names to include specific
System Subroutines (e.g. BA$A to include CUST$ - see Appendix A) must be checked after the
Global Cobol Development System is upgraded from V6.2 to V8.1.

1.1.3 Exceptions Returned by System Subroutines
System subroutines indicate abnormal processing conditions by generating exceptions. The
CALL statement that invokes such a subroutine may therefore be followed by an ON
EXCEPTION statement introducing the logic which is executed should an exception arise.

Exception condition 1 ($$COND = 1) is often used to indicate that the routine has been
terminated by an irrecoverable I/O error, in which case an explanatory message produced by
the monitor's I/O error retry routine will appear on the screen.

Other exception conditions may be returned, depending on the subroutine involved. Sometimes
the result code ($$RES) will be established to provide further information about the exception.
Often an exception should never occur when the user program is properly debugged, and in this
case it is unnecessary to code an ON EXCEPTION statement following the CALL because the
program will be automatically terminated in error should the unexpected condition actually
occur.

Chapter 1 - Introduction

Global Development System Subroutines Manual V8.1 Page 8 of 120

1.1.4 File Handling and Screen Handling Subroutines
There are several other system subroutines available besides those collected in this manual.
Those concerned with file handling are described in chapter 9 of the Global Development File
Management Manual and those involving screen and console handling will be found in chapter
7 of the Global Development Screen Presentation Manual.

1.2 System Variables
System variables are elementary data items which are conceptually declared automatically in
the data division of every compilation. The variables do not actually appear as data definitions;
neither do they occupy working storage. They are located within a permanently available region
known as the System Area, which is used to communicate parameter information between the
Global System Manager and an application program. They can be referenced from procedure
division statements whenever a level 77 item with the same picture clause would be valid.

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 9 of 120

2. Date and Time Subroutines

2.1 The Date Conversion Routines, DS-DT$,DL-DT$,DT-DS$ & DT-
DL$
The date conversion routines are used to convert a date from internal (computational) to
external (character) format, or vice versa. They can also be employed to validate dates. The
external format is the form in which dates are printed and displayed, whereas the internal format
is used for storing dates compactly in files.

The conversion routines are capable of processing any date occurring in the 1,637 years
starting January 1 1063 AD and ending December 31 2699 AD in the Gregorian calendar.

Internal format dates are PIC 9(6) COMP fields (3 bytes) containing the date in the form:

10000*(year - 1900) + 100*(month of year) + day of month

Thus if two internal dates are compared the date which is later will be the greater.

External format dates may be either short dates (DS) for which the century is omitted and

assumed to be the 100 year range indicated by the start century year customized using $CUS
(see the Global System Manager Manual and system variable $$NCYR), or long dates (DL)
which include the full year as four digits. Short dates are PIC X(8) fields, and long dates PIC
X(10) fields, of the form:

dd/mm/yy (short) or dd/mm/ccyy (long)

when European processing is in force ($$USA = 0), or:

mm/dd/yy (short) or mm/dd/ccyy (long)

for American processing ($$USA = 1). Here dd and mm are one or two digit integers

representing the day and month respectively, and cc and yy are two digit integers representing

the century and year within the century. The century may be omitted in the long format, in which
case the 100 year range indicated by the start century year (see above) is assumed. As well as
"/", the characters "-", "." and "*" are also allowed as separators within the date. Dates may not
contain leading or embedded spaces.

For example, suppose European date processing is in force, then the 1st May 1988 could be
represented in short external date format as any of the following:

01/05/88 1/5/88bb 01-05-88 1.05.88b

where b represents a single space character. The first of these represents the standard format

used by Global System Manager. All these examples would also be valid long format dates if
padded out with two spaces on the right. The following, however, are not valid short dates:

b1/b5/88 bb1-5-88 01:05:88 1/5/1988

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 10 of 120

although the last of these would be a valid long date if two spaces were added on the right. This
date in standard long format would be 01/05/1988.

2.1.1 Validating an External Format Date
You may check whether a field contains a valid external format date by coding a CALL
statement of the form:

CALL DS-DT$ USING short-date

or:
CALL DL-DT$ USING long-date

where short-date identifies a PIC X(8) field, and long-date identifies a PIC X(10) field, containing

the date to be validated. The contents of the field are not altered by the validation. An exception
will be generated if the date is not in the valid format, or if it does not represent a legitimate date
(leap year checks are performed).

2.1.2 Converting a Date from Internal to External Format
You may convert a date from internal to external format by coding a CALL of the form:

CALL DT-DS$ USING int-date short-date

or:
CALL DT-DL$ USING int-date long-date

where int-date is a PIC 9(6) COMP field containing the internal format date to be converted,

which will be unaltered by the call. Short-date is a PIC X(8) field in which the resulting short

format date is placed, and long-date is a PIC X(10) field in which the resulting long format date

is placed. The day and month will always be two digits, with leading zeros if required, and the
separator will be "/". The century is always included in the resulting long format date.

No exception is generated if int-date is invalid. If a wrong value is supplied it will be

mechanically converted (for example,75/28/2413).

2.1.3 Converting a Date from External to Internal Format
You may convert a date from external format to internal format by means of a CALL of the form:

CALL DS-DT$ USING short-date int-date

or:
CALL DL-DT$ USING long-date int-date

where short-date is a PIC X(8) literal or variable containing a short format date to be converted,

and long-date is a PIC X(10) literal or variable containing a long format date to be converted.

int-date is a PIC 9(6) COMP field in which the resulting internal format date will be placed. The

external format date is unaltered by the conversion.

If the external date is not in valid date format, or does not represent a legitimate date, then an
exception will be returned and int-date will remain unchanged.

2.1.4 Programming Notes

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 11 of 120

Programmers developing portable applications should take care never to store an external date
on a data file which might be transported between American and European installations, since
the meaning (and even the validity) of such a date changes as $$USA changes.

2.1.5 Memory Page Versions
Memory Page versions of these subroutines are available. These versions have most of the
subroutine code within Global System Manager making the subroutine smaller. Refer to
Appendix B for further details of Memory Page subroutines.

2.2 Date to Day Number Conversion, DT-DY$ & DY-DT$
The date to day number system routine allows you to convert an internal format date to a day
number, 1 January 1900 counting as day 1. You can also convert day numbers, which are held
as PIC 9(6) COMP fields, back to internal date format. The routine is useful when you need to
determine the number of days between two dates, often a requirement for interest and other
financial calculations.

The routine will handle dates between 1 January 1063 and 31 December 2699, using the
Gregorian Calendar. Note that although the Gregorian calendar was first introduced in 1582, it
was not adopted until much later in most countries, two of the last being the USSR (1918) and
Greece (1923).

2.2.1 Internal Date to Day Number
You can convert an internal date to the corresponding day number by a CALL statement of the
form:

CALL DT-DY$ USING int-date day-number

where int-date is a PIC 9(6) COMP field containing the internal format date, unaltered by DT-

DY$, and day-number is a PIC 9(6) COMP field in which the day number will be returned if all is

well. An exception is returned, and the day number field remains unchanged, if the internal date
is not valid.

2.2.2 Day Number to Internal Date
A day number can be converted to internal date format by a CALL statement of the form:

CALL DY-DT$ USING day-number int-date

The first parameter, day-number, is the name of a PIC 9(6) COMP field containing the day

number, and is unaltered by DY-DT$. The second parameter, int-date, is the name of another

PIC 9(6) COMP field in which the internal date is returned if all goes well. An exception is
returned if the day number is not within the valid range, and in this case int-date will remain

undisturbed.

2.2.3 Exception Conditions
DT-DY$ returns exception condition 1 if its first parameter is not a valid internal format date.

DY-DT$ returns exception condition 1 if its first parameter does not represent a date within the
valid range.

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 12 of 120

2.3 The Time of Day Routine, TIME$
The TIME$ routine is used to obtain the current time of day as an eight character field of the
form hh.mm.ss, for example 07.21.03 or 15.08.57.

2.3.1 Invocation
The routine is invoked by a CALL of the form:

CALL TIME$ USING time

where the parameter time is the name of a PIC X(8) field in which the time will be returned.

2.3.2 Exceptions
Exception condition 1 will be returned if time of day processing is not supported by the machine.

2.3.3 Programming Note
If the machine is running at midnight the time and date will not be reset until $D, or the MIDN$
routine described in 2.6, is used to change the date and time. Otherwise the hours will simply
continue to be incremented (e.g. 25.17.03). This is done to give the user full control over the
date to be used for processing, whilst still retaining unambiguous time/date combinations.

2.4 The Day of the Week Routine, DOWK$
The DOWK$ routine is used to determine the day of the week corresponding to an internal
format date.

2.4.1 Invocation
The routine is invoked by a CALL of the form:

CALL DOWK$ USING int-date day

where int-date is a PIC 9(6) COMP field containing the internal format date, and day is a PIC 9

COMP field in which the day of the week will be returned, with 1 representing Sunday, 2
representing Monday, and so on. The field int-date is unaltered by DOWK$.

2.5 The Time Conversion Routines, T-HMS$ & HMS-T$
The T-HMS$ system routine is used to convert a time from internal to external format, and the
HMS-T$ routine to perform the reverse conversion. The HMS-T$ routine can also be employed
to check that a PIC X(8) field contains a valid external format time.

External format times are PIC X(8) fields of the form:

hh.mm.ss

where hh, mm and ss are two digit integers representing the hour, minute and second

respectively, counting from midnight. On output the separator is always set to ".", but on input
any of the six characters "*", "+", "'", ".", "-" and "/" are acceptable. Times may be greater than
24.00.00: such times can be useful when you wish to run with the previous day's date. For
example, 25.15.00 indicates a time of 1.15 am on the day after $$DATE.

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 13 of 120

Internal format times are PIC 9(9) COMP fields containing the time in seconds, that is:

3600 * hours + 60 * minutes + seconds

2.5.1 Internal to External Time Conversion
You can convert an internal time to the corresponding external time by a CALL statement of the
form:

CALL T-HMS$ USING int-time ext-time

where int-time is a PIC 9(9) COMP field containing the internal time to be converted, and ext-

time is a PIC X(8) field in which the external time is returned. The field int-time is unaltered by

T-HMS$. If int-time contains an invalid format time then ext-time will be set to "********", but no

exception is generated.

2.5.2 External to Internal Time Conversion
You can convert an external time to the corresponding internal time by a CALL statement of the
form:

CALL HMS-T$ USING ext-time int-time

where ext-time is a PIC X(8) field containing the external time to be converted, and int-time is a

PIC 9(9) COMP field in which the internal time will be returned. The field ext-time is unaltered by

HMS-T$. If ext-time contains an invalid time then exception condition 1 is returned, and int-time

remains unchanged.

2.6 The Elapsed Time and Midnight Routines, SECS$, MIDN$,
MIDCH$
The SECS$ routine is used to determine the elapsed time, in seconds, since Global System
Manager was initiated. By calling the routine at the beginning and end of an activity, and
subtracting one time from the other, you can obtain its duration in seconds.

The MIDN$ routine advances the internal date, $$DATE, by one day, and reduces the time of
day by 24 hours if it is after midnight. If midnight has not passed the routine leaves the date and
time of day unaltered. In either case the elapsed time supplied by SECS$ will remain
unaffected. For example, suppose Global System Manager was initiated at noon on 14/05/88,
and has been running exactly 13 hours. Then, assuming MIDN$ has not been called, the date is
still 14/05/88, the elapsed time is 46800 seconds, and the time of day is 25.00.00. One second
later, following a call on MIDN$, the date is 15/05/88, the elapsed time is 46801, and the time of
day is 1.00.01.

Note that the Global System Manager menu system can optionally invoke MIDN$ automatically
when a menu entry is selected.

2.6.1 Calculating the Elapsed Time
To calculate the elapsed time, invoke the SECS$ routine with a call of the form:

CALL SECS$ USING elapsed-time

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 14 of 120

where elapsed-time is a PIC 9(9) COMP field in which the number of seconds which have

passed since Global System Manager was initiated will be returned providing the system
supports a timer. If there is no timer, exception condition 1 is returned, and the field is not
updated.

2.6.2 Advancing the Date After Midnight
To advance the date after midnight, invoke MIDN$ with a parameter-less call:

CALL MIDN$

Exception condition 1 will be returned if the system does not support a timer.

2.6.3 Checking to See if it is After Midnight
To check if the time is after midnight, you must invoke MIDCH$ with a parameter-less call of the
form:

CALL MIDCH$

An exception is returned if the time is after midnight; this enables you to warn the operator
before calling MIDN$ and/or performing any end of session routines.

If it is before midnight, or if the system does not support a timer, the routine has no effect.

2.7 The Date Formatting Routine, FDAT$
The FDAT$ system routine enables you to convert dates held in internal form into a variety of
external formats for display and other purposes.

2.7.1 Invocation
FDAT$ is invoked by a call of the form:

CALL FDAT$ USING int-date format area

where int-date is the PIC 9(6) field holding the date in internal form, format defines the way the

date will be formatted and area is the area where the formatted date will be placed, which must

not be more than 1 byte shorter than format.

2.7.2 The Format
The format area contains characters used to determine how the date will be formatted, and
must be terminated by a $ character. Characters other than those substituted by FDAT$ (e.g.
"/" or ".") will be copied unchanged to the output area.

The following values will be substituted:

DD or dd receive the day number (e.g. 12, 31);

MMM or mmm receive the 3 character upper or upper and lower case abbreviated
form of the month name (e.g. JUL or Jul);

Chapter 2 - Date and Time Subroutines

Global Development System Subroutines Manual V8.1 Page 15 of 120

MM or mm receive the 2 digit month number (e.g. 01 - 12);

YYYY or yyyy receive the 4 digit year number (e.g. 1988);

YY or yy receive the 2 digit year number (e.g. 88).

The longer forms are substituted in preference to the shorter forms; thus 1988 will appear in
preference to 88. In addition, there may only be a maximum of one value for each date item;
thus either YYYY or YY should be defined, not both.

For example, to produce a standard format external date for European use one would define
format as DD/MM/YY$. This would produce dates of the form: 17/07/88.

Alternatively, to produce an unequivocal date for use in the UK or North America you should
define the format as "DD mmm YYYY$". This will produce dates of the form: 17 Jul 1988.

2.7.3 Leading Zeros
Zeros will be omitted if the character defined in format preceding the field to be substituted is a

space. In addition, if the first character of the substituted string is the first character of the
format, leading zeros will be omitted if the first character after the field is a space. Thus:

DD- becomes 01-
 -DD becomes -01
 DDb becomes b1b

 bDD becomes bb1

A stop code is produced if the format defined is not validly terminated with a $ character.

2.7.4 Examples
Given a system date of the seventeenth of May, 1987 the following formats would give the
results indicated:

Format Result

DD/MM/YY$ 17/05/88
DD-mmm-YYYY$ 17-May-1988
MMbYY$ 5 88

Day DD Month MM Year YYYY$ Day 17 Month 5 Year 1988

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 16 of 120

3. Data Conversion Subroutines

3.1 The Random Number Generator, RAND$
The RAND$ system routine allows you to generate a sequence of pseudo-random numbers.
These are positive integers uniformly distributed between 1 and an upper limit which you supply
as a parameter whenever the routine is called.

3.1.1 Setting the Seed
The random numbers are generated using a seed field maintained in the PIC S9(9) COMP
system variable $$SEED. If you wish to obtain a repeatable sequence of random numbers, as
may be useful in debugging, you should set $$SEED to a specific value between -2147483648
and +2147483647 inclusive before calling RAND$ for the first time. If you do not initialise
$$SEED then the sequence of random numbers generated will be truly unpredictable.

3.1.2 Invocation
You invoke the random number generator with a call of the form:

CALL RAND$ USING limit number

where limit must be a PIC 9(4) COMP variable or integer literal containing a value between 1

and 32767 inclusive, and number is the name of a PIC 9(4) COMP variable in which the routine

returns a random integer between 1 and the limit you have specified. Note that if you mistakenly
supply a limit which is not a positive integer your program will be terminated in error.

3.1.3 Examples
The statement:

CALL RAND$ USING 6 FACE

simulates the throwing of a die, since a random integer between 1 and 6 is returned in the PIC
9(4) COMP variable FACE each time the statement is executed.

The tossing of a coin is simulated by:

CALL RAND$ USING 2 SIDE

when the value 1 is returned in SIDE this may be taken to represent "heads", the value 2 being
"tails".

3.2 The Square Root Routine, SQRT$
The SQRT$ system routine enables you to calculate the square root of a non-negative PIC
9(11,7) COMP field correct to seven decimal places.

3.2.1 Invocation
The square root routine is invoked by a call of the form:

CALL SQRT$ USING number root

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 17 of 120

where number is the name of the field whose square root will be returned in root if all goes well.

Both fields must be defined as PIC 9(11,7) COMP.

The first parameter, number, is unchanged by SQRT$. If the value it contains is negative, or is

greater than or equal to 10^12, an exception will be returned and in this case the root field will
not be updated.

3.2.2 Exception Conditions
Exception condition 1 is returned if you attempt to use SQRT$ to find the square root of a
negative number or one which is too large.

3.3 The Zero Fill Routine, ZERO$
The ZERO$ system routine is used to replace all leading spaces in an unsigned display numeric
variable by zeros.

3.3.1 Invocation
The routine is invoked by a CALL of the form:

CALL ZERO$ USING variable-name

The variable-name is the name of the display numeric field which is to have its leading spaces

replaced by zeros.

3.3.2 Processing
The routine examines the field character by character starting from the left and replaces spaces
by zeros until a character is found which is not space.

3.3.3 Programming Note
The display numeric field must contain at least one character which is not a space, otherwise
the field following the display numeric field will be corrupted if it starts with a space. The routine
can be used on a character variable to replace leading spaces by zeros if required.

Note that if a display numeric field is input from the console by an ACCEPT or ACCEPT...LINE
statement, any leading zeros not in the units position are returned as spaces.

3.4 Text/Print Line Conversion Routines, PRIN$ & TEXT$
The PRIN$ system routine takes a text line terminated by a binary zero byte (as returned by the
text file access method) and either displays it on the screen or expands it into a print line, the
first character of which is a print control byte. In both cases tabs are expanded, assuming
standard tab settings at every eighth column (9, 17, 25 etc.).

The TEXT$ system routine takes a print line, prefixed by a print control byte, and converts it to
a text line, terminated by a binary zero byte. Spaces are contracted into tabs, assuming
standard tab settings at every eighth column (9, 17, 25 etc.).

3.4.1 Displaying a line
A text line is displayed on the screen using a CALL statement of the form:

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 18 of 120

CALL PRIN$ USING line

where line is the name of the text line to be displayed, which must be terminated by a binary

zero byte.

If the line to be expanded is longer than the screen line width in $$WIDE then it will be
truncated to that width, or 80 characters, whichever is the smaller. A form-feed or vertical-tab as
the first character will be removed, as will any sequence of carriage-return and line-feed
characters at the start of the line. The line will be displayed on a new line, unless it starts with a
carriage-return character which is not itself followed by a line-feed or carriage-return character,
in which case it is displayed on the current line of the screen. The screen should be in teletype
mode when the line is displayed.

3.4.2 Converting a Text Line to a Print Line
A text line is converted to a print line using a CALL statement of the form:

CALL PRIN$ USING line area [area-length]

where line is the name of the text line, which must be terminated by a binary zero byte, area is

the name of the area in which the print line is to be constructed, and area-length is a PIC 9(4)

COMP field or integer literal specifying the length of the print line to be created inclusive of the
print control byte. If this parameter is omitted the area in which the print line is built is assumed
to be 133 bytes long.

The resulting line is prefixed by a print control byte, constructed as follows:

● if the first character of the line is a form-feed then it is removed and the control byte is set to

-1 (new page);

● if the first character of the line is a vertical-tab then it is removed and the control byte is set

to 3 (3 new lines);

● if the first character of the line is a carriage-return or line-feed then this and any other

carriage-returns or line-feeds immediately following are removed and the control byte is set
to the number of line-feeds removed;

● otherwise, if there are no control characters, the control byte is set to 1 (new line).

This means that control characters on the front of a text line will be interpreted as one would
expect when printing, except that vertical-tabs always advance the paper by three lines. The
case where there are no control characters can only arise when printing the first line of a text
file.

The remainder of the line is placed in the output area with embedded tabs expanded. If this
would result in the line-length being exceeded the extra characters are ignored. A short line is
padded with rightmost blanks to fill up the area.

3.4.3 Converting a Print Line to a Text Line
A print line is converted to a text line using a CALL statement of the form:

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 19 of 120

CALL TEXT$ USING line area [line-length]

where line is the name of an area containing the print line, prefixed by a print control byte, area

is the name of the area in which the text line will be constructed, and line-length is a PIC 9(4)

COMP field or integer literal containing the length of the print line, inclusive of the print control
byte. If this parameter is omitted a line-length of 133 bytes is assumed.

The size of the area must be at least 32 bytes plus the line-length, otherwise unpredictable
errors may occur.

The text line constructed in the area includes prefix characters corresponding to the print control
byte, the remainder of the print line information and, finally, a terminating binary zero byte. The
table below shows the prefix characters generated for particular control byte settings:

Print Control Byte

(n)

Prefix character(s)

n < -1

None. A null line, consisting of a single binary zero byte is returned
(corresponding to a forms control record)

n = 1

Form-feed

0 ≤ n ≤ 31

Carriage-return + n line-feeds

n > 31

Carriage-return + line-feed

Table 3.4.3 - Prefix Characters in a Text Line

The print line information is converted to text line format by removing any trailing rightmost
spaces and replacing multiple contiguous interior spaces by tabs wherever possible, assuming
standard settings at columns 9, 17, 25 etc. A completely blank line is represented by just a
single space. The line information is always followed by a terminating binary zero byte.

3.4.4 Programming Notes
PRIN$ and TEXT$ are most commonly used when converting data from print file format to text
file format, or vice versa. Text and print file handling is fully described in the Global
Development File Management Manual.

3.5 The Table Sort Routines, TSRT$ and QSRT$
The TSRT$ system routine is used to sort a table held in memory into the sequence given by a
character key consisting of part or all of each table entry. The QSRT$ routine is similar, but
uses the "Quicksort" algorithm and as a result is faster for sorting large tables when the sort key
starts at the beginning of each table entry.

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 20 of 120

3.5.1 Invocation
The routines are invoked by means of a call of the form:

CALL TSRT$ USING ts table

or:
CALL QSRT$ USING ts table

The parameter ts is the name of a table sort control area in which you must establish five PIC

9(4) COMP fields in the order listed below. This area is read-only to the sort and contains:

● the length of each table entry in bytes;

● the number of table entries;

● a work field used by the sort;

● the byte number of the start of the sort key within each table entry (the first byte of the table

entry is taken as byte number 1);

● the length of the sort key in bytes.

The parameter table is the name of the table to be sorted.

3.5.2 Processing
The control block is assumed to be valid: unpredictable errors will occur if it is not. The table
entries are sorted into the order given by their embedded keys. If two entries have the same key
then their resulting relative sequence is not predictable.

3.5.3 Programming Notes
It is recommended that QSRT$ should be used in preference to TSRT$ for tables containing
more than 500 entries when the sort key starts at the beginning of each table entry. If QSRT$ is
used in other circumstances it will be no faster than TSRT$, and will occupy more memory.

3.6 Hexadecimal to Binary Conversion, HX-BI$ & BI-HX$
Two system routine entry points are provided to convert a hexadecimal string to binary, or vice
versa. By a hexadecimal string we mean a sequence of an even number of ASCII characters,
each of which is in the range 0-9 or A-F, and each of which represents 4 bits of the
corresponding binary string. For example, the hexadecimal string "7F" corresponds to a binary
string 1 byte in length, containing the bits:

0 1 1 1 1 1 1 1

3.6.1 To Convert a Hexadecimal String to Binary
To convert a hexadecimal string of length 2n bytes to the corresponding binary string of length n

bytes you invoke the HX-BI$ system routine with a call of the form:

CALL HX-BI$ USING hex binary n

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 21 of 120

where hex labels the area containing the hexadecimal string, read-only as far as HX-BI$ is

concerned; binary labels the area in which the binary string will be created; and n is the name of

a PIC 9(4) COMP field, or integer literal, specifying the non-zero length of the binary string in
bytes.

Exception condition 1 will be returned if any byte from the hexadecimal string area contains a
value which is not ASCII 0-9 or A-F. If this exception occurs the contents of the binary string
area will be unpredictable.

Your job will be terminated with a stop code if the value of n that you supply to the routine is not

a positive integer.

3.6.2 To Convert a Binary String to Hexadecimal
To convert a binary string of length n bytes to the corresponding hexadecimal string of length 2n

bytes you invoke the BI-HX$ system routine with a call of the form:

CALL BI-HX$ USING binary hex n

where binary labels the area containing the binary string, read-only as far as BI-HX$ is

concerned; hex labels the area in which the hexadecimal string will be created; and n is the

name of a PIC 9(4) COMP field, or integer literal, specifying the non-zero length of the binary
string in bytes.

Your job will be terminated with a stop code if the value of n that you supply to the routine is not

a positive integer.

3.6.3 Examples
In the examples below Z-PTR is a PIC PTR field and Z-HEX is a PIC X(4) field used to hold the
equivalent hexadecimal string.

The following procedure division statements convert Z-PTR to hexadecimal in Z-HEX and
display the result:

CALL BI-HX$ USING Z-PTR Z-HEX 2
DISPLAY Z-HEX

The statements below input and validate a hexadecimal string which is converted to binary in Z-
PTR. If the input is invalid, the operator is re-prompted until the correct input is supplied:

AA010.

DISPLAY "INPUT POINTER VALUE IN HEX"
ACCEPT Z-HEX
CALL HX-BI$ USING Z-HEX Z-PTR 2
ON EXCEPTION GO TO AA010

3.7 ASCII to EBCDIC Conversion, AS-EB$ & EB-AS$
A routine is provided to convert an ASCII character string to EBCDIC or vice versa. Appendix A
of the Global Development Cobol Language Manual contains a table of ASCII-EBCDIC
equivalents.

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 22 of 120

3.7.1 To Convert an ASCII String to an EBCDIC String
To convert an ASCII string of length n bytes to the corresponding EBCDIC string, you invoke

the AS-EB$ routine with a call of the form:

CALL AS-EB$ USING ascii ebcdic n

where ascii labels the area containing the ASCII string, read-only as far as AS-EB$ is

concerned, ebcdic labels the area in which the EBCDIC string will be created, and n is either the

name of a PIC 9(4) COMP field or an integer literal, specifying the non-zero length of each
string in bytes. Only the junior seven bits of each ASCII character are used in the conversion,
the setting of the senior bit being ignored. If the ASCII character does not have an EBCDIC
equivalent, as indicated by the entry (none) in the table of ASCII-EBCDIC equivalents, then the
character is converted to an EBCDIC "?" character.

Your program will be terminated with a stop code if the value of n that you supply to the routine

is not a positive integer.

3.7.2 To Convert an EBCDIC String to an ASCII String
To convert an EBCDIC string of length n bytes to the corresponding ASCII string, you invoke

the EB-AS$ routine with a call of the form:

CALL EB-AS$ USING ebcdic ascii n

where ebcdic labels the area containing the EBCDIC string, read-only as far as EB-AS$ is

concerned, ascii labels the area in which the ASCII string will be created, and n is either the

name of a PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of each
string in bytes. If the EBCDIC character does not appear in the table of ASCII-EBCDIC
equivalents, then the character is converted to an ASCII "?" character.

Your program will be terminated with a stop code if the value of n that you supply to the routine

is not a positive integer.

3.7.3 Examples
In the examples below Z-AS and Z-EB are both PIC X(40) variables, Z-AS holding an ASCII
string and Z-EB an EBCDIC string.

The following statements accept 40 ASCII characters into the Z-AS field and convert them to
EBCDIC in the Z-EB field:

ACCEPT Z-AS
CALL AS-EB$ USING Z-AS Z-EB 40

The following statements convert the EBCDIC string in Z-EB to ASCII in the Z-AS field and then
display the result:

CALL EB-AS$ USING Z-EB Z-AS 40
DISPLAY Z-AS

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 23 of 120

3.8 Binary to Bit String Conversion, BI-BS$ & BS-BI$
A routine is provided to convert a binary string to a bit string and vice versa. By a bit string we
mean a sequence of a multiple of eight ASCII characters, each of which has the value "0" or "1",
and each of which represents a bit of the corresponding binary string. For example, the 8-byte
bit string "10110011" corresponds to a binary string 1 byte in length, containing the bits:

1 0 1 1 0 0 1 1

3.8.1 To Convert a Binary String to a Bit String
To convert a binary string of length n bytes to the corresponding bit string of length 8n bytes,

you invoke the BI-BS$ routine with a call of the form:

CALL BI-BS$ USING binary bitstring n

where binary labels the area containing the binary string, read-only as far as BI-BS$ is

concerned, bitstring labels the area in which the bit string will be created, and n is either the

name of a PIC 9 (4) COMP field, or an integer literal, specifying the non-zero length of the
binary string in bytes.

Your program will be terminated with a stop code if the value of n that you supply to the routine

is not a positive integer.

3.8.2 To Convert a Bit String to a Binary String
To convert a bit string of length 8n bytes to the corresponding binary string of length n bytes,

you invoke the BS-BI$ routine with a call of the form:

CALL BS-BI$ USING bitstring binary n

where bitstring labels the area containing the bit string, read-only as far as BS-BI$ is concerned,

binary labels the area in which the binary string will be created, and n is either the name of a

PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of the binary string in
bytes.

Exception condition 1 will be returned if any byte from the bit string area contains a value which
is not ASCII 0 or ASCII 1. If this exception occurs the contents of the binary string area will be
unpredictable.

Your job will be terminated with a stop code if the value of n that you supply to the routine is not

a positive integer.

3.8.3 Examples
In the examples below Z-BI is a PIC 9(4) COMP variable (occupying two bytes) and Z-BS is a
PIC X(16) variable used to hold the equivalent bit string.

The following statements accept 16 ASCII characters into the Z-BS field and convert them to
binary in the Z-BI field. If the input is invalid, the operator is re-prompted until the correct input is
supplied:

AA010.

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 24 of 120

DISPLAY "INPUT 16-CHARACTER BIT STRING VALUE"
ACCEPT Z-BS
CALL BS-BI$ USING Z-BS Z-BI 2
ON EXCEPTION GO TO AA010

The following statements convert the binary string in Z-BI to an ASCII bit string in Z-BS and
then display the result:

CALL BI-BS$ USING Z-BI Z-BS 2
DISPLAY Z-BS

3.9 Binary Word String to Octal String Conversion, BI-OC$ & OC-
BI$
A routine is provided to convert a string of binary words to an octal string and vice versa. By an
octal string we mean a sequence of a multiple of 6 ASCII characters, each of which is in the
range "0" to "7". For example, the octal string "177600" corresponds to a binary string two bytes
in length, containing the bits:

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

The format of the words of the binary string (i.e. which of the two bytes of the word is the most
significant) can be specified when the routine is called, and thus it can operate on a list of
addresses of either format.

3.9.1 To Convert a Binary Word String to an Octal String
To convert a string of n binary words to the corresponding octal string of length 6n bytes, you

invoke the BI-OC$ routine with a call of the form:

CALL BI-OC$ USING binary octal n

where binary labels the area containing the binary string, read-only as far as BI-OC$ is

concerned, octal labels the area in which the octal string will be created, and n is either the

name of a PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of the binary
string in words. The format of the binary words is specified by the sign of the value n. A positive
value means that the junior byte is the most significant (Global Cobol pointer format), while a
negative value means that the senior byte is the most significant. Each 6-byte octal value
created has leading "0" bytes if necessary.

Your job will be terminated with a stop code if the value of n that you supply to the routine is

zero.

3.9.2 To Convert an Octal String to a Binary Word String
To convert an octal string of length 6n bytes to the corresponding string of n binary words, you

invoke the OC-BI$ routine with a call of the form:

CALL OC-BI$ USING octal binary n

where octal labels the area containing the octal string, read-only as far as OC-BI$ is concerned,

binary labels the area in which the binary string will be created, and n is either the name of a

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 25 of 120

PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of the binary string in
words. The format of the binary words is specified by the sign of the value n. A positive value
means that the junior byte is the most significant (Global Cobol pointer format), while a negative
value means that the senior byte is the most significant. Each 6-byte octal value can have either
leading spaces or zeros if required.

Exception condition 1 will be returned if any byte from the octal string area contains a value
which is not ASCII 0-7, or if any set of 6 bytes converts to a value which is greater than 177777
(octal).

If this exception occurs the contents of the binary string area will be unpredictable. Note that
this means that any octal string to be converted must not contain leading or trailing spaces.

Thus short strings must be padded to the correct number of characters by the insertion of the
appropriate number of rightmost zeros.

Your job will be terminated with a stop code if the value of n that you supply to the routine is

zero.

3.9.3 Examples
In the following example, Z-OC is a 6-byte area into which an ASCII octal string is accepted and
then converted to binary in the 2-byte area Z-BI. Note that the binary value in Z-BI is not in
Global Cobol pointer format. If the input is invalid, the operator is re-prompted until the correct
input is supplied:

AA010.

DISPLAY "INPUT OCTAL VALUE"
ACCEPT Z-OC
CALL OC-BI$ USING Z-OC Z-BI -1
ON EXCEPTION GO TO AA010

In the next example, a binary string held in the two-byte area Z-BI is converted to ASCII octal in
the 6-byte area Z-OC. This time the binary value in Z-BI is in Global Cobol pointer format:

CALL BI-OC$ USING Z-BI Z-OC 1
DISPLAY Z-OC

3.10 ASCII to RADIX-50 Conversion, AS-RL$ & RL-AS$
A routine is provided to convert an ASCII character string to a string of RADIX-50 words and
vice versa. RADIX-50 describes a compact method of character storage, often used by DEC
operating systems, which enables a limited character set (of 40 characters (i.e. octal 50
characters) hence the name) to be held 3 characters per 2-byte word. The table below gives the
RADIX-50 values for the characters of the set.

 Character RADIX-50 value (decimal)

Space 0
A-Z 1-26
$ 27
. 28

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 26 of 120

? 29
0-9 30-39

For example, the ASCII character string "ABC" would be represented by the 2-byte RADIX-50
value:

1*40*40 + 2*40 + 3 = 1683 (decimal arithmetic)

The format of the RADIX-50 word (i.e. which of the two bytes of the word is the most significant)
can be specified when the routine is called.

3.10.1 To Convert an ASCII String to a String of RADIX-50 Words
To convert an ASCII string of length 3n bytes to the corresponding RADIX-50 string of length n

words, you invoke the AS-RL$ routine with a call of the form:

CALL AS-RL$ USING ascii radix-50 n

where ascii labels the area containing the ASCII string, read-only as far as AS-RL$ is

concerned, radix-50 labels the area in which the RADIX-50 string will be created, and n is either

the name of a PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of the
RADIX-50 string in words. The format of the RADIX-50 words is specified by the sign of the
value n. A positive value means that the junior byte is the most significant (Global Cobol pointer

format), while a negative value means that the senior byte is the most significant.

Exception condition 1 will be returned if any byte from the ASCII string area contains a value
which does not have a RADIX-50 equivalent as defined in the table above. If this exception
occurs, all undefined ASCII characters will have been converted into RADIX-50 "?" characters.

Your program will be terminated with a stop code if the value of n that you supply to the routine

is zero.

3.10.2 To Convert a String of RADIX-50 Words to an ASCII String
To convert a RADIX-50 string of n words to the corresponding ASCII string of 3n bytes, you

invoke the RL-AS$ routine with a call of the form:

CALL RL-AS$ USING radix-50 ascii n

where radix-50 labels the area containing the RADIX-50 string, read-only as far as RL-AS$ is

concerned, ascii labels the area in which the ASCII string will be created, and n is either the

name of PIC 9(4) COMP field, or an integer literal, specifying the non-zero length of the RADIX-
50 string in words. The format of the RADIX-50 words is specified by the sign of the value n. A

positive value means that the junior byte is the most significant (Global Cobol pointer format),
while a negative value means that the senior byte is the most significant.

Exception condition 1 will be returned if any word of the RADIX-50 string has a value greater
than 63999 (decimal). If this exception occurs the contents of the ASCII string area will be
unpredictable.

Your job will be terminated with a stop code if the value of n that you supply to the routine is

zero.

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 27 of 120

3.10.3 Examples
In the following example, Z-AS is a PIC X(6) field into which an ASCII string is accepted and
then converted to RADIX-50 form in the PIC X(4) field Z-RL. Note that the two RADIX-50 words
created in Z-RL are not in Global Cobol pointer format. If the input is invalid, the operator is re-
prompted until the correct input is supplied:

AA010.

DISPLAY "INPUT ASCII STRING"
ACCEPT Z-AS
CALL AS-RL$ USING Z-AS Z-RL -2
ON EXCEPTION GO TO AA010

In the following example, a pair of RADIX-50 words held in the PIC X(4) field Z-RL is converted
to ASCII in the PIC X(6) field Z-AS. This time the RADIX-50 format of Z-RL is Global Cobol
pointer format:

CALL RL-AS$ USING Z-RL Z-AS 2
DISPLAY Z-AS

3.11 Numeric, K, M or G String to Computational Conversion,
NKM-C$
The NKM-C$ routine converts a 16-character string in any of the following formats:

number (A)

number K (B)

number M (C)

number G (D)

into a PIC S9(15) COMP signed integer. In format (A) the number is treated as an S9(15)
display numeric quantity. In format (B) it is S9(11,3), in format (C) it is S9(8,6) and in format D it
is S9(4,6). The suffix K is considered to represent a 1024 multiplier; M a 1048576 (i.e. 1024 x
1024) multiplier; and G a 1073741824 (i.e. 1024 x 1024 x 1024) multiplier. During the
calculations a fractional result is truncated towards zero, not rounded. Hence the following
strings all convert into the value -256:

-256.8
-.25K
-.000245M

The routine is used to normalise input when the operator is allowed to specify a quantity, such
as a file size, either in bytes, kilobytes, megabytes or gigabytes.

3.11.1 Invocation
To convert a numeric, K, M, or G string to computational format code:

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 28 of 120

CALL NKM-C$ USING string comp

where string must label a 16-byte area containing the string to be converted, padded with

rightmost spaces as necessary. The quantity comp is the name of a PIC S9(15) COMP variable

to contain the result of the conversion.

3.11.2 Exception Conditions
Exception condition 1 will be returned if the format of the string is invalid, or if the result of the
conversion would exceed the capacity of a PIC S9(15) field. In this case the comp field itself
remains unchanged.

3.11.3 Example
In the following example, Z-STR is a PIC X(16) field into which a numeric, K, M, or G string is
accepted and then converted to computational form in the PIC S9(15) field Z-COMP. If the input
is invalid, the operator is re-prompted until the correct input is supplied:

AA010.

DISPLAY "INPUT FILE SIZE"
ACCEPT Z-STR
CALL NKM-C$ USING Z-STR Z-COMP
ON EXCEPTION GO TO AA010

3.12 Double Length Multiply and Divide, MULTI$ and DIVID$
The double length Multiply and Divide routines allow the accurate multiplication and division of
PIC 9(12,6) COMP numbers. Whereas the normal MULTIPLY and DIVIDE statements can
overflow in various circumstances (such as when the result contains more than 9 digits), these
subroutines will only overflow if the result exceeds the capacity of a PIC 9(12,6) COMP field.

3.12.1 Double Length Multiplication
The MULTI$ system subroutine is invoked by a CALL statement of the form:

CALL MULTI$ USING A B C

where A and B are the numbers you wish to multiply together and C is the result. A, B and C

must all be defined as PIC 9(12,6) COMP variables.

3.12.2 Double Length Division
The DIVID$ system subroutine is invoked by a CALL statement of the form:

CALL DIVID$ USING A B C

where A is the divisor, B is the dividend and C is the result.

3.12.3 Exception
Exception condition 1 will be returned if an overflow occurs and C will be set to the largest
negative value that can be contained in the PIC 9(12,6) format (i.e. the number represented by
the 8 bytes #8000000000000000).

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 29 of 120

3.12.4 Programming Notes
The quantities A, B and C do not need to be distinct. For example:

CALL MULTI$ USING VALUE VALUE VALUE

replaces the quantity in VALUE by its square.

3.13 The Password Number Routine, PWNUM$
The password number routine is used to calculate a password number from a user password
string. This string is scrambled so that it no longer appears as ASCII, although it still represents
the same password as far as the PWNUM$ and PWCHK$ routines are concerned. If you need
to retain a copy of the user password then you should retain the scrambled version.

3.13.1 Invocation
The password number routine is invoked with a call of the form:

CALL PWNUM$ USING input-string pwnumber

input-string is a PIC X(8) variable containing the user password with which the file is to be

protected. This is updated by the scrambling process. pwnumber is the PIC S9(9) COMP

variable in which the encrypted user password is returned.

3.13.2 Programming notes
The password number, not the scrambled input string, is saved on the file to protect it. The

encryption technique ensures that it is virtually impossible to deduce the user password
corresponding to a particular number even if you decode the instructions of PWNUM$.
However, only a very simple algorithm is used for scrambling the password string since it is
merely intended to prevent temporarily retained passwords standing out in an ASCII dump. The
whole point is to rely on encrypted password numbers rather than strings. You should normally
call PWNUM$ just as soon as the operator has keyed the password, as in the following
example:

Ask operator if this file is to be password protected.
If so

Prompt for password, accepting it into input-string.
CALL PWNUM$ USING input-string pwnumber

Else (file to be marked unprotected)
CALL PWNUL$ USING tagword pwnumber * see 3.14 below

End

At the end of this process, pwnumber either contains a user password number or the null

password number whose value depends on the tagword. If the operator did protect the file then

the user password number will have been set up and the input string scrambled so that the
keyed ASCII is no longer visible.

3.14 The Null Password Number Routine, PWNUL$
The null password number routine is used to set up a special value of the password number
taken to mean that the file is unprotected. The null value is a function of the tag-word, a volatile

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 30 of 120

and critical field preserved on the file together with the password number. The routine is used to
avoid there being a single, system-wide null value that can easily be found and patched into
files.

3.14.1 Invocation
The null password number routine is invoked with a call of the form:

CALL PWNUL$ USING tagword pwnumber

tagword is the name of a PIC S9(4) COMP variable containing the tag-word value. This is read

only as far as PWNUL$ is concerned. pwnumber is the PIC S9(9) COMP variable in which the

null password is returned.

3.14.2 Programming note
Section 3.13.2 shows how PWNUL$ might be used in conjunction with PWNUM$ at the time
the operator is deciding whether or not to protect the file. You might want to call PWNUL$
before then and only use it at that time if the operator requested protection to be removed from
a file currently protected.

You need to use PWNUL$ again when the tag-word is about to change, normally just before the
file is updated on disk. Using the expanded subroutine calls, the earlier example becomes:

CALL PWNUL$ USING tagword N * Save current null pw#

Change tagword.
IF N = pwnumber *If file unprotected

CALL PWNUL$ USING tagword pwnumber * Set new null pw#

END
Write file with new tag-word (and, if unprotected, new null password number value).

3.15 The Password Check Routine, PWCHK$
The password check routine can be used to perform all or certain combinations of the following
tests, depending on how its four parameters are set up:

● Does the current password number contain the special null value, indicating that the file is

unprotected?

● Does the input string contain the user password?

● Does the input string contain the master password?

The routine completes normally if any selected test succeeds, otherwise it returns an exception.

The master password, mentioned above, is a special password, obtainable from Global System
Manager, which can be used to grant access to a password protected file when the original
password has been lost. The master password is based on the name of the file, the date on
which it is to be used and the installation where it will be used. Normally you would use the
master password to go into and then change or remove the original password.

3.15.1 Invocation

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 31 of 120

(a) To perform all three tests, code:

CALL PWCHK$ USING file input-string tagword pwnumber

(b) To check just whether the null password value is set, code:

CALL PWCHK$ USING #80 #80 tagword pwnumber

(c) To check just for the master password, code:

CALL PWCHK$ USING file input-string #80 #80

file is a PIC X(8) variable (or literal) containing the file-id of the protected file, or #80 if master

password checking is not required. It is read-only as far as PWCHK$ is concerned.

The input-string is a PIC X(8) variable containing the password originally keyed by the operator

(or a scrambled version of that password). PWCHK$ updates the string to the scrambled non-
ASCII format if this has not already taken place. The variable may be replaced by #80 if the
routine is only being used to check for the null password number. Note that input strings
beginning with #80 can never form a valid user or master password and are never scrambled.

The tagword is the name of a PIC S9(4) COMP variable containing the tag-word value. It is

read-only as far as PWCHK$ is concerned. It and the following pwnumber parameter should be

replaced by #80 if the routine is used simply to check for the master password.

pwnumber is the PIC S9(9) COMP variable containing the password number as previously

established by either the PWNUM$ or PWNUL$ routines. It is read-only as far as PWCHK$ is
concerned. Along with the preceding tag-word parameter it should be replaced by #80 if the
routine is being used just to check for the master password.

3.15.2 Exception Conditions
Exception condition 1 is returned if no test specified by the parameters succeeds. For a form (a)
call this means that the file is protected and the operator has failed to supply either the correct
master password or user password. For form (b) an exception indicates that the file is protected
and in consequence the operator must be prompted for its password. A form (c) exception
means that the operator has failed to supply the master password.

3.15.3 Programming notes
Form (c) is provided for use only by those applications which wish to employ the new master
password checking without adopting the rest of the scheme.

A typical authorisation routine uses form (b) to see if the password is null - and if this is so, does
not prompt the operator as the file is unprotected. If a password is needed the form (a) is
employed to check it once it has been keyed. Expanding the PWCHK$ calls the skeleton
authorisation routine and the logic becomes:

CALL PWCHK$ USING #80 #80 tagword pwnumber

ON NO EXCEPTION EXIT * Out if null password set
Prompt operator for 8 character password.
Accept into input-string

Chapter 3 - Data Conversion Subroutines

Global Development System Subroutines Manual V8.1 Page 32 of 120

CALL PWCHK$ USING file input-string tagword pwnumber

ON EXCEPTION EXIT WITH $$CODE * Reflect wrong password
EXIT * Good exit if master/user pw

The quantities file, input-string, tagword and pwnumber should be located outside the

authorisation routine in order to be made available to the verification process. The input-string is

scrambled by the time the good exit from the authorisation routine takes place, so that a valid
password cannot be seen from another partition. input-string should be set to start with a #80

byte before the authorisation routine is called so that if the routine is patched out the password
string supplied to the verification routine is guaranteed to be invalid.

3.15.4 Verification processing
Often the entire authorisation process can be disabled by patching the code that prompts for the
password to an EXIT statement. This is such a simple process that there is no need to patch
the product on disk, so the chance of such tampering being detected is minimal.

The answer to this problem does not lie in making the authorisation routine unnecessarily
complicated. Instead, the routine should preserve the 8 character password keyed by the
operator together with the filename, tag-word and password number, so that they can be
passed to the PWCHK$ routine again by a later verification process. This should be located in a
different overlay from the authorisation routine and should always be entered shortly after the
authorisation routine has been used.

The verification process itself simply repeats the form (a) call used by the authorisation routine.
PWCHK$ will only return an exception if the authorisation routine has not completed properly.
Typically, verification involves just two lines of code:

CALL PWCHK$ USING file input-string tagword pwnumber

ON EXCEPTION STOP WITH -99

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 33 of 120

4. Program Management Subroutines

4.1 The Customisation Routine, CUST$
The CUST$ system routine is used to write the program last loaded from main memory back to
external direct access storage. In this way, if the program has modified itself since it was
loaded, any updates will be permanently remembered. Global System Manager uses CUST$ to
write back a modified version of the $STARB command program whenever Global System
Manager customisation takes place.

4.1.1 Invocation
The customisation routine is invoked by a parameter-less call:

CALL CUST$

It only returns control when the program has been written successfully to direct access storage.
Your job will be terminated with a stop code if an irrecoverable I/O error occurs, or if the
program (whose program-id is assumed to be contained in $$PGM, set when it was loaded)
cannot be found.

4.1.2 Programming Notes
Although CUST$ is very convenient for parameterising test and other one-off programs, it is
best avoided for live programs as it can lead to obscure problems when a variable is
accidentally rewritten with an unexpected value in it.

Normally programs which use CUST$ provide a special sequence of prompts, not usually
employed in ordinary working, which allow the operator to specify infrequently-varied
parameters. Each parameter is verified, and its value is saved in initialised working storage.

(Any uninitialised working storage at the start of data division does not form part of the program
file, and cannot be used for customisation.) Once the special sequence of prompts is complete,
the program memory area is written back to direct access storage, overwriting the original
program file. The parameters established by the special prompt sequence will therefore be
available when the program is subsequently run, and will remain unchanged unless the operator
decides to customise the program anew.

You must be careful not to be in the middle of any processing when you call CUST$. In
particular, you should not:

● have any open FD's;

● have called JOB$ to pass dialogue;

● be in the middle of processing a MAPIN statement (i.e. in a validation routine).

This is because information about these situations would be "remembered" as part of the
customized program and would cause unpredictable errors when it was next run.

4.2 Checking for Online Programs and Libraries, PROG$

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 34 of 120

You may use the PROG$ system routine to determine whether a particular program or library is
available on the current system or program residence device, without displaying a program
required prompt if it is not found. If the program is in a library then this library must be attached,
otherwise the program will be considered to be unavailable.

4.2.1 Invocation
You determine whether a program or library is online by means of a CALL statement of the
form:

CALL PROG$ USING request [volume-id] [unit-id]

where request is an 8-character literal or variable containing the program-id or library-id of the

program or library to be checked. The optional second parameter, volume-id, is only used when

a program request is made. It is the name of a PIC X(6) variable in which the volume-id
identifying the location of the actual member will be returned if the portion of a dispersed library
which is currently online contains only a stub for the requested program. If you include the
second parameter you can also include an optional third parameter, unit-id. This is the name of

a PIC X(3) variable in which the unit-id for the actual member for a stub in the current library will
be returned.

Providing PROG$ returns normal completion following a program request, $$PGM is set to the
specified program-id. When a library request is similarly honoured the library itself is attached
and its library-id is placed in $$LIB.

4.2.2 Processing
If the program or library requested is not currently online an exception is returned. In addition, if
the second parameter is supplied and the online library contains a stub for the program
requested, the volume-id of the required volume will be returned in the second parameter, but
the volume itself will not be mounted. If the actual program is online the volume-id will be

returned as spaces.

4.2.3 Exceptions
Exception condition 1 will be returned if an irrecoverable I/O error occurs.

Exception condition 2 will be returned if the program or library is not present. $$RES will be "3"
if it is genuinely missing or "1" if there is a file with a matching name on the device, but that file
is not a program or library.

4.2.4 Programming Notes
If you are using free space management the index area pointer, $$INDE, must be established
before calling PROG$. See section 6.29.

If the program name supplied starts with a "$" then the system residence device will be
searched, otherwise the program residence device, assigned to $P, will be searched. If the
program name starts "*" then "$" will be substituted when searching for the program on $P.

4.3 Quick Overlay Loading Using QINDX$ and QLOAD$
When a program library is attached, Global System Manager keeps it permanently open to
reduce overlay time. Nevertheless a program load resulting from an EXEC or LOAD statement

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 35 of 120

always involves at least two distinct read operations, one for the library index, and one or more
for the module itself. This section describes how load time can be reduced by constructing a
resident index using the QINDX$ (quick index) routine, and then supplying this index to the
QLOAD$ (quick load) routine, so that programs defined in the index can be brought into
memory by a single read operation. The technique is used for the Global Cobol compiler and
Global Writer, and is recommended for any application involving intensive overlay handling.

4.3.1 Contiguously Initialised Program Overlays
A program can only be quick loaded if it has been contiguously initialised to enable it to be read
into memory in a single operation. For an independent program this means that:

● The first byte of the second module, and all subsequent modules, is initialised;

● No module included in the linkage edit defines an FD with a BLOCK CONTAINS statement

in working storage.

A dependent program is contiguously initialised if the above rules hold for the link list defining
the dependent program itself. Its information overlays need not be taken into account.

The first byte of a routine is initialised if the first item of working storage is an FD or MD, or it
has a value clause associated with it. If there are no items in working storage, then the first byte
is always initialised.

All Global Cobol system routines except the SAVE$ routine have their first byte initialised and
none has a BLOCK CONTAINS statement in working storage, so they need not be considered
when designing for contiguous initialisation.

The link map listing output by $LINK indicates the number of load records the resultant program
file contains, and this value will be 1 if the program has been contiguously initialised.

(You should note that contiguous initialisation will speed program loading in nearly all cases
even when using normal LOAD and EXEC statements. The only time it should be avoided is
when the program contains a very large interior area which can be left non-initialised, typically
more than 4 Kbytes in length.)

4.3.2 Building the QI block
The system routine QINDX$ is called to build a quick index from the currently attached program
library. You code a CALL statement of the form:

CALL QINDX$ USING QI length

where QI identifies the area where the quick index is to be built and length is an integer literal or

PIC 9(4) COMP variable containing its length in bytes.

As explained later, a quick index consists of 16 bytes of header/trailer information together with
a 17 byte entry for each contiguously initialised program contained in the attached library. An
exception is returned if QINDX$ finds that the area length is insufficient for the library index. The
maximum index, required if all 100 programs of a maximum library are contiguously initialised
and thus eligible for inclusion, is 1716 bytes in length.

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 36 of 120

Your program will be terminated with a stop code if no library is attached when QINDX$ is
called. Therefore, if there is any doubt whether the correct library is attached you should
precede the call with the statement:

LOAD library-id

The QINDX$ routine returns exception condition 1 if an irrecoverable I/O error occurs when
accessing the library. Exception 2 is returned if the attached library is not on line. Exception 3
means that the quick index was too large for the specified QI area length.

4.3.3 Quick loading a Program via the Quick Index
To quick load a contiguously initialised program using the previously constructed quick index,
set $$PGM to the required program-id and then execute a CALL statement of the form:

CALL QLOAD$ USING QI

where QI identifies the quick index for the currently attached library. The routine brings the

program into memory as though a LOAD statement had been issued, returning the entry point in
$$EPT. Thus:

LOAD "SALES"

may be replaced by:

MOVE "SALES" TO $$PGM
CALL QLOAD$ USING QI

Similarly:

EXEC "SA100"

becomes:

MOVE "SA100" TO $$PGM
CALL QLOAD$ USING QI
CALL $$EPT

Your program will be terminated with a stop code if the library attached when QLOAD$ was
executed was not the same as the one used when the quick index was built. QLOAD$ returns
exception condition 1 if an irrecoverable error occurs when accessing the program library.
Exception 2 is returned if the requested program-id is not present in the quick index. Exception
condition 3 means the program was too large for the available user area.

PROGRAM EXAMPLE
DATA DIVISION
* QUICK INDEX
01 Q1
 03 QILIB PIC X(8)
 03 QIP OCCURS 100
 05 QIPID

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 37 of 120

 07 QIPIDP PIC X(2)
 07 QIPIDS PIC X(6)
 05 FILLER PIC X(9)
 03 QIT PIC X(8)
*
77 Z-INX1 PIC 9(4) COMP
77 Z-INX2 PIC 9(4) COMP
*
PROCEDURE DIVISION

MOVE "EXVOL" TO $$PVOL
LOAD "P.EX"

 CALL QINDX$ USING QI 1716
 MOVE 1 TO Z-INX1 Z-INX2
 DO UNTIL QIPID(Z-INX1) = LOW-VALUES

 IF QIPIDP(Z-INX1) = "FP"
 MOVE QIPID(Z-INX1) TO QIPID(Z-INX2)

 ADD 1 TO Z-INX2
 END
 ADD 1 TO Z-INX1
 ENDDO
 MOVE LOW-VALUES TO QIPID(Z-INX2)
AA500.

DISPLAY "PLEASE KEY PROGRAM-ID"
 ACCEPT $$PGM
 CALL QLOAD$ USING QI
 ON EXCEPTION
 IF $$COND NOT = 2 GO TO AA600
 LOAD PG
 ON EXCEPTION
AA600.

 GO TO DEPENDING ON $$COND
 TO AA700
 TO AA800
 TO AA900
END

 END
 CALL $$EPT
 GO TO AA500
AA700.

BELL
 DISPLAY "I/O ERROR" SAMELINE
 GO TO AA500
AA800.
 BELL
 DISPLAY "NOT FOUND" SAMELINE
 GO TO AA500
AA900.
 BELL
 DISPLAY "TOO LARGE" SAMELINE
 GO TO AA500

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 38 of 120

ENDPROG

Figure 4.3.5 - Example Program using Quick Load

4.3.4 Quick Index Format
The following QI block defines a maximum size quick index which contains information for 100
contiguously initialised programs:

01 QI
 03 QILIB PIC X(8) * LIBRARY-ID
 03 QIP OCCURS 100 * 0 TO 100 ENTRIES
 05 QIPID PIC X(8) * PROGRAM-ID
 05 QIPFAD PIC 9(6) COMP * FILE ADDRESS OF RECORD
 05 QIPBLO PIC 9(4) COMP * LENGTH OF RECORD
 05 QIPMEM PIC PTR * MEMORY ADDRESS
 05 QIPSTA PIC PTR * ENTRY POINT
 03 QIT PIC X(8) * LOW-VALUES TERMINATOR

When there are 99 or fewer contiguously initialised programs then the QIPID field of the first
unused entry is set to LOW-VALUES and the remainder of the index area is unused. The length
of the quick index in bytes is therefore:

16 + 17 * Number of programs in index

The QI block may be shortened by removing unwanted entries before calling QLOAD$. This
can be valuable in memory-critical applications where storage not required by the quick index
can be employed for other purposes.

4.3.5 Example - Editing and Using the Quick Index
The example program in Figure 4.3.5 builds a quick index for library P.EX on volume EXVOL. It
then edits this index to contain only program-ids beginning with the letters "FP". The example
then repeatedly prompts the operator for program-ids. As each one is supplied it is either quick
loaded using QLOAD$, or brought into memory using a conventional LOAD statement if the
routine returns exception condition 2.

4.3.6 Programming Notes
The program library must be online when an attempt is made to load a program using QLOAD$,
since to optimise performance QLOAD$ does not check that the correct library is mounted each
time it is called. If the library volume is replaced by another the quick load will cause erroneous
data to be loaded into memory in place of the program required.

You should not confuse the library index addressed by $$INDE with the quick index used by
QLOAD$. The two indexes may be used in conjunction in applications where the time taken to
build the quick index is too long for QINDX$ to be executed every time the system is run. In this
case the quick index should be kept on file along with a copy of the library index. Then, to
prevent inadvertent use of an out-of-date quick index, compare the file copy of the library index
with the current library index supplied in the area of your program addressed by $$INDE
following the LOAD library-id statement. Only if the two library indexes are identical can you

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 39 of 120

guarantee that the file quick index is still valid. If they differ library maintenance has taken place
since the time the quick index was built, so you must reconstruct it using QINDX$.

4.4 The Relocatable Loader, LOAD$
The LOAD$ system routine must be used to load a relocatable program created by FCONV or
$RELOC, since such a program cannot be loaded by conventional CHAIN, EXEC, RUN or
LOAD statements. (LOAD$ cannot be used on ordinary, non-relocatable programs created by
the linker.)

4.4.1 Invocation
You load a relocatable program by means of a call of the form:

CALL LOAD$ USING name type

where name is a PIC X(8) variable or 8-character literal containing the program-id of the

relocatable program. If the program-id is less than 8 characters it must be padded with
rightmost blanks.

The second parameter, type, is a single character variable or literal, which indicates which stack

the program is to occupy, and in the case of the user stack, whether it is a temporary program
to be automatically unloaded when control returns to the monitor. The type may be:

"S" the program is to be loaded on the system stack;

"U" the program is to be loaded on the user stack;

"T" the program is to be temporarily loaded on the user stack, but is to be
automatically unloaded when control returns to the monitor.

Providing the load operation is successful system variable $$EPT will be set to address the
entry point of the program once LOAD$ returns control. $$PGM will contain the program-id you
specified and $$RUN will be set to 0. If the type specified was "T" or "U" the library index area
pointer, $$INDE, will be set to address an area 1134 bytes below the current top of the user
stack.

4.4.2 Processing
If the program requested is not already present on the appropriate stack, then providing there is
room it will be loaded. If there is a sufficiently large gap in the stack created by a previous
unload operation, this will be used, otherwise the program will be added to the top of the stack,
which will therefore be extended downwards to begin at a lower memory address.

If a program with a program-id matching the name specified in the LOAD$ call is already on the
stack LOAD$ satisfies the request by returning the entry point of this program.

When loading is required, processing is similar to that performed by a LOAD statement. If the
name begins with a $-character, firstly P.$CMLB0 and then individual files on the system
residence device assigned to $CP are examined. Otherwise the attached library, if any, together
with individual files on the device assigned to $P are searched. In the special case when the

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 40 of 120

first character of the name is an asterisk, the $P device is searched for a program-id beginning
with a $-character.

4.4.3 Exceptions
Exception condition 1 will be returned if an irrecoverable I/O error arises when physically loading
the requested program.

Exception condition 2 will occur if the program cannot be found, or if it is not a relocatable
program. The result code, $$RES, will be "3" if the program is not found, or "1" if it is of the
wrong type.

Exception condition 3 will be returned if there is insufficient memory space available on the
stack to allow the program to be loaded.

4.4.4 Programming Notes
LOAD$ always accesses the program residence device to read header information, so if you
want to avoid this overhead when the program is already on the stack you should only use
LOAD$ when a previous ENTRY$ has indicated it is not present.

Because the program-id is used to indicate the presence of a program on a stack, to avoid
confusion you should ensure that the program-ids you assign to relocatable programs are
unique across your entire system. Since an existing copy of a program is always used if it is
loaded, you must take care either to remove the program from the stack by unloading it, so that
you obtain a fresh copy, or to code it in such a way that it is re-usable. Indeed, programs on the
system stack may be shared by a number of users "simultaneously". However, a particular
invocation of such a program cannot be interleaved with a second invocation, so it is only
necessary to ensure that the code is serially re-usable between calls. This can be achieved by
holding status data in the caller's user area and assuring that any local variables are temporary
work fields with no assumed initial values.

To be certain of obtaining a fresh copy of a program on the user stack you should call the
UNLO$ system routine to unload it if it is already there, and then reload it using LOAD$. This
technique will not, however, guarantee a fresh copy of a system stack program, since the
UNLO$ call will not remove it from the stack if it is currently loaded by any other user. If such a
program was initially loaded by a type S call on LOAD$ it will only be removed when all its users
have explicitly unloaded it using UNLO$. If, however, the program was placed on the system
stack by the $CUS Permanently Loaded Modules option it is treated as a logical extension of
the Global System Manager nucleus, and cannot be unloaded in any circumstances. Normally,
therefore, programs destined for the system stack should be serially reusable between calls, as
explained above.

If you load a program on the user stack a number of times, treating it sometimes as type T and
sometimes as type U, then it will be temporary or permanent according to the type code you
specified in the first call on LOAD$.

Even if a program is loaded as temporary, it is a good practice to unload it explicitly using
UNLO$ (although its temporary status will ensure it is unloaded if the program terminates
abnormally).

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 41 of 120

4.5 The Allocate Data on Stack Routine, SDATA$
The SDATA$ system routine will allocate a data area of a requested size on either the user
stack or system stack.

4.5.1 Invocation
You allocate a data area on the stack by means of a CALL of the form:

CALL SDATA$ USING name size type

where name is a PIC X(8) variable or 8-character literal containing the name of the data area to

be allocated. The second parameter, size, is a PIC 9(4) COMP variable or integer literal

containing the size of the area to be allocated in bytes.

The third parameter, type, is a single character variable or literal, which indicates which stack

the area is to occupy, and in the case of the user stack, whether it is a temporary area to be
automatically unloaded when control returns to the monitor. The type may be:

"S" the area is to be allocated on the system stack;

"U" the area is to be allocated on the user stack;

"T" the area is to be temporarily allocated on the user stack, but is to be automatically
unloaded when control returns to the monitor.

Providing the area can be allocated successfully system variable $$EPT will be set to address
the start of the allocated area when SDATA$ returns control. If the type specified was "T" or "U"
the library index area pointer, $$INDE, will be set to address an area 1134 bytes below the
current top of the user stack.

4.5.2 Processing
If a stack entry with the supplied name is not already present on the appropriate stack, then
providing there is room an area of the appropriate size (rounded up if odd) is allocated, and
initialised to binary zeros. If there is a sufficiently large gap in the stack created by a previous
unload operation this will be used, otherwise the stack will be extended downwards.

If a data area already exists with the same name, and of the appropriate size, then the
start of this area will be returned (but the area is not initialised to binary zeros).

If a stack entry exists which has the same name, but is either the wrong size or is a program
rather than a data area, your program will be terminated in error.

4.5.3 Exceptions
Exception condition 3 will be returned if there is insufficient space available to allow the area to
be allocated.

4.5.4 Programming Notes
If you allocate a data area on the user stack a number of times, treating it sometimes as type T
and sometimes as type U, then it will be temporary or permanent according to the type code
specified when it was first allocated.

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 42 of 120

If you allocate an area on the system stack which has already been allocated by another user,
an extra 16 byte data block is created on the stack to represent your usage of the program. The
area returned to you will contain any values established by the other user.

4.6 The Entry Point Routine, ENTRY$
You use the ENTRY$ routine to determine whether a named stack entry already exists for the
current user, and to return its entry point (if it is a program) or its start (if it is a data area).

4.6.1 Invocation
You determine whether a stack entry already exists by means of a call of the form:

CALL ENTRY$ USING name type

where name is a PIC X(8) variable or 8-character literal containing the program-id of the

program or name of the data area.

The second parameter, type, is a single character variable or literal which must have the value

"S" for the system stack or "T" or "U" for the user stack.

4.6.2 Processing
If the type parameter is "T" or "U" the routine searches the user stack to see if the requested
stack entry has previously been loaded. If it has the entry point or start address is returned in
$$EPT, otherwise exception condition 1 is returned.

If the type parameter is "S" the system stack is examined, but this time the search only
succeeds if the stack entry is present and it has been loaded by the current user, or as a result

of the $CUS Permanently Loaded Modules option. (Programs introduced by LOAD are treated
as logical extensions of the Global System Manager nucleus and, as such, are considered to
belong to every user.)

Note that if the first character of the program-id specified in the name parameter is an asterisk,
then it will be treated as though a $-character had been supplied in its place when searching the
stack.

4.6.3 Exceptions
Exception condition 1 will be returned if the requested stack entry has not been loaded by the
current user or by the $CUS Permanently Loaded Modules option.

4.7 The Unload Routine, UNLO$
You use the UNLO$ system routine to unload a program or de-allocate a data area from the
system or user stack once you have finished using it.

4.7.1 Invocation
You unload a relocatable program or de-allocate a data area from the stack by means of a call
of the form:

CALL UNLO$ USING name type

Chapter 4 - Program Management Subroutines

Global Development System Subroutines Manual V8.1 Page 43 of 120

where name is a PIC X(8) variable or 8-character literal containing the name of the stack entry.

The second parameter, type, is a single character variable or literal which must have the value

"S" for the system stack, or "T" or "U" for the user stack.

If the type specified was "T" or "U" the library index area pointer, $$INDE, will be set to address
an area 1134 bytes below the current top of the user stack.

4.7.2 Processing
Providing the named entry is present on the stack selected by the type parameter it will be
unloaded or de-allocated, as appropriate. The stack will only be contracted if the entry is at the
top, and, in the case of the system stack, is not currently loaded by another user. When the
stack cannot be contracted, but there are no other users, the entry is logically deleted to create
a gap in the stack which can be used by a subsequent LOAD$ or SDATA$ call.

If the first character of the program-id specified in the name parameter is an asterisk, then it will
be treated as though a $-character had been supplied in its place when searching the stack.

4.7.3 Exceptions
Exception condition 1 will be returned if the stack entry specified in the name parameter is not
currently loaded by the user who called UNLO$.

4.7.4 Programming Note
A type "S" UNLO$ call which attempts to unload a program which was introduced on the system
stack as the result of the $CUS Permanently Loaded Modules option has no effect.

Temporary user stack entries are automatically unloaded at the end of job. However, since this
requires access to a special command library overlay, you may wish to avoid the need to mount
a system volume when your job completes normally by explicitly unloading any temporary
entries using UNLO$.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 44 of 120

5. System Management Subroutines

5.1 The Exclusive Control Routine, GETX$, GETXN$ & RELX$
The exclusive control routine is a system routine with three entry points, GETX$, GETXN$ and
RELX$. They enable a job operating in a multi-user or networking environment to acquire or
relinquish exclusive control of its processor, in which state the job cannot be swapped out. Calls
on GETX$, GETXN$ and RELX$ have no effect under a single-user system, or when the job is
the only possible user of its processor in a LAN system.

5.1.1 To Acquire Exclusive Control
A job can acquire exclusive control of its processor by executing the statement:

CALL GETX$

Normal completion will be returned if exclusive control has been granted. The routine also
causes the swap file to be closed, so that the volume containing it can be accessed using the
Physical Sector Access Method (see chapter 8 of the Global Development File Management
Manual). If the swap file cannot be closed, an exception will be returned. If you do not need to
close the swap file, you should instead execute the statement:

CALL GETXN$

which obtains exclusive control without closing the swap file, and hence is faster than a call of
GETX$.

5.1.2 To Release Exclusive Control
To release exclusive control and allow other users access to the system, simply code:

CALL RELX$

This has no effect if your program did not previously possess exclusive control, or if it is
operating in a single user environment. The swap file is reopened if necessary.

5.1.3 Programming Notes
Once a program establishes exclusive control of its processor using GETX$ or GETXN$ no
swapping takes place and all other jobs running on the same processor are indefinitely
suspended until the exclusive user issues a RELX$ call. However, under networked or
separated systems any jobs executing on other processors or systems continue unaffected.
Thus GETX$ or GETXN$ cannot in general be used to ensure the exclusive updating of files.
The LOCK statement, described in the Global Development File Management Manual, should
be used to synchronise file updates since it is equally applicable in both multi-user and
networking environments.

GETXN$ and RELX$ might typically be employed by a utility program to be run at infrequent
intervals during an online session to transmit data collection files to a remote centre. Normally
the communication logic would be provided by a special-purpose assembler subroutine
incorporated in the utility by the mechanism described in the Global Development Assembler
Interface Manual.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 45 of 120

When the communication job is running it gets exclusive control to ensure that it will be able to
respond immediately to any messages coming in to avoid the other end of the communications
link "timing out". Therefore, use of the communication routine must be bracketed by an initial
call on GETXN$ to acquire exclusive control to prevent swapping, and a final call on RELX$ to
restore normal multi-user working.

GETX$ and RELX$ might be used on a system where the swap file is on a sub-unit of a
exchangeable domain when you need to replace the domain volume temporarily with another
volume. You should call GETX$ before de-mounting the volume so that the swap file is closed
first. If you do not, errors will occur if the system attempts to access the swap file, and the fact
that it is open may cause spurious "file in use" errors.

Note that GETX$ and RELX$ are identical in effect to the GET and REL functions of $STATUS.

5.2 The Start Foreground/Background Routine, START$
The START$ routine is used to transfer control from the current partition to another specified
partition on the same screen.

5.2.1 Invocation
To start the foreground or reactivate the background job, you invoke the START$ routine with
the call:

CALL START$ USING partition

The single parameter partition is a PIC 9(4) COMP field that allows you to define the partition to

which control is to be transferred.

If used on a pre-V6.0 system, START$ will exit with an exception. On a V6.0 or later system it
will swap to the specified partition (providing the partition exists, of course).

The special value of 0 returns control to the last partition to call START$ for this purpose (or
has no effect if none has done so).

5.2.2 Programming Notes
This routine can be used to run a program across several partitions.

If START$ is called with no parameters, then this is a pre-V6.0 call to activate foreground.

On a pre-V6.0 system, foreground will be entered, just as if this had been requested by the
operator keying <CTRL X>. On a V6.0 or later system this process will be mimicked by
switching to partition 2.

If the program calling START$ without parameters is running in foreground (or a partition other
than partition 1 on a V6.0 or later system) then the call will initially cause any outstanding
suspend in partition 1 to be cancelled, reactivating the task running there if it has been waiting
for a time interval to expire.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 46 of 120

The routine returns exception condition 1 if it is called from an environment where
foreground/background working is not supported.

5.3 Establishing an End of Job Routine, EOJ$
Global Cobol allows you to establish an end of job routine which will gain control once the
current job is terminated, just before the ready prompt appears. Typically such a routine is used
to ensure that files are left in a consistent state if the job is unexpectedly terminated by a
program or I/O error, or the operator's keying of <ESCAPE> or <CTRL W>. (Note, however,
that if your sole problem is to protect against the operator hitting the ESCAPE key by mistake,
this is more simply handled by using the escape key suppress flag, $$ESC, described the
Global Development Screen Presentation Manual.)

Global Cobol uses a PERFORM statement to enter your end of job routine, which is therefore
most conveniently coded as an independent SECTION of your program.

Because a program or I/O error might occur at any time during execution of your job, you must
ensure that whenever an end of job routine address has been established the routine itself
remains permanently resident. Furthermore, it should not occupy or access data from the first
1280 bytes of the user area, since this part of memory will be overwritten by the diagnostic or
debug routines if a program check occurs.

When it has finished processing, your routine should return to the monitor by issuing an EXIT
statement from its highest level of control.

5.3.1 Establishing the End of Job Routine Address
You use the EOJ$ system routine to inform Global System Manager that an end of job routine is
present and establish its address. The routine is invoked with a CALL statement of the form:

CALL EOJ$ USING name

where name is the section name of your end of job routine. If you use a second or subsequent

call on EOJ$, the end of job routine address information it specifies overrides any information
previously supplied. If you wish to suppress the currently established end of job routine, so that
your program no longer regains control on job termination, simply call EOJ$ passing no
parameter. That is, code:

CALL EOJ$

5.4 Abnormal Exit Handling, EXIT$
By calling the EXIT$ system routine you can simulate the execution of a GO TO statement to
transfer control to a paragraph, section or entry point which then executes at the highest level of
control, even though you invoked it from a deeply nested subroutine. By the highest level of
control we mean the level at which the program runs when entered from the ready prompt or
following a CHAIN statement, before CALL, PERFORM or EXEC statements have established
linkage information on the stack. When EXIT$ is used to transfer control, the old stack contents
are discarded, so all information concerning the previous linkage is lost.

In a sense a call on EXIT$ is equivalent to a STOP RUN statement. STOP RUN causes control
to return immediately to a high level routine within Global Cobol, irrespective of the level of

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 47 of 120

control at which the statement was executed. Similarly, by using EXIT$ you can transfer control
to a specified high level routine within your own program. Typically routines entered in this way
are responsible for handling error conditions.

The alternative, if EXIT$ is not used, is for a low level routine detecting an error condition to set
a flag and exit to its caller. The caller tests the flag and, seeing it is on, exits to its caller which,
in turn, tests the flag and exits. In this way control is laboriously passed back to the highest level
which finally invokes the actual routine required to service the error. It is obviously simpler to set
the flag where the condition is first detected and then transfer directly to the required routine.

5.4.1 To Code an Abnormal Exit
To code an abnormal exit you must place the address of the routine you wish to enter in $$EPT
and then invoke the EXIT$ system routine. For example:

POINT $$EPT AT ERRTN
CALL EXIT$

causes control to pass to ERRTN which is entered just as though a

GO TO ERRTN

had been executed at the highest level of control. The address placed in $$EPT should
normally correspond to the name of a paragraph, section, or entry statement with no USING
clause, appearing in the mainline of your program. Note, however, that if the error routine is not
part of the same compilation, you must code:

GLOBAL ERRTN

both in the program responsible for detecting the error and in the program containing the
routine.

5.5 System Request Routine, CMND$
The CMND$ system request routine enables you to force the invocation of a system request
command, such as the Calculator or Help, exactly as if the operator had requested it.

5.5.1 Invocation
CMND$ is invoked by a call of the form:

CALL CMND$ USING system-request

where system-request identifies a PIC X field containing the system request identifier. The

permitted values are:

A Invoke the ASCII/Hex conversion table
B Invoke keyboard translation system request
C Invoke the calculator
D Invoke the calendar facility
E Invoke the user-defined system request
H Invoke the help system

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 48 of 120

I Invoke display/change assignment table system request
J Invoke jot telephone messages
K Invoke Global System Manager function key system request
O Invoke the screen picture utility
P Invoke the screen print utility
Q Invoke record/playback system request
S Invoke reset screen sequence system request
T Invoke talk system request
X Invoke the transfer facility
Y Invoke operator-id name list.

These system requests, with the exception of <SYSREQ> E (the user-defined System
Request), are explained fully in chapter 5 of the Global Operating Manual. Section 7.7 of this
manual explains how to write and implement your own system requests.

5.5.2 Exception
Exception 1 is returned if it is not possible to honour the request, either because the program is
running on a pre-V6.0 system or because customisation has removed the ability to use system
request commands.

5.5.3 Programming Notes
Not all of these system requests are available on all versions of Global System Manager and
the use of <SYSREQ T> has been modified from V8.0 to V8.1. It is advisable to check the
version of Global System Manager that the program is running on before attempting to invoke
one of the Global System Manager system requests.

5.6 Inactive/Active Program Routines, LOGOF$ & NLOGF$
Under Global System Manager V5.2, and later, you are not allowed to sign off if there are
programs active in your other concurrent partitions; this is to prevent data files being left in an
inconsistent state. A partition is considered to be active unless it is at the READY prompt, or at
a menu selection prompt, or if the program being run has called LOGOF$ to indicate it can be
signed off. The NLOGF$ routine cancels the effect of LOGOF$, and marks the program as
active again.

In general, you should call LOGOF$ whenever you are at a main menu with no files open, or if a
program is in an "enquiry only" mode.

5.6.1 Invocation
LOGOF$ is invoked by a parameter-less call of the form:

CALL LOGOF$

to indicate that the user may sign off.

5.6.2 NLOGF$
Whenever you want to cancel the effect of a previous LOGOF$ call, to indicate that the
program may not be signed off, do this by a call of the form:

CALL NLOGF$

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 49 of 120

No exception condition can be returned. Note that neither routine will have any effect under 5.1
or earlier systems.

5.7 Partition Residency Routines, RESID$ & URESI$
You call the RESID$ system routine to force the current partition to remain in memory, and not
be swapped to disk when it is inactive. Typically this is necessary when you use an interrupt-
driven assembler program loaded in the user area.

5.7.1 Force Residence, RESID$
RESID$ is invoked by a parameter-less call of the form:

CALL RESID$

Exception condition 1 will be returned if your user area or partition cannot be made resident for
one of the following reasons:

● Your program is running under Global System Manager V5.1 (or earlier), and there are more

partitions configured than memory banks available;

● Your program is running in the last memory bank on your processor which has not yet been

made resident (one spare memory bank is always required to allow other users to execute).

5.7.2 Disable Residence, URESI$
When your partition no longer requires to be protected against being swapped out you should
invoke URESI$ by a call of the form:

CALL URESI$

No exception conditions are returned. If URESI$ is not invoked, the effects of a previous call of
RESID$ are not cancelled until you sign off.

Note that if you leave a partition resident unnecessarily this may degrade performance for other
users.

5.8 Write to Log-file, LOG$
The Write to Log-file routine, LOG$, is used for logging significant events in the life of the
software (such as end of period, backups, etc.). The log-file is a central file written to in
common by all processes making use of the event logging system. The log-file may be
examined using the $LOG utility.

5.8.1 Invocation
You invoke this routine by means of a CALL of the following form:

CALL LOG$ USING message-area

where message-area is 60 characters in length, the first 10 of which are used to provide

information about the source of the event. The message area is laid out as shown below:

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 50 of 120

01 MA
 03 MAAPP PIC X(2) * Application id
 03 MADUAD PIC X(3) * Data unit
 03 MATYPE PIC X * Event type
 03 MAFUNC PIC X(2) * Function code
 03 FILLER PIC X(2) * Reserved, set to spaces
 03 MAMESS PIC X(50) * Event message

MAAPP is the application identifier. Values starting with a $ or upper case letter are reserved for
use by Global System Manager, Global Cobol and Global software. MADUAD is the unit
address of the principle data unit in use by the application (spaces if there is none). MAFUNC is
an application specific function code, to which you will assign your own meanings. The codes
used by Global System Manager are documented in the Global Utilities Manual. MATYPE is an
event type code with the following defined meanings:

B backup and restore functions
E entry/exit, used for starting or ending an application
J journal, identifying an element in an audit trail for a transaction process
M maintenance, from application parameterisation
R error
Z zap, mostly from Global System Manager system zaps

Other alphabetic codes should not be used, as they are reserved for future use by Global

System Manager.

The message is prefaced by the operator-id, current date, current time, and computer-id so that
there is no need to supply the system with this information.

5.8.2 Exceptions
Exception 1 is returned if there is an irrecoverable I/O error on the log-file.

Exception 2 is returned if there are less than 50 records left on the log-file, although the record
will still be written. It is a sensible idea to display a message when this occurs so that the user
can purge the file.

Exception 3 is returned if the file is full.

5.9 Authorization Routine, AUTH$
The authorization routine must be invoked once, and once only, for each operator processed by
your vetting program. You code a CALL of the form:

CALL AUTH$ USING code

The code is the name of a PIC X field, or a character literal. If you have decided to grant access

you must supply an alphabetic character, between A and Z inclusive, which will be established
in the system variable $$AUTH as a result of the call. If you wish to refuse access, simply
provide a code which is less than ASCII A in collating sequence. For example:

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 51 of 120

CALL AUTH$ USING "?" * REFUSE ACCESS

The AUTH$ routine is explained in more detail in section 7.5.

5.10 The Free Space Management Routine, FREE$
The FREE$ system routine provides a variety of storage management functions which enable
you to free the occupied user area; establish the size of the program area; obtain work space
from the free area; or return previously acquired work space to the area.

5.10.1 To Free the Occupied User Area
To free the occupied user area, setting the program area size to zero and the work space
empty, simply code:

CALL FREE$

This call should normally be followed by a CHAIN, EXEC or LOAD statement to invoke the
loader which will re-establish the program area size from the module loaded. Note that if the
work space is empty you can achieve the same effect more simply by just setting system
variable $$REL to 1 before issuing the CHAIN, EXEC or LOAD statement. This is explained in
8.1.2.

5.10.2 The Free Space Management Request Area
The other free space management functions require that FREE$ is passed a free space
management request area of the following format:

01 FM
 03 FMFUN PIC 9 COMP * FUNCTION REQUIRED

* 0 - FIND PGM AREA SIZE
* 1 - SET PGM AREA SIZE
* 2 - GET WORK SPACE
* 3 - FREE WORK SPACE

 03 FMSIZE PIC 9(6) COMP * SIZE IN BYTES
 03 FMALL PIC 9(6) COMP * SPACE ALLOCATED
 03 FMPTR PIC PTR * POINTER TO SPACE

5.10.3 To Find the Size of the Program Area
To find the size of the program area you must set FMFUN to 0, then invoke the routine with the
statement:

CALL FREE$ USING FM

FREE$ will return the size of the program area, in bytes, in FMSIZE.

5.10.4 To Set the Size of the Program Area
To set the size of the program area, providing the work space is not in use, you must set

FMFUN to 1 and place the size, in bytes, of the area you require in FMSIZE. Then invoke the
routine with the statement:

CALL FREE$ USING FM

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 52 of 120

FREE$ will return exception condition 1 if it is unable to satisfy your entire request, but in this
case it will allocate whatever space is actually available. If your request can be honoured in full
the routine returns normal completion.

Whether or not an exception is generated, FMALL will be set to contain the number of bytes
actually allocated to the program area. Providing no exception is returned the value returned in

FMALL will, of course, be the same as that in FMSIZE.

If you attempt to set the size of the program area when the work space is in use, the program
calling FREE$ will be terminated in error.

5.10.5 To Obtain Work Space from the Free Area
To obtain work space from the free area, you must set FMFUN to 2 and place the number of
bytes you require in FMSIZE. The total size of the work space acquired, including any space
acquired by previous FREE$ calls, is limited to 32766 bytes. You invoke the routine by coding:

CALL FREE$ USING FM

FREE$ will generate exception condition 1 if it is unable to satisfy your entire request, but in this
case it will allocate whatever space is actually available up to a maximum of 32766 bytes. If
your request can be honoured in full the routine returns normal completion.

Whether or not an exception is generated, FMALL will be set to contain the number of bytes
actually allocated and FMPTR will be set to address the new work space. (If no bytes were

available the value of FMPTR is undefined.) Providing no exception is returned the value
returned in FMALL will, of course, be the same as that in FMSIZE.

5.10.6 To Return Work Space to the Free Area
To return work space to the free area, you must set FMFUN to 3 and place the number of bytes
you wish to release in FMSIZE. You invoke the routine with the statement:

CALL FREE$ USING FM

The routine will decrement the free space starting location by the number of bytes specified in
FMSIZE. If this results in the work space becoming empty then it is considered to be not in

use.

If you attempt to return more bytes than your work space actually contains your program will be
terminated in error.

5.11 The User Number & Operator-id Checking Routines, USER$ &

OPID$
These routines are provided for checking operator-ids and user numbers.

5.11.1 Invocation
The USER$ routine is used to find whether a specified operator is signed on to the system and,
if so, return the appropriate user information. It is invoked by a call of the form:

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 53 of 120

CALL USER$ USING us area

where area is a PIC X(2000) work area for use by USER$ and us is a control block of the

following format:

01 US
 03 USOPID PIC X(4) * operator-id
 03 USUNO PIC 9(2) COMP * user number
 03 USSCNN PIC 9(2) COMP * screen number
 03 USCID PIC X * computer-id
 03 FILLER PIC X(2) * reserved
 03 USPART PIC 9(2) COMP * partition number

The operator-id of the required operator must be established in USOPID before USER$ is
called. On successful completion USUNO, USSCNN and USCID will be set to the values and
USPART will be set to 1.

The OPID$ routine is used to return operator-id information for a particular user on a particular
computer. It is invoked by a call of the form:

CALL OPID$ USING us area

where, again, area is a PIC X(2000) work area for use by OPID$ and us is a control block in the

format described above.

The user number must be set up in USUNO before OPID$ is called. If you are running on an
XLAN system, the computer-id must also be established in USCID.

On successful completion, OPID$ returns values of USOPID, USSCNN and USPART (plus
USCID on non-XLAN systems) for the specified user number.

5.11.2 Exception conditions
Exception condition 1 will be returned if any I/O error occurs on the user file during the call to
OPID$ or USER$.

Exception condition 2 is returned by USER$ if the operator is not signed on to the system.

Exception condition 2 is returned by OPID$ if the specified user number is out of range for the
system (or computer on an XLAN system).

Exception condition 3 is returned by both routines if used on a pre-V5.1 system.

Exception condition 3 is also returned by OPID$ if it is called with a computer-id of low-values
(#00) on an XLAN system.

5.11.3 Programming notes
USER$ can be used to determine screen and computer information for a particular operator, so
that MSG$ can be used to send the operator a message.

Repeated calls of OPID$ can be used to find out which operators are signed on to the system:

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 54 of 120

Firstly, call OPID$ with USUNO set to 1 and USCID set to #00. If exception condition 3 is
returned then this is an XLAN system and needs to be treated specially.

For a non-XLAN system, repeated calls with USUNO incremented by 1 each time will return
successive operator-ids, but where an operator has multiple partitions you should ignore those
in blocks returned with USPART not equal to 1. Exception condition 2 indicates the end of the
table.

For an XLAN system, you must perform the above operation for each computer. It is

conventional to start with USCID set to #41 and to increment it to #FF, then go from #01 to #40.
Exception condition 2 indicates the end of users for the specified computer-id.

In both cases, an operator-id of spaces indicates that the operator at that position in the table is
not currently signed on.

There is a subtle difference between USUNO and USSCNN. USUNO contains the User
Number, a value between 1 and 99. The user number is an "external format" field. For example,
the user number appears in the $STATUS report. USSCNN contains the Screen Number, a
value between 1 and 255. The screen number is an "internal format" field. For example, the
screen number is supplied to the MSG$ subroutine (see section 7.18 of the Global
Development Screen Presentation Manual).

5.12 Convert Computer-id for Display Routine, CID-D$ and D-CID$

5.12.1 Converting Computer-id to Display Format
You use the CID-D$ routine to convert a computer-id (e.g. $$LNID) into a form that can be
displayed on the screen. This routine is the same as that used by Global System Manager
programs.

You invoke this routine with a call of the following form:

CALL CID-D$ USING comp-id disp-id

where comp-id is a PIC X field containing the hexadecimal computer-id and disp-id is the field

you wish to contain the converted display-id. The following shows the way the conversion is
carried out:

Hardware address (Arcnet) $$LNID Display format

#01 - #1A "A" - "Z" A - Z
#1B - #BF #5B - #FF 1B - BF
#C0 invalid invalid
#C1 - #FF #01 - #3F C1 - FF

 #00 invalid invalid

Note that for other networks than Arcnet different correspondences may exist between
hardware address and Global Cobol addresses.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 55 of 120

5.12.2 Converting display-id to internal format
To convert from display-id to internal format, the following call is used:

CALL D-CID$ USING disp-id comp-id

Exception 1 is returned in the event of an invalid display format id.

5.13 Return Operator Grouping Information, GROUP$
This routine returns the information about a particular operator group, on V8.1 or later Global
System Manager, provided that group handling is in use. It can also be used to return the next
or previous group in the group list (see the description of $GROUP in the Global Utilities
Manual.)

5.13.1 Invocation
The GROUP$ routine is invoked by a call of the form:

CALL GROUP$ USING gp gpfunc

where gp is a control block of the following format:

01 GP
 03 GPNAME PIC X(10) * Group name
 03 GPNMEM PIC 9(2) COMP * Number of members
 03 GPDESC PIC X(50) * Group description
 03 GPOPID OCCURS 99 PIC 9(4) COMP * Operator-id of members

and gpfunc is a the name of a PIC 9(4) COMP field or a literal containing the GROUP$ function

number.

If the GROUP$ function number is set to 0 then GROUP$ will return the details of the group
whose group name is supplied in GPNAME.

If the function number is set to 1 then GROUP$ will return the details of the group whose name
is immediately prior to the group whose name is supplied in GPNAME. Therefore if GPNAME is
set to HIGH-VALUES the last group will be returned.

If the function number is set to 2 then GROUP$ will return the details of the group whose name
is next in collating sequence to the group whose name is supplied in GPNAME. Therefore if
GPNAME is set to LOW-VALUES the first group will be returned.

5.13.2 Exception Conditions
Exception condition 1 will be returned if a group file of the correct type is not found or is in use
or if an I/O error occurs on the group file.

Exception condition 2 will be returned if there is no current, next or last group to be found
depending on the GROUP$ function number.

Exception condition 4 is returned if GROUP$ is run on a pre-V8.1 system.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 56 of 120

5.14 Return Operator's Full Name, OPNM$
This routine returns the full name for a given operator on V8.1, or later, Global System Manager
provided the operator-id table is being used (see the description of $OPID in the Global Utilities
Manual).

5.14.1 Invocation
The OPNM$ routine is invoked by a call of the form:

CALL OPNM$ USING operator name area

where operator is the name of a PIC X(4) field or character literal which contains the operator-id

of the operator for whom the full name should be returned, name is the name of a PIC X(35)

field into which the full name of the operator will be returned, and area is a PIC X(1624) work

area for use by OPNM$.

5.14.2 Exception Conditions
Exception condition 1 will be returned if the operator list file is not found or is in use or if an I/O
occurs on the operator file.

Exception condition 2 will be returned if the operator-id supplied is not found in the operator list
file.

Exception condition 3 will be returned if OPNM$ is called on a pre-V8.1 system.

5.15 Extended Overlay Management (SBOVL$ & OVLAY$)
A special overlay loader is available which overlays an existing Speedbase frame with an
"overlay frame". On exit from the "overlay frame" the current status is restored. Another, related
overlay routine is available to perform a similar function for Global Cobol programs. These new
overlay loaders are similar in concept to the system request loader, CMND$ (see section 5.5),
which is currently available for use by Global Cobol programs.

Important note: During development, the new Speedbase overlay subroutine was known by its

working title of FRAME$. This name was changed to SBOVL$ during the final repackaging.

5.15.1 SBOVL$ Invocation
The SBOVL$ routine is called by the underlying frame as follows:

CALL SBOVL$ USING frame-initiator table

where frame-initiator is the name of the overlay frame initiator, written in Global Cobol, which

overlays the current code in memory. This Overlay Frame Initiator must reside on $P as a stand
alone program or within the currently attached library. The table consists of both an export and

import table, each consisting of a set of 16 pairs of pointers indicating the start and end of data
items:

01 TABLE
 03 FILLER PIC X * RESERVED
 03 EXPTR OCCURS 16 * EXPORT POINTERS
 05 EXPTRS PIC PTR * START POINTER

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 57 of 120

 05 EXPTRE PIC PTR * END POINTER
 03 IMPTR OCCURS 16 * IMPORT POINTERS
 05 IMPTRS PIC PTR * START POINTER
 05 IMPTRE PIC PTR * END POINTER

The export set of data pointers indicate the data that can be passed from the underlying frame
to the overlay frame; and the import set of pointers indicate the data returned from the overlay
back to the underlying frame. Important note: Any unused pointers must be set to #FFFF.

The SBOVL$ routine invokes $MONITOR in a similar way to the current CMND$ system
request loader. The monitor opens a work file storing the table of data pointers, the diagnostic
log out area, the screen parameters, the current screen, and all the code in the current user
area.

Important note: The frame loaded by the frame initiator passed to SBOVL$ must be a root

frame and not a dependent frame. Note also that $$AREA is NOT saved by SBOVL$. If an

application needs to save $$AREA, it must do so itself in an area inside the program. System
area fields cannot be passed as parameters via the SBOVL$ table.

Note that SBOVL$ calls may be nested to any level (the nesting level is limited to the number of
work files that can be opened on the work unit - see below). Note also that a new work-file is
opened for each new overlay level.

5.15.2 FPOP$ Invocation
Within the Overlay Frame the data passed via the SBOVL$ table can be retrieved via a call of
FPOP$ as follows:

CALL FPOP$ USING table

where table is a table of 16 pointers indicating the start of the areas into which the data passed

should be restored:

77 TABLE OCCURS 16 PIC PTR * START POINTER

The FPOP$ memory page routine reads the save file according to the SBOVL$ export table and
restores the data as required by the FPOP$ table. Important note: Any unused pointers must

be set to #FFFF.

5.15.3 FPUSH$ Invocation
Before exiting, the Overlay Frame may return date by calling the following routine:

CALL FPUSH$ USING table

where table is an array of 16 pointers indicating the position inthe Overlay Frame of the data

which is to be returned to the underlying program as indicated by the SBOVL$ import table:

77 TABLE OCCURS 16 PIC PTR * START POINTER

This memory page subroutine writes the data to the data areas in the saved file.

Chapter 5 - System Management Subroutines

Global Development System Subroutines Manual V8.1 Page 58 of 120

On exit from the frame overlay, the screen, link stack and underlying code (containing any
modified data) are restored. Important note: Any unused pointers must be set to #FFFF.

5.15.4 SBOVL$ Functionality
The SBOVL$ routine checks the version of Global System Manager and only operates with
GSM V8.1, or later. It also opens a work file of the correct size which is the sum of the following:

● Size of the screen image (calculation for the size of the screen image is as for system

requests);

● Size of area for saved system area variables;

● Size of the user area;

● Size of the table passed to SBOVL$.

The save file is called $$FOVWnn and is opened on unit $OF, if assigned, or $DP otherwise.

Important note: The $OF unit MUST be on the same computer node-id or SYSTEM letter as

the $DP unit. The channel number of this file is passed to the monitor via the first byte in the
SBOVL$ table.

Not that a unique name is produced for each Speedbase work file regardless of the SBOVL$
nesting level.

5.15.5 OVLAY$ Invocation
The SBOVL$ sub-routine is for use by Speedbase applications. The functionally equivalent
OVLAY$ sub-routine is for use by Global Cobol applications.

The OVLAY$ routine is called by the underlying program as follows:

CALL OVLAY$ USING program table

where program is the name of the overlay program which overlays the current code in

memory. This Overlay Program must reside on $P as a stand alone program or within the
currently attached library. The table consists of both an export and import table, each consisting

of a set of 16 pairs of pointers indicating the start and end of data items as described in section
5.15.1.

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 59 of 120

6. System Variables

System variables are elementary data items which are conceptually declared automatically in
the data division of every compilation. The variables do not actually appear as data definitions;
neither do they occupy working storage. They are located within a permanently available region
known as the System Area, which is used to communicate parameter information between

Global System Manager and an application program. They can be referenced from procedure
division statements whenever a level 77 item with the same picture clause would be valid.

This chapter covers the most commonly used system variables. Additional system variables are
defined in the following chapter and in the Global Development Job Management Manual, the
Global Development Screen Presentation Manual, the Global Development File Management
Manual and the Global Development Assembler Interface Manual.

The following two points should be considered when using system variables:

● Unless it is explicitly stated to the contrary, a system variable should be read-only as far as

the application program is concerned;

● System variables may be redefined, but the redefinition must appear in the LINKAGE

SECTION.

6.1 The Application Work Area, $$AREA
The application work area consists of 16 bytes within the system area which are available for
application use. The bytes are set to binary zero at the start of a session. However, once this
area has been erased in this way Global System Manager never refers to it again. Thereafter
the 16 bytes can be used for any application purpose whatsoever. The work area allows you to
pass a small amount of information between programs very conveniently.

To refer to the application work area you simply redefine $$AREA in the linkage section. For
example:

LINKAGE SECTION
01 AP REDEFINES $$AREA
 03 APINIT PIC 9 COMP * INITIATION FLAG
 03 APPRIV PIC 9(2) COMP * OPERATOR PRIVILEGE LEVEL
 03 APNUMB PIC 9(4) COMP * OPERATOR NUMBER

In practice, of course, you would probably place the entire definition of the application work area
in a copy book, so that each programmer need only code, for example:

LINKAGE SECTION
COPY AP

6.2 The Exception Condition and Result Code, $$COND and
$$RES
System variable $$COND is set by any Global Cobol statement which can return an exception.
When non-zero it is a positive integer used to identify the reason for an exception when the
condition arises due to a number of different circumstances. For certain exceptions system

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 60 of 120

variable $$RES will also be established to provide further information about the reason for the
exception.

$$COND and $$RES are always used in conjunction with an ON EXCEPTION statement, and
are explained in more detail as part of the description of that statement in Chapter 4 of the
Global Development Cobol Language Manual.

$$RES is also used for special I/O error handling, which is described in the Global Development
File Management Manual.

6.3 Today's Date, $$DATE
Today's date is established in $$DATE from information supplied or confirmed by the operator
at the start of a session. The date is stored as a computational number equal to:

10000*(year - 1900) + 100*(month of year) + day number

in order that dates can be compared using the standard arithmetic conditional statements. The
date conversion routines allow you to convert a date in this PIC 9(6) COMP internal format to an
8 character external form, suitable for printing or displaying, and the DT-DY$ routine enables
you to calculate the day number since 1900 from an internal format date field. These routines
are described in detail in Chapter 2.

6.4 The day of the week, $$DOWK
This is a PIC 9(2) COMP field containing the day number of the current system date (with 1
representing Sunday, 2 representing Monday etc.). This flag is set to zero on pre-V6.0 Global
System Manager.

6.5 The Century Start Year, $$NCYR
This is a PIC 9(2) COMP field containing the year from which the century is said to start for
short date purposes on the system. The century start year can be customised using $CUS (see
the Global Utilities Manual).For example, if the century start year is set to 50 then the short
date, 01/01/11 will be set to refer to 01/01/2011 and 01/01/60 to 101/01/1960 by the date
conversion routines.

6.6 The Disable System Request Flag, $$INT
$$INT is a PIC 9 COMP field that can be used to disable system requests during crucial code
paths within a program. A value of 1 disables system requests and a value of 0 re-enables
them. This flag is used by $CUS to disable system requests, so its value must be preserved by
your program. This flag is not available on pre-V6.2 Global System Manager.

6.7 Current Program Information, $$EPT, $$PGM and $$RUN
$$EPT addresses the entry point of the program last loaded, $$PGM contains its program-id,
and $$RUN indicates whether the program has been loaded as a result of an operator request
($$RUN = 1) or because of a LOAD, CHAIN or EXEC statement executed by another program
($$RUN = 0). Use of these system variables is explained in more detail in chapter 4.

6.8 The Console Dimensions, $$LINE, $$WIDE and $$RWID

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 61 of 120

The system variables $$LINE and $$WIDE are two PIC 9(4) COMP fields which indicate,
respectively, the depth of the console in lines and its width in characters. Typical values with
current technology are $$LINE = 24 and $$WIDE = 80. However, Global System Manager
supports some consoles with much larger dimensions, for example $$LINE = 55 and $$WIDE =
132.

Global System Manager will operate successfully on consoles with $$WIDE = 40 or greater,
and $$LINE = 20 or greater. However most Global Software requires a console at least 79
characters wide and 24 lines deep. (Note that a number of consoles which are nominally 80
characters wide handle the 80th character position specially, and hence must be treated as 79
characters wide by Global System Manager.)

Portable programs should always check the dimensions of the console to ensure that it is
sufficiently large, particularly if they use formatted screens. A program may be able to adjust the
depth or width of its displays to suit the console. For example, programs writing long reports to
the console in teletype mode should use $$LINE to determine when to output a paging prompt
such as:

Key P to Page, A to Accept and continue:

Normally ($$LINE)-1 lines of report will be output, followed by the prompt, which will then
appear on the base line to give the operator the chance to read the information that has just
been displayed. Usually, as in the example, you will allow the operator the option of either
asking for the next "page" of output (with automatic "wrap around" to the first page following the
last), or requesting that the program continue once enough of the report has been read.

Note that even if $$WIDE is greater than 80 the maximum amount of information you can input
or output using a single ACCEPT or DISPLAY statement is still restricted to 80 bytes.

$$RWID, the physical terminal's maximum width (i.e. the widest available screen display), is a
PIC 9(4) COMP field which indicates the physical terminal's maximum width (as opposed to

$$WIDE, which indicates the current logical width).

6.9 The Standard Printer Page Size, $$PAGE
$$PAGE contains the number of lines per page for the standard printers used by a

configuration. If printers with two or more different page sizes are supported a decision must be
made at installation time as to which size is to be the standard. Normally 66 lines per page is
adopted. If any other value is to be established it must be set up by running $CUS, selecting
Configuration customisation, and altering Standard Page Size.

Portable application programs writing reports to standard stationery should refer to $$PAGE to
determine when it is necessary to advance the stationery to a new page. The page size of
special stationery is under program control, as explained in the section on print files in section
1.5 of the Global Development File Management Manual.

6.10 The Standard Printer Line Width, $$PRIN
$$PRIN contains the line width in characters of the standard printers used by a configuration. If

two or more different line widths are in use a decision must be made at installation time as to
which is to be the standard. Normally 132 characters per line is adopted. If any other value is to

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 62 of 120

be established it must be set up by running $CUS, selecting Printer customisation, and altering
Printer Page Size.

By using $$PRIN together with $$PAGE it is possible to develop applications which are able to
adapt themselves to a variety of different paper sizes.

6.11 The Seed for the Random Number Generator, $$SEED
System variable $$SEED is a PIC 9(9) COMP item that you may set to cause the RAND$
system routine to generate a repeatable sequence of pseudo-random numbers, as explained in
section 3.1.

6.12 The System Name, $$SNAM
This is a PIC X(30) field containing the system name set up using $CUS and is displayed on
subsequent Global System Manager menus. This variable is not available on pre-V6.0 Global
System Manager

6.13 The Global System Manager operating System Flag, $$SYSM
This PIC 9 COMP flag identifies the host operating system on which Global System Manager is
running (0 for Global System Manager (BOS); 1 for Global System Manager (Unix); 2 for Global
System Manager (MS-DOS and Windows); 3 for Global System Manager (Novell NetWare); 4
for Global System Manager (Windows) other values are reserved for future use). This flag is not
available on pre-V8.0 Global System Manager.

6.14 The Presentation Manager Flag, $$PM
This is a PIC 9(2) COMP field which is set to 1 if the system the program is running on is a
Global System Manager - Presentation Manager system and set to 0 if the system is just a
Global System Manager system. This flag is not available on pre-V8.1 systems.

6.15 The Maximum Number of Users, $$ULEV
The is a PIC 9(4) COMP field which contains the maximum number of users for which this
system can be configured. The maximum number of users depends on the level number of the
system ordered. This flag is not available on pre-V8.1 systems

6.16 The Global System Manager Version Number Indicator,
$$VERS
System variable $$VERS is a PIC 9 COMP field which indicates the version of Global System
Manager being used. It is set to 0 for V5.0; 1 for V5.1; 2 for V5.2; 3 for V6.0; 4 for V6.1; 5 for
V6.2; 6 for V7.0; 7 for V8.0; 8 for V8.1 and, potentially, 9 onwards for future releases. It should
be used first to determine what further checks on the task environment need to be made by
your program.

Note that some of the following variables, together with those that follow are mainly of use
under multi-user systems. However, they are allocated default values under single-user
systems so that jobs which use them can run with any type of Global System Manager.

6.17 The Global System Manager Level Number Indicator, $$LEVN

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 63 of 120

$$LEVN is a PIC X field which holds the level number of Global System Manager being used.
The field is only available in the V5.2 compiler, and only exists in V5.1, or later, Global System
Manager. The value held in the field will be one of the following:

1 Not used at present
2 SBOS
3 CBOS
4 MBOS/PC
5 MBOS
6 BOS/NET (obsolete)
7 BOS/LAN
8 BOS/LAN+
9 BOS/XLAN

6.18 The American Processing Flag, $$USA
$$USA determines the way in which the Global System Manager command programs, together
with the DATE$ system routine, construct the external form of the date to be used on listings
and displays. When Global System Manager is distributed $$USA is set to 0, indicating that
European processing is in force, so the external date appears as the 8 characters:

dd/mm/yy

where dd, mm and yy are the day number, month number, and year of century, with leading

zeros as necessary.

When Global System Manager is installed you can choose either European or American date
format, thus setting the value in $$USA to 0 or 1 respectively. If the American format is chosen
the external form of the date appears as:

mm/dd/yy

The format used by an installed system can be altered at any time by running $CUS, selecting
Configuration customisation, and altering Date Format.

$$USA can also be used to select other application-dependent American or European options
at run-time, thus avoiding the need for two versions of a program.

6.19 The Program Volume-id, $$PVOL
When programs are loaded from exchangeable disks or diskettes you can request Global
System Manager to check that the correct volume is online, and to prompt the operator to
mount it if it is not. To do this you set $$PVOL to the six character volume-id used to uniquely
identity the program volume just before executing the LOAD, EXEC, CHAIN or RUN statement
responsible for bringing the program into memory. Once the statement returns control $$PVOL
will be reset automatically to its initial state, low-values, to prevent Global System Manager
making further checks until you set up another volume-id. Note that $$PVOL has no effect if
used on V5.0 Global System Manager.

6.20 The Task Environment Indicator, $$TASK

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 64 of 120

System variable $$TASK is a PIC S9 COMP field which indicates if your program is currently
running as a background job, a normal job, or a foreground job on V5.2 or earlier systems:

 $$TASK Task environment

-1 background job
0 normal job
+1 foreground job

A program is said to be running in a normal job environment (with $$TASK = 0) when it is the
only job working for a particular operator, as is always the case under SBOS, or if it is running in
a concurrent partition. (See $$PAR, used to distinguish different partition numbers.) In the multi-
user environment under V5.2 or earlier, however, it is possible for an operator to run a
background and a foreground job simultaneously and in this case these jobs will have $$TASK
values of -1 and +1 respectively.

You may find it useful to test $$TASK and suppress non-vital screen messages when a job runs
in the background, in order to prevent it being unnecessarily suspended. For example, the
Global Cobol compiler avoids displaying its first pass error messages when it is executing in the
background. Note that you can conveniently suppress all dialogue from a program, without
modifying it in any way, by running it under job management and using the SUPPRESS option.

Under V6.0 Global System Manager (and later) $$TASK always has a value of 0.

6.21 The Partition Number Indicator, $$PAR
$$PAR is a PIC 9 COMP field in which is returned the partition number currently being used. It
is set to 1 or 2 for foreground or background, or 1 - 9 (usually 1 - 4) for concurrent partitions. On
single-user processors it is set to 1.

Note that this variable is not available under V5.0. The Global System Manager version number
(given by $$VERS, see 6.15) should be checked first, and if this indicates that the program is
running under V5.0 $$TASK should be used instead.

6.22 The User Number, $$USER
System variable $$USER is a PIC 9(2) COMP field containing the current user number. A
unique user number (between 1 and 99) is allocated for each partition when the system is
initiated.

Note that under single-user systems $$USER is always 1. Note also that $$USER should not
be relied upon to be unique across a network, since the user number refers to users of a single
computer.

6.23 The Multi-user Flag, $$MU
System variable $$MU is a PIC 9 COMP field which is set to zero under SBOS, and set non-
zero in all other levels of Global System Manager. Applications can test $$MU in order to
bypass special shared file handling procedures when operating in a single-user environment.
For example, there is no need for a single-user program to LOCK the files it requires to update.

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 65 of 120

The following table shows how $$MU indicates the exact type of system under which your
program is running:

$$MU Type of system

0 Single-user, single processor (SBOS)
1 Multi-user, single processor (CBOS or MBOS)
2 Single-user processor in a networking environment
3 Multi-user processor in a networking environment

6.24 The Master Node Indicator, $$MNID
$$MNID, the master node indicator, is a PIC X field which identifies the master computer (or
system) on a networked or separated system by means of its computer or system identification
letter, A - Z. It is set to #00 for other (including V5.0) systems, and can thus be used as a test
for whether you are on a network system.

6.25 The Local Node Indicator, $$LNID
$$LNID, the local node indicator, is a PIC X field which gives the computer (or system)
identification letter on a networked or separated system. If your computer (or system) is a file
server it will be in the range A - Z. For non file server computers (or systems) it can take other
values (not necessarily printable). Values in the range #40 - #FF correspond to node numbers 0
- 191, and #01 - #3F correspond to 193 - 255. For non-network systems (including V5.0)
$$LNID is set to #00.

6.26 The Screen Number, $$SCNN
$$SCNN is a PIC 9(2) COMP field identifying the partition by a unique screen number (between
1 and 255). This variable is used in various System Routines such as MSG$.

6.27 The Attached Library, $$LIB
System variable $$LIB is a PIC X(8) field containing the library-id of the currently attached user
library. If there is no library attached it will contain "P.".

This variable allows a subroutine which needs to attach a library to save the name of the caller's
library on entry, and re-attach this library on exit. Its use is explained in section 7.1.

6.28 The Operator-id, $$OPID
The system variable $$OPID is a PIC X(4) field containing the operator-id supplied in response
to the prompt:

PLEASE KEY YOUR OPERATOR-ID:

output at the start of a session. Global System Manager checks that the operator-id you supply
to the prompt is not the same as any other operator-id currently signed on. The same operator-
id is associated with all jobs initiated by an operator during a session, and therefore competing
foreground, background and concurrent jobs started at the same screens have the same
operator-id.

Chapter 6 - System Variables

Global Development System Subroutines Manual V8.1 Page 66 of 120

6.29 The Authorization Code, $$AUTH
The system variable $$AUTH is a PIC X field containing an alphabetic value in the range A to Z,
inclusive. It is used when creating an optional authorization vetting program to establish the
code for each operation allowed to access your system, as described in section 7.5. of this
manual.

6.30 The Supervisor Program Name, $$SVSR
The system variable $$SVSR is a PIC X(8) field in which you can establish the name of a
supervisor program. Its use is described in section 7.6.

6.31 The Release Program Area Flag, $$REL
The size of the program area is normally only ever increased by the loader. By setting the PIC 9
COMP system variable $$REL to 1 before executing a LOAD, CHAIN or EXEC statement you
can cause the loader to set the program area size to the end of the program it is loading,
provided the work space is not in use. If the work space is in use setting $$REL has no effect:
you must use FREE$ instead.

6.32 Library Index Pointer, $$INDE
The library index pointer, $$INDE, is a PIC PTR system variable, used in storage management
(see chapter 8), which addresses the first byte to be occupied by the 1134-byte library index
record when an overlay is next loaded from a program library. At the beginning of each job
Global System Manager will have set $$INDE to address the top 1134 bytes of the user area. A
job which acquires a work space and then continues to require overlays, or which uses an
unconventional overlay scheme, should set $$INDE to address a buffer within the transient area
to be used for its overlays in order to prevent the index record corrupting any other part of the
occupied user area as explained in 8.1.4.

Note that the LOAD$ and UNLO$ system routines modify $$INDE if they are used to introduce
or remove a relocatable program.

6.33 Default Menu Entry, $$MEDF
The default menu entry, $$MEDF, is PIC 9 COMP system variable. Its use is described in
section 7.5.6.

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 67 of 120

7. Special Coding Techniques

7.1 Attaching Program Libraries and Examining their Contents
You may use the LOAD statement to attach (and later detach) a program library under program
control. Once a library is attached Global System Manager will search it for programs requested
by LOAD, EXEC, CHAIN, or RUN statements, or by operator replies to the ready prompt, before
checking whether the program residence device contains an individual file named after the
program-id. The library remains attached until either another library is attached in its place, or it
is explicitly detached. The attach and detach operations may take place under program control,
as described here, or as a consequence of operator responses to the ready prompt, as
explained in the Global Operating Manual.

If you set system variable $$INDE to address an 1134-byte data area within your program, the
attach operation will cause a copy of the library index record to be moved to the area. You can
then examine the index to determine the names of the programs the library contains, and
whether any particular member is actually present in the file currently online, or is only
represented by a stub.

To attach a library under program control you simply supply its library-id (i.e. its file-id), which
must begin with the prefix P., as the operand of a LOAD statement. Similarly to detach the
library currently attached, you simply request to "load" the special file named "P." For example,
when the statement:

LOAD "P.SA" * ATTACH SALES LEDGER
LIBRARY

returns normal completion, program library P.SA will have been attached. To subsequently
detach this library you code:

LOAD "P." * DETACH SALES LEDGER LIBRARY

7.1.1 Exceptions
Exception condition 1 is returned if an irrecoverable I/O error occurs when you attempt to attach
a library, and exception condition 2 is generated if the library file is not present on the program
residence device and you reply N to the library required prompt. In either case, the previously
attached library, if any, will remain attached. No exception is returned when a library is
detached.

7.1.2 The Attached Library, $$LIB
System variable $$LIB is a PIC X(8) field containing the library-id of the currently attached user
library. If there is no library attached it will contain "P." (see section 6.24).

This variable allows a subroutine which needs to attach a library to save the name of the caller's
library on entry, and re-attach this library on exit.

For example, such a subroutine might contain the following statements:

MOVE $$LIB TO SAVE-LIB * SAVE CALLER'S LIBRARY
LOAD "P.SA" * ATTACH OWN LIBRARY

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 68 of 120

.........

......... (other processing)

........
LOAD SAVE-LIB * RESTORE CALLER'S LIBRARY
EXIT

Note that if there were no library attached on entry, $$LIB would contain "P.", and hence the
final LOAD statement would simply detach the subroutine's library, restoring the initial status.

7.1.3 Examining the Library Index
If you wish to determine which programs are actually resident in a library you should set the PIC
PTR system variable $$INDE to address a 1134-byte index area within your program, and then
attach the library in question. Providing the attach operation completes normally the library
index record will be moved to the area you reserved for it, and you will be able to examine it to
determine the library contents. The index record is of the following format:

01 LX
 03 LXTTL PIC X(30) * LIBRARY TITLE
 03 LXDATE PIC 9(6) * DATE LAST MODIFIED
 03 LXFLAG OCCURS 100 PIC 9(6) COMP * FLAG FOR I'TH MEMBER
 03 LXID OCCURS 100 PIC X(8) * PROGRAM-ID FOR I'TH MEMBER
 03 LXTER PIC X * #00 TERMINATOR WHEN
 * THERE ARE 100 MEMBERS

The LXID table contains the 8-character program-ids of up to 100 members. Providing the
library has been either created or modified using $LIB the member-ids will be in ascending
ASCII collating sequence. (However, the order of member-ids in libraries created under Global
System Manager 4.2 or earlier, and not subsequently modified, is unpredictable.) The last
member-id is followed by a binary zero byte which serves as a terminator so that the LXID table
can be examined by SEARCH or SCAN statements.

For each member-id there is a corresponding flag in the LXFLAG table. Usually the flag will be
positive indicating that the member is actually present in the library file you have just attached.
However, if the library you are examining is a dispersed library, occupying a number of
identically named files on different exchangeable volumes, then some of the members will only
be represented by stubs (as explained in the documentation of $LIB in the Global Development
Cobol User Manual). When there is only a stub present for a member its LXFLAG value is
negative.

You should normally preserve and restore the initial value of the $$INDE pointer over the attach
operation. For example:

MOVE $$INDE TO SAVE-PTR * SAVE INITIAL VALUE
POINT $$INDE AT LX * ADDRESS OWN 1134-BYTE LX AREA
LOAD "P.SA" * ATTACH LIBRARY
MOVE SAVE-PTR TO $$INDE * RESTORE INITIAL VALUE

* EXAMINE THE LX RECORD HERE

7.1.4 Programming Notes

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 69 of 120

There are additional uses for system variable $$INDE, when sophisticated storage
management schemes are required (see chapter 8).

The system variable $$EPT is corrupted by the LOAD statement's attaching or detaching of a
library.

If an exception occurs during an attach operation and you fail to trap it in logic introduced by an
ON EXCEPTION statement immediately following the responsible LOAD statement, your
program will be terminated.

Only one program library can be attached at a time. However, should you need to attach a
different library there is no need to detach the current one: the attaching of the new library
automatically takes care of this. A detach request issued when there is no library attached has
no effect.

7.2 Returning an Exception Condition
You may code the EXIT WITH condition statement to return control from a PERFORM'ed
paragraph or section, or a CALL'ed subroutine, returning an exception condition. Your caller
must have coded an ON EXCEPTION statement introducing logic to handle the condition
immediately following the PERFORM or CALL, otherwise the program will be terminated in

error.

The statement is written:

EXIT WITH condition

where condition is an integer literal or PIC 9(4) COMP variable whose value is between 1 and

99 inclusive. Global System Manager places this value in the system variable $$COND, where
it is available for your caller to examine.

EXIT WITH condition may be coded wherever an ordinary EXIT statement would be valid. Thus

the statement can be part of a format 2 conditional. For example:

IF RESULT NOT POSITIVE EXIT WITH 1

The exception mechanism provides a very convenient and efficient way of processing special
conditions.

Note that it is important that the condition values that you use are in the range 1 to 99 since
other values are reserved for the use of Global System Manager and Global Cobol.

Normally if a routine can detect several different conditions they should be assigned the
numbers 1, 2, 3 ... and so on, in order that the calling program can use a:

GO TO DEPENDING ON $$COND

statement immediately after the ON EXCEPTION statement to route control swiftly to the code
responsible for handling a particular condition.

7.2.1 Reflecting an Exception

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 70 of 120

Sometimes a routine requires to pass an exception condition returned by a lower-level
subroutine back to the caller of the original routine for processing. This could be done by
moving $$COND to a PIC 9(4) COMP field to be used in a subsequent EXIT WITH condition
statement. However, the same effect can be achieved by using the special system variable
$$CODE, as shown in the following example:

Main program section Sub-routine

CALL RTN ENTRY RTN
 logic of sub-routine

 CALL SUBR
ON EXCEPTION ON EXCEPTION EXIT WITH $$CODE
GO TO DEPENDING ON $$COND processing when SUBR completes normally

TO ... (condition 1) EXIT
TO ... (condition 2)
TO ... (condition 3)

END
processing when RTN completes normally

Program MAIN invokes RTN which in turn calls SUBR, a subroutine capable of generating three
possible exception conditions. Within RTN an ON EXCEPTION statement following the call on
SUBR detects these exceptions and causes the EXIT WITH $$CODE statement to be executed
should one be returned. This statement causes control to be passed back to MAIN and
generates a second exception. However, because $$CODE was used, $$COND remains
unchanged and still possesses the value in SUBR, which was responsible for generating the
first exception.

7.2.2 Programming Notes
Remember that $$COND is set to 0 whenever a normal EXIT statement with no WITH clause is
executed. This means that the contents are lost over all subroutine calls, as well as Global
Cobol statements that implicitly invoke subroutines. Therefore, if you need to process the
condition number, handle $$COND at the very beginning of your exception logic. Either save its
value with a MOVE statement; branch on it with a GO TO DEPENDING or a sequence of IF
statements, or reflect its handling back to the calling routine using EXIT WITH $$CODE.

Important note: Beware of confusing $$CODE and $$COND. Either of these erroneous

statements will prove disastrous:

EXIT WITH $$COND

GO TO DEPENDING ON $$CODE

The first is wrong because $$COND is PIC 9(2) COMP and EXIT WITH demands a PIC 9(4)
COMP variable. The resulting value of $$COND is unpredictable.

The second is wrong because although $$CODE is a computational PIC 9(4) COMP field it is
redefined internally by Global System Manager. The condition number, $$COND, is actually
held in its junior byte but there is other, non-zero, information in the senior byte. The effect of
branching on $$CODE would therefore be to transfer control to a random location within your
program.

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 71 of 120

7.3 Terminating a Program with a Stop Code
You may write the STOP WITH code statement in order to terminate a program with a stop
code. The statement is written:

STOP WITH code

where code is an integer literal or PIC 9(4) COMP variable whose value is between 1 and 99

inclusive. The statement causes the Global System Manager error handling logic to gain control
and output the error message:

$91 TERMINATED - STOP code

followed by a diagnostic or debug prompt. The code appearing in this message is the value

supplied by your STOP WITH code statement.

STOP WITH code may be written wherever a STOP RUN statement would be valid. Thus, for

example, the statement could be part of a format 2 conditional:

IF FLAG NOT EQUAL 1 STOP WITH 23

Note that it is important that the stop codes you allocate are in the range 1 to 99 because other
values are reserved for Global System Manager and Global Cobol itself.

In fairness to the user you should either document the stop codes you assign very thoroughly,
or display an explanatory message before terminating the program in error. For example:

IF FLAG NOT EQUAL 1
DISPLAY "CONTROL FILE PROTECTED. UPDATE INVALID"
STOP WITH 23

END

7.4 Coding Routines with a Variable Number of Parameters
The Global Development Cobol Language Manual states that the USING clause of a CALL
statement and the ENTRY statement to which it passes control should have the same number
of parameters (including zero, when both USING clauses are omitted). However, there is an
additional feature of the language, omitted from that manual in the interests of simplicity, which
allows you to code routines which take a variable number of parameters. The feature is known
as the entry overflow condition.

When an ENTRY statement gains control and the number of parameters passed in the calling
sequence differs from the number appearing in its USING clause then no parameter passing
takes place and an entry overflow condition is generated. This can be detected and processed
by an ON OVERFLOW statement immediately following the responsible ENTRY statement.

The overflow logic can itself execute an ENTRY statement with a different number of
parameters which may itself either succeed, or generate an entry overflow condition. A further
ON OVERFLOW statement can introduce yet another ENTRY statement, and so on. Naturally,
if an ENTRY statement generates an overflow condition and is not immediately followed by an

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 72 of 120

ON OVERFLOW statement the offending program will be terminated in error. Note that it is
essential that control is eventually directed to an ENTRY USING statement with the correct
number of parameters, or the parameters will remain on the parameter stack which will then not
be synchronised with the program.

The entry name which appears as the first parameter of the ENTRY statement is in fact
optional, and should be omitted when the statement is only included for the purpose of receiving
a different number of parameters.

7.4.1 Example
Subroutine SUBR can be passed zero, one or two parameters by CALL statements of the form:

CALL SUBR
CALL SUBR USING AA
CALL SUBR USING AA BB

Within SUBR the parameters AA and BB are defined by proper linkage section groups of the
same name. The procedure division of SUBR then begins:

PROCEDURE DIVISION
*
ENTRY SUBR

ON OVERFLOW GO TO ENT1
GO TO PROC0 * PROCESS NO PARAMETERS

ENT1.
ENTRY USING AA

ON OVERFLOW GO TO ENT2
GO TO PROC1 * PROCESS 1 PARAMETER

ENT2.
ENTRY USING AA BB

ON OVERFLOW GOTO ERROR * TOO MANY PARAMETERS
GOTO TO PROC2 * PROCESS 2 PARAMETERS

7.5 The Operator-id and Authorization Vetting

7.5.1 The Operator-id, $$OPID
The system variable $$OPID is a PIC X(4) field containing the operator-id supplied in response
to the prompt:

PLEASE KEY YOUR OPERATOR-ID:

output at the start of a session. Global System Manager checks that the operator-id you supply
to the prompt is not the same as any other operator-id currently signed on. The same operator-
id is associated with all jobs initiated by an operator during a session, and therefore competing
foreground, background and concurrent jobs started at the same screens have the same
operator-id.

On multi-user systems you can use the operator-id to create files which are unique to a
particular operator, and which can be accessed by that operator in a different session, possibly

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 73 of 120

from a different screen. For example, suppose you need to create a set of control files for each
operator's private use. You might name them:

CFoooo

where oooo is the operator-id. Note that on network systems, if the master computer is

rebooted without this being done on all networked computers then it is possible for the same
operator-id to be signed on twice.

7.5.2 The Authorization Code, $$AUTH
The system variable $$AUTH is a PIC X field containing an alphabetic value in the range A to Z,
inclusive. You can supply an optional authorization vetting program to establish the code for
each operation allowed to access your system. Alternatively, you may use the standard
authorization command, $AUTH, which is supplied as part of Global System Manager and can
be customised to associate authorization codes with specific operator-ids. In either case the
code assigned remains fixed for the rest of that operator's session and applies to all jobs
initiated by him or her, be they background, foreground, concurrent or normal.

Operators allocated authorization codes S, T, U, V, W, X, Y or Z, are treated as "supervisors"
by Global System Manager, which means that they are allowed to perform the special functions
of the $STATUS command which cancel or restart other users, and that they can key READY
to obtain a ready prompt from any Global System Manager menu screen. If you do not supply
an authorization program all operators will automatically be allocated authorization code S, and
therefore have access to all Global System Manager facilities.

If you use menu customisation (MN) to define the applications available to your users you can
use the authorization code to restrict access to menu functions. This is described in your Global
Operating Manual.

Whether or not you decide to make use of the authorization code, and how you handle it if you
do, is purely dependent on the requirements of your own application. For example, in one very
simple scheme only a few very senior operators are allocated code S. The rest are assigned to
one of two "grades", these being A, for trainees, still learning how to use the system, and B, for
experienced operators allowed access to the full range of transactions. The programs have
therefore been written to operate differently according to whether or not:

$$AUTH > "A"

This means that, from the application viewpoint, the B and S operators are treated identically. It
is the following testing within Global System Manager:

$$AUTH > "R"

which prevents the B operators from performing the special functions only available to
"supervisors".

7.5.3 Authorization Vetting Programs
You may optionally provide your own authorization vetting program to grant (or refuse)
operators access to the system at the start of each session. It will be entered after the operator
has replied to the:

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 74 of 120

PLEASE KEY YOUR OPERATOR-ID:
[PLEASE KEY TERMINAL CODE (code)]

prompt(s), establishing his or her unique operator-id in the PIC X(4) system variable $$OPID.

Your program must validate the operator-id and then call the authorization routine, described
below, either to grant the operator access to the system and establish the authorization code to
appear in $$AUTH, or alternatively to refuse access to the system. If you have granted access
you can terminate the vetting program by either issuing a STOP RUN, in which case control will
return to the monitor, or by using the CHAIN statement to invoke another application program
directly.

Your program will also be executed for each concurrent partition or when foreground is first
entered, to enable you to chain to a particular application program if required. It should test
system variable $$PAR to bypass validation of the operator-id when run in foreground (i.e.
$$PAR > 1). Under 5.0, where $$PAR is not available, you must use $$TASK to detect
foreground/background.

If you decide to refuse access you must end the program with a STOP RUN to return control to
Global System Manager which will then write an explanatory message to the screen, and
redisplay the operator prompt.

7.5.4 The Authorization Routine, AUTH$
The authorization routine must be invoked once, and once only, for each operator processed by
your vetting program. You code a CALL of the form:

CALL AUTH$ USING code

The code is the name of a PIC X field, or a character literal. If you have decided to grant access

you must supply an alphabetic character, between A and Z inclusive, which will be established
in the system variable $$AUTH as a result of the call. If you wish to refuse access, simply
provide a code which is less than ASCII A in collating sequence. For example:

CALL AUTH$ USING "?" * REFUSE ACCESS

7.5.5 Establishing Your Own Authorization Checking Program
Once you have built and tested your authorization vetting program you must introduce it to
Global System Manager by running $CUS, selecting Sign-on customisation, and then selecting
Authorization Vetting. The name of the current authorization checking program (usually $AUTH)
is then displayed, and you are prompted to accept this by keying <CR>, supply the name of
another (your own) authorization checking program, or choose not to have any such program by
keying <CTRL A>.

7.5.6 Programming Notes
The operator is inhibited from running concurrent jobs until you have called AUTH$ to grant him
or her access to the system. Your authorization vetting program is then entered for each
partition, so that you can chain to a specified program.

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 75 of 120

The system variable $$MEDF contains the menu entry selected by the Global System Manager
menu if the menu is CHAINed to. It is used by $AUTH and may be useful in other authorization
programs.

We recommend that you prevent the program being run, by mistake, from a ready prompt, by
introducing the statement:

IF $$RUN POSITIVE STOP RUN

at the start of the procedure division once you are ready to incorporate it into your system.

Note that your program should always be re-linked with the latest version of AUTH$ where
possible.

One common way of designing an authorization vetting program involves using an indexed
sequential control file. Each record then typically contains:

● The operator-id of an operator entitled to use the system (this field is used as the key to the

file);

● A password associated with the operator. This field may possibly be scrambled so that it

cannot easily be interpreted if the file is dumped or printed;

● The authorization code for the operator;

● Possibly additional application-dependent information which may, for example, be used in

determining a program to be chained to once access has been granted.

The program first of all validates the operator-id by testing if there is a record on file for the
operator: if there is not, the operator is refused access. When a record is present, the routine
prompts for the password. If the password matches the one on the file the operator is granted
access using the authorization code held in his or her record. Otherwise, after, say, three
attempts at supplying the correct password, the operator is refused access to the system.

7.6 Supervisor Programs
A supervisor program is a program executed by Global System Manager instead of displaying
the ready prompt. A typical example of such a program is the $MH command, described in the
Global Operating Manual, which displays a menu of the available applications and then
executes the one selected. At the end of the application the supervisor program is automatically
re-invoked, so that another selection can be made.

7.6.1 The Supervisor Program Name, $$SVSR
The system variable $$SVSR is a PIC X(8) field in which you can establish the name of a
supervisor program. If the field is blank, as it is initially unless customised as explained below,
then there is no supervisor program, and the READY prompt will be displayed. $$SVSR is reset
to spaces whenever the supervisor program is invoked, so the supervisor program must re-
establish its program name in $$SVSR each time it is executed, unless it wishes to relinquish
control, when it should execute a STOP RUN statement with $$SVSR set to spaces, to cause
the READY prompt to be displayed.

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 76 of 120

When the supervisor program is invoked by Global System Manager it is invoked with logging
off allowed. If you do not wish the user to be allowed to log off while in the supervisor program,
the supervisor program must immediately call the NLOGF$ routine.

7.6.2 The Initial Menu Customisation Instruction
You can specify a supervisor program to be executed automatically following initial sign-on by
using the $CUS Sign-on customisation option, and then selecting the Initial Menu entry. The
name of the menu program currently entered after sign-on (usually $MH) will be displayed, and
you can accept this by keying <CR>, key <CTRL A> to have no such program (if you want to go
straight to the ready prompt rather than a menu) or supply the name of another (your own)
supervisor program to be entered automatically after sign-on. The supervisor program specified
will be executed in each concurrent partition.

7.6.3 Programming Notes
The supervisor program is not automatically invoked by Global System Manager if job
management is in control, as the reply to the ready prompt will be supplied from the dialogue
table. This allows a job to execute several programs, and then return to the supervisor program
when complete.

A subject program returns control to the supervisor program just as it normally returns to Global
System Manager, by executing a STOP RUN or an EXIT statement from the highest level of
control. If the subject program displays an explanatory message to indicate why it has
terminated it should precede this by the BELL statement. For example:

IF ZMAX > 1000
BELL
DISPLAY "PROGRAM TABLE CAPACITY EXCEEDED"
STOP RUN

END

BELL sounds the console bell and at the same time sets a flag so that a comma prompt is
inserted into the dialogue just before the supervisor program regains control. (The flag has no
effect when the program runs directly under Global System Manager.) The comma prompt
enables the operator to read the terminating message even if the supervisor program itself, like
$MH, begins by clearing the screen.

7.7 User-Written System Requests
Under V6.0 and later versions of Global System Manager, you can define your own system
request to be called by the use of <SYSREQ> E or by a CMND$ call.

7.7.1 Requirements for writing a system request
A system request is a normal Global Cobol program. It must be linked at location #1300, and
the total occupied memory of the program must not exceed address #7000 (23.25K total size).
The program may LOAD and EXEC (but not CHAIN) other programs, but these must obey the
same requirements on use of memory (subsequent programs may begin after #1300 but must
still not extend beyond address #7000). On completion the system request must EXIT back to
the calling process from its highest level of control. It must not call EXIT$. It must under no

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 77 of 120

circumstances issue a STOP RUN, nor may it permit any routines it calls to issue STOP codes
(in particular this means that any FDs being used must be coded with OPTION ERROR).

7.7.2 Restrictions on the system request
When the system request is invoked by Global System Manager, certain aspects of the
operating environment (specifically the contents of memory locations #1000 to #7000, the state
of the various display and accept flags, the contents of the screen image and related
information, and those system variables involved with program loading) are saved. When the
routine exits such information will be restored.

If the system request makes any other changes to the operating environment then it is
responsible for restoring the situation before exiting. In particular it must close any files which
were opened and replace any unit assignments which were altered (in general we recommend
that unit assignments are not altered by a system request).

The system request must make no assumptions about the state of the system when it is called.
In particular it must be passed any unit addresses it will require via the passed data area, and
not determine them by calling ASSIG$ or using symbolic unit assignments.

The system request may not modify any user memory outside the area #1300 to #7000, nor
change any system variable which has not been preserved by Global System Manager before it
is invoked. The only exception to this is that the system request may make normal use of free
memory, provided that such memory is returned before the request exits. Great caution should
be exercised with this possibility however, as many places from which the request is invoked
will already have acquired all of the free memory for their own purposes. We would not
recommend use of free memory from within a system request except in unusual circumstances,
or as an optional performance improvement.

In pre-V7.0 Global System Manager, when the system request is entered the screen will be in
Help mode, with the screen display untouched. Before exiting, the system request should check
the $$VERS flag and issue the sequence to end Help and redisplay the screen if appropriate
(#1B2C). In pre-V7.0 Global System Manager, Global System Manager will in any case exit
from Help mode when control is returned to it, but will leave any information displayed on the
screen until it is cleared by the user. It may be sensible to make use of the flag $$HCLR within
the system request.

Where a system request is accepting only a small amount of information it will normally be good
practice to use CHECK$ to check for terminated replies to prompts, and use CHAR$ to input
the information, thereby avoiding unnecessary displays (much as the Global System Manager
Calendar system request does.)

Where the system request is passing back information, it must do this as a single call on TYP$
or TYPF$ (multiple calls may be used, but note that each call of the TYP$ routine inserts
information at the start of the type-ahead buffer) and is hence limited to the size of the type-
ahead buffer. The buffer length can be changed by using Configuration maintenance and any
special requirements should be mentioned in the accompanying documentation and the
installation process, so that the user may increase the type-ahead buffer size. If the available
type-ahead buffer is too small then the request should fail gracefully, by executing a BELL verb
if it has minimal dialogue, or providing an explanatory error message.

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 78 of 120

Information passed back should be in a suitable format for a typical usage of it. In practice this
normally means separating each distinct field by a carriage return (#0D). The last item of data
returned should not be terminated by a carriage return (this is a standard in other system
requests, and allows easy editing of the last or only data item if this is appropriate).

7.7.3 Installing the system request
When installing the system request it is necessary to set up sufficient information both for
Global System Manager to recognise the existence of the system request, and for the system
request itself to be able to function. For simplicity, and because Global System Manager clearly
needs to be able to pass any parameters to the system request when it is loaded, all this
information is held in a single centralised file.

Information about system requests is held on a data library called $$UREQ located on unit $M.
You may use $URMAIN or alternatively, write a simple program using the Data Library Access
Method (DLAM), described in chapter 7 of the Global Development File Management Manual, to
create or update this file. The records held in this library are each 100 bytes long and have the
following format:

01 DLREC
 02 DLNAME PIC X(10)
 02 DLTTL PIC X(30)
 02 DLOPID PIC X(4)
 02 DLDATE PIC 9(6) COMP
 02 DLTIME PIC X(8)
 02 FILLER PIC X(5)
 02 DLPROG PIC X(8)
 02 DLUNIT PIC X(3)
 02 DLLIB PIC X(8)
 02 DLFMOD PIC 9 COMP
 02 DLDATA PIC X(20)

The initial fields (DLNAME, DLTTL, DLOPID, DLDATE, DLTIME, and the X(5) FILLER) are
those required by the data library access method.

The DLPROG field is used to identify the program to be loaded. Notice that the DLNAME field is
used to select the program, hence there is no firm tie between the function name and the
program name, and so different system requests may invoke the same program with different
parameters. The DLTTL field must be set up so as to clearly specify the function performed by
the system request, as it will be listed when the requests are listed and is the only obvious clue
the operator will get as to the function of the request. If there are variable data areas which can
be set up at installation time it is strongly suggested that the operator be able to provide his own
title.

The DLUNIT field identifies the unit where the program resides (it must be a unit address), and
the DLLIB field the library in which it is to be found (if it is not in a library set DLLIB to the value
"P.").

The DLFMOD field is set up to indicate whether the system request requires formatted mode
established before it is invoked. If it is set to 0 no special action takes place. If it is set non-zero
then Global System Manager will establish formatted mode (without clearing the screen) before

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 79 of 120

invoking the system request. Positive values will cause colour to be enabled, and negative
values will cause colour not to be enabled (cf CLR-N$).

The DLDATA field is 20 bytes of information which may be set up by your installation process
and is passed to the system request program when it is loaded (the 20 bytes are placed at
location #1300, and then your request is loaded, so you would access them by having
uninitialised data items at the start of your system request program).

Note that when your system request is loaded $$INDE is initially set to #1380.

7.7.4 Invocation of user-written system request
To invoke an installed user-written system request you must first key <SYSREQ> E, to load the
system request entry program. This will then prompt you for the name of the system request
you wish to use (the prompt will be suppressed if the response has been typed ahead), and if
you key <CR> you may list the contents of the data library and make a selection.

Finally, before executing your system request, the entry program will restore the original screen
display, enable help mode, and establish colour combination 6 (the standard help colour).

7.7.5 Using a system request as a program overlay
Under some circumstances you may wish to use the system request mechanism to add an extra
function to an existing software package. You would normally do this to avoid some of the
overheads associated with reorganising an existing overlay structure.

Such a system request overlay must obey the same operating memory constraints as an
ordinary system request, except that as you will have complete control over the operating
environment there is no difficulty with accessing memory outside the range #1000 to #7000, and
the overlay may modify such memory, and system variables, as it sees fit. The principal
constraint on such a situation is that the request may not process memory in the range #1000 to
#7000, as this area is reserved for the processing of system requests and its contents may be
unpredictable.

To identify to Global System Manager which program is to be loaded as a system request
overlay, you set $$PGM to be the program name (and $$LIB to identify the program library if
necessary). It will be loaded from the currently assigned $P unit, and its load will alter the value
contained in $$EPT. To load the program you call the CMND$ routine passing the special value
"*" as the request name.

When your overlay is run, Global System Manager saves the System Area data as before, and
places the screen into help mode, so as to minimise the possibility of interference between the
system request overlay and the existing programs. When your system request overlay exits,
Global System Manager will restore the saved system information, and return control to the
statement following the call of CMND$.

Important Note: Under Global System Manager V6.0, the space available for system requests

only extends up to address #5000 (meaning that there is 15.25K available). A tailoring zap is
available for such systems which extends the space available up to 23.25K (address #7000).

7.7.6 Special Handling for DMAM ON FAILURE routines

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 80 of 120

In the normal course of events DMAM ON FAILURE routines must terminate with a STOP RUN
(see the Global Development Data Management Manual). This is not acceptable within a
system request so special handling must be included within the ON FAILURE routine when
DMAM is included in a system request. This handling is only available on V6.2 or later version
of Global System Manager. You must code the following:

DATA DIVISION
77 V62PTR PIC PTR

VALUE #1010
77 V70EPT PIC PTR

VALUE #E065
LINKAGE SECTION
77 V62EPT BASED V62PTR PIC PTR
*
* At the end of the ON FAILURE routine:
*
IF $$VERS < 5 STOP RUN * No special logic if pre-V6.2
MOVE LOW-VALUES TO $$CLMM
IF $$VERS = 5 * If V6.2

MOVE V62EPT TO $$EPT
ELSE * Else must be V7.0 or greater

MOVE V70EPT TO $$EPT
END
CALL EXIT$

This technique is only available using the V8.1, and later, compiler.

7.8 SVC 14 - Search for Lowest Key
Before using the following SVC instruction you should refer to chapter 6 of the Global
Development Cobol Language Manual for a general description of the System Service calls.

The SVC 14 instruction is an assembler routine, used by the SORT verb. It searches through a
table and returns an index to the table entry which has the lowest key, where the key field is a
character field of any length. It can be useful if you need to write your own special purpose sort
routine.

To invoke the service you must code:

SVC 14 USING ts table

where ts is a table sort control block (as used by TSRT$ in section 3.5) and table is the table to

be searched. The ts block consists of five PIC 9(4) COMP fields:

● the length of each table entry in bytes;

● the number of table entries;

● returned index to the entry with the lowest key;

● the start of the key within the entry (first byte = 1);

Chapter 7 - Special Coding Techniques

Global Development System Subroutines Manual V8.1 Page 81 of 120

● the length of the sort key in bytes.

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 82 of 120

8. Storage Management Facilities

8.1 Concepts and Terminology
The Global Development Cobol Language Manual explains how the Global System Manager
memory region is subdivided into two areas, one occupied by the permanently resident Global
System Manager nucleus and monitor and the other, the user area, serving as a temporary
store for application programs and commands which are loaded as required.

In fact, as Figure 8.1 shows, the actual situation as regards the user area is somewhat more
complicated. The user area is itself dynamically partitioned into an occupied area and a free
area. Furthermore, the occupied area may contain two types of storage, the program area and
the work space.

8.1.1 The Occupied User Area
The occupied user area is that part of the user area which a program has the right to access. It
consists of the area in which the program itself resides together with any work space acquired
from the free area. In a multi-user system the occupied user area is the only part of the area
guaranteed to be preserved when the program is suspended. The implication then is that the
program must on no account access the free area directly. The FREE$ system routine,
described in section 5.10, provides a variety of different storage management services allowing
you to free the occupied user area, establish the size of the program area, obtain work space
from the free area and return previously acquired work space to the area.

8.1.2 The Program Area and the Loader
When there is no work space in use the program area and occupied user area are one and the
same. The loader (entered by a CHAIN, EXEC or LOAD statement) increases the size of the
program area, if necessary, so that it includes the highest location so far loaded by the current
job. This means that, left to itself, the loader will tend to increase, but will never decrease, the
size of the occupied user area which will therefore reflect the maximum amount of storage in
use during the life of a job.

FREE$ provides functions which allow you to find the size of the program area, and to set the
size of the program area without using the loader. You can use them to determine the current
program size before an EXEC for a program loaded higher in memory, and later to release the
space occupied by the executed program by resetting the program area to its original size.
Other uses are described later.

In some cases the loader's storage management, quite suitable for simple jobs consisting of
only a single program, causes problems. For example, consider a job which starts with a 16K
program which, after a short time, chains to a 6K program which is in control until the job ends.
Then, for the life of this job the occupied user area will be considered to be 16 Kbytes in length
even though only 6K are actually in use.

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 83 of 120

Low memory

GSM nucleus and monitor

Program area

Work area

Free area

(current high memory)

Area in use by "U" or "T" stack items

Occupied user
area

Total
user area

Figure 8.1 - The Global System Manager Memory Region

Maximum high
memory

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 84 of 120

If the smaller program employs any of the following Global Cobol statements:

CALL COPY$... to copy a file
CALL REST$... to restore master data from a backup cycle
CALL SAVE$... to preserve master data on a backup cycle
SORT... to invoke the sort

then it will perform less than optimally, because each of these makes temporary use of all
currently free storage, and functions better the more memory that is available. However,
because of the earlier 16K program, 10K of the free storage actually present is lost as far as
these memory-hungry routines are concerned.

There is also a performance implication in certain multi-user environments. Because of the
earlier 16K program an unnecessary 10K bytes of the user area may be written to and from the
swap file whenever the job is suspended and resumed.

To overcome the problems brought about by the loader's rather simple approach to storage
management, a system variable $$REL is provided which, if set, will cause the loader to reset
the program area size when a program is next loaded (see section 6.2.8). You should only set it
immediately before invoking the loader by a LOAD, CHAIN or EXEC statement. In the example
the 16K program would set $$REL immediately before executing the CHAIN statement to
invoke the 6K program. This will cause the size of the occupied user area to be correctly re-
established (as 6K) so that functions such as the sort perform optimally, and no storage is
unnecessarily swapped in the multi-user environment.

8.1.3 Work Space Management
The principal function of the FREE$ routine is to enable programs to obtain and release working
storage dynamically. Storage thus acquired is obtained from the beginning of the free area and
becomes part of the work space, at the high end of the occupied user area, which is increased
in size accordingly. Once a job has obtained storage in this way its work space is said to be in

use. This effects the job's capability for loading programs.

Once the work space is in use the job can only load programs into the program area, which
precedes the work space. Should the job attempt to load a program into the area the work

space occupies, or into the subsequent free area, it will be terminated in error. You can only
increase the size of the program area when the work space is not in use. Because of this you

may wish to use the function of FREE$ which allows you to increase the size of the program
area to establish the maximum area you need before acquiring any work space.

You can use FREE$ to return work space to the free area. If, by doing this, you reduce the
number of bytes to zero, the work space becomes empty and is no longer considered to be in

use. The loader will once again determine the size of the occupied user area, increasing it
whenever a program is loaded which does not fit within the currently allocated program area.

If you wish to change the size of the current program area you must first release all the
allocated work space. This can be done by using a special function of FREE$ immediately
before a LOAD, CHAIN or EXEC statement.

Note that work space is managed as a last-in, first-out (LIFO) store. If you acquire three 1000-
byte areas, A, B, and C, in that order, A will immediately precede B in memory, and B will

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 85 of 120

immediately precede C. If you then release 1000 bytes it will be the storage last obtained (i.e.
area C) that will be returned to the free area. This is, of course, implied by the geometry of
Figure 8.1.

8.1.4 Library Index Record Considerations
Whenever a program library is attached, or a program is loaded when such a library is attached,
or a command program is loaded, the loader requires to read the 1134-byte library index record
into a buffer located somewhere within the user area. The index record is only required at the
very beginning of the loading process, and an incoming program can, if necessary, overwrite
the record. It is normally read into the top 1134 bytes of the Global System Manager memory
region, at the high end of the user area. There are no problems with multi-user swapping since
Global System Manager ensures that the job cannot be suspended during the short time in
which the index record is being processed.

The index record handling so far described is satisfactory for programs which do not
dynamically acquire work space and which, if they do adopt an overlay structure, conform to the
rules described in the section on overlay construction in the Global Development Cobol User
Manual. These rules indicate that the deeper the level of an overlay, the higher the address
space it should employ. They imply that, even if a large program occupies part of the high
memory used by the index record, the latter is completely overwritten by the code of the
deepest-level incoming overlay (except in the very unlikely event that the overlay itself begins at
a higher address than the index record buffer).

Normal index record handling can interfere with a program which acquires a work space and
then continues to load overlays, because the work space will be allocated from the high part of
the user area and, depending on the actual amount of storage available, the index record may
or may not overwrite the work space itself. This is particularly a problem with the sort, if you
decide to handle the input and output processing in two separate overlays. Left to itself the
loader will read the index record into the very work area used to hold critical sort information
when it comes to acquire the output overlay.

To allow you to overcome this type of problem Global System Manager provides the system
variable, $$INDE, a pointer that you can modify in order to control where the library index record
is to be placed (see section 6.2.9). You only require to use $$INDE in this way when the normal
handling might cause the program area or the work space to be corrupted. You set the pointer
to address a buffer within the area to which your overlays are to be loaded. Then the record is
simply overwritten by an incoming module and it does not corrupt any part of the remainder of
the program. (You may also require to set $$INDE to direct the library index record into a data
area within your program, so that you can inspect it to see which programs are actually present
in a library: this use of $$INDE is described in 7.1.)

You should note that whenever a program acquires the whole of memory, and then requires to
load an overlay, normal index record handling will always corrupt part of the work space, and

so it is essential to set $$INDE to address the overlay area itself. Programs that do not acquire
work space, but adopt unconventional overlay strategies not conforming to the deepest-level,
highest-address rule, may also need to manipulate $$INDE. In general, such programs should
be avoided.

There is an example of the use of $$INDE, in conjunction with some of the other storage
management functions provided by FREE$, in section 8.2. In addition, the programming notes

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 86 of 120

on the use of the sort in the Global Development File Management Manual illustrate how
$$INDE should be used when employing input and output processing overlays.

PROGRAM OVLAY1
DATA DIVISION
*
* FREE SPACE REQUEST AREA
*
01 FM
 02 FMFUN PIC 9(6) COMP * FUNCTION (1-PGM, 2-GET, ETC.)
 02 FMSIZE PIC 9(6) COMP
 02 FMALL PIC 9(6) COMP
 02 FMPTR PIC PTR
*
LINKAGE SECTION
01 WS
 02 WSPTR PIC PTR
 02 WSSIZE PIC 9(6) COMP
*
PROCEDURE DIVISION
ENTRY GETSTO USING WS
*
* SET PROGRAM AREA TO 12500
*

MOVE 1 TO FMFUN
MOVE 12500 TO FMSIZE
CALL FREE$ USING FM
ON EXCEPTION STOP WITH 1 * NO STORE FOR PROGRAMS

*
* GET MAXIMUM AVAILABLE WORK SPACE
*
 MOVE 2 TO FMFUN
 MOVE 32766 TO FMSIZE
 CALL FREE$ USING FM
 ON EXCEPTION

 IF FMALL < 1000 STOP WITH 1 * NOT 1000 BYTES
 END
 MOVE FMALL TO WSSIZE
 MOVE FMPTR TO WSPTR
*
* SET $$INDE TO ADDRESS THIS OVERLAY'S PROC DIV, THEN EXIT
*
 POINT $$INDE AT GETSTO
EXIT
ENDPROG

Figure 8.2 - Example program using storage management facilities

8.2 Example Program using Storage Management

Chapter 8 - Storage Management Facilities

Global Development System Subroutines Manual V8.1 Page 87 of 120

A program consists of a 3000-byte root segment and a number of overlays. None of the
overlays are greater than 8000 bytes in length. The job acquires as much work space as there
is storage available, up to the limit of 32766 bytes. Suppose the memory map is to appear as
shown below:

Debug area (0 - 1280)

Root (1280 - 4500)

Overlay area (4500 - 12500)

Work space (12500 upwards)

Then Figure 8.2 shows the coding of an initial overlay, responsible for establishing storage
management parameters, which is to be invoked by the statement:

EXEC OVLAY1 USING WS

WS is a parameter area in which the overlay returns a pointer to the work space, together with
its size. The job will be terminated with stop code 1 if there is insufficient space for the program
area, or less 1000 bytes of work space available. When all is well $$INDE is set up so that the
library index record used in subsequent load operations will occupy the part of the overlay area
used by the procedure division of OVLAY1.

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 88 of 120

9. Scientific Calculation Facilities

9.1 Floating Point Numbers

9.1.1 Internal Format
Global Cobol holds a floating point number to be used in calculations as a 6 byte quantity
consisting of a PIC S9(2) COMP exponent followed by a PIC S9(11) COMP representation of
the mantissa. There is an implied decimal point immediately to the right of the senior digit of the
mantissa (as though it had an S9(1,10) picture). Floating point 0 has an exponent and mantissa
both 0. For example:

FP value Exponent Mantissa

0 0 0

 1 0 10000000000
 -0.01 -2 -10000000000

This representation supports floating point numbers with 11 decimal digits precision. The
smallest positive floating point number is 1 x 10-99 and the largest 9.9999999999 x 1099.
Similarly, the largest negative floating point number is -1 x 10-99 and the smallest -
9.9999999999 x 1099.

9.1.2 Display Format
Floating point numbers to be displayed or printed are held as PIC X(17) fields conforming to
draft ISO standard 6093.2. Each such standard numeric field is an ASCII character string of

the form:

sndnnnnnnnnnnEtmm

where s is either space, if the number is positive, or "-" if it is negative; the quantity

ndnnnnnnnnnn is a decimal number between 1.0000000000 and 9.9999999999 inclusive; E is

that letter; the quantity t, the sign of the exponent, is either "+" or "-"; and mm is the magnitude

of the exponent, in the range 00 to 99 inclusive. The "+" value of t is always used when mm is
00. For example:

FP value Standard numeric representation

0 0.0000000000E+00

 1 1.0000000000E+01
 -0.01 -1.0000000000E-02

If $CUS Decimal Point customization has been applied to specify that a comma rather than a
period be used as the decimal point, then that convention will apply to the standard numeric
form; for example, floating point 0 would be appear as 0,0000000000E+00. Note, however, that
if you code a decimal point in a VALUE clause or COMPUTE statement a period must be used

irrespective of the Decimal Point customization.

9.1.3 Defining Floating Point Numbers

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 89 of 120

Floating point numbers or tables may be defined in the data division of a Global Cobol program
by using the PIC FLT picture clause.

Important note: If no VALUE clause is supplied each number will be initialised to spaces if

initialisation is required, so you are recommended to give all PIC FLT items a value (LOW-
VALUES will set the field to floating point 0).

For a table each occurrence requires 6 bytes, so in the example below FPITEM takes just 6
bytes but FPTAB needs 24:

01 FILLER
 03 FPITEM PIC FLT
 03 FPTAB OCCURS 4 PIC FLT

To initialise a floating point number to a value other than 0 you must use a VALUE clause of
the form:

VALUE "sn...nEtmm"

where the string in quotes is made up as follows:

s is the optional sign of the mantissa, "+" or "-", which may be omitted if the

mantissa is positive.

n...n is a decimal integer or fraction defining the absolute mantissa of the floating point

number. If there are more than 11 digits (ignoring leading zeros) the 12th will be
used to round the preceding 11 digit value and in calculating the eventual
exponent. The 13th and subsequent digits may be used in determining the
exponent but do not contribute to the mantissa.

E is optional, but must be coded if an explicit exponent is to be specified. When

omitted the subsequent tmm part must be omitted too.

t is the optional sign of the exponent, "+" or "-" , which may be omitted if the

exponent is positive.

mm is 1 or 2 digits specifying the magnitude of the exponent.

You will see that this definition includes the standard numeric form discussed earlier, but is
more flexible; you may write VALUE "12" instead of VALUE "1.2000000000E+01", for example.
When you require to initialise a table of floating point numbers the various occurrences are set
up by separate VALUE clauses coded consecutively in the same way that an ordinary
computational table is established. For instance:

77 FTAB OCCURS 5 PIC FLT
VALUE "1E-6"
VALUE ".001"
VALUE "1"
VALUE "1000"
VALUE "1E6"

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 90 of 120

The compiler will reject an invalidly formatted VALUE clause, or one whose magnitude is
greater than 9.9999999999 x 1099, with an error message. Floating point 0 will be set up for
valid values whose magnitudes are less than 1 x 10-99.

For example:

VALUE 1 invalid, no surrounding quotes
VALUE " 1" invalid, blank within quotes
VALUE "E12" invalid, no mantissa
VALUE ".1E100" invalid, exponent too long
VALUE "10E99" invalid, too large
VALUE ".9E-99" floating point 0

9.1.4 Procedure Division Statements
With the exception of the COMPUTE statement used to execute scientific programs (explained
later) only the CALL, ENTRY, SEARCH, MOVE and IF statements can be used with PIC FLT
numbers. Such numbers may be passed as parameters to subroutines; this is how they are
employed by CALL and ENTRY. For example:

CALL rtn USING fp-number

should transfer control to an ENTRY statement of the form:

ENTRY rtn USING fp-number

where fp-number is defined in the linkage section in the normal way.

A floating point number may be the key of a SEARCH statement; the table control area must
then of course define the key length of 6 bytes. Although in theory you could use a SCAN
statement in the same way, in practice this would give unpredictable results because a byte by
byte comparison of 2 floating point numbers only gives the same result as a floating point
comparison in certain cases (e.g. if both are equal or both are greater than 1).

MOVE can transfer one floating point value to another; in addition the form:

MOVE LOW-VALUES TO fp-number

sets the number involved to floating point 0. The IF statement should only be used to check
whether floating point numbers are equal. Just as with the SCAN statement, using IF to test
whether one floating point number is greater or less than another will generally give wrong
results; such comparisons must be performed using COMPUTE. However the form:

IF fp-number = LOW-VALUES

is very useful and provides a simple means of checking whether a floating point number is 0.

9.2 Floating Point Conversion and I/O Routines

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 91 of 120

The routines described in this section allow you to convert Global Cobol computational fields to
floating point, and vice versa; to convert floating point numbers to standard numeric form; and
to display and accept floating point numbers. Throughout this description:

fp-number is any PIC FLT floating point number

comp is any computational field

s-numeric is any PIC X(17) standard numeric field

9.2.1 Convert Accumulator to Floating Point, AC-FP$
This routine may be used to convert a Global Cobol computational field of any format to floating
point, providing that the magnitude of the number is less than 99999999999.5. An exception is
returned and the floating point number supplied as a parameter remains unchanged if this limit
is exceeded. The calling sequence is of the form:

$LOAD comp

CALL AC-FP$ USING fp-number

ON EXCEPTION
Logic to handle the comp too large case

END

Note how the intermediate code $LOAD instruction (described in 9.3.1) must be used to set the
accumulator to the required value before the routine is called.

9.2.2 Convert Floating Point to Accumulator, FP-AC$
This routine allows you to convert a floating point number into any Global Cobol computational
format, providing that the magnitude of the number is less than 1011 and the computational
format is of sufficient capacity to store it. The floating point number is read only as far as the
routine is concerned. In the typical calling sequence below an exception will be returned and the
computational number will remain unchanged in either error condition:

CALL FP-AC$ USING fp-number

$STORE comp

ON EXCEPTION
Logic to handle fp-number too big or comp too small

END

Note how the intermediate code $STORE instruction (9.3.1) is used immediately after the call to
save the value returned in the accumulator by FP-AC$ in the computational field. If the routine
has found that fp-number is too big it will return an exception which will cause the $STORE

instruction to be suppressed and the immediately following exception handling logic to be
entered. In the other error situation FP-AC$ completes normally and the $STORE is attempted
but, because comp is too small to hold the value, an OVERFLOW condition is raised which

causes the exception handling logic to be entered. (Overflow and exception conditions are the
same as far as user error handling is concerned; indeed, the ON OVERFLOW and ON
EXCEPTION statements generate the same code and may be used interchangeably.)

9.2.3 Convert Floating Point to Standard Numeric, FP-SN$

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 92 of 120

This routine converts the floating point number supplied as its first parameter into PIC X(17)
standard numeric form in its second parameter. The floating point number is read only as far as
FP-SN$ is concerned. An exception will be returned if the floating point number contains an
improper value. (This can only happen if the number has not been initialised, or has become

corrupt; for example, the 6 bytes 07FFFFFFFFFFF do not represent a proper floating point
number since the exponent has the value #7F (i.e. 127) which is out of range.)

The complete typical calling sequence is:

CALL FP-SN$ USING fp-number s-numeric

ON EXCEPTION
Logic to handle an improper floating point number

END

In practice the exception handling logic is normally omitted since an exception usually means
that the user program itself is in error.

9.2.4 Display Floating Point, DFP$
This routine displays the floating point number supplied as its parameter as a 17 character
standard numeric output field. However, if an improper floating point number is supplied an
exception is returned and the erroneous output suppressed. The complete typical calling
sequence is:

CALL DFP$ USING fp-number

ON EXCEPTION
Logic to handle an improper floating point number

END

In practice the exception handling logic is normally omitted since an exception usually means
that the user program itself is in error.

In scroll mode DFP$ acts like DISPLAY...SAMELINE, so you must use an ordinary DISPLAY
statement before DFP$ is called to position the cursor appropriately. Similarly, when using the
routine on formatted screens you must execute DISPLAY...LINE to ensure that the cursor is
positioned correctly before it is called, since any previous accept operation will have left the
cursor at an indeterminate location.

9.2.5 Accept Floating Point, AFP$
This routine outputs the prompt character (as defined by $$PROM), then accepts information
from a 17 character input area and, if all is well, converts it and stores it in the floating point
number supplied as its parameter. If the null string is keyed the routine returns an exception and
the floating point number remains unchanged. System variable $$EOF defines the actual
keystroke used for the null response, as well as the keystroke used to end a non-null reply. The
typical calling sequence is:

CALL AFP$ USING FP
ON EXCEPTION

Logic to handle null response

END

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 93 of 120

Non-null input keyed by the operator must be similar in form to the data appearing between the
quotes of a valid PIC FLT VALUE clause, except that there may be leading spaces (which will
be ignored) and either a period or a comma can be used as the decimal point, depending on the
operator's preference. Erroneous input will be rejected with a warning prompt until the operator
supplies a correct floating point number.

In scroll mode AFP$ acts like ACCEPT so you must use DISPLAY statements before AFP$ is
called to position the cursor appropriately. (Normally you use such a statement to output the text
of the prompt of which the AFP$ accept forms part.) Similarly, when using the routine on
formatted screens you must execute DISPLAY...LINE to ensure that the cursor is positioned
correctly before it is called, since any previous accept operation will have left the cursor at an
indeterminate location.

9.2.6 Convert Input to Floating Point, IN-FP$
This routine allows you to obtain floating point information as a PIC X(17) field (e.g. by an
ACCEPT or MAPIN) operation, then validate it and, if it is satisfactory, convert it to floating
point. The routine can usefully be employed in Global Screen Formatter validation routines to
check ordinary PIC X(17) fields keyed by the operator and convert them to floating point
numbers.

The PIC X(17) field, input-string, say, must be similar in form to the data appearing between the

quotes of a valid PIC FLT VALUE clause, except that there may be leading spaces (which will
be ignored) and either a period or a comma may appear as the decimal point. If the input-string,

which is read only as far as IN-FP$ is concerned, does not conform to these rules an exception
will be returned. The typical calling sequence is therefore:

CALL IN-FP$ USING input-area fp-number

ON EXCEPTION
Logic for when the input is invalid

END

9.3 Scientific Calculations
So far we have seen only how to convert floating point numbers from one format to another and
how to input and output them. This section explains how calculations are performed by
executing scientific programs using the COMPUTE statement.

9.3.1 The COMPUTE Statement
The COMPUTE statement is coded:

COMPUTE "scientific program" [fp-number]

The scientific program is a character string describing the computation to take place; it must be

enclosed in quotes. The optional second parameter is the name of a floating point number
within the user program which may feature as an additional variable in the calculations. If this
parameter is omitted the program is confined to manipulating the 26 internal variables, a to z

(or A to Z), so called because their values are held within the subroutine responsible for the
COMPUTE statement. When the second parameter - fp-number - is present it defines an

external user variable which can be employed to pass a value to COMPUTE or extract one

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 94 of 120

from it. The user variable is referred to as $ whenever it appears in a scientific program. For
example:

COMPUTE "a=1; b=-3; c=2; x= [-b + sqr(b^2-4*a*c)]/2/a"

finds the largest positive root of the quadratic equation x2 - 3x + 2 = 0 using the well known
formula from elementary algebra. The result is stored in internal variable x. To return this value
to FPROOT, a PIC FLT floating point number in the user program, code a second COMPUTE
statement:

COMPUTE "$=x" FPROOT

Alternatively, the calculation can be performed as a single statement not involving x:

COMPUTE "a=1; b=-3; c=2; $= [-b +sqr(b^2-4*a*c)]/2/a" FPROOT

Note that any COMPUTE statement may be terminated with an exception if the scientific
program involved cannot be executed successfully. For instance, suppose (more realistically)
that a, b and c have been set up previously. Then the statement:

COMPUTE "x= [-b + sqr(b^2-4*a*c)]/2/a"

could fail because a was 0, (divide by 0 error), or because b2 - 4ac was negative (invalid

function argument) corresponding, respectively, to the cases when the equation is linear or

has no real roots. Alternatively the program might have failed to assign a, b or c previously,
causing the COMPUTE to fail with an undefined variable exception.

We shall discuss diagnostics more thoroughly later. For the moment, simply bear in mind that
there is always a possibility that a COMPUTE statement may return an exception just as an
ordinary arithmetic statement may suffer overflow.

Function

Result returned

abs(x) |x|, i.e. the absolute value of x

acs(x) cos-1 x in radian

act(x) cot-1 x in radians

asn(x) sin-1 x in radians

atn(x) tan-1 x in radians

cos(r) the cosine of r radians

cot(r) the cotangent of r radians

deg(r) r radians as degrees (i.e. 180*r/ π)

exp(x) ex, where e is the base of natural logarithms

fra(x) the fractional part of x (i.e. x - int(x))

int(x) the integral part of x, NB int(-2.1) = -3

it the current iteration number (9.3.7)

ln(x) loge x, i.e. the natural logarithm of x

log(x) Log10 x, i.e. the common logarithm of x

max(x,y) x if x > y, otherwise y

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 95 of 120

min(x,y) x if x < y, otherwise y

opt(c,x,y) x if c = 0, otherwise y

pi 3.1415926536

rad(d) d degrees as radians (i.e. π*d/180)

rnd uniform random number between 0 and 1 (9.6.2)

sin(r) the sine of r radians

sgn(x) 0 if x = 0; 1 if x > 0; -1 if x < 0

sqr(x) the square root of x

tan(r) the tangent of r radians

Figure 9.3 - Scientific Functions

9.3.2 Scientific Programs - General
Upper or lower case letters can be used interchangeably in scientific programs supplied to
COMPUTE. However, in this document we shall use upper case exclusively for vectors and the
E starting the exponent of a floating point constant.

A scientific program consists of one or more assignment or condition statements. Multiple
statements must be separated from each other by semicolons or colons.

Spaces may be used to improve layout and clarity, but 10 or more in succession are considered
to terminate the program so should be avoided. Spaces must not appear within a constant or a
function name or between the initial letter of a dimension or vector reference and the
subsequent quote or bracket.

9.3.3 Assignment Statements and Expressions
Assignment statements within scientific programs are of the general form:

variable = expression

where the expression combines variables, constants and operators in the conventional way

familiar to users of BASIC or FORTRAN. The sub-expression within the lowest level of
parentheses is evaluated first, the operators being processed in priority order as set out below:

functions (highest priority, see figure 9.3)
 unary + -
 ^ or ** (alternate ways of coding power operator)
 / *
 dyadic + -
 relational operators (lowest priority, see section 9.3.4)

When two or more operators of the same priority are processed the calculation proceeds from
left to right. In the interests of clarity curly and square brackets can be used interchangeably
with parentheses. Redundant brackets are generally ignored except that the argument list of a
multi argument function must be within exactly one level of parentheses, otherwise a syntax
error will occur. For example:

min (x,y) not min ((x,y))

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 96 of 120

Constants are set up in the same way as the numbers between quotes in PIC FLT VALUE
clauses (9.1.3). For example:

COMPUTE "a = 6.02252E23"

sets a to Avogadro's number, 6.02252 x 1023.

9.3.4 Relational Operators and Comparisons
The relational operators are:

= equality
<> inequality

 > greater than
 >= greater or equal to
 < less than
 <= less than or equal to
 == approximate equality

Two expressions x and y are considered to be approximately equal and to satisfy the

comparison x == y if |x - y| <= x x 10-10. Approximate equality is used to check whether two

quantities are equal to within machine precision, bearing in mind the rounding errors that occur
during the evaluation of functions, etc. Note, however, that since the underlying floating point
implementation is decimal (rather than binary) simple additions, subtractions, multiplications and
divisions will yield precise results when the number can be expressed in 11 digits. So you do
not, for example, have to use approximate equality to guard against 1 + 5 not being equal to 6,
a feature of some floating point systems.

The result of a relational operator is floating point 1 if the condition it defines is true, or floating
point 0 otherwise. COMPUTE statements using such operators are generally needed to perform
floating point comparisons, since the Global Cobol IF statement is limited to testing for equality
(9.1.4). For instance, suppose in our quadratic equation solving example we required to detect
the case when there were no real roots. This occurs when the discriminant of the equation (i.e.
b2 - 4ac) is negative. We might therefore code:

77 $ PIC FLT * Floating point work field
........
........
COMPUTE "d = b^2 - 4*a*c; $ = d>=0" $
IF $ = LOW-VALUES GO TO logic to handle no real roots etc., etc.

Note from this example that $ by itself is a valid Global Cobol data name which we suggest you
use for the floating point work field holding the result of a COMPUTE comparison, and any other
computed results of a temporary nature. Use of this convention makes the programming
involved easier to follow.

9.3.5 Defining Vectors Using VEC$
So far all the scientific programs we have considered have performed calculations on single-
valued scalar quantities. However, by using the VEC$ system routine you may temporarily

replace any internal variable with a multi-valued vector defined by the calling program. The

routine is invoked by a call statement of the form:

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 97 of 120

CALL VEC$ USING "V" start dimension [displacement]

Here V is the name of the variable involved. (Either an upper or a lower case letter may be
used, but we recommend you conform to standard mathematical notation and use upper case.)
The second parameter, start, identifies the beginning of the list of PIC FLT floating point

numbers that make up the vector.

The third parameter, the dimension, is a PIC 9(4) COMP variable or integer literal indicating

how many items are in the list.

The optional displacement parameter measures the distance in bytes between the start of each

number that makes up the vector. If omitted, the vector will be assumed to be stored
contiguously and the displacement used will be 6. By specifying a different displacement you

can, for example define the columns or diagonal of a matrix as vectors (9.3.11).

Once an internal variable has been defined as a vector any statement referencing it is
automatically iterated the number of times specified by its dimension. During the first iteration,

references to the vector are to the first item in its list. Then after the statements involved have
been executed once, iteration 2 begins, and all references are to the second item. Eventually
the last iteration, defined by the dimension, completes and COMPUTE returns control. An
example should make this clear:

Suppose the 10 coefficients of the polynomial:

a9x
9 + a8x

8 + ... a0 = 0

are held in the Global Cobol table COEFF, with a9 in the first entry, a8 in the second, and so on.
Then COEFF might be defined in working storage as:

77 COEFF OCCURS 10 PIC FLT

and the internal variable a could be redefined to represent the vector of these coefficients by:

CALL VEC$ USING "A" COEFF(1) 10

Given that the internal variable x already contains the current value of x, then the following
COMPUTE statement returns the value of the polynomial in the PIC FLT number FPP:

COMPUTE "$=0: $ = A + $*x" FPP

The first statement of the scientific program simply sets $ (i.e. FPP) to zero. The colon
separator isolates the vector, A, in the second statement so that statement alone is iterated 10
times to accumulate the required value by the well known method of nested multiplication.

Note the importance of the colon separator delimiting the scope of the iteration. Had we

mistakenly coded:

COMPUTE "$=0; $ = A + $*x" FPP

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 98 of 120

both statements would have been included in the iteration which would have calculated:

.$=0; $=a9 + 0*x; $=0; $=a8 + 0*x; ... ;$=0; $=a0 + 0*x

returning a0 as the erroneous result.

An iteration may involve more than one vector, providing all concerned have the same
dimension. For example, if a and b have both been defined as vectors of dimension n then:

COMPUTE "$=0: $ = $ + A*B" $

sets the PIC FLT field $ to the vector product of A and B. However, if vectors of different
dimensions appear within the same group of statements bounded by colons this will be treated
as a syntax error and the COMPUTE will be terminated with exception condition 1.

9.3.6 Resetting Variables Using RESET$
When you decide to use an internal variable to represent a vector the variable is no longer
available as a scalar. (Recall that it is purely a convention that we code A to represent a vector
but a for a scalar; scientific programs are case insensitive and it is only the previous call on
VEC$ which has changed the meaning of the variable name as far as COMPUTE is
concerned.)

To reuse variables as scalars once they are no longer required as vectors you pass a list of one
or more of the variable names involved, terminated by a period, to the RESET$ routine:

CALL RESET$ USING "list."

For example:

CALL RESET$ USING "abx."

The letters appearing in the list may be upper or lower case. Here we use lower case to
emphasize that the variables are being returned to scalar form.

Variables that have been reset are returned to the initial undefined state that all scalars assume
prior to assignment.

9.3.7 The it Function
The it function, which takes no argument, is often employed in calculations involving vectors to
obtain the current iteration number. (It always returns 1 when used in a statement not subject to
iteration.)

The following example shows how the it function in conjunction with a conversion routine
determines the PIC 9(2) COMP field ZI indexing the largest coefficient in the COEFF vector:

COMPUTE "n= 0;$= 0 :n= max(n,A);$= opt(n=A,it,$)" $
CALL FP-AC$ $
$STORE ZI

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 99 of 120

9.3.8 Dimensions
The 26 quantities a' ... z' (or A' ... Z') may be used as variables in expressions. Each refers to
the dimension of the internal variable with which it is associated. The dimension of a vector is,
of course, that established by the VEC$ call which defined it; that of a defined scalar is 0; and
that of an undefined scalar is -1. Since a dimension reference is a scalar quality we shall use
lower case letters in examples even though upper case are acceptable.

Suppose X has been defined as a vector. Then to calculate the mean of its entries code:

COMPUTE "$=0: $ = $ + X: $ = $/x'" $

A less obvious use of dimensions is to check that variables have been set up properly. For
instance, before evaluating the formula for a quadratic the following test checks that the
variables a, b and c are defined scalars:

COMPUTE "$ = (a'=0) + (b'=0) + (c'=0) - 3" $
IF $ NOT = LOW-VALUES logic to handle invalid variables

Note that when you code a dimension reference the ' character must immediately follow the
variable letter; there must be no intervening spaces.

 9.3.9 Vector Entries as Scalar Variables
Suppose VEC$ has been used to define A as a vector of dimension n. Then you may refer to

the n different scalars that together make up the vector as a(1), a(2) ... a(n). More generally a

vector entry reference takes the form:

v(expression)

where v is the name of a variable defined as a vector and expression is any expression. The

reference may be coded as a scalar variable on either side of an assignment statement. When
a scientific program containing such a reference is executed the expression is evaluated and its
integral part (i.e. int(expression)) i say, calculated. Then providing i is between 1 and the vector

dimension, the floating point number at location start + (i-1) * displacement is used as the

variable, where dimension, start and displacement have been defined by the previous VEC$

call. The COMPUTE statement will be terminated with a syntax error if you code a reference

using a variable which is not a vector. There will be a dimension error if the quantity i is not in

the range 1 <= i <= dimension.

Assume A is the 10 entry COEFF vector introduced earlier. Then the quickest way of setting up
the coefficients is to code them as PIC FLT numbers. However, they can also be established
using COMPUTE:

COMPUTE "a(1)=.7; a(2) = 23.1E3; a(3) = 4.8; a(4) = -1"
etc. etc.

It is important always to remember that a vector entry is a scalar, not a vector; hence our
use of lower case letters even though upper case would be acceptable. Suppose A and B are
both vectors of dimension 10, and consider:

COMPUTE "A = B"

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 100 of 120

COMPUTE "A = b(it)"
COMPUTE "a(it) = b(it)"

The first of these involves 2 vectors, A and B, B being copied to A with 10 iterations. In the
second statement there is only one vector A, but the it function selects the 10 entries of b one
by one, so the effect is the same, even though the more complicated construct is slower and
should be avoided. The third COMPUTE does not involve vectors at all, so there is only one
iteration with the it function returning the value 1; the statement simply copies b(1) to a(1).

Note that when you code a vector entry reference the (character introducing the expression
must immediately follow the variable letter); there must be no intervening spaces.

9.3.10 Condition Statements
There are two condition statements, the if statement and the for statement, of the general form:

if expression

for expression

A condition statement is always coded to the left of one or more subsequent statements and
separated from the next one by a semicolon. When the scientific program containing it is
executed the expression is evaluated. Providing the result is not 0 execution continues as
though the condition statement were not present. When the condition is 0 evaluation of the
statements to the right of the condition up to the next colon separator (or the end of the
program) is skipped. Assuming the statements involved do not refer to vectors and are thus not
subject to iteration, both condition statements perform identically and if should be coded in
preference simply because it is shorter. When, however, the statements controlled by the
condition are iterated:

if causes just the current iteration to be skipped;

for causes the iterating process to be terminated and the scientific program to
continue with the statement following the next colon separator (or to end if there is
no such statement).

The first COMPUTE statement which follows sets n to the total number of positive entries in the

vector A. The second COMPUTE sets s to the number of initial positive entries in the vector,

the summation process terminating as soon as a zero or negative entry is detected:

COMPUTE "n = 0 : if A>0; n = n + 1"
COMPUTE "s = 0 : for A>0; s = s + 1"

9.3.11 Vectors with Special Displacements
So far we have considered only vectors whose entries are stored in successive contiguous PIC
FLT numbers (i.e. those for which the displacement is 6). The displacement can however be
specified as any integer between -32768 and +32767 and there are important applications for
some special values.

For example, earlier we introduced a vector A containing the coefficients of the polynomial a9x

9
+ a8x

8 + ... a0 = 0. The vector was set up by:

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 101 of 120

CALL VEC$ USING "A" COEFF(1) 10

implying, rather awkwardly, COEFF(1) = a9, ... COEFF(10) = a0.

To make the Global Cobol programming easier to follow without changing the COMPUTE
statements in any way set up the vector 'backwards' using a displacement of -6:

CALL VEC$ USING "A" COEFF(10) 10 -6

Now we have COEFF(1) = a0, ... COEFF(10) = a9, arguably simpler.

Vectors with a displacement of 0 are particularly useful because, although they may have any
dimension up to 32767, all the entries are clustered at the same point, a single PIC FLT
number. They are in a sense not real vectors at all, so we shall refer to them as
pseudovectors. They are employed in coding algorithms which require the iterative capability

that ordinary vectors provide but which do not need the overhead of individual vector entry
storage. To start with a very simple but interesting example, let ZN be a PIC 9(4) COMP field
and ZFACT be PIC FLT. Then the following returns the factorial of ZN in ZFACT:

CALL VEC$ USING "F" ZFACT ZN 0
COMPUTE "f(1) = 1: F = it*F"

Next consider the Taylor series expansion of ln (1+x):

-{(1-x)/1 + (1-x)2/2 + (1-x)3/3 ...}

The following calculates this in ZLOG, stopping when the new term no longer contributes
significantly to the sum. We make the dimension of the pseudovector 32767 (the maximum
allowable) in this example, but in practice you would probably want to restrict the number of
iterations to a much smaller limit.:

CALL VEC$ USING "S" ZLOG 32767 0
COMPUTE "s(1)=0; m=1-x; t=m"
COMPUTE "p=S; p=p-t/it; for 1-(p==S); S=p; t=m*t"

Note how a pseudovector is initialised by setting its first entry to 1. Had you, for example,
mistakenly coded:

COMPUTE "S=0; m=1-x; t=m"

the 3 initialisation statements would have been iterated 32767 times! It is the for statement in
the next COMPUTE that causes the iteration involving all 5 of its statements to end as soon as
the series has converged rather than repeating the calculations 32767 times.

Finally, vectors with special displacements are useful in matrix arithmetic. If an m by n matrix is

stored row by row, then each of its columns can be treated as an m-dimensional vector with its

entries displaced 6n bytes from each other. For example, assume that MATA, MATB and MATC

are, respectively, m by n, n by p, and m by p matrices defined in working storage by statements

of the form:

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 102 of 120

77 MATA OCCURS mn PIC FLT

77 MATB OCCURS np PIC FLT

77 MATC OCCURS pm PIC FLT

and let ZM, ZN, ZP and Z6P be PIC 9(4) COMP fields containing m, n, p and 6p respectively,
and ZI, ZK, ZROW, and ZOUT be PIC 9(4) COMP work fields. Then the following code forms
the matrix product of MATA and MATB in MATC because the i,k th element of MATC is the
vector product of the i'th row of MATA and the k'th column of MATB:

MOVE 0 TO ZI
MOVE 1 TO ZROW ZOUT
DO WHILE ZI < ZM

ADD 1 TO ZI
CALL VEC$ USING "A" MATA(ZROW) ZN
ADD ZN TO ZROW
MOVE 0 TO ZK
DO WHILE ZK < ZP

ADD 1 TO ZK
CALL VEC$ USING "B" MATB(ZK) ZN Z6P
COMPUTE "$=0: $ = A*B + $" MATC(ZOUT)
ADD 1 TO ZOUT

ENDDO
ENDDO

9.3.12 Performance Considerations
The floating point divide operation can take up to 4 times as long as a multiplication, so it is
always quicker to multiply by a constant than divide by its reciprocal. Thus from the
performance point of view:

COMPUTE "x= .5*[-b + sqr(b^2-4*a*c)]/a"

is better coding than:

COMPUTE "x= [-b + sqr(b^2-4*a*c)]/2/a"

The evaluation of a trig, log or exponent function typically involves 2 floating point divides and
up to 8 additions and multiplications, so it pays to avoid unnecessary function calculations of
this type. The most expensive algorithm of all is the one used for the power operator, but this
has been specially optimised so that integral powers between 1 and 16 are calculated using
repeated multiplication, so for example b^2 and b^3 are calculated just as though you had
coded b*b or b*b*b. Note, however, that since negative integral powers are not optimised in this
way:

COMPUTE "a= (1/x)^4" is faster than COMPUTE "a= x^-4"

9.4 Diagnostics
This section explains how errors in scientific programs are handled, and describes the
debugging facilities available. Before reading it you should be familiar with the V6.1 and later
$DEBUG system described in the Global Development Cobol User Manual.

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 103 of 120

9.4.1 The Diagnostic Report Scientific Extension
In general, if a program which has executed a COMPUTE statement fails, the diagnostic report
(obtained by keying D to the debug prompt) contains additional lines to help you debug your
scientific calculations, namely:

● The last scientific program executed;

● A line defining the error, if that program failed;

● The current value of the scientific variables.

Figure 9.4a shows the screen as it appears following an error in subroutine QUAD. The routine
has attempted:

COMPUTE "x = (-b + sqr d)/2/a"

when a is 0. The error has been detected and COMPUTE has returned exception condition 2,
divide by 0. However, there is no ON EXCEPTION statement following the COMPUTE so

Global System Manager has terminated the program with EXIT 25402.

The 4 lines before last in the photograph show how the normal diagnostic report is followed by
the scientific extension which pinpoints this error. The affected scientific program is listed, then
the program error line identifying the failing statement and iteration (both 1 in this simple
example) and the reason for the error. Then come the defined variables. Undefined ones are
omitted from the list to save space. Scalar values appear in the standard numeric form (e.g. a,
b, c and d). The information displayed for the vector, V, is its start address in hex (0560), its
dimension (3) and the displacement (i.e. the number of bytes between entries - 6 in this case
because the vector is stored in contiguous successive locations).

You may use $DEBUG's P instruction within the SCF window to obtain a colon prompt allowing
you to key any scientific program. This enables you to inspect floating point numbers which are
not listed, such as vector entries, or to modify existing values. The program you input is
executed, the scientific extension is redisplayed, and a new colon prompt is output, the process
being repeated until you key <CR>. In the example in Figure 9.4b the operator has first of all
examined the vector entries, assigning them to 3 spare variables x, y and z using:

x = v(1); y = v(2); z = v(3)

Then the operator has changed a from 0 to the value 2.5. Finally, by keying <CR> to the colon
prompt he or she has returned to the standard debugging system and, at the end of the screen,
is loading symbolic names to examine other aspects of the problem.

[PHOTO HERE]

Figure 9.4a - A Divide by 0 Error

[PHOTO HERE]

Figure 9.4b - Debugging Following the Error

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 104 of 120

You should note that a scientific extension to the diagnostic report always appears once
COMPUTE has been used. The error may have nothing to do with the last scientific program; in
this case there will be no program error line and the variable list will immediately follow the line
containing the successfully executed program.

9.4.2 Exception Conditions from COMPUTE
The example we have just followed is fairly typical, because generally you will not code an ON
EXCEPTION statement following a COMPUTE, so any error will cause your program to crash in
a similar way. COMPUTE can suffer 8 different types of error causing an exception to be
returned with $$COND in the range 1 to 8. If you fail to trap the condition with an ON
EXCEPTION statement immediately after the COMPUTE then Global System Manager will
terminate your program with EXIT CODE 25401 to 25408.

The errors fall into 2 distinct categories; the syntax errors ($$COND =1) and the execution

errors ($$COND = 2 to 8). They are therefore discussed in separate sections below.

9.4.3 Syntax Errors
COMPUTE returns exception condition 1 when a syntax error occurs. No attempt is made to
execute the faulty scientific program, so the variable values remain unchanged. The error line
appearing in the diagnostic report extension takes the form of a "^" character underlining the
first part of the program found to be invalid. For example, all misspellings and misconstructions
are detected in this way:

a = sqw b (sqr not sqw)
 ^

x = 3x (3*x, not 3x)
 ^

y = 10E99 (constant > 1099)
 ^

z(3) = 1 (Z not defined as a vector)
^

a = v [3] (space between v and [)
 ^

x = min (a) (min takes 2 parameters)
 ^

x = min (a, b, a+b) (min takes 2 parameters)
 ^

x = min ((a,b)) (argument list must be within single parentheses)
 ^

In addition, certain more subtle problems are detected at syntax checking time. If the $
character is flagged in error it means that no user variable was passed to the COMPUTE
statement; you cannot refer to $ if you have not supplied a parameter along with the scientific
program. If a vector variable is indicated another vector of different dimensions is involved in
the same iteration. If you have corrupted the scientific variables area (9.6.2) affected variables
will be flagged; the value of a corrupt variable appears as asterisks in the list.

9.4.4 Execution Errors
An execution error occurs when the syntax of a scientific program is correct but the program
fails in some way when it is actually run. The program error line is of the form:

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 105 of 120

STATEMENT ss ITERATION nnnnn reason

where ss is the statement number (counting from 1) and nnnnn is the iteration number (also

counting from 1, and always 1 for a statement not subject to iteration) at which the error
occurred. In general the failing program will have modified the variables since all assignment
statements and iterations executed before the one identified will have taken place; however,
any assignment implied by the failing statement itself will not have been made.

The 7 different reasons for the error correspond to exception conditions 2 to 8:

DIVIDE BY 0 ($$COND = 2)

The program has attempted to divide by 0.

WRONG POWER ($$COND = 3)

The program has attempted either to take 0 to a negative power or to take a negative
number to a non-integral power.

OVERFLOW IN operator or function ($$COND = 4)

A result greater in magnitude than 9.9999999999 x 1099 has been obtained when
processing the indicated operator or function. (The power operator, which may be coded
as either ** or ^, always appears as ** in this message.) You should note that evaluation
of the relational operators involves an internal subtraction so this error may occur if you
try to compare a very large positive number with a negative number of very large
magnitude (e.g. 5 x 1099 with -5 x 1099).

ARGUMENT OF function ($$COND = 5)

The indicated function has been supplied with an argument which is out of range. The
range for sqr, log, acs and act is determined by mathematical considerations. The trig
functions are restricted to arguments of under 106 radians in the interests of accuracy.
The exp argument range is limited as indicated to prevent overflow when the function is
evaluated:

Function Valid argument range

sqr x x >= 0

 log x x > 0

 exp x x < 230.25850930

 sin x |x| < 1000000

 cos x |x| < 1000000 - pi/2 = 999998.4292

 tan x |x| < 1000000

 cot x |x| < 1000000

 acs x |x| > 1

 asn x |x| > 1

UNDEFINED scalar ($$COND = 6)

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 106 of 120

The indicated scalar variable has been referenced on the right hand side of an
assignment statement, or in a condition statement, before it has been defined.

DIMENSION vector ($$COND = 7)

A vector entry reference of the form vector(expression) has been processed but the

integral part of the expression, i say, has not been in the range 1 <= i <= dimension,

where the dimension is that of the indicated vector.

IMPROPER variable ($$COND = 8)

The variable indicated contained a value which is too large to be a valid floating point

variable. If it is a vector entry or the user variable ($) then the program has failed to
initialise the vector or variable correctly, or it has become corrupt. If the variable is an

internal variable, a - z, then probably you have corrupted the scientific variables area by
misusing some of the advanced programming techniques (9.6.4).

9.4.5 Obtaining Diagnostics using DEBUG$
The DEBUG$ system routine can be used to provide the diagnostic information appearing in the
scientific extension of the diagnostic report under the control of the program using COMPUTE.
Thus instead of relying entirely on the debugging system to diagnose unexpected errors, you
can call DEBUG$ as a subroutine to display part or all of the extension information at planned
trace points. The routine is particularly useful for monitoring the progress of a numerical
algorithm, or for displaying diagnostic information returned by a scientific subroutine (9.5.2). It is
invoked with a CALL statement of the form:

CALL DEBUG$ USING report-contents

where report-contents is an integer literal or PIC 9(4) COMP field containing a 4 digit value,

abcd say, used to specify which parts of the information are to be displayed:

a = 1 displays the last scientific program executed;
b = 1 displays the program error line (if any);
c = 1 displays the variable list;
d = 1 outputs the scientific program prompt.

When the prompt is included the user can input any scientific program and have it executed in
the same way as under the debugging system; DEBUG$ will return control to its caller only
when <CR> is keyed to the prompt. For instance:

CALL DEBUG$ USING 1111 * Full report and prompt
CALL DEBUG$ USING 1110 * Full report but no prompt
CALL DEBUG$ USING 1000 * Last scientific program only

9.4.6 Programming Notes
When a COMPUTE is executed Global System Manager establishes a system area pointer
addressing the scientific variables, this pointer being reset whenever a ready prompt or main
menu reappears at end of job. Symbolic debug checks to see that the pointer is resolved, and
only then will the scientific extension be appended to the normal diagnostic report. Near to the
variables is stored a special marker field containing the value #DADBDCDD. If this is not

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 107 of 120

present Global System Manager assumes the scientific variables have been overlaid, and
suppresses the extension as if the pointer were missing.

If DEBUG$ is called before a COMPUTE statement has caused the pointer to be set up, or
when the scientific variables are overlaid and the marker value is absent, it simply returns
control after displaying the message:

NO SCIENTIFIC VARIABLES

9.5 Scientific Subroutines
This section describes the scientific subroutines provided as part of Global Cobol SCF. These
are routines which perform commonly required numerical algorithms such as equation solving.

9.5.1 Parameter Passing Conventions
The numerical parameters required by a scientific subroutine are passed as the values of
designated scientific variables, and the results of the calculations are returned in other specified
variables. In general all variables not explicitly defined as parameters will be preserved as on
input to the routine. This applies not only when the routine completes normally, but also if it fails,
returning an exception.

Because numerical values are passed using the variables, scientific subroutines require few
conventional parameters supplied via CALL...USING statements. However, when a routine
makes use of an ancillary function provided by the calling program the paragraph or section

name beginning the function calculation is supplied as a conventional parameter.

9.5.2 Error handling
A scientific subroutine returns exception condition 1 if it detects a fatal error, or exception

condition 2 for a recoverable error. Fatal errors are normally those that indicate the parameters

have been set up wrongly by the calling program; recoverable ones are usually due to failure of
the numerical algorithm and thus are more likely to be handled in some way by the caller. In
addition, any exception returned by an ancillary function is reflected to the calling program, so
such a function should use EXIT WITH 3, EXIT WITH 4 etc. so that the resulting exception
conditions, 3, 4 etc., can be distinguished from those used by the scientific subroutine itself.

When a scientific subroutine detects an error it restores the user variables apart from those
used as parameters to their input state. Then it executes a sequence of the form:

COMPUTE "routinename - explanation"

ON EXCEPTION
END
EXIT WITH condition

The COMPUTE (which fails with a syntax error exception) makes the last scientific program
processed simply a message identifying the failing routine and the reason for the error. This is
so that the scientific extension to the diagnostic report contains meaningful information if the
calling program fails to trap the exception resulting from the subsequent EXIT WITH statement.

9.5.3 Typical Calling Sequences

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 108 of 120

The type of calling sequence employed to invoke a scientific subroutine, in particular the way
your program handles its errors, depends very much on the application itself. Probably most
typical is the case where your program can deal with recoverable errors but is not expecting
fatal ones (since these will be due to a problem within its own code).

In this case the calling sequence is of the form:

CALL scientific-subroutine

ON EXCEPTION
IF $$COND = 1 STOP WITH code * Debug handles fatal error
Your own logic to handle recoverable errors

END
Processing when the routine completes normally

For the Global System Manager Calculator type of application the variables themselves are set
up by previous operator interaction. A fatal error will be due to the user's mistake rather than a
problem in the calling program. (Indeed, it is in order to support this type of working that
exception condition 1, rather than immediate termination with a stop code, is employed for fatal
errors.) In the calculator environment all the error handling normally necessary is to display an
explanatory message, ideally the one provided by the failing routine itself. The operator can
then take the appropriate action. The program simply calls DEBUG$ to output the message that
the subroutine has established as the last scientific program executed:

CALL scientific-subroutine

ON EXCEPTION
CALL DEBUG$ USING 1000 * Display error message
END
Prompt for next operator input, etc. etc.

9.5.4 Find a Root of f(x) = 0, ROOT$
Given a and b such that a < b and sgn [f(a)] = sgn [f(b)] this subroutine uses a mixture of

interpolation and interval bisection to find x such that a <= x <= b and f(x) = 0.

The routine is invoked by a CALL statement of the form

CALL ROOT$ USING ancillary-function

where ancillary-function is the section name or paragraph name of code responsible for

calculating f(x).

On entry to ROOT$ the calling program must have set scientific variables a and b to a and b

respectively, so that they delimit the interval over which f(x) changes sign. On successful

completion the routine will return the root x in x.

The ancillary function must compute f(x) in f, where x is supplied in x. When it is first entered all

scientific variables apart from x will be as defined immediately prior to calling ROOT$. The

function can use a to j for temporary working, since they are reset to their initial values
whenever it is called. Variables k onwards can be used for results that need to be passed from

one invocation to another, but if they are the values set up will be those returned to the caller
when ROOT$ completes.

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 109 of 120

Exception condition 1 is returned if either a or b is not a defined scalar variable, or if b is not

greater than a.

Exception condition 2 occurs if the interval a, b is not a sign change of the function (i.e. if sgn

[f(a)] = sgn [f(b)]).

9.5.5 Solve Linear Equations A*X = B, SOLVE$
The SOLVE$ scientific subroutine solves the set of n linear equations:

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2
........
........
........
an1x1 + an2x2 + ... + annxn = bn

using the method of Gauss-Jordan elimination with partial pivoting. The calling program must
have defined A, B and X as vectors of dimension n2, n, and n, respectively. A must be set up to

contain the left hand side coefficients stored contiguously in row major order (i.e. the vector is a
table of consecutive PIC FLT numbers a11, a12, ... ann, as listed above). Similarly B must contain

the right hand side, b1 ... bn, stored contiguously. The routine is invoked with a parameter-less

call:

CALL SOLVE$

When it completes normally it will have calculated the solution vector X, so that x(i) = xi for i = 1

to n. The contents of A and B however are destroyed by the algorithm. The other scientific

variables remain undisturbed.

Exception condition 1 will be returned if A, B and X are not defined as vectors of the appropriate
dimension, or if either A or B is not stored contiguously (i.e. if the vector has a displacement
other than 6). No values will have been changed in this case; all will be as on input to SOLVE$.

Exception condition 2 occurs when the equations are degenerate (e.g. if one of them is a
repetition or a multiple of another) so that there are insufficient distinct equations for a solution.
In this case A and B will be corrupt but X and other variables will be as on input to SOLVE$.

EXTERNAL SECTION SCVAR$
01 FILLER
*
* 26 slots for internal variables or vector attributes
*
 03 S-VARS * 182 bytes, i.e. 26*7 in all
 05 FILLER OCCURS 26 * Variables a, b, c ... ,z
 07 S-TYPE PIC S9 COMP * -1 undef,0 scalar, 1 vector
 07 S-FP PIC FLT * Fp value of scalar (type=0)
*
 03 FILLER PIC X(5)
*

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 110 of 120

* Seed for random number generator
*
 03 S-SEED PIC FLT
*
* Redefinition of the slots for variables A to Z as vectors
*
01 FILLER REDEFINES S-VARS OCCURS 26
 03 FILLER PIC 9 COMP * Type always 1 for vector
 03 S-BASE PIC PTR * Start address
 03 S-DIM PIC 9(4) COMP * Dimension
 03 S-DISP PIC 9(4) COMP * Displacement
*
* The 26 internal variable slots individually named
*
01 FILLER REDEFINES S-VARS
 03 S-A PIC X(7)
 03 S-B PIC X(7)
 03 S-C PIC X(7)
........
........
........
 03 S-X PIC X(7)
 03 S-Y PIC X(7)
 03 S-Z PIC X(7)

Figure 9.6.2 - The Scientific Variables Area

9.6 Advanced Scientific Programming
This section describes how you can compute scientific programs defined at run time (rather
than compile time); how you can set the random number generation seed to obtain a repeatable
sequence of pseudo random numbers; and how you can create your own scientific subroutines
conforming to Global Cobol standards.

9.6.1 Executing Scientific Programs Using COMP$
The COMP$ system routine allows you to execute a scientific program stored as a character
variable; this enables you to prompt for a program and then execute it, or to execute a program
saved in text form. Suppose program is defined as:

77 program PIC X(n)

Then the calling sequence is of the form:

$SET program

CALL COMP$ [USING fp-number]

[ON EXCEPTION
Logic to handle the exceptions described in 9.4

END]

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 111 of 120

The initial $SET statement (9.6.1) sets the source string register to identify the start address
and length of the scientific program. A maximum of 78 bytes will be processed; if a longer
program is supplied by mistake only the first 78 characters will be translated and executed.

Note that COMP$ is used to handle an ordinary COMPUTE statement; the compiler replaces a
statement of the form:

COMPUTE "scientific program" [fp-number]

with code of the form:

$SET "scientific program"

CALL COMP$ [USING fp-number]

9.6.2 The Scientific Variables Area
The internal variables and random number seed used by COMPUTE can be accessed directly
by compiling your program with copy library S.SCF and coding:

COPY S$

just before the linkage section (or the procedure division if a linkage section is not used). Figure
9.6.2 shows how the copy book defines an external section, SCVAR$, residing within the Global
Cobol SCF routines included when the program is linkage edited.

The external section starts with the S-VARS area containing 26 7-byte slots defining the internal
variables, arranged in alphabetical order. Thus, for example, S-TYPE(3) is the type field for
variable c (or C). The S-TYPE field is the first byte of the slot and indicates how the variable is
currently used:

-1 The variable is undefined;
 0 The variable is a scalar;
 +1 The variable is a vector.

Other values of S-TYPE are improper, and indicate that the area has been corrupted; an
improper variable is listed as asterisks in the scientific extension of the diagnostic report. The 6

bytes that follow the type are either S-FP, a PIC FLT number containing the value of a scalar; or
S-BASE, S-DIM AND S-DISP, the start address, dimension and displacement of a vector.
These bytes are not used for an undefined variable.

The main use of the S-VARS area is for saving and restoring the caller's variables within
scientific subroutines. To simplify the access to particular slots they are each individually
defined as PIC X(7) fields named S-A, S-B etc.

In addition to the internal variables the SCVAR$ section contains the S-SEED floating point
number used by the random number generator employed for the rnd function. Each invocation
of rnd updates S-SEED, returning the new value as the function result, but remembering it in S-
SEED for next time. Therefore, to set up a repeatable pseudo random sequence you need only
initialise S-SEED to a specific value between 0.0100000000 and 0.9900000000. (This is similar
to setting $$SEED to a particular value to determine the sequence used by the RAND$ system
routine described in the Global Development Cobol Language Manual.)

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 112 of 120

PROGRAM TQ$A
*
* This routine finds the largest real root of ax^2 + bx + c = 0 if it
* exists; otherwise exception 2 is returned. The caller must supply
* scalars a, b and c. The routine returns x but leaves the other
* variables undisturbed.
*
DATA DIVISION
*

77 ZDSAVE PIC X(7) * Save area for S-D
 VALUE LOW-VALUES * Initialises data division
77 $ PIC FLT * Computed fp value
COPY S$ SUPPRESS * Scientific variables
*
PROCEDURE DIVISION
ENTRY QUAD$
*
* Check that a, b and c is each a defined scalar
*

COMPUTE "$ = (a'=0) + (b'=0) + (c'=0) - 3" $

 IF $ NOT = LOW-VALUES
 COMPUTE "QUAD$ - a, b and c must be scalars"
 ON EXCEPTION * Ignore syntax error
 END
 EXIT WITH 1 * Fatal parameter error
 END
*
 MOVE S-D TO ZDSAVE * Save user variables
 CALL RESET$ USING "dx." * Reset all working scalars
*
* Check that d, the discriminant, is non negative

*
 COMPUTE "d = b^2 - 4*a*c; $ = d>=0" $
 IF $ = LOW-VALUES
 COMPUTE "QUAD$ - ax^2 + bx + c = 0 has no real roots"
 ON EXCEPTION * Ignore syntax error
 END
 MOVE ZDSAVE TO S-D * Restore user variable(s)
 EXIT WITH 2 * Recoverable numerical error
 END
*
* Calculate largest root, then exit
*

 COMPUTE "x = (-b + sqr d)/2/a"
 MOVE ZDSAVE TO S-D * Restore user variables
 EXIT
ENDPROG

Figure 9.6.3 - An Example Subroutine

9.6.3 Coding Scientific Subroutines
Figure 9.6.3 is the listing of the QUAD$ scientific subroutine we have seen failing earlier in the
sections on diagnostics; the routine is not intended as an example of good numerical software;

particularly since it terminates with an untrapped exception following its final COMPUTE
statement if a is 0! It is included as a simple illustration of the coding steps necessary when
creating a scientific subroutine conforming to the conventions described at the start of section
9.5.

On examining the data division you will see that the routine contains an area ZDSAVE in which
those scientific variables which the routine uses internally, but which are not to be passed back
to the caller as parameters, are saved. There is only one such variable here, d, but in a more
complicated routine you will probably need to save and restore many more variables. In any

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 113 of 120

case you must compile the program with copy library S.SCF and include book S$ to define the
SCVAR$ external section.

The procedure division begins with a COMPUTE statement which uses dimension references to
validate that the parameters have been set up correctly (9.3.8). If the test fails QUAD$
executes:

COMPUTE "QUAD$ - a, b, c must be scalars"

to set up the error message of the form:

routinename - explanation

as the last scientific program executed (7.5.2).

The subsequent ON EXCEPTION and END statements ignore the syntax error returned by
COMPUTE when this unacceptable program is translated. At this stage no variables have been
altered so the routine simply terminates with exception condition 1 to return a fatal error.

Once parameter checking (which can usually take place without altering any values) is complete
a scientific subroutine can proceed. Like QUAD$ it will need to save the variables which it
requires for its own working. In our simple example this just involves moving S-D to ZDSAVE; a
routine which needed to use many more variables might simply move the 182-byte S-VARS
field to a save area in working storage.

After saving the variables the routine must use RESET$ to 'undefine' any of them that are
required as scalars. This involves working variable d and the returned parameter x as far as
QUAD$ is concerned. Note, however, the dire consequences of forgetting to reset a scalar.
Suppose the caller of QUAD$ had established D as a vector and we had not reset it; then the
COMPUTE statement which calculates d as the discriminant would overwrite every entry of the
D vector rather than using the internal floating point scalar - i.e. S-FP(4) - for the value. Thus it
is vital to reset the scalars a routine uses. There is no similar problem with variables that are to
be used as vectors since the VEC$ call that defines a vector re-establishes all the information
held for the variable in the S-VARS area.

The QUAD$ routine detects a recoverable numerical error when the discriminant of the
equation is negative, indicating that there are no real roots. This is handled like the earlier fatal
error returned when the parameters are invalid, except that condition 2 rather than condition 1 is
returned and the user variables are restored before the EXIT takes place.

When the routine completes normally the results are returned in the specified parameters. For
example, QUAD$ simply supplies the root in x; a more elaborate routine might use many more
parameters. Then those variables which have been used for internal working which are not
employed as parameters are restored to their initial values (only d is involved for QUAD$) and
the routine exits returning normal completion.

9.6.4 Additional Uses of the Scientific Variables Area
If you take care you can manipulate the scientific variables directly to improve performance. For
example, if x and y are known to be scalars:

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 114 of 120

MOVE S-X TO S-Y

has the same effect and is considerably faster than:

COMPUTE "y=x"

but do note how very careful you must be.

For example, if internal variable y is actually a vector the MOVE statement certainly does not
have the same effect as:

COMPUTE "Y=x"

because, instead of setting each entry of Y to the scalar, the MOVE resets Y as a scalar with
value x as if you had coded:

CALL RESET$ USING "y."
COMPUTE "y=x"

You can overwrite internal variable information to set up a vector directly. For example:

POINT S-BASE(1) AT COEFF(1)
MOVE 10 TO S-DIM(1)
MOVE 6 TO S-DISP(1)

has the same effect as:

CALL VEC$ USING "A" COEFF(1) 10

but bypasses the validity checks performed by VEC$ so is slightly faster but, as a consequence,
dangerous and rarely to be recommended. It is, however, very useful to be able to find the start
address of a user defined vector from within a subroutine by examining the appropriate S-BASE
field, or by using the field to base a linkage section table defining the vector. This technique is
employed by the SOLVE$ routine (9.5.5) to help it set up vectors for the current row,
subdiagonal and so on within the A matrix; to make such coding easy SOLVE$ insists that the A
matrix be stored contiguously.

In general only frequently used scientific subroutines written by experienced programmers will
benefit from accessing the scientific variables area directly. For one-off calculations you are
strongly recommended to employ only COMPUTE statements and VEC$ system routine calls
so that your program remains easy to follow and debugging is assisted by the powerful
validation checking provided.

9.7 Scientific Calculations using pre-6.1 Systems
If you wish to use the Global Cobol Scientific Calculation Facilities on a pre-6.1 system, then
you must use the COMP$ interface as the COMPUTE verb is not supported.

You cannot specify floating point values in the Data Division under pre-6.1 systems, so these
must be set up by using a call of COMP$. Define the data items as PIC X(6) variables.

Chapter 9 - Scientific Calculation Facilities

Global Development System Subroutines Manual V8.1 Page 115 of 120

Note that these restrictions only apply to compiling programs on a pre-6.1 system. Programs

compiled using COMPUTE under V6.1 will execute correctly on all earlier versions of Global
System Manager.

Appendix A - Included Routines

Global Development System Subroutines Manual V8.1 Page 116 of 120

Appendix A - Included Routines

System routines referenced by the CALL statement are included in your program when it is
linkage edited, as are access methods introduced by FD statements coded in working storage.
Table A overleaf shows the program names of the particular subroutines included from the
system library when various language constructs described in this manual are coded. The SIZE
column indicates the approximate size of each routine in bytes, rounded up to the nearest 0.1K
(K = 1024 bytes). System routines described in other manuals are excluded from this table as
they are listed in the appendices of the appropriate manuals.

If you require a more accurate estimate you should compile and link a program containing a
GLOBAL statement for each of the required routines and file organisations. The link map will
then give the total size of the included routines.

A call on ACCE$ normally includes the QS$A routine (0.8K bytes) which is used by
ACCEPT...LINE and DISPLAY...LINE. However, if ACCE$ is used only in scroll mode you can
avoid including this extra routine, which is no longer required, by defining the global symbol
Q$ACCE as a paragraph name within your program. Start the data division with the statement:

GLOBAL Q$ACCE

and label any one of the paragraphs in the procedure division as Q$ACCE.

Global Cobol

statement

Program name of the subroutine included

Size (Kb)

CALL AC-FP$ TF$A 2.6

CALL AFP$ TF$A 2.6

CALL AS-EB$
CALL EB-AS$

IC$A 0.6

CALL AUTH$ QQA, EGA, GHA, EPA, IGA, GCA, QL$A,
EA$A

3.0

CALL BI-BS$
CALL BS-BI$

ID$A 0.4

CALL BI-OC$
CALL OC-BI$

IB$A 0.3

CALL CID-D$
CALL D-CID$

EPA, IGA 0.6

CALL CMND$ BC$A 0.1

CALL COMP$
COMPUTE

TFA, TIA, TT$A 10.1

CALL CUST$ BA$A 0.3

CALL DEBUG$ TD$A 0.9

CALL DFP$ TF$A 2.6

CALL DIVID$ OB$A 0.9

CALL DOWK$ CN$A 0.5

CALL DL-DT$
CALL DS-DT$
(paged)

GB$A 0.4

Appendix A - Included Routines

Global Development System Subroutines Manual V8.1 Page 117 of 120

CALL DT-DL$
CALL DT-DS$
(paged)

GC$A 0.2

CALL DT-DY$
CALL DY-DT$

QK$A 0.6

CALL ENTRY$ IF$A 0.7

CALL EOJ$ QX$A 0.1

CALL EXIT$ QV$A 0.1

CALL FDAT$ BFA, BZA 0.6

CALL FP-AC$ TF$A 2.6

CALL FP-SN$ TF$A 2.6

CALL FREE$ BN$A 0.5

CALL GETX$
CALL RELX$
CALL GETXN$

QR$A 0.6

CALL GROUP$ CMA, AMA, ECA, ERA, CA$A 11.1

CALL HMS-T$ CK$A 0.4

CALL LOAD$
CALL SDATA$

IE$A 2.4

CALL HX-BI$
CALL BI-HX$

QU$A 0.4

CALL IN-FP$ TF$A 2.6

CALL LOG$ EGA, GHA, EPA, IGA, GCA, QLA, EA$A 2.1

CALL LOGOF$ IV$A 0.1

CALL MIDN$
CALL MIDCH$

CTA, QKA, EAA, CNA 1.4

CALL MULTI$ OB$A 0.9

CALL NKM-C$ CW$A 0.3

CALL NLOGF$ IV$A 0.1

CALL OPID$
CALL USER$

BUA, ERA 2.3

CALL OPNM$ CO$A 0.3

CALL PRIN$ BP$A 0.5

CALL PROG$ CZA, ECA 0.4

CALL PWCHK$
CALL PWNUL$
CALL PWNUM$

OZ$A 0.5

CALL QINDX$ EX$A 1.8

CALL QLOAD$ EY$A 0.8

CALL QSRT$ EI$A 0.8

CALL RAND$ CG$A 0.2

CALL RESET$ TF$A 2.7

CALL RESID$ IU$A 0.2

CALL RL-AS$
CALL AS-RL$

IA$A 0.7

CALL ROOT$ TRA, TIA, TFA, TTA 11.2

CALL SECS$ EA$A 0.1

CALL SOLVE$ TSA, TFA, TIA, TTA 11.2

CALL SQRT$ CE$A 0.3

Appendix A - Included Routines

Global Development System Subroutines Manual V8.1 Page 118 of 120

CALL START$ EF$A 0.2

CALL T-HMS$
CALL TIME$

QLA, EAA 0.3

CALL TEXT$ IJ$A 0.3

CALL TSRT$ BT$A 0.1

CALL UNLO$ IF$A 0.7

CALL URESI$ IU$A 0.2

CALL VEC$ TF$A 2.6

CALL ZERO$ BZ$A 0.1

Table A - Included Routines

Appendix B - Memory Page Subroutines

Global Development System Subroutines Manual V8.1 Page 119 of 120

Appendix B - Memory Page Subroutines

All versions of Global System Manager from V6.2 onwards incorporate a memory paging
system. This has been implemented to allow new features to be added to Global System
Manager without reducing the memory bank size. Although the memory paging system is mainly
used by internal Global System Manager routines, versions of a few of the most commonly used
Cobol subroutines have been coded to run in memory pages. These are Memory Page

subroutines which can be loaded as part of Global System Manager and used by application
programs. The memory requirements of an application can be significantly reduced by using

Memory Page subroutines. Global System Manager can be customised to load the Memory
Page subroutines at bootstrap time. Although only one copy of each subroutine is loaded, they
are available to all users on the computer. An application must be linked specially to use the
Memory Page subroutines.

B.1 Routines available
Programs using the following Cobol functions can benefit from using Memory Page subroutines:

B.1.1 Global System Manager V6.2, V7.0 and V8.0

RSAM (AR$B)
ISAM (AI$A)
CLEAR statement and screen clearing subroutines (GA$A)
Date conversion subroutines (GBA/GCA)
CHECK$ subroutine (GE$A)

B.1.2 Global System Manager V8.1

DMAM (AM$A)
SLOCK$ (CA$A)
ASSIG$ (GH$A)
CHAR$ (GF$A)
COLOR$ (GG$A)

The names on the right are the program names of the Cobol subroutines that may have been
linked into an application. If they appear on an application program's link map then a Memory
Page subroutine can be used instead. The appendices of the appropriate development manuals
explain which Cobol function uses which subroutine.

B.2 Linking the application to use Memory Page subroutines
A special subroutine library is installed as part of the development software. It contains small
"stub routines" that are replacements for the routines mentioned above. They are merely
interfaces to the Memory Page subroutines loaded by Global System Manager. The stub
routines may also include data areas associated with the Memory Page subroutines. Include the
following line into the dialogue for $LINK:

$44 LINK:C.$PAGES UNIT:$S

The new routines will appear on the link map as a program name with the suffix 'Z' e.g. GA$A
will be replaced by GA$Z. A program linked in this way will be incompatible with those earlier

Appendix B - Memory Page Subroutines

Global Development System Subroutines Manual V8.1 Page 120 of 120

versions of Global System Manager that do not include the Memory Page versions of the
included subroutines (see table above).

B.3 Including the routines into V6.2 Global System Manager
The following technique must be used to include the Memory Page routines in V6.2 Global
System Manager. THIS TECHNIQUE MUST NOT BE ATTEMPTED ON ANY OTHER

VERSION OF GLOBAL SYSTEM MANAGER.

A library called P.$PAGES is distributed with V6.2 Global System Manager on one of the
extension diskettes. This should be copied to unit $DP using $F. The $F 'PAM' instruction
should then be used to set the number of pages to 13. The pages will then automatically be
loaded by Global System Manager when next reloaded. The inclusion of the extra pages will
increase the amount of memory required by Global System Manager by 12K bytes but will have
no effect on the user memory bank size.

B.4 Including the routines into V7.0 and later Global System
Manager
The installation of Global System Manager V7.0 and V8.0 always copies P.$PAGES to the
SYSRES unit and sets the number of pages to the correct number. DO NOT ATTEMPT TO
USE THE $F PAM INSTRUCTION TO CHANGE THE NUMBER OF PAGES ON V7.0 OR V8.0
GLOBAL SYSTEM MANAGER.

B.5 Errors
An attempt to use a Memory Page subroutine which has not been installed will result in a PGM
CHECK 8, an illegal jump. This PGM CHECK will also occur if an attempt is made to use a
Memory Page subroutine on a pre-V6.2 Global System Manager.

