

Global Development Toolkit Manual V8.1 Page 1 of 154

Global 16-bit Development System
 Toolkit Manual
 Version 8.1

Global Development Toolkit Manual V8.1 Page 2 of 154

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,
electrical, mechanical, photocopying,

recording or otherwise, without
the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Development Toolkit Manual V8.1 Page 3 of 154

TABLE OF CONTENTS

Section Description Page Number

1. Introduction .. ???

2. Command Programs .. ???
2.1 $COPLB - Build Copy Library Index ???
2.2 $DEMO - Demonstration Command ???
2.3 $DEV - Program Development Dialogue Generator ???
2.4 $ED - Full Screen Editor .. ???
2.5 $FCOMP - File Comparison Utility ???
2.6 $JOURNAL - Journal of Screen Dialogue ???
2.7 $PATCH - File Patch Utility ???
2.8 $PDUMP - Formatted Program Dump Utility ???
2.9 $RECOVER - File Recovery Utility ???
2.10 $SCOMP - Source File Comparison Utility ???
2.11 .. $STACK - Stack Maintenance ???
2.12 $URMAIN - User System Request Data Library Maintenance ???
2.13 $VOL - List Volume Directory Utility ???
2.14 $XBUILD and $XPRINT - Global Cross-Reference Generators ???

3. Product Translator .. ???
3.1 Introduction .. ???
3.2 Creating a Dictionary ... ???
3.3 Translation ... ???
3.4 Text Display .. ???
3.5 Check Dictionary .. ???
3.6 Error Messages and Stop Codes ???

4. Intermediate Code Language ???
4.1 Foreword .. ???
4.2 The Intermediate Code 'Computer' ???
4.3 Byte String Instructions .. ???
4.4 Numeric String Instructions ???
4.5 Arithmetic Instructions ... ???
4.6 Transfer of Control Instructions ???
4.7 Status Switching Instructions ???
4.8 Parameter Stack Instructions ???
4.9 Register Load Instructions...................................... ???
4.10 .. Special Purpose Instructions ???

5. Metajob Management .. ???
5.1 Foreword .. ???
5.2 The Metajob Description ... ???
5.3 The Metajob File Builder ($MJOB) ???
5.4 Using $MTEST to Initiate a Metajob Run ???
5.5 Writing your own Metajob Initiator ???

6. Macro Pre-Processor Language ???
6.1 Introduction .. ???
6.2 Running $MACRO .. ???
6.3 The Preprocessor Language ???
6.4 $MACRO Options .. ???

Global Development Toolkit Manual V8.1 Page 4 of 154

APPENDICES

Appendix Description Page Number

A Example Metajob System... ???

B Error and Warning Messages from $MJOB.......................... ???

C Error Messages from $MRUN...................................... ???

D Example $MACRO Listings.. ???

E $MACRO Error and Warning messages.............................. ???

Chapter 1 - Introduction

Global Development Toolkit Manual V8.1 Page 5 of 154

1. Introduction

The Global Toolkit consists of a number of command programs designed
to aid the production of large systems written in Global Cobol. Most
of the commands are documented in alphabetical order following this
introduction, but there are also five separate sections at the end.
The first describes Product Translator, a facility that allows the
user to alter the text contained in a program (e.g. error messages or
prompts) without the need to edit, compile and link. The second
contains a full account of the intermediate code language generated by
$COBOL, while the last two deal respectively with the Macro
Preprocessing language for use with Global Cobol, and with the Metajob
Management language, which is a high level language for generating job
control dialogue.

Most of the commands in the Global Toolkit are for use during program
development, but some have wider uses. The $DEMO command allows a
number of screens on a multi-user machine to be slaved from a single
screen used by a demonstrator, so that anything displayed on the
demonstrator's screen is echoed on all the other screens.

The $RECOVER program recovers files which have become corrupted due to
I/O or software errors, and may also be used to 'undelete' files which
have accidentally been deleted. The $PATCH program allows you to patch
files and to create ZAPs to patch errors in programs. This utility is
also very useful during program development to correct errors in
programs in order to allow testing to continue.

For anyone developing a large system, the $XBUILD and $XPRINT commands
will produce a single cross-reference listing of a large number of
programs. The $VOL utility produces a detailed directory listing of a
volume, which gives the contents of all the libraries. The $MACRO
command interprets the Macro Preprocessing Language, which can be used
to enable several slightly different versions of a program to be
produced from a single source. The Metajob Management Language is an
easy way to write complex, flexible jobs. For example, it can be used
to install software onto a wide range of different configurations.

Programmers are likely to find the $DEV and $ED commands very useful.
The $DEV command generates jobs to compile and link programs, and can
greatly reduce the keying required as well as allowing a number of
programs to be compiled in succession without operator intervention.
The $ED command is a full screen editor, which can be used as an
alternative to $EDIT.

1.1 Installation
The Global Toolkit is distributed on either one or two diskettes.
Global Cobol must be installed prior to installing the Toolkit. The
installation job puts the Toolkit commands on a new diskette or
subvolume, SYSKIT, which will be formatted or allocated if required.

To install the Toolkit use the 'Install Global Software' entry in the
menu, or run command $INSOFT directly. If you are installing onto
diskette you must install onto one of the same format as SYSRES and
with a capacity of at least 300K. If you are installing onto hard disk
you can install onto any unit: the default is SYSKIT, if one is
already allocated, or the first available subunit otherwise. When
installing onto hard disk you will be asked how many operators will
use $DEV: this is so that space can be left for the files created by

Chapter 1 - Introduction

Global Development Toolkit Manual V8.1 Page 6 of 154

$DEV to hold defaults for each operator (2.5K per operator per
partition).

The Toolkit commands listed below are distributed without serial
numbers, so that you can give them to other users if you want. You
must, however, copy the associated overlay programs and files at the
same time. The unserialised commands are to be found in library P.TK.

Command

Associated Programs

$DEMO $DEMEXEC
$FCOMP None
$FIND None
$JOURNAL $JINTER
$MRUN None
$MTEST None
$PDUMP None
$RECOVER None
$STACK None
$URMAIN User system request data library
$VOL None

Figure 1 - 'Free' Toolkit Commands and their Associated Programs

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 7 of 154

2. Command Programs

2.1 $COPLB - Build Copy Library Index
The $COPLB command is used to speed up the processing of copy
libraries by $COBOL, $FORM and $XREF (or any other program using
subroutine LIBR$). It does this by creating an extra index record at
the end of a copy library, after the end of the file, so that LIBR$
need not scan the whole file to find the names and locations of the
copy books it contains. This typically saves 3-10 seconds per
compilation.

To create a copy library with an index you must run $COPLB and specify
the input copy library and the new library to be created. For example:

GSM READY:$COPLB
$308 INPUT COPY LIBRARY:XY UNIT:205
$308 OUTPUT COPY LIBRARY:<CR> UNIT:206

The defaults for the output file if <CR> is keyed are the same name
and unit as the input. If the output file has the same name and unit
as the input then the original file is overwritten (but space must be
available on the unit to create a copy of the input file).

Note that if the indexed copy library is subsequently edited, the
index record will be lost and will have to be recreated by running
$COPLB again.

It is recommended that you build indexes on all copy libraries for a
program suite before a final packaging so as to decrease the
compilation time required.

2.2 $DEMO - Demonstration Command
The demonstration command, $DEMO, allows some or all of the screens on
the same computer to be slaved from a single screen, so that any
displays on that screen appear on all screens simultaneously. It is
intended for use when demonstrating Global software to more people
than can usefully sit round one screen.

All the screens being slaved from the master screen must have the same
terminal type as the master. Screens that are not the same type will
produce garbled displays, and may in some cases cause the system to
fail. You can only slave screens that have been signed on to the
system by valid replies to the operator-id and terminal type prompts.

Any job which is currently executing on a slaved screen will continue
as if it were running in background.

2.2.1 Starting a Demonstration
To start a demonstration, run command $DEMO. For each signed-on screen
you will be prompted whether you wish to slave it from your terminal,
for example:

$300 SLAVE SCREEN 2 OPERATOR ABC?:

Reply <CR> or Y to slave this screen, or N if you do not want to slave
the screen if, for example, it is of a different terminal type. You
can also reply <CTRL B> to slave this screen and all further screens
or <CTRL A> if you do not want to slave this or any further screens.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 8 of 154

After you have replied to all the prompts, your screen and all the
slaved screens will be cleared. The available user area will be
reduced by about 1100 bytes. You can now run any Global software you
want to demonstrate, and any displays on your screen will be echoed on
all the slaved screens.

2.2.2 Ending a Demonstration
To end a demonstration session, run the $DEMO command again. All the
slaved screens will be cleared, and the system will be returned to
normal.

2.3 $DEV - Program Development Dialogue Generator
The $DEV command generates dialogue to compile, link and cross-
reference a program or series of programs. The command 'remembers' the
last program processed for each operator, together with the associated
units, copy libraries and subroutines used, so that if you want to
recompile and relink the program you last compiled you need only key a
few characters. Each partition is treated as a separate operator, with
separately remembered defaults. You can also use $DEV to set up a long
series of compilations and links which will execute without operator
intervention, so that you can leave the machine unattended.

The command also allows special purpose job dialogue to be entered (to
run a test, for example), and for messages and pauses to be inserted
as required. It can be used in conjunction with specially written jobs
to link a set of overlayed programs, or to macro preprocess source
files.

The command operates by asking you to specify the type of dialogue
required, for example a compilation, and then stepping through the
dialogue for that command, offering you defaults for all the prompts.
You can then either generate further dialogue, or cause the specified
dialogue to be executed. You reply to any prompts in the dialogue in
the usual manner: in particular you key any control responses as the
normal keystrokes. <CTRL A>, for example, is not keyed as 8 separate
characters.

2.3.1 The Dialogue
When you run $DEV it first displays its dialogue prompt:

$506 DIALOGUE:

The valid replies are given in the following table. They can be listed
on a help screen by keying <CR> to the dialogue prompt.

Certain of the single character responses can be combined. The C
(compile) dialogue can be followed by X, L, R, XL or XR. The C, J, M
and T dialogue can be preceded by P. Thus, for example, CL is compile
and link and PCXL is print source, compile, cross-reference and link.
Note the CLX is not a valid combination: you must specify CXL.

Responses in the form L-xxxx execute specially named jobs that you
have written to linkage-edit overlay structures. Similarly responses
in the form M-xxxx execute jobs to macro preprocess a text file into
several compiler input source files. The writing of such jobs is
described later.

When you have specified all the required dialogue, reply E or Q to the
dialogue prompt to start execution. The Q (Quiet) reply causes any

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 9 of 154

messages output by the executed programs to be suppressed and not
displayed on the screen. It should be used if you want the execution
to proceed in background, to prevent it being held up attempting to
display messages.

Dialogue

Meaning

A Abandon dialogue generation
C Run $COBOL to compile a program
E Execute dialogue
J Run $JOB to create a job file
L Run $LINK to linkage-edit a program
L-xxxx Run Link Job $-L-xxxx to perform special linkage edit
M Run $MJOB to compile a metajob
M-xxxx Run Macro Job $-M-xxxx to run $MACRO to create several

versions of source
P Run $PRINT to print out a text file
Q Execute dialogue in Quiet mode (no displays) so that job can

proceed in background
R Create Relocatable program (run $LINK twice, then $RELOC,

then delete intermediate files)
T Run $TAP to create a Terminal Attribute Program
X Run $XREF to produce a cross-reference
:reply Put this reply in dialogue (e.g. :$F)
+message Display message (e.g. +NOW COMPILING SA110)
-pause Display pause prompt (e.g. -MOUNT SA2 ON 230)

Figure 2 - $DEV Instruction Codes

If you terminate your reply to the dialogue prompt with <CTRL B> then
the default responses for the selected dialogue will be used without
you being prompted. Thus, for example, to repeat the compilation and
link you last executed, you simply key:

GSM READY:$DEV
$506 DIALOGUE:CL<CTRL B>
.
. dialogue for $COBOL and $LINK is displayed
.
$506 DIALOGUE:E
.
. dialogue is executed
.
$506 DEVELOPMENT COMPLETE
GSM READY:

If you terminate your reply to the dialogue prompt with <ESCAPE> this
allows you to execute the specified dialogue for every suitable file
on the input unit. You will be prompted with the name of each file in
turn: you must reply Y to process it, N or <CR> to ignore it, <CTRL A>
to ignore all further files, <CTRL B> to process all remaining files
or <CTRL C> to go back to the previous file. A reply of B is
equivalent to a reply of Y followed by <CTRL B>, and is used to accept
the defaults for the file selected.

2.3.2 Prompts within the Selected Dialogue

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 10 of 154

Once you have selected the dialogue, you will be presented with a
series of prompts, with defaults displayed in parentheses. For
example:

$506 DIALOGUE:C
GSM READY:$COBOL
$43 SOURCE (SA100):

Key <CR> to accept the default, or key a different value. The
following special replies are also recognised:

<CTRL B> or terminating a reply with <CTRL B>, causes the
default value to be used for all remaining
prompts;

<CTRL C> deletes a prompt. This is only valid for those

prompts which are repeated until <CR> is keyed,
such as the copy library and option prompts in
$COBOL. If the current default is <CR>, a reply of
<CTRL C> has the same effect as <CR>;

<ESCAPE> cancels the current dialogue (since the last

dialogue or file selection prompt) and returns to
the dialogue prompt or file selection prompt.

Note that <CTRL A> has no special meaning, but is treated as part of
the dialogue. In particular, you can reply <CTRL A> to a listing
prompt to suppress the listing.

Many of the defaults are common to several sets of dialogue, and
changing one changes the rest. For example, if you change the source
file to SA110 this automatically changes the default first input file
for $LINK to SA110 as well. Similarly, there is a single listing file
unit. Thus, suppose you wish to compile and link program SA110, which
is not the program you last compiled but does use the same units, copy
libraries and subroutines as before. Then you need only key:

GSM READY:$DEV
$506 DIALOGUE:CL

GSM READY:$COBOL
$43 SOURCE FILE(SA100):SA110<CTRL B>

.

. (remainder of dialogue is displayed)

.
$506 DIALOGUE:E
.
. (dialogue is executed)
.

$506 DEVELOPMENT COMPLETE
GSM READY:

The defaults to be used when $DEV is next run are only updated when E
or Q is keyed to the dialogue prompt: if you key A (abandon) they will
be unchanged.

2.3.3 Overlay Linking Jobs
The L dialogue in $DEV can only be used with non-overlayed programs.
If you need to link a set of overlayed programs you must write a
special job, with a name of the form $-L-xxxx, where xxxx is any four
characters. Such jobs must be placed on the volume containing $DEV,
and may be put into a library P.DEVJOB if required. The job must
accept three unit-addresses as parameters. These are, in order, the

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 11 of 154

compilation unit, the program unit and the listing unit. The job is
run by keying L-xxxx to the dialogue prompt.

For small systems, with up to 10 programs in the overlay structure,
you are recommended to relink the whole suite of programs each time.
This means that only one link job is needed, and there is no danger of
inconsistent versions. For larger systems, it may be desirable to
provide several link jobs, each linking a group of related programs,
together with a master job which calls all the jobs and links the
whole system.

2.3.4 Macro Preprocessing Jobs
If you use $MACRO to preprocess source files then you can write jobs
with names of the form $-M-xxxx, which can be executed from $DEV to
run $MACRO with the required parameters. Such jobs must be placed on
the same volume as $DEV, and may be put into a library P.DEVJOB if
required. The job must accept two unit addresses as parameters. These
are, in order, the macro source unit and the output source unit. The
job, when run, should create all possible versions of the file.

2.3.5 Operating Notes
$DEV imposes certain limits on the dialogue generated, as follows:

● a maximum of 9 files can be specified for a link using the L

dialogue;

● a maximum of 9 options can be specified in the C, X and L dialogue;

● a maximum of 9 copy libraries can be specified for C or X dialogue.

Only the first of these is ever likely to be a problem, and it can
usually be avoided by using compilation libraries.

There is also a limit on the total dialogue generated, but this is
very generous. For example, you can specify at least 20 executions of
the CXL dialogue at the same time. You should however note that since
$DEV creates a job (using JOB$) to execute the dialogue, this will
reduce the available user area, and will degrade the performance of
$COBOL if too many compilations are specified at once on a machine
with a small user area.

$DEV allocates a 5.3K file on the unit containing $DEV for each
operator who uses it, with separate files for each partition. The name
of the file created is $$Doooop where oooo is the operator-id and p is
the partition number.

2.4 $ED - Full Screen Editor
The $ED command is a full screen editor for amending text files. That
is, it acts like a word processor in that you move the cursor to the
text to be altered, and then insert, delete or change characters.
However, it does not automatically wrap words onto the next line when
you extend lines, since it is designed for editing program sources
rather than documents.

$ED can be used as an alternative to the standard editor, $EDIT. In
suitable circumstances, it is easier and faster to use. However, it
requires much more processing time than $EDIT, and relies on a fast

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 12 of 154

response. Therefore, it is not recommended on multi-user machines when
more than one other partition is active.

The principle limitation of the current version of $ED is in the
handling of large files. $ED operates by first reading as much as
possible of the file into memory, typically 250-1000 lines. If the
file is larger than this, you must complete edits on the first portion
and then read in the next. It is not possible to move text between
such portions of the file using $ED, or to move text between different
files.

There is a help file supplied which explains all the commands and
facilities of $ED, and acts as a training aid. You should teach
yourself about $ED by going through this file, editing it as
instructed (these edits will have no permanent effect on the file, as
it is treated specially by $ED). To start editing the help file,
simply run $ED and key <CTRL C>.

2.5 $FCOMP - File Comparison Utility
The file comparison utility does a byte by byte comparison of two
files and prints out any bytes which differ. The files may be of any
type. The listing produced consists of a header page, giving any
discrepancies between the file labels, and then pages consisting of
the bytes that differ, one to a line.

2.5.1 Comparing Files
When you run $FCOMP, it prompts you for the names and units of the two
files to be compared, for example:

$211 FILE 1:SADATA1 UNIT:202
$211 FILE 2:SADATA2 UNIT:202

You will then be prompted for the output unit on which the comparison
report is to be produced:

$211 LISTING UNIT:

If you reply <CR>, it will be written to unit $PR; if you reply <CTRL
A> it will be displayed on the screen. The comparison report is then
produced, and when it is complete the file prompt is redisplayed, to
allow you to compare further files:

$211 LISTING UNIT:<CR>
$211 COMPARE COMPLETE
$211 FILE 1:

Reply <ESCAPE> to quit.

2.6 $JOURNAL - Journal of Screen Dialogue
The $JOURNAL command, when activated, writes all subsequent screen
dialogue to a print file so that it can be examined later. It can be
used either to produce a hard copy listing of the dialogue, for
example as a documentation aid or to help debug a program. It is
particularly useful for debugging programs which, due to an error, are
displaying non-ASCII characters on the screen. It can also be used to
obtain hard-copy evidence of program errors for later investigation.

2.6.1 Activating the Journal

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 13 of 154

When you first run $JOURNAL it prompts you for the name of the journal
file to be produced and for any special options required, for example:

$173 JOURNAL FILE:PRINT UNIT:203
$173 OPTION:

The default, if you key <CR>, is to produce file J.JNL on unit $PR.

Various options are available, and can be listed by keying <CTRL C>.
Normally, however, the defaults will be satisfactory, and you can just
key <CR> to the option prompt. The journal will then be activated, and
a message giving the reduced high address will be displayed, for
example:

$173 JOURNAL ACTIVATED - HIGH ADDRESS REDUCED FROM AB8C TO 9A56

The journal, when activated, occupies slightly over 4K of user area.

2.6.2 Deactivating the Journal
When you have finished using the journal, simply run $JOURNAL again to
deactivate it:

GSM READY:$JOURNAL
GSM READY:

2.7 $PATCH - File Patch Utility
The file patch utility, $PATCH, will patch any type of Global file. It
can also, if required, produce a ZAP of the patch, which can be
applied to other similar files using $ZAP.

To prevent users from making changes to programs you have supplied
(which could cause errors) $PATCH will not operate on files which are
serial number protected. You can, however, still patch your own,
unserialized, versions of these files.

The dialogue of $PATCH starts with a standard prologue, which
specifies the file to be patched, whether a ZAP is to be produced, and
the contents of the ZAP. The remaining dialogue depends on the mode in
which you wish to patch the file: you can patch files by absolute
addresses, offsets within fixed length records, addresses within
compilation modules, or addresses within programs. As well as patching
Global files, you can also patch non-Global volumes by specifying
sector numbers.

2.7.1 Initial Dialogue
You are first prompted for details of the file to be patched and the
print file to contain the listing of the ZAP. For example:

$98 FILE:P.SA UNIT:204
$98 ZAP FILE:<CR> UNIT:205

The default for the ZAP file is file-id Z.xxxxxx on unit $PR where
xxxxxx is the first six characters of the filename. If you do not want
to produce the ZAP corresponding to the patch (as will usually be the
case during testing) you should reply <CTRL A> to the ZAP file prompt.

If you reply <CTRL B> to the file prompt this allows you to patch
physical sectors of the volume on the specified unit, without
reference to the Global directory structure. In particular, you can
patch non-Global volumes.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 14 of 154

If you specify a ZAP file then a number of further prompts appear. You
are first prompted for up to 10 lines of title, to be printed at the
start of the ZAP. The prompt is in the form of a text edit window
under which the following line appears:

KEY UP TO 10 LINES OF ZAP TITLE

The use of keys in text editing is described in the Global Operating
Manual in the section on $TED - the text edit utility. The edit is
terminated by keying <ESCAPE> (which may need to be keyed twice on
some screens).

Next you will be asked to specify whether the ZAP is to include the
file-id of the file being patched (making it specific to one file),
and whether to check the previous contents before patching the file
(to help ensure that the correct version of the file is being
patched):

$98 IS FILE-ID TO BE INCLUDED IN ZAP?:N
$98 IS ZAP TO CHECK PREVIOUS CONTENTS?:Y

We recommend you to make ZAPs check the previous contents, but not to
include the file-id. In particular, do not include the file-id if you
are patching a program or compilation library, as this will cause the
ZAP to patch a fixed offset within the library, whereas if you omit
the file-id from the ZAP it will patch the appropriate member name
within the library, or indeed can be used to patch a stand-alone
module.

2.7.2 The Patch Mode Prompt
You are next prompted for the patch mode you wish to use:

$98 PATCH MODE:

Your reply should be one of the following:

<ESCAPE> to return to the file prompt;

<CTRL A> to return to the file prompt;

A to patch absolute file addresses;

C to patch a compilation module or library;

P to patch a program or program library;

R to patch offsets within records (or offsets within
sectors if patching the whole volume).

The dialogue for each patch mode is given in separate sections below.
If the mode is inappropriate for the file specified, an error message
will be displayed and the patch mode prompt repeated.

2.7.3 Patching Using Absolute Addresses
Using absolute patch mode (key A), the address to be patched is
specified as a hexadecimal number of up to 8 digits, representing the
byte number within the file counting from zero. When you specify a
valid address, the corresponding byte in the file is displayed, in

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 15 of 154

hexadecimal with ASCII interpretation, and you are prompted to supply
a new value:

$98 HEXADECIMAL FILE ADDRESS (00000000):124
00000124 41 'A':

You should make one of the following replies:

● a one or two digit hexadecimal value to change the byte to that

value, and then display the next byte;

● a single quote (or <CTRL B>) followed by an ASCII character to

change the byte to that character value, and then display the next
byte;

● <CR> to leave the byte unchanged and display the next byte;

● <CTRL C> to leave the byte unchanged and display the previous byte;

● <CTRL A> or <ESCAPE> to return to the file address prompt.

A reply of <CTRL A> or <ESCAPE> to the file address prompt will return
you to the file prompt. Note that you must return to the file prompt
to ensure that the patch has been written to the file.

As an example, the dialogue:

$98 HEXADECIMAL FILE ADDRESS (00000000):124
00000124 41 'A':'B
00000125 20 ' ':<CR>
00000126 03 :2
00000127 B3 :<CTRL A>
$98 HEXADECIMAL FILE ADDRESS (00000124):<CTRL A>
$98 FILE:

will change byte #124 from ASCII A to B, and byte #126 from #03 to
#02.

2.7.4 Patching Compilation Modules
If the file to be patched is a compilation library, you will first be
prompted for the program name of the module to be patched:

$98 PROGRAM NAME:

Compilation patch mode allows you to patch any initialised byte within
the compilation. The byte to be patched is specified as a location
relative to the start of the compilation, as given on the compilation
listing. If the specified location is part of a relocatable word, then
the whole word is displayed as an offset from a global symbol, and you
can either change the offset, or make the relocation relative to some
other global defined within the compilation. You cannot however make
relocatable items absolute or vice versa. If the address you specify
is outside the compilation, or corresponds to an uninitialised byte,
then the message NOT FOUND will be displayed and the location prompt
is repeated.

Once you have specified the location, the byte or word at that
location is displayed:

$98 HEXADECIMAL LOCATION (0000):1F
001F 24 '$' :

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 16 of 154

You should supply one of the following replies:

● a one or two digit hexadecimal value to modify the byte, and then

display the next byte;

● a single quote (or <CTRL B>) followed by an ASCII character to

change the byte to that character value, and then display the next;

● <CR> to display the next byte (or relocatable word), leaving the

byte unchanged;

● <CTRL C> to display the previous byte or word, leaving the current

byte unchanged;

● <CTRL A> or <ESCAPE> to return to the location prompt.

If the address specified is part of a relocatable word, the word is
displayed in the form:

001C 0144[AR$A]:

meaning it is offset #144 from global AR$A. You should make one of the
following replies to this prompt:

● a 1 to 4 digit hexadecimal offset to alter the offset;

● <CR> to leave the offset unchanged;

● <CTRL C> to display the previous byte or word;

● <CTRL A> or <ESCAPE> to return to the location prompt.

If you supply a value or key <CR> a second prompt will appear on the
same line. You should reply either:

● with the name of a global defined in the compilation to change the

global used in relocating the word; or

● <CR> to display the next byte (or relocatable word) and leave the

global unchanged.

A reply of <CTRL A> or <ESCAPE> to the location prompt returns you to
the file prompt. Note that you must return to the file prompt to
ensure that all your patches have been written to the file.

If you key <CTRL C> to the location prompt $PATCH displays a further
prompt:

$98 HEXADECIMAL OFFSET:

which allows you to patch any offset within the compilation module,
including header, trailer and relocation records. The data in the
compilation header is held in internal data format as a PIC 9(6) COMP
field starting at offset #0A.

As an example, the dialogue:

$98 HEXADECIMAL LOCATION (0000):1C

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 17 of 154

001C 0144[AR$A]:150 :<CR>
001E 06 ' ' :<CR>
001F 24 '$' :'*
0020 0A :<CTRL A>
$98 HEXADECIMAL LOCATION (001C):<CTRL A>
$98 FILE:

patches the relocatable word at location #1C to be offset #150 rather
than #144 from global AR$A, and changes the character at location #1F
from $ to *.

2.7.5 Patching Programs
When you use program patch mode, if the specified file is a program
library you are first prompted for the program-id of the program to be
patched:

$98 PROGRAM-ID:

Program patch mode allows you to patch any initialised bytes within
the loadable program. You specify the location as the base address of
the particular compilation to be patched (taken from the link map) and
a location within the module (taken from the compilation listing). For
example:

$98 HEXADECIMAL BASE ADDRESS:500
$98 HEXADECIMAL LOCATION (0000):21D8
26D8 [0500+21D8] 2A '*':

You should supply one of the following replies:

● one or two hexadecimal digits, to modify the byte to this value and

then display the next;

● a single quote (or <CTRL B>) followed by an ASCII character, to

modify the byte to the value of the character and then display the
next;

● <CR> to leave the byte unchanged and display the next;

● <CTRL C> to leave the byte unchanged and display the previous byte;

● <CTRL A> or <ESCAPE> to return to the location prompt.

You can key <CTRL A> or <ESCAPE> to the location prompt to return to
the base prompt, and <CTRL A> or <ESCAPE> to the base prompt returns
you to the file prompt. Note that you must return to the file prompt
to ensure that the patch has been written to the file.

If you key <CTRL C> to the base prompt $PATCH displays a further
prompt:

$98 HEXADECIMAL OFFSET:

which allows you to patch any offset within the program file (or
program module if inside a library). In particular, it allows you to
patch the title, header and trailer records which indicate where the
program is to be loaded.

If the program you are patching is relocatable, then you can still
patch bytes, but you should note that any relocatable words within the
program will be displayed as 2 bytes containing an offset, relative to

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 18 of 154

the start of the module, with the most significant byte first. You
cannot patch relocatable words to be non-relocatable, or vice versa.

Note that if the location specified is not within the program, or
corresponds to uninitialised data, then a message NOT FOUND will be
displayed, and the location prompt repeated.

2.7.6 Patching Using Record Numbers
In record number patch mode, the file address is specified as a
hexadecimal offset within a fixed-length record, whose number is
specified in decimal. If the file is RS or IS, the actual record
length is used. For other types of file, record number patch mode is
still valid, a 'record length' of 256 bytes being assumed. This is the
same length as is assumed by $L when inspecting a file, and hence
record patch mode is the most convenient if you want to modify a part
of a file which has been identified using $L.

You are first prompted for a record number (hexadecimal, counting from
1) and offset (decimal, counting from zero), and the byte thus
identified is displayed in hexadecimal with an ASCII interpretation.
For example:

$98 RECORD NUMBER (1):3
$98 HEXADECIMAL OFFSET IN RECORD (00000000):1A
3,0000001A 58 'X':

You should supply one of the following replies:

● one or two hexadecimal digits, to modify the byte to this value and

then display the next byte;

● a single quote (or <CTRL B>) followed by an ASCII character, to

change the byte to the value of the character and then display the
next byte;

● <CR> to display the next byte, leaving the current byte unchanged;

● <CTRL C> to display the previous byte, leaving the current byte

unchanged;

● <CTRL A> or <ESCAPE> to return to the record number prompt.

Note that the offset you specify is not restricted to being less than
the record number: if it is greater the record number will be
incremented accordingly, so that, for example, if you specify offset
#100 in record 1, and the records are #100 bytes long, this gives you
offset zero in record 2. This facility is particularly useful if you
are examining records in the overflow area of an IS file.

A reply of <CTRL A> or <ESCAPE> to the record number prompt will
return you to the file prompt. Note that you must return to the file
prompt to ensure that the patch has been written to the file.

2.7.7 Patching Using Sector Numbers
If you keyed <CTRL B> to the file prompt, to patch physical sectors
within the volume, then instead of the record number prompt a sector
number prompt appears, followed by the offset prompt. For example:

$98 SECTOR NUMBER (1):27

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 19 of 154

$98 HEXADECIMAL OFFSET IN RECORD (00000000):

In effect, the volume is treated as an RS file whose record length is
the sector size. If sectors within a track are assumed to be numbered
from 1, and heads and tracks are numbered from zero, then the sector
number as used by $PATCH is calculated as:

S + (H * SPT) + (T * SPT * HPC)

where: S Sector number
 H Head number
 T Track number
 SPT Sectors per track
 HPC Heads per cylinder (i.e. number of heads)

2.7.8 Notes on Patching Programs and Compilations
To understand fully the intermediate code generated by $COBOL you need
to read Chapter 5, preferably in conjunction with a compilation
listing produced with the binary list (BL) option. However, there are
a number of simple patches that you can make during testing without
needing to understand intermediate code completely.

If you want to patch out a Global Cobol statement, so that it has no
effect, you should patch the first byte to #04, and the next byte to
[length of the statement minus 2]. The length of the statement can be
determined by subtracting its start location from that of the start of
the next. Alternatively, for program files only, you can patch every
byte of the statement to zero. (Note that these patches change the
statement to be a $SET statement, which will have no effect unless you
are using intermediate code in a non-standard way.)

If there is a literal as the first operand of an ADD, DO, IF, MOVE or
MULTIPLY statement, or as the second operand of a DIVIDE or SUBTRACT
statement, then this can be modified as follows. If the literal is a
single character, or an integer in the range -128 to +127, it will be
the second byte of the statement. Otherwise the literal starts at the
third byte of the statement. Note that you cannot easily change the
length of the literal.

You can patch a trap into a program by adding 1 to the value of the
first byte of any statement. This can be useful in debugging complex
overlay structures, particularly if they are LIVE linked. A trap set
in this way can be cleared using the C instruction in $DEBUG.

If you want to modify the conditional test for a DO, IF or GOTO
statement you must first identify the start of the transfer of control
instruction, which is a byte set to #60 four bytes from the end of the
instruction. The byte following (the qualifier) specifies the
conditions under which the jump will occur, as follows:

0 = never 7 = always
1 = if zero 6 = if not zero
2 = if positive 5 = if not positive
4 = if negative 3 = if not negative
8 = if exception/overflow 16 = if no exception/overflow

and can be modified as required. Note that the two bytes following the
qualifier are the address to which to jump (relocatable in the case of
a compilation file).

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 20 of 154

2.8 $PDUMP - Formatted Program Dump Utility
The $PDUMP command produces a hexadecimal dump of a program file, with
ASCII interpretation, formatted to show where in memory each text
block will be loaded. Its main uses are to examine programs whose link
map indicates that they are in more than one text block (and so cannot
be quick loaded), in order to find out where the gaps are, and to
check a program or program library for large areas which are
initialised to zeros or spaces, and which could be changed to
uninitialised data to reduce the size on disk.

To run the command you simply specify the filename and unit of the
program to be dumped. For example:

GSM READY:$PDUMP
$217 INPUT FILE:SA100 UNIT:204
$217 LISTING UNIT:202
$217 INTERPRETING

GSM READY:

If you specify a program library, the whole of the library will be
dumped. If you reply <CTRL A> to the listing unit prompt then the
program will print to screen. Replying <CR> will sent the print to
$PR.

2.9 $RECOVER - File Recovery Program
The file recovery program will attempt to recover relative sequential,
indexed-sequential or text files that have become corrupt due to I/O
errors, or by being only partially restored by $TDUMP, or by being
overwritten with corrupt data due to a program or hardware error. In
general, some data will be lost, and so you should check the recovered
file very carefully; there might be other corrupt records which have
not been noticed.

The recovery program can also be used to try to recover diskettes with
I/O errors on the directory track, and to 'undelete' files which have
been accidentally deleted.

When you run $RECOVER it first displays a menu of the available
options:

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 21 of 154

You should select the appropriate option.

2.9.1 Accidentally Deleted Files
If you accidentally delete a valuable file, for example while using
$F, it may be possible to 'undelete' the file using $RECOVER. You
cannot, however, recover files from a volume which has been scratched
or initialised. It will usually be possible to recover deleted files
providing that you have not subsequently opened any new files on the
volume. In particular, note that listing the directory results in a
new file being opened, and so you should not list the directory before
using $RECOVER. (It may, however, be possible to recover the file even
if the directory has been listed.)

You will next be prompted for the unit containing the file to be
recovered. You will then be presented with details of all the files it
might be possible to recover, so that you can select the ones you
want. When you recover a file, a prompt for a new file-id allows you
to change its name, or a reply of <CR> recovers it with its original
name. Note that there may be several copies of the deleted file in the
directory, so you must select the correct one. If you are not sure,
you can recover more than one copy, and inspect them later to
determine the correct copy. For example:

$306 UNIT:204
$306 RECOVER B.SA1 TYPE TF CREATED 10/11/84

START 21348 SIZE 3421 EXTENT 3488?:N
$306 RECOVER S.SA1 TYPE TF CREATED 11/11/84

START 0 SIZE 3461 EXTENT 3488?:Y NEW FILE-ID:<CR>
$306 RECOVER S.SA1 TYPE TF CREATED 11/11/84

START 3488 SIZE 3466 EXTENT 3488?:Y NEW FILE-ID:S.2
$306 RECOVERY COMPLETE
GSM READY:

You must now use $INSPECT to examine the two files. It is quite likely
that the incorrect version will not contain valid ASCII text, and will
appear to be empty when inspected. Also, if you list the directory you
may get the message 'INVALID DIRECTORY' at the end. This should
disappear if you delete the incorrect version of the file.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 22 of 154

2.9.2 Recovering a Diskette with a Corrupt Directory
If a diskette develops an I/O error within the directory, this option
will allow you to recover all files except those whose directory entry
was within the corrupted sector (typically 2 to 5). You must first
initialise a new diskette (of the same format) onto which the files
will be recovered.

You will be prompted for the units containing the corrupt disk and the
new disk, then recovery will take place. For example:

$306 CORRUPT VOLUME ON UNIT:114
$306 NEW VOLUME ON UNIT:115
$306 RECOVERING
$306 FILES RECOVERED - UP TO 6 LOST
GSM READY:

Important Note: The diskette cannot be recovered if the first sector
of the directory is unreadable.

2.9.3 Recovering Corrupt IS or RS Files
The corrupt IS or RS file recovery option allows you to recover most
of the data in an IS or RS file which has become corrupt. The program
can deal with three types of corruption: I/O errors; files partially
restored by $TDUMP; and corrupt data. Normally a file would only have
suffered one type of corruption, but it is possible to recover files
with corruption of a mixture of types.

The recovery proceeds in two stages. Firstly, the areas of the file
which are corrupt are identified. For corruption due to I/O errors or
partial restoration by $TDUMP this is straightforward; for data
corruption you must first identify the corrupted records, for example
using the $L command, and supply the numbers of the corrupt records.
Secondly, a new file is created on the output unit containing only
valid records.

You are first prompted for the name and unit of the file to be
recovered, and the name and unit for the recovered file. For example:

$306 CORRUPT FILE:SAMAST UNIT:114
$306 RECOVERED FILE:SAMAST UNIT:115

You will then be prompted for whether the file contains I/O errors or
has been partially restored by $TDUMP:

$306 DOES FILE CONTAIN I/O ERRORS?:N
$306 HAS FILE BEEN PARTIALLY RESTORED BY $TDUMP?:

In either case, if you key Y the file will be scanned for corrupt
blocks, and messages of the form:

$306 PRIME DATA RECORDS 124 TO 127 CORRUPT

or:
$306 OVERFLOW RECORDS 11 TO 12 CORRUPT

or:
$306 RECORD NUMBERS 237 TO 238 CORRUPT

will be displayed. It may be possible, by using $L, to identify from
this information which records have been lost. It may be that the
corruption is outside the allocated file space, or is entirely within
the index of an IS file. In this case it is possible to completely

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 23 of 154

recover the file by using the $CONV command to create a new copy of
the file, and the message:

$306 NO DATA RECORDS ARE CORRUPT
$306 FILE CAN BE RECOVERED USING $CONV

will be displayed.

Finally, you can specify records which contain data corruption. These
must be identified in advance, for example by inspection using $L. For
IS files, you must first specify any corrupt prime data records, and
then any corrupt overflow records (numbering both from 1). For
example:

$306 PRIME DATA RECORDS CORRUPT FROM:23 TO:24
$306 PRIME DATA RECORDS CORRUPT FROM:<CR>
$306 OVERFLOW RECORDS CORRUPT FROM:<CR>

In both cases, the prompt is repeated until you key <CR>, and the
ranges are inclusive. For RS files, you need only specify the numbers
of the corrupt records. For example:

$306 RECORDS CORRUPT FROM:23 TO:24
$306 RECORDS CORRUPT FROM:<CR>

Recovery of the file will then take place:

$306 RECOVERING
$306 RECOVERY COMPLETE

GSM READY:

2.9.4 Text File Recovery
Recovery of text files consists simply of replacing non-ASCII
characters by ? characters and replacing any blocks containing I/O
errors by lines consisting of 30 ? characters. This will produce a
file which can then be corrected by use of the editor, $EDIT.

You are first prompted for the name and unit of the corrupt file, and
of the new file to be created:

$306 CORRUPT FILE:SAPROG UNIT:114
$306 RECOVERED FILE:SAPROG UNIT:115

A prefix of S. is assumed. File recovery will then take place:

$306 RECOVERING
$306 RECOVERY COMPLETE
GSM READY:

2.10 $SCOMP - Source File Comparison Utility
The source comparison utility takes two versions of a source file and
prints out lines that differ. It identifies blocks of text that have
been inserted or deleted by searching through the sources for lines
further on that match. Any discrepancies are printed on a listing, the
left hand side of which is text from the first input file, and the
right hand side the corresponding text from the second file. Thus, for
example, if the second file contains a new block of text which has
been inserted, this will be printed on the right of the listing, with
nothing on the left. Lines which are the same in the two files are not
printed.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 24 of 154

2.10.1 The Source Type Prompt
When you run $SCOMP, it first prompts you for the type of source file
to be compared, for example:

GSM READY:$SCOMP
$303 SOURCE TYPE (PROG):

You can reply <CTRL C> to list out the different types of source files
supported. Reply with a source type, or <CR> to accept the default of
comparing Global Cobol program sources. This information about the
source type is used to improve the efficiency of the matching
algorithm, used when a discrepancy is found, by avoiding spurious
matches on common lines such as an EXIT statement in a Global Cobol
program.

The utility is mainly used to determine what updates have been made to
a source since some earlier version. For example, it can be used to
list out the changes made to convert a UK version of a product to an
overseas version.

2.10.2 The Option Prompt
Once you have supplied the source file type, an option prompt is
displayed:

$303 OPTION:

You can reply <CTRL C> to list the available options. The initial
options are to compare all the lines of the source. However, you can
choose to select only parts of the source files for comparison.

2.10.3 The File Prompts
When you have specified any options required, reply <CR> to the option
prompt and the file prompts will appear. For example:

$303 OLD FILE:SAPR1 UNIT:203
$303 NEW FILE:SAPR2 UNIT:204

A prefix of S. is assumed. If you reply <CR> to either of the new file
prompts, the old file name or unit will be assumed. If you reply <CTRL
B> to the old file name prompt then you can compare all the S. files
on two units against each other.

Further prompts of the form:

$303 COMPARE UNIT:203 WITH UNIT:204

will appear.

2.10.4 The Listing Unit Prompt
Once the files have been specified, a listing unit prompt appears:

$303 LISTING UNIT:

Reply with the unit to which the listing is to be directed, <CR> to
print the listing on unit $PR, or <CTRL A> to display the differences
on the screen.

A message of the form:

$303 COMPARING FILES name [name]

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 25 of 154

then appears, and when the comparison is complete the message:

$303 COMPARISON COMPLETE - IDENTICAL

or:
$303 COMPARISON COMPLETE - DIFFERENT

is displayed. Once all the files have been compared, the old file
prompt is redisplayed. You supply the name of a further file to be
compared, reply <CTRL A> to return to the source type prompt, or key
<ESCAPE> to quit.

2.11 $STACK - Stack Maintenance
The $STACK command enables you to change the sizes of the user and
system stacks and to load, unload and allocate relocatable programs
and data items on them.

The RESOLVING and DISSOLVING prompts are for use by developers at TIS
Software Ltd and <CR> should always be keyed to them.

The twelve stack maintenance instructions and three miscellaneous
instructions available in $STACK are displayed when you key <CTRL C>,
as shown below:

GSM READY:$STACK
$219 STACK MAINTENANCE
:<CTRL C>
LOU LOT LOS UNU UNT

UNS ENU ENT ENS DAU
DAT DAS LIS PRI SIZ
$219 STACK MAINTENANCE

The use of these instructions is explained below:

2.11.1 LOU - Load User Stack
This instruction is used to load a relocatable program on the
indicated stack. The dialogue is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:LOU :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.2 LOT - Load Temporary User Stack
This instruction is used to load a relocatable program on the
indicated stack. The dialogue is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:LOT :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.3 LOS - Load System Stack
This instruction is used to load a relocatable program on the
indicated stack. The dialogue is as follows:

GSM READY:$STACK

$219 STACK MAINTENANCE
:LOS :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.4 UNU - Unload User Stack

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 26 of 154

This instruction is used to unload a module from the indicated stack.
The dialogue is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:UNU :$MODULE DISSOLVING:<CR>
$219 STACK MAINTENANCE

2.11.5 UNT - Unload Temporary User Stack
This instruction is used to unload a module from the indicated stack.
The dialogue is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:UNT :$MODULE DISSOLVING:<CR>
$219 STACK MAINTENANCE

2.11.6 UNS - Unload System Stack
This instruction is used to unload a module from the indicated stack.
The dialogue is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:UNS :$MODULE DISSOLVING:<CR>
$219 STACK MAINTENANCE

2.11.7 ENU - Determine entry point of a module on the User
Stack
The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:ENU :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.8 ENT - Determine entry point of a module on the
Temporary User Stack
The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:ENT :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.9 ENS - Determine entry point of a module on the System
Stack
The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:ENS :$MODULE RESOLVING:<CR>
$219 STACK MAINTENANCE

2.11.10 DAU - Allocate a data item on the User Stack
The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE

:DAU :$MODULE SIZE:size of item
$219 STACK MAINTENANCE

2.11.11 DAT - Allocate a data item on the Temporary User
Stack

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 27 of 154

The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:DAT :$MODULE SIZE:size of item
$219 STACK MAINTENANCE

2.11.12 DAS - Allocate a data item on the System Stack
The dialogue for this instruction is as follows:

GSM READY:$STACK
$219 STACK MAINTENANCE
:DAS :$MODULE SIZE:size of item
$219 STACK MAINTENANCE

2.11.13 LIS - List details of User and System Stacks
This command lists on the screen the size and contents of both stacks.

2.11.14 PRI - Print details of User and System Stacks
This command prints on unit $PR the size and contents of both stacks.

2.11.15 SIZ - Change size of User Stack
This instruction allows you to change the size of the user stack by
specifying the new size or the amount you want to reduce it by. The
dialogue is as follows:

$219 STACK MAINTENANCE
:SIZ
User area size currently 39548 bytes

Key new size or reduction, <CR> to exit:25000
User area size currently 25000 bytes
Key new size or reduction, <CR> to exit:100
User area size currently 24900 bytes
Key new size or reduction, <CR> to exit:<CR>
$219 STACK MAINTENANCE
:<ESC>
:GSM READY:

2.12 $URMAIN - User System Request Data Library
Maintenance
The $URMAIN utility is used to create and update records within the
end user system request reference data library, $$UREQ. For full
information on how to create user system requests see the Global
Development System Subroutine Manual. The $$UREQ data library consists
of records each containing information about a particular end user
system request.

2.12.1 The Library Prompt
When you run $URMAIN it prompts you for the end user request library
an unit:

Key library name:$$UREQ Unit:201

2.12.2 The Option Prompt
After you have supplied the library name and unit the following prompt
will appear:

Key Create, Amend, Print, Title, <ESC> to exit:

2.12.3 Creating a new record

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 28 of 154

To create a new record you key C to the option prompt. You are now
asked for the new record name which you must supply. If a record of
that name already exists you will be asked if you want to delete it.
You will now enter the record detail screen and are prompted for the
record information; the record title; the system request program and
unit; the system request library (if any); the mode and the data set.

The record will be written to the system request library. If the
library is full then you will be given an option to delete an existing
record in the library or alternatively to abandon this record by
keying E to end.

2.12.4 Amending an existing Record
To amend an existing record you must key "A" to the options prompt
after which you will be prompted for the record name. You can
optionally key "?" to the record name prompt which will allow you to
list the current library. You can then select a record to amend.

You will now enter the record details screen as for the create option,
and you can amend the record information.

2.12.5 Printing the Library
To print a listing of the contents of the data library you must key P
to the options prompt. You will now be prompted for the listing unit
on to which the report will be printed.

2.12.6 Amending the Library Title
To change the system request library title you must key T to the
options prompt after which you will be asked for the new title as
follows:

Title:Development System Requests

2.13 $VOL - List Volume Directory Utility
The $VOL utility produces an expanded directory listing of a volume,
combining a listing of the files, as given by $F, with details of the
contents of libraries. Thus the listing produced by $VOL gives a full
listing of all the programs and compilations a volume contains,
whether they appear as separate files or within a library.

Copy libraries are also analysed to produce a listing of the contents.
Certain assumptions are made about the format of the copy library:
there are assumed to be no lines other than comments and PAGE
statements preceding the first book; if there are lines preceding the
first book the first such line is assumed to contain the library
title; any text following the book name is taken as the title of the
book.

2.13.1 The Output Unit Prompt
When you run $VOL, it first prompts you for an output unit:

$505 LISTING UNIT:

Reply <CR> if you want the listing printed on $PR, <CTRL A> if you
want it displayed on the screen, or enter a unit-id to cause the
listing to be printed on that unit.

2.13.2 The Option Prompt
After you have supplied the output unit, an option prompt will appear:

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 29 of 154

$505 DIRECTORY OPTION:

Reply <CTRL C> to list the available options. Normally, the default
options are sufficient, and you should key <CR> to use these.

2.13.3 The Title Prompt
When you reply <CR> to the option prompt, a title prompt appears:

$505 TITLE (UP TO 30 CHARS):

If you supply a title, of up to 30 characters, this will be printed on
each page of the listing. If you reply <CR>, the title will be left
blank.

2.13.4 The Unit Prompt
When you have supplied a title, a unit prompt appears. You should
mount the volume to be listed, and supply its unit address. When
complete, a message will be displayed and the prompt repeated so that
you can list further volumes.

If you reply <CTRL A> to the unit prompt, the listing unit prompt will
be redisplayed.

Reply <CR> or <ESCAPE> to the unit prompt in order to quit.

2.14 $XBUILD and $XPRINT - Global Cross-Reference
Generators
The two Global Cross-Reference commands, $XBUILD and $XPRINT, are used
to merge together a number of cross-reference listings, produced by
$XREF, into a single global cross-reference. You can also merge
details of references made within maps produced by Screen Formatting.
By using these commands to merge cross-references and map files for
all programs in a system, you can, for example, quickly determine
which programs reference a particular field.

It is also possible to merge together a number of link maps and
produce a cross-reference of these. This listing will, for example,
allow you to determine which programs will need relinking if you
change a root module in an overlay structure. Note that these
references may for convenience be added to the file used for the
global cross-reference, but are logically completely separate.

To produce a global cross-reference, you must go through three stages:

● run the $XREF utility on each program, writing the listing to disk

or diskette;

● run the $XBUILD command to merge the cross-reference listings, maps

and link maps into a single file;

● run the $XPRINT command to select the items to be cross-referenced,

sort them into the correct sequence, and print them.

You can, if you wish, run $XPRINT again with different options to
produce a cross-reference of fields in copy books, sorted starting
with the 3rd character of each name. This is useful if the first two

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 30 of 154

characters of such names have been replaced using a COPY SUBSTITUTING
statement, since it groups all references to the field together.

The file produced by $XBUILD can be very large, so you will need to
make a large empty disk volume available. Furthermore, a sort work
file of equal size will also be needed. The production of a global
cross-reference can take several hours, particularly if the listings
are on diskette. As a guide, to produce a global cross-reference of
the whole of the Global System Manager subroutines and command
programs involves approximately 800 separate programs, produces a file
of about 7 Mbytes, and takes about 7 hours once the individual cross-
reference listings have been produced.

2.14.1 Creating the Cross Reference Listings using $XREF
You must first produce cross-reference listings of each individual
program by using the $XREF command, and write the listing file to disk
or diskette. These cross-references must be produced using the no long
name (NLN) option. You cannot use the LN (30 character names) option
with $XBUILD.

If the SN (cross-reference by section name) option is specified these
will appear in the global cross-reference listings. If the NSN (no
section names) option is specified, the section names will appear as
spaces.

2.14.2 Building the Merged Cross-Reference file using
$XBUILD
Once all the individual cross-reference listings (and any link maps)
have been produced they can be merged into a single file using the
$XBUILD command. This file will contain a 19 byte record for each
definition and reference; make sure that enough space is available on
the output unit. If you allow the same amount of space as the cross-
reference listings occupy, this should be more than sufficient.

When you run $XBUILD it first prompts you for the output unit:

$301 PLEASE KEY OUTPUT UNIT:

If a merged cross-reference file 'XREF' does not already exist on the
output unit then you are asked:

$301 NEW XREF FILE?:

Type Y to create XREF.

You will next be prompted for an input unit, and whether files on this
unit are to be deleted after they have been processed, for example:

$301 PLEASE KEY INPUT UNIT:100
$301 ARE INPUT FILES TO BE DELETED AFTER PROCESSING?:

If you reply <CTRL A> to the input unit prompt then you are asked:

DELETE RECORDS FOR FILE:

You can now enter a list of up to twenty files whose data is to be
deleted. This is useful if you have included a new XREF and need to
replace it with an updated version and is much quicker than doing each
file individually. Key <CR> to the input unit prompt to continue. You
will then be asked for the address of the work unit.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 31 of 154

If you reply N to ARE INPUT FILES TO BE DELETED AFTER PROCESSING then
each cross-reference listing, screen formatting map (possibly in a
library) or link map listing on the input volume will be merged into
the output file without deleting the input files, and when they have
all been processed a prompt:

$301 MOUNT NEXT INPUT VOLUME ON unit:

will appear. Either mount the next volume on the input unit and reply
<CR> or Y, or if there are no more input volumes to be processed at
present key N to exit. If for any reason the program fails the output
file will contain records for those input volumes which have been
completely processed, but will not contain any records for the volume
being processed.

If you reply Y to the 'ARE FILES TO BE DELETED' prompt this indicates
that the input unit specified is a work unit, to which the files to be
cross-referenced will be copied. As each file on the unit is
processed, it is deleted, so that rather than having to change the
input volume at regular intervals, you can copy further listings onto
the work unit as convenient (using another partition of multi-user
system), and keep the program running continuously. When all the files
on the input unit have been processed, the prompt:

$301 IDLE - QUIT?:

appears. Either copy further files onto the work unit and reply <CR>
or N, or if there are no further files to be processed reply Y. If the
program fails the output file will contain records only for those
input files which have been fully processed and deleted - hence if you
restart $XBUILD after a failure it will continue processing correctly.

2.14.3 Printing a Global Cross Reference using $XPRINT
When you have produced the merged cross-reference file using $XBUILD,
you can then run $XPRINT to print out the global cross-reference
listing. It first prompts you for the input unit and a sort work unit,
for example:

$302 PLEASE INPUT UNIT:204
$302 SORT WORK UNIT:205

The listing will be written to unit $PR. The input file will be
truncated to release any free space. The sort work unit must have
space for a work file at least as large as the merged cross-reference
file produced by $XBUILD. The default sort work unit, if you key <CR>,
is the input unit.

A menu of options will then be displayed. When you select one, the
sort and print will start.

The 'every reference' option gives all references except link map
references, sorted on program name within field name. The 'copied
items sorted on third character' option cross-references only items in
copy books, and sorts them on characters 3 to 6 of the field name,
then on characters 1 and 2, then on program name. Thus if you have
used 'COPY SUBSTITUTING' to change the first 2 characters of a copy
book, references to these fields will be grouped together in the
listing.

Chapter 2 - Command Programs

Global Development Toolkit Manual V8.1 Page 32 of 154

The 'link map items' option selects just those entries which come from
link maps, and sorts them by program name within global name. The
listing indicates whether references are in the program proper or in
an information overlay.

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 33 of 154

3. Product Translator

Figure 3.1 - The Product Translator Menu

3.1 Introduction

3.1.1 Overview
The Product Translator provides the facility to alter the text of
messages and prompts in Global Cobol programs directly, without having
to use the normal Edit, Compile and Link procedures. This allows you
to change the text easily whilst leaving the logic of the program
untouched.

The text in the program is altered in two separate stages. Firstly, a
dictionary is created by scanning the program for text. The dictionary
is a standard Global text file and can be processed by any of the
appropriate Global System Manager and Global Cobol utilities. The
dictionary contains each text string selected for translation together
with the replacement string specified during the creation of the
dictionary or subsequent editing. The second stage is the translation
of the text strings within the program itself, using the dictionary
for the appropriate translations.

The Product Translator Menu provides four options, these being:

Creating a Dictionary This scans the program, allowing you to
create a set of words or phrases (referred to
as a 'dictionary') in a text file together
with their corresponding translations;

Translation This scans the program again, replacing

the specified dictionary translations;

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 34 of 154

Text Display This allows you to examine the text
contained within a program, without creating
a dictionary or altering the text;

Check Dictionary This option allows you to check the text

strings contained within a dictionary against
those contained within the program to ensure
that they match.

3.1.2 Installation
The Product Translator is installed by copying the file PTRANS from
the appropriate Toolkit distribution diskette to a program unit. To
run the program, set up a menu entry for it or else key its program-
id, PTRANS, in response to the GSM ready or main menu selection prompt
and reassign $P as follows:

GSM READY:PTRANS<CTRL A>
PLEASE ASSIGN $P:PTRANS unit address

3.2 Creating a Dictionary
For the purposes of product translation, a dictionary is a text file
that contains a set of words or phrases that appear within a program
together with their corresponding translations. This dictionary must
be created before the actual translating of a program's text can be
done. To create a dictionary, select the Dictionary Creation option
from the Product Translator menu.

3.2.1 Specifying the Library or Program
The first prompt asks you for the file-id of the library containing
the program to be processed and its unit address. If you do not
explicitly key a prefix, the prefix 'P.' will be assumed by default.
For example:

LIBRARY:AC UNIT:204

indicates that library P.AC on unit 204 is to be processed.

If you reply <CR> to the first part of the library prompt then this
means that the program to be processed is not held in a library. To
return to the Product Translator menu key <ESCAPE>.

After you have replied to the library prompt, you are then asked for
the program-id of the program to be processed. Key <CTRL A> to return
to the library prompt. If you specified that the program was not held
in a library then you will also be prompted for its unit address. For
example:

LIBRARY:<CR>
PROGRAM:SAMPLE UNIT:204

Key <ESCAPE> to either prompt to return to the menu. If you did
specify a library in response to the library prompt, and supplied a
unit address for the library, then you will only be prompted for the
program-id. In this case, you may key <CR> if you wish all members of
the library to be processed in turn. For example:

LIBRARY:AC UNIT:204
PROGRAM:<CR>

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 35 of 154

requests that all the members of library P.AC on unit 204 should be
processed.

3.2.2 Specifying the Dictionary
Next you will be prompted for the file-id of the dictionary which will
hold the text strings and their replacements. If you do not explicitly
key a prefix, then the prefix 'T.' will be assumed as a default for
the file-id. For example:

DICTIONARY (T.AC):SAMPLE UNIT (204):<CR>

specifies that the dictionary is file T.SAMPLE on unit 204.

If you specified that all members of a library were to be processed, a
<CR> reply to the dictionary prompt specifies a file-id constructed by
replacing the 'P.' prefix of the library name by the 'T.' prefix. If
you specified a single program to be processed, a <CR> reply to the
dictionary prompt specifies a file-id of 'T.' followed by the program
name.

You may key <CR> to the dictionary unit prompt instead of supplying a
unit address if this is the same as the program unit.

3.2.3 The Option Prompt
The Option prompt is now displayed. This allows you to specify which,
if any, of the available options you wish to use:

OPTION, ? FOR HELP:

You may key <CTRL A> to cancel all options previously specified and
re-specify standard processing.

If you key ?, a list of options and their meanings will be displayed,
with the message 'IN FORCE' indicating which options have been
selected.

When <CR> is keyed to the option prompt, processing continues in
accordance with the specified options (or standard processing takes
place if no options have been specified).

The options available when you are creating a dictionary are as
follows:

3.2.3.1 A - Automatic Dictionary Creation
When this option is in effect, the Product Translator outputs each
text string selected during a search to the dictionary, followed by
the text string or standard replacement without displaying the string
or prompting you. You can check the progress of the creation by keying
<CTRL G>. The name of the library will be displayed, if one is in use,
followed by the name of the program being processed and the last
string found by the search.

3.2.3.2 E - Edit Text During Creation
If you specify this option, the effect of keying an asterisk in a
replacement string is modified, so that part of the string displayed
is output to the dictionary but, instead of being followed by a
partial replacement, it is followed by a blank line.

3.2.3.3 I - Ignore Short Strings

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 36 of 154

There is no way that the Product Translator can reliably differentiate
between text to be translated and program instructions that happen to
correspond to a sequence of ASCII letters. The I option allows you to
specify the minimum length of text string to be processed, for
example:

OPTION:I MINIMUM NUMBER OF CHARACTERS TO BE PROCESSED:5

specifies that strings of less than 5 are to be ignored. The longer
the minimum string, the smaller the chance of finding spurious 'words'
in the program code. In general, it is best to accept only strings of
4 or more characters or else large numbers of short, spurious strings
will appear in the dictionary.

You will now be prompted:

PROCESS SINGLE CHARACTER REPLIES?(N):

Certain single characters embedded within the procedure division code
can be identified fairly reliably by the preceding instruction code;
this option allows you to translate these (they correspond to single
characters in MOVE or IF statements). Key Y if you wish to process
single character replies or <CR> if you do not.

3.2.3.4 L - Lower Case Included
This option modifies the search so that, once an upper case letter has
been found at the start of a new text string, lower case letters
(ASCII codes from hex 61 to hex 7A) are included as continuation
characters of the string, in addition to upper case letters and
spaces. When you select this option, the prompt:

AND AS START OF STRING?(Y):

is output. You should key Y or <CR> to specify that a lower case
character may also be taken as the start of a new string. Key N if you
only wish lower case characters after the first character to be
processed.

3.2.3.5 M - Monitor Format Expected
If the program to be searched or translated is the GSM monitor
($MONITOR) then you must specify this option to instruct the Product
Translator to process the special program file format of the monitor.

3.2.3.6 N - Numbers Included
This option modifies the search so that numbers (ASCII codes from hex
30 to hex 39) may be included as continuation characters of a string.
When you select this option, the prompt:

AND AS START OF STRING?(Y):

is output. You should key Y or <CR> to specify that a number may also
be taken as the start of a new string. Key N if you only wish numbers
after the first character to be processed.

3.2.3.7 R - Replace Standard String
This option allows you to specify a standard replacement string
for a string which occurs frequently in the program. For example:

OPTION, ? FOR HELP :R
INPUT STRING :DAY
REPLACEMENT STRING :TAG

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 37 of 154

3.2.3.8 S - Special Characters Included
This option modifies the search so that special characters (i.e.
characters that are neither alphabetic nor numeric) may be included as
continuation characters of a string. If you specify this option, the
numbers included option is automatically invoked. When you select this
option, the prompt:

KEY SPECIAL CHARACTERS:

followed by a field editable list of all the special characters is
displayed. If you want all of these special characters to be included
then key <CR>, otherwise key in the specific characters you require. A
further prompt:

SPECIAL START CHARACTERS:

is then displayed followed by a field editable list of all the special
characters. You should amend the list so that it contains those
character you require.

3.2.3.9 T - Trailing Spaces Not Removed
When the text strings to be replaced have trailing spaces which are
also to be replaced you should specify this option to prevent their
removal. Trailing spaces in the original text string or the
replacement string will be converted to hash characters when the
strings are displayed or output to the dictionary.

3.2.3.10 W - Single Words
This option modifies the search so that spaces are not included as
continuation characters of the string.

3.2.4 Creating the Dictionary
When you have keyed <CR> to the Option prompt, the Product Translator
searches the program for text strings whose first character is an
upper case letter (ASCII codes from hex 41 to hex 5A) and whose
subsequent characters are either upper case letters or spaces. Each
string is displayed between asterisks with trailing spaces removed.
You will then be prompted for a replacement string. For example:

SAMPLE TEXT
:REPLACEMENT

specifies that the string 'SAMPLE TEXT' is to be replaced by the
string 'REPLACEMENT'.

If you key a replacement string shorter than the string displayed, the
replacement string will be padded with spaces. However, if you key a
shorter replacement string terminated by an asterisk, this will be
taken as a replacement string for part of the string displayed and the
remainder will be redisplayed as follows:

SAMPLE TEXT
:PARTIAL*
TEXT
:

In each case, the displayed string, or a part of it, will be output to
the dictionary followed by the replacement string on the next line.

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 38 of 154

3.3 Translation
Translation is the process whereby text strings in the subject library
or program are replaced by the replacement strings specified for them
in the dictionary created in the dictionary creation phase.

3.3.1 Specifying the Library or Program
The first prompt asks you for the file-id of the library containing
the program to be processed and its unit address. If you do not
explicitly key a prefix, the prefix 'P.' will be assumed by default.
For example:

LIBRARY:AC UNIT:204

indicates that library P.AC on unit 204 is to be processed.

If you reply <CR> to the first part of the library prompt then this
means that the program to be processed is not held in a library. To
return to the Product Translator menu key <ESCAPE>.

After you have replied to the library prompt, you are then asked for
the program-id of the program to be processed. Key <CTRL A> to return
to the library prompt. If you specified that the program was not held
in a library then you will also be prompted for its unit-address. For
example:

LIBRARY:<CR>
PROGRAM:SAMPLE UNIT:204

Key <ESCAPE> to either the library or the program prompt to return to
the menu. If you did specify a library in response to the library
prompt, then you will only be prompted for the program-id. In this
case, you may key <CR> if you wish all members of the library to be
processed in turn. For example:

LIBRARY:AC UNIT:204
PROGRAM:<CR>

requests that all the members of library P.AC on unit 101 should be
processed.

3.3.2 Specifying the Dictionary
Next you are prompted for the file-id and unit address of the
dictionary you have established. If you do not explicitly key a
prefix, then the prefix 'T.' will be assumed as a default for the
file-id. For example:

DICTIONARY (T.AC):SAMPLE UNIT (204):<CR>

specifies that the dictionary is file T.SAMPLE on unit 204.

If you specified that an entire library was to be processed, a <CR>
reply to the dictionary prompt specifies a file-id constructed by
replacing the 'P.' prefix of the library name by the 'T.' prefix.

If you specified a single program to be processed, a <CR> reply to the
dictionary prompt specifies a file-id of 'T.' followed by the program
name.

You may key <CR> to the unit prompt instead of supplying a unit-id if
this is the same as the program unit.

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 39 of 154

3.3.3 Translating the Program
The text in the library or program will now be translated. The
progress of the translation can be checked by keying <CTRL G>; the
name of the library will be displayed, if one is in use, followed by
the name of the program and the last string found by the search.

The Product Translator proceeds by reading records from the
dictionary. Records whose first characters are asterisks are treated
as comments. When a record is read that is not a comment, the Product
Translator will search the specified program for the text string
contained in the record. If the text is found, the dictionary is read
again and the text in the program is replaced by the replacement
string from the next record that is not a comment. Trailing hash
characters in the original text or the replacement string are treated
as spaces. This sequence continues until the end of the dictionary is
encountered. If a text string cannot be found in the program, an error
message is displayed and the program is terminated.

When the program has been successfully translated the message
'TRANSLATED' will be displayed.

3.4 Text Display
It may often be useful to be able to examine the text in a program
without going on to create a dictionary or translate the text. To do
this select option 3 from the Product Translator menu.

3.4.1 Specifying the Library or Program
The first prompt asks you for the file-id of the library containing
the program to be processed and its unit address. If you do not
explicitly key a prefix, the prefix 'P.' will be assumed by default.
For example:

LIBRARY:AC UNIT:204

indicates that library P.AC on unit 204 is to be processed.

If you reply <CR> to the first part of the library prompt then this
means that the program to be processed is not held in a library. To
return to the Product Translator menu key <ESCAPE>.

After you have replied to the library prompt, you are then asked for
the program-id of the program to be processed. Key <CTRL A> to return
to the library prompt. If you specified that the program was not held
in a library then you will also be prompted for its unit address. For
example:

LIBRARY:<CR>
PROGRAM:SAMPLE UNIT:204

Key <ESCAPE> to either prompt to return to the menu. If you did
specify a library in response to the library prompt, then you will
only be prompted for the program-id. In this case, you may key <CR> if
you wish all members of the library to be processed in turn. For
example:

LIBRARY:AC UNIT:204
PROGRAM:<CR>

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 40 of 154

requests that all the members of library P.AC on unit 204 should be
processed.

3.4.2 The Option Prompt
The Option prompt is now displayed. This allows you to specify which,
if any, of the available options you wish to use:

OPTION, ? FOR HELP:

You may key <CTRL A> to cancel all options previously specified and
re-specify standard processing.

If you key ?, a list of options and their meanings will be displayed,
with the message 'IN FORCE' indicating which options have been
selected.

When <CR> is keyed to the option prompt, processing continues in
accordance with the specified options (or standard processing takes
place if no options have been specified).

For a text display the following options are available:

I Ignore Short Strings
L Lower Case Included
M Monitor Format Expected
N Numbers Included
S Special Characters Included
T Trailing Spaces Not Removed
W Single Words

These options are as explained on page 3-7.

3.5 Check Dictionary
The fourth option in the Product Translator menu allows you to check
the text strings contained within a dictionary against those contained
in a program. This can be useful if you have been editing the
dictionary (e.g. amending translations) and wish to ensure that you
have not accidentally deleted any of the text strings.

As with the other options you will be prompted for the necessary
library, program and unit of the program and dictionary. Once these
have been keyed in and accepted, the dictionary will be checked
against the program and if it is correct the message:

DICTIONARY CHECK SUCCESSFUL

will be displayed.

3.6 Error Messages

NOT FOUND OR WRONG TYPE

Either the file whose file-id you specified in response to a file
prompt was not present on the unit specified or it was present
but was not of the appropriate file organisation.

FILE ALREADY EXISTS - DELETE?

Chapter 3 - Product Translator

Global Development Toolkit Manual V8.1 Page 41 of 154

A file with the same file-id as the dictionary you are about to
create exists on the unit specified. You should key Y if you wish
to delete the file. Any other reply will leave the existing file
undisturbed.

INVALID - REINPUT

Re-key the option, after keying ? for a list of options if
necessary.

TEXT NOT FOUND IN xxxxxxxx

The text string specified was present in the dictionary being
used to translate the named program but the string was not found
in the program. Check that the program and dictionary were
correctly specified and that the dictionary has the correct
format.

INVALID DICTIONARY

A dictionary record was encountered which has an incorrect
newline sequence. Check that the dictionary name was correctly
specified and, if so, recreate the dictionary.

INVALID DICTIONARY - UNEXPECTED END OF FILE

Unexpected end of file occurred when attempting to read a
dictionary. Check that the dictionary name was correctly
specified. If it was, check that each text string is followed by
a replacement string.

REPLACEMENT STRING LARGER THAN ORIGINAL

A dictionary record containing a replacement string was larger
than the preceding record containing the string to be replaced.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 42 of 154

4. Intermediate Code Language

4.1 Foreword
Intermediate Code is a business application oriented language for
micro and minicomputers and is the language into which Global Cobol
programs are translated. The instruction set supports fixed point
arithmetic; input/output conversion; character string handling; one
dimensional arrays; pointer variables and based variables; and a
subroutine calling mechanism with 'call by name' parameters. In
addition the language has sophisticated exception handling which
enables exceptions either to be processed by the application program
or to be passed to a monitor program, itself written in intermediate
code.

The language is like a powerful single address assembly language. For
example, only one instruction is needed to convert a binary number to
a printable, signed character string with a specified number of places
before and after the decimal point. Yet on the other hand, an
arithmetic assignment statement such as:

Z = X x Y

cannot be processed by a single instruction. Instead, the following
sequence is required:

● Load accumulator with X;

● Multiply accumulator by Y;

● Store accumulator in Z.

Intermediate code instructions are executed by an interpreter. An
assembler language routine (the steering routine) passes control to
the interpreter, giving it the address of location 0 of the program
address space. Pointers to various routines and control blocks must be
set up before control is passed to the interpreter: in particular, a
pointer to the start of the monitor program which is to be entered at
the beginning of the interpretation and also whenever a program
exception occurs. Control is only returned to the steering routine if
a terminal error occurs (which should not happen in a debugged system)
or if an exit is made from the monitor program.

Intermediate code routines are produced as relocatable code modules
which can be linked together using the Global Cobol linker. Programs
are always linked to execute in an address space starting at zero:
they are dynamically relocated by the interpreter when they are
executed. This means that programs do not have to be relinked to run
in different address spaces.

Note that in the description which follows intermediate code
instructions are always referred to as proper nouns, beginning with a
capital letter. For example:

Move
Stop
Exit

Global Cobol statements are always shown in block capitals:

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 43 of 154

MOVE A TO B
STOP
EXIT

4.2 The Intermediate Code 'Computer'
Because it is interpreted, intermediate code is best understood if it
is considered to be executing on a virtual computer. Therefore any
document which describes intermediate code and its interpreter
properly begins by describing the architecture of this computer. By
'architecture' is meant the data formats and instruction formats the
computer recognises; the registers and data areas used by its CPU (the
interpreter itself); and the way special conditions such as initiation
and termination, program errors and the like, are handled.

This chapter is devoted to the computer architecture. The remaining
chapters describe the individual instructions, each chapter being
devoted to a particular class of instructions.

Size in
bytes

Capacity x 10s (s is the number of digits following the

decimal point)

Exact

Approximate

1 -128 to 127
2 -32768 to 32767
3 -223 to 223-1 ±8.389 x 106
4 -231 to 231-1 ±2.147 x 109
5 -239 to 239-1 ±5.497 x 1011
6 -247 to 247-1 ±1.407 x 1014
7 -255 to 255-1 ±3.602 x 1016
8 -263 to 263 -1 ±9.223 x 1018

Table 4.2.1 - Capacities of Fixed Point Fields

4.2.1 Data Formats
The interpreter executes an intermediate code program from a 64K byte
address space. Such a program contains four different types of data:
signed fixed point numbers; pointers; byte strings and numeric
strings. The interpreter can also interface with machine code programs
and, for this purpose alone, employs machine addresses.

4.2.1.1 Signed Fixed Point Numbers
A signed fixed point number is between 1 and 8 bytes in length and
resides in contiguous main storage. The byte at the low address is the
most significant and its leftmost bit is interpreted as the sign bit.
Positive numbers are represented in true binary notation with a sign
bit set to zero. Negative numbers are held in two's-complement form
with the sign bit set to one. The maximum positive number which can be
represented is 263 - 1, and the maximum negative number is -263. The
range of representation is therefore approximately ±9.2 x 1018. The
capacity of the different lengths of numbers is given in Table 4.2.1.

Fixed point scaling is supported and a number can have up to 7 decimal
places and a maximum of 18 significant digits. The scaling in force is
indicated by the qualifier associated with each arithmetic
instruction.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 44 of 154

4.2.1.2 Pointers
A pointer is a two-byte quantity representing a byte location within
the user program. It contains a value between 0 and 64K-1 represented
in true binary notation. The byte at the low address is the most
significant and its leftmost bit is not interpreted as a sign bit but
is considered to represent the 32K unit position.

Any arithmetic performed on pointers by the interpreter is always
modulus 64K, carries out of the senior bit position being ignored
(i.e. the address space is circular, with location zero following
location 64K-1).

The pointers need not be mapped directly onto a single area of memory.
In particular the high locations, which will be used for the monitor
program and system data areas, will normally be mapped into an area
immediately preceding location zero. Hence, for example, location 64K-
2 would normally be referred to as location -2.

4.2.1.3 Byte Strings
A byte string is a contiguous group of bytes which can be moved to or
compared with another byte string. The interpreter is not concerned
with the character coding employed except that in Move and Compare
operations the interpreter will supply rightmost ASCII blanks to pad
out short strings.

(The ASCII coding used by the interpreter is 8-bit with the senior,
parity, bit set to zero.)

4.2.1.4 Numeric Strings
The general form of a numeric string is:

x y .z

where x is an ASCII plus or minus, y is a string of one or more ASCII
digits making up the integral part of the number represented, and .z
is an ASCII full stop or comma followed by one or more ASCII digits
forming the decimal fraction. Any number of blanks can precede and
follow the number.

Each of x, y and .z is optional. An unsigned quantity is treated as
positive. One of the y or .z substrings must be present in any numeric
string.

Note:

+1 VALID
1.1 VALID
1,1 VALID
.1 VALID
1. INVALID

 -01 VALID
+ INVALID

The numeric string instructions enable the program to convert numeric
strings to signed fixed point numbers and vice versa.

4.2.1.5 Machine Addresses
The format of machine addresses is obviously dependent on the
particular computer for which the interpreter is constructed. It is

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 45 of 154

assumed, however, that a particular computer will be capable of
providing a parameter address register from one or more hardware
components. This register must be capable of holding either a machine
address or a pointer. It is used in starting interpretation and in
passing parameters between the interpreter and machine code service
routines.

4.2.2 Instruction Formats and Addresses
Each intermediate code instruction must begin on an even byte
boundary. Its first five bits make up the operation code. This is
followed by two address mode bits and the trap bit, used for program
debugging. Except for short immediate mode instructions, the operation
code byte is followed by a one byte qualifier whose usage differs from
instruction to instruction. The content of the rest of the instruction
depends on the address mode as shown in Figure 4.2.2.

4.2.2.1 Indexing
Every instruction has associated with it an initial effective address
(IEA) which is the location of its initial target. The initial target
is the true target only if the I register contains 0, signifying that
indexing does not apply, or if the instruction is one of five (Load
Length, Load Qualifier, Escape, Resume and Trace) which do not use
indexing, or if it is a short immediate mode instruction.

When indexing applies the I register contains a positive integer in
the range 1 to 32,767 inclusive. This quantity is decremented by one
and then multiplied by the length of the target. The result is then
added to the IEA to obtain the effective address of the target. During
this calculation the arithmetic is modulus 64K.

Whenever the index register is used by an instruction it is reset to
zero. An instruction, Load Index, is provided to allow the program to
set the I register: this instruction may itself be indexed if it is
preceded by another Load Index instruction. Resetting of the I
register means that the indexing established by Load Index only
applies to the instruction which immediately follows it, with the
proviso that a Load Length, Load Qualifier or Trace instruction may be
interposed between the Load Index and the subject instruction.

If the length register, L, contains a non-zero value this is the
length to be used in the indexing calculation. Whenever the value in
the L register is used it is reset to zero. An instruction, Load
Length, is provided to allow the program to set the L register: this
instruction cannot be indexed hence it can be generated following a
Load Index instruction but before the instruction to be indexed.
Otherwise if the length register is zero then the target length to be
used is deduced from the operation code and, in most cases, the
qualifier of the subject instruction.

4.2.2.2 Immediate Instruction (MODE = 00)
In immediate instructions, which are mainly used for handling
literals, the initial target immediately follows the instruction
qualifier. The next sequential instruction, when it is defined, begins
at the first even byte following the initial target.

The Resume and Escape instructions have a 'null' target, i.e. one
which is zero bytes in length (so has Pop List, when its qualifier is
zero). Any such instruction is set up as an immediate instruction and
the interpreter recognises from the operation code and qualifier that
the target is zero bytes in length.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 46 of 154

IMMEDIATE ADDRESSING

0 5 7 8 16

DIRECT ADDRESSING

0 5 7 8 16 32

BASED ADDRESSING

0 5 7 8 16 32 48

SHORT IMMEDIATE ADDRESSING

0 5 7 8 16

Note-1 If the Index Register, I, is non-zero the quantity (I-
1) x length will be added to the initial Target Location to
determine the true Target Location.

Figure 4.2.2 - Instruction formats and addressing

4.2.2.3 Direct Instructions (MODE = 01)
In direct instructions the third and fourth bytes are a pointer to the
initial target, and the next sequential instruction follows this
pointer.

Mode
00

Initial Target (see note 1) Qualifier Tra
p

Opcode

Mode
01

Qualifier Tra
p

Opcode

Pointer 1

Initial
Target

(see note 1)

Mode
10

Qualifier Tra
p

Opcode

Pointer 1

Initial
Target

(see note 1)

Offset

Pointer 2
(base)

Add

Mode
11

Target Tra
p

Opcode

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 47 of 154

4.2.2.4 Based Instructions (MODE = 10)
The based addressing mode is provided to allow Global Cobol access to
data items within a linkage section and to support based variables and
list processing. The instruction qualifier is followed by pointer 1
and a two-byte offset. Pointer 1 itself addresses a second pointer,
the base. When the offset is added to the base the result is a pointer
to the initial target. The next sequential instruction, when defined,
begins at the byte following the offset.

4.2.2.5 Short Immediate Instructions (MODE = 11)
The short immediate address mode provides a very compact instruction
format for single byte literals, which are quite common in Global
Cobol programs. The second byte of the instruction is used as the
initial target, rather than as a qualifier. The qualifier is always
assumed to be 1. The next sequential instruction follows the second
byte of the instruction.

System Area

Exception Number

Completion Code

Pointer to Start Instruction

Pointer to diagnostic logout area

Pointer to partition-0

Reserved (pointer to register
area)

Pointer to IP flag

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 48 of 154

Diagnostic Logout Area

Exception Number

Completion Code

Pointer to Failing Instruction

A mill

A scaling

A rounding

F register

Privilege status
register

I register

Q register

T pointer

T length

Parameter stack index

Seven 2-byte parameter stack entries

Link stack index

Twenty eight 4-byte link stack entries

Pointer to last successful transfer of
control instruction

L register

Machine Code Interface Area

Completion Code

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 49 of 154

Program Base Address

Exit Address

Stop Address

Number of entries, n, on Parameter
Stack

The first n Parameter Stack
entries converted to machine
addresses

Machine code routine temporary
work space. The size of this area
is machine dependent.

Figure 4.2.3 - Areas shared by the user program and the interpreter

4.2.3 Registers and Data Areas
The interpreter can be seen as the CPU of an intermediate code virtual
computer that uses registers and data areas which are initialised and
updated by the instructions it obeys. Most of these registers and data
areas can only be accessed by the interpreter and are described in
sections 4.2.3.1 to 4.2.3.9 below. The final four areas described
(4.2.3.10, 11, 12, 13) may be accessed by the program as well as by
the interpreter.

4.2.3.1 The Arithmetic Accumulator (A)
To support scaled arithmetic the arithmetic accumulator contains three
sub-accumulators:

● The mill, an 8-byte register in which integer arithmetic takes

place;

● The scaling factor, a one-byte register whose value indicates the

number of decimal places in the integer contained in the mill;

● The rounding flag, used to support rounding following division. It

is set to zero if the absolute value of the remainder is less than
half the absolute value of the divisor, and otherwise to +1 or -1
according to whether the divisor and dividend have the same or
opposite signs.

4.2.3.2 The Flag Register (F)
The F register is a 1-byte register which can assume only the values 0
and 1. It is used in tentative exception handling. The register is set
to 1 when a tentative exception occurs and reset to 0 by Stop, Call,
Exit and Jump instructions which test the F condition and clear the
pending tentative exception. It is also cleared when a tentative
exception becomes an immediate exception.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 50 of 154

4.2.3.3 The Privilege Status Register
The Privilege Status register is a 1-byte register which indicates
whether the code currently being executed is privileged or
unprivileged. This is used in connection with interrupts (4.2.3.11)
and memory protection (4.2.6).

The register may have the following values:

● -1 means that the code currently being executed is unprivileged;

● zero or a positive number means that the code currently being

executed is privileged, and the value is the level of the link
stack at the time the privileged status was enabled.

The register is set by the Pop List instruction, and may be reset to -
1 by an Exit instruction.

4.2.3.4 The Index Register (I)
The Index register can be considered as a two-byte numeric variable
containing an integer between 0 and 32,767 inclusive. When the
register is non-zero it is used in indexed address calculations as
explained in 4.2.2.1. The Load Index instruction is used to establish
the register's contents which are reset to zero once it has been used.

4.2.3.5 The Length Register (L)
The Length register can be considered as a two-byte numeric variable
containing an integer between 0 and 32,767 inclusive. When the
register is non-zero it contains the length to be used in the next
index address calculation as explained in 4.2.2.1. The Load Length
instruction is used to establish the register's contents which are
reset to zero once it has been used.

4.2.3.6 The Qualifier Register (Q)
The Qualifier register can be considered as a two-byte numeric
variable containing an integer between 0 and 65,535 inclusive. When
the register is non-zero it is used in place of the instruction's
qualifier. The Load Qualifier instruction is used to establish the
register's contents which are reset to zero once it has been used.

4.2.3.7 The Text Accumulator (T)
The Text registers consist of two 2-byte fields: the pointer field,
which locates the T string, and the length field, which contains the
string size in bytes (0 - 65,535). T register contents are established
by the Set and Call Display instructions and used in the Move, Compare
and Exchange instructions.

4.2.3.8 The Link Stack
The link stack consists of a two-byte index field containing a value
between 1 and 28, and 28 four-byte link stack entries. The index field
indicates the number of outstanding Call statements. If non-zero it
indexes the link stack entry used for the previous Call.

Each link stack entry contains two pointers. The first is a two-byte
pointer to the next sequential instruction following the Call. The
second is a pointer to the instruction to which Call passed control
and is provided to facilitate debugging.

The link stack is maintained by the Call and Exit instructions, Exit
being responsible for popping entries from the stack.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 51 of 154

4.2.3.9 The Parameter Stack
The parameter stack consists of a two-byte index field, containing a
value between 0 and 7, and 7 two-byte parameter stack entries.

The index field indicates the number of entries placed on the stack by
outstanding Push instructions. Each entry is a pointer to the data of
the corresponding Push.

The stack is maintained by Push, Pop, Pop List and Escape instructions
and is provided to support the passing of parameters via the Global
Cobol USING clause and the implementation of based variables.

4.2.3.10 The System Area
The two bytes at locations -2 and -1 (see 4.2.4) contain a pointer to
the system area, which can be accessed by both the interpreter and the
user program.

As Figure 4.2.3 shows, the system area is subdivided into 7 two-byte
fields. These are briefly discussed here for the sake of completeness,
but are dealt with in more detail in the sections describing the
features which use them.

The exception number is set to zero when interpretation starts and is
set to a non-zero identifying value when a program exception occurs.

The completion code is set to the two-byte target of a successful Exit
or Stop instruction.

The pointer to start instruction locates the intermediate code
instruction in the monitor program which is given control when
interpretation starts and also when an immediate program exception
occurs.

The pointer to the diagnostic logout area supplies the interpreter
with the location of a 160-byte area in which the interpreter
preserves its status when an immediate program exception takes place.

The pointer to partition-0 is set by the interpreter to point at
address 0 of the partition in which the Global Cobol program is
executing. In single partition systems this is the same as absolute
location 0.

The pointer to the IP flag is maintained by the Global Cobol user
program. The use of the flag is described below.

Figure 4.2.3.10 shows how these areas are linked.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 52 of 154

Figure 4.2.3.10 - Addressing system data areas

4.2.3.11 The Interrupt-Pending Flag (IP)
The interrupt-pending flag is set in order to 'interrupt' the
intermediate code computer; for example, in order to halt a program
which is in a loop so that it can be debugged.

The flag is a single byte which is zero if not set, and contains the
exception number to be returned if set. It is addressed by the pointer
to the IP flag in the system area. Note that this pointer may be
changed at any time by the program which is being executed.

The flag is tested by transfer of control instructions, provided that
the Flag register is zero (i.e. no tentative exception is outstanding)
and the privilege status register is negative (i.e. the instruction is
unprivileged) and the previous instruction was not a Resume. If the
flag is non-zero the exception number given by the flag will be
returned and the flag reset to zero.

Exception number 1 is used to cause a 'break' exception, and exception
numbers 20-29 are reserved for Global use as interrupt exceptions.
Global Cobol is responsible for the assignment of these exception
numbers.

4.2.3.12 The Diagnostic Logout Area
The diagnostic logout area is set up by the interpreter whenever an
immediate program exception takes place. The exception number and
completion code are copied from the system area. The next field (see
Figure 4.2.3) is a pointer to the instruction which failed; there
follow the contents of the registers and stacks at the point of
failure.

Pointer to
System Area at
location -2
Location 0
(Program Base
Address)

User Program

Start of System
Area

Interrupt Pending
Flag

Command Handler
(see 4.2.5.3)

Pointer to
Diagnostic
Logout Area

Pointer to Start
Instruction

Pointer to
Register Area

Pointer to IP
Flag

Register Area
(re-entrant

intepreters only)

Diagnostic Logout
Area

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 53 of 154

The penultimate field in the diagnostic logout area is a pointer to
the last transfer of control instruction which caused a transfer of
control. This is to facilitate debugging a program which transfers
control to a location which does not contain a valid instruction.

4.2.3.13 The Machine Code Interface Area
The machine code interface area is set up by the interpreter when it
honours an Escape instruction. The address of the area is passed to
the machine instruction following the Escape in the parameter address
register. On any computer with 16-bit machine addresses the area will
be as defined in Figure 4.2.3.

The completion code field is set to zero by the interpreter, but may
be updated by the machine code routine.

The program base address allows the routine to convert pointers to
machine addresses and vice versa.

The next two addresses are the location of routines within the
interpreter (see the Escape instruction for usage details).

The next field is the number of entries on the parameter stack when
Escape occurred. This is followed by the active parameter stack
entries converted from pointer to machine address format.

4.2.3.14 The Interpreter Initial State
When interpretation first begins or when an immediate program
exception occurs, the following interpreter registers are set to zero
to establish the interpreter initial state:

● A mill, scaling factor and rounding flag;

● F;

● I;

● L;

● Q;

● T pointer and length;

● Link stack index;

● Parameter stack index;

● Privilege status.

Error
number

Explanation

0 An Exit instruction has been attempted when there is no
outstanding Call in the link stack. This is not a true
error: issuing an Exit from the highest level routine is
a convenient means of ending interpretation.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 54 of 154

1 The machine address passed in the parameter address
register to identify location zero at the start of
interpretation was invalid.

2 Not used.
3 The start address pointer in the system area which should

point at the instruction to be executed at start of
interpretation contains an odd value. This error can
occur either at start of interpretation or when an
immediate program exception occurs.

4, 5, 6
etc.

An internal error has arisen in the interpreter.
Assignment of error numbers is implementation dependent.

Figure 4.2.4 - Terminal error number assignments

4.2.4 Starting and Ending Interpretation
To start interpretation a machine code program known as the steering
routine must pass control to the entry point of the interpreter
supplying, in the parameter address register, the machine address of
location zero of the intermediate code program, the program base. Some
implementations may insist that this machine address is even. All
implementations, however, allow this address to be established at run-
time. This means that Global Cobol code is dynamically relocatable.
All programs can be translated and linkage edited relative to location
zero; the actual run-time start address is immaterial.

The facility is similar in concept to the program base register
mechanism employed in some models of the ICL 1900 series. For clarity
we always refer to locations within the user program, starting at 0,
as distinct from machine addresses within the address space of the
computer itself.

When entered the interpreter sets its internal registers to the
initial state defined in 4.2.3.13 and zeroises the exception number in
the system area. Interpretation begins with the start instruction of
the monitor routine, given by the pointer in the system area.
Typically this routine would load a user program and then enter it via
a Call instruction.

The interpreter returns control to the steering routine either when
interpretation is finished or if a terminal error occurs. The
parameter address register is used to supply a terminal error number,
0 signifying normal completion. Figure 4.2.4 lists the error numbers
and their meanings.

4.2.5 Program Exception Handling
In Global Cobol documentation an intermediate code program exception
is always termed a program check. The so-called 'exceptions' returned
by Global Cobol routines result from the execution of the Exit
instruction with a non-zero target, as expanded by the EXIT WITH CODE
statement. Such an Exit instruction generates a pending tentative
exception. This exception will be cleared when the next Global Cobol
statement to be executed is ON EXCEPTION or ON OVERFLOW because the
first instruction such a statement generates is a Jump conditional on
the F register.

When a program exception occurs the interpreter registers are saved in
the logout area and then execution continues from the start
instruction of the monitor program. Such an exception is termed an
immediate exception.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 55 of 154

In addition the interpreter allows the application program to handle
certain exception conditions itself by means of the technique of
tentative exceptions.

4.2.5.1 Tentative Exception Handling
When certain exception conditions arise (such as numeric conversion -
there are others) the exception number is stored in the normal way but
instead of a program exception taking place immediately all that
happens is that the F register is set on (i.e. assigned the value 1).
This signifies that a tentative exception is pending.

Certain instructions are suppressed if a tentative exception is
pending: these are Move, Store, Round, Divide, Decimal, Load Index,
Load Qualifier, Load Length, Exchange and Store Unsigned. These
instructions are treated as no-operations if an exception is pending
and the next sequential instruction is executed.

Status switching instructions (Resume, Escape and Trace) may be
executed while an exception is pending. Trace will not affect the
pending exception; Resume resets the F register; Escape will not
affect the exception unless it completes with a Stop or Exit exception
which will cause the pending exception to be made immediate.

A tentative exception is cleared by any transfer of control
instruction conditional on the F register. 'Clearing' means turning
the F register off.

Execution of any other instruction, including transfers of control not
conditional on the F register, will cause the tentative exception to
be made immediate (see 4.2.5.2). The effect is that if a program
expects a tentative exception and contains the logic to handle it, it
will be allowed to continue. Otherwise the F register will not be
tested in time; an instruction which cannot be suppressed will be
executed and the exception made immediate.

The reason for suppressing certain instructions rather than making
them cause exceptions is to simplify the generation of intermediate
code from Global Cobol such as:

ADD A TO B GIVING C
ON OVERFLOW GO TO HANDLER

This expands (conceptually) to:

Load A * cannot cause tentative exception
Add B * may cause tentative exception
Store C * may be suppressed, may cause tentative exception
Jump F, HANDLER * goes to HANDLER clearing pending exception

if set.

Note that if another exception occurs while a tentative exception is
pending then the tentative exception is made immediate and the second
exception is ignored.

4.2.5.2 Immediate Exception Handling
An immediate exception can occur in three situations. The first case
is when a tentative exception is outstanding, and the program attempts
to execute an instruction which is not either suppressible or a

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 56 of 154

transfer of control instruction conditional on the flag register. In
this case the tentative exception becomes an immediate exception.

The second case is if any further exception occurs while a tentative
exception is outstanding, in which case the original tentative
exception again is returned as an immediate exception. This most
commonly occurs if one of the instructions executed while the
exception is outstanding has its trap bit set.

The third case is if there is no tentative exception outstanding, and
an exception which cannot be a tentative exception occurs, such as
Trap or Interrupt.

Once the exception number has been determined status and other
information is preserved in the diagnostic logout area as follows:

● the exception number and completion code are taken from the system

area;

● the pointer to the failing instruction is set to address the start

of the instruction which returned the exception, except in the case
of an exit exception when it addresses the instruction to which
Exit returned control, i.e. the instruction which failed to test
for the pending exception;

● the current values of the interpreter registers and stacks are

saved. The value of the flag register is always zero. For
exceptions other than Trap the values of the registers may have
been corrupted by the processing of the failing instruction;

● the pointer to the last successful transfer of control instruction

is set to point to the start of the last instruction executed which
caused a transfer of control to take place.

The interpreter registers and stacks are then returned to their
initial values as described in 4.2.3.14. Finally the interpreter
executes the Start instruction using the pointer in the system area.

4.2.5.3 Global Considerations
The intermediate code routine whose first instruction is given by the
Start instruction pointer in the system area is part of the Global
System Manager monitor program. It is entered when interpretation
first begins and whenever an immediate program exception takes place.

On entry to the routine the interpreter registers are set to the
initial values defined in 4.2.3.14. The exception number in the system
area will be zero when interpretation first begins or an integer in
the range 1 to 17 if the command handler has been invoked to service
an exception. The routine's first action is therefore to examine the
exception number to determine why it has been entered.

In the case of the Stop exception (number 5) the completion code in
the system area specifies additional information which the routine can
process. This allows the routine to assume the role of a job
scheduler. For example the Global Cobol:

CHAIN program-id

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 57 of 154

returns completion code -1 to indicate that chaining is to occur, the
name of the chained program having been set up in a system variable.

The Global monitor is responsible for assigning and processing
completion codes.

4.2.5.4 Exception Number Assignments
Table 4.2.5.4 lists and describes the exceptions which can be
generated by the interpreter. Some of these exceptions are discussed
in more detail below.

Exception 1 (Break) and exceptions 20-29 occur as a result of a
program interrupt, as described in 4.2.3.11.

A trap exception occurs if an instruction is executed which has its
trap bit set on. This feature is for use when debugging in order to
cause interpretation of a program to be halted at a particular point
so that registers and data areas may be examined. The program may be
resumed using the Resume instruction. The trap exception cannot occur
on the first instruction following a Resume, hence if the trap bit is
left set following a trap exception the instruction will be executed
when the program is resumed, but will cause a trap exception if
executed subsequently.

The Stop exception is used to indicate to the monitor program that a
Stop instruction has been executed.

The Exit code exception is part of the mechanism which allows a
subroutine to cause a tentative exception if it detects an error (see
Exit for details).

Exceptio
n number

Name

Explanation

1 Break A transfer of control instruction was
executed while the interrupt-pending flag
was set to 1.

2 Illegal Address No longer used.
3 Illegal Load The target of the failing Load Length or

Load Index instruction had an integral part
which was negative or zero. Under V5.0,
also returned for Load Qualifier.

4 Trap The failing instruction has its trap bit
set. It has not been executed.

5 Stop The failing instruction is a Stop
instruction which has succeeded. This
exception is used in the implementation of
the Global Cobol STOP RUN statement.

6 Illegal
Operation

The failing instruction had an operation
code which is not assigned, or is not valid
with this addressing mode.

7 Illegal
Qualifier

The qualifier associated with the failing
instruction did not have a value acceptable
to that class of instruction.

8 Illegal Branch The target of a Call or Jump instruction
contains an odd value.

9* Exit Code An Exit instruction has succeeded, setting
a non-zero completion code. This condition
is always treated as a tentative exception.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 58 of 154

10* Numeric
Conversion

The target of a Binary instruction was not
a valid numeric string.

11* Arithmetic
Overflow

An overflow condition has prevented an Add,
Subtract, Multiply,Divide, Store, Round,
Binary or Decimal instruction from
completing. The condition is always treated
as a tentative exception.

12 Memory
Violation

An unprivileged Decimal, Move, Exchange,
Store, Store Unsigned or arithmetic
instruction with the store option has
attempted to write to a location below the
start of the system area, or above the top
of the user area.

13* Parameter Stack A Push or Call Display instruction has
attempted to place an eighth item on the
parameter stack; a Pop instruction has been
attempted when the stack is empty; a Pop
List instruction has failed because the
number of entries in the list was not equal
to the number of parameters on the stack.
This condition is always treated as a
tentative exception.

14 Link Stack A Call or Call Display instruction has
succeeded when there are already 28 Calls
outstanding and the link stack is full.

15 Advance Used by Advance instruction in $DEBUG.
16 No Base The base associated with a Based Mode

instruction (other than Push) contains the
value #FFFF (=uninitialised pointer) and
the instruction is not privileged.

17 Scaling A Store Unsigned or And instruction
specifies a different number of decimal
places to the value in the accumulator, and
hence would require scaling. Some
interpreters do not detect this exception.

18-19 Reserved for future use.
20-29 Interrupt exceptions.

 * Tentative Exceptions

Table 4.2.5.4 - Exception number assignments

4.2.6 Privileged Code and Memory Protection
The memory protection feature is provided so that ordinary programs
can be prevented from accidentally corrupting the Global Cobol
monitor. Monitor routines, which are allowed to access fields within
the monitor, run in a special privileged mode. In addition privileged
routines cannot suffer an interrupt exception: this allows critical
processing in the monitor and system routines to be protected against
interruption.

The status of the instruction being executed is given by the Privilege
Status register, which can have the values:

● -1, meaning that the code currently being executed is unprivileged;

● zero or a positive number, meaning that the code currently being

executed is privileged. The value is the level of the link stack at
the time the privileged status was enabled.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 59 of 154

The privileged mode of operation is enabled and disabled by the Pop
List instruction. The senior bit of the qualifier (or the senior bit
of the junior byte of the Q register if set) is a flag which is zero
if the Pop List is unprivileged and 1 if privileged. Privileged mode
can also can be changed to unprivileged by an Exit instruction.

Initially, and following a program check, the privileged status will
be set to zero, so that the command handler is privileged.

If the code currently being executed is privileged then if an
unprivileged Pop List instruction is encountered the status is changed
to -1 (unprivileged).

When an Exit instruction is executed, if the resulting link stack
index is less than the privileged status register then the status is
changed to -1 (unprivileged).

The instructions Decimal, Move, Exchange, Store and Store Unsigned,
and arithmetic instructions with the store option will, if the
privileged status is -1, check for memory violation and return
exception 12 if detected. The basic test for memory violation is that
the target address is greater than or equal to the start of the system
area. Some intermediate code interpreters may perform more elaborate
tests, for example to protect areas of memory containing parts of the
machine's operating system.

4.2.7 Intermediate Code Instructions
Table 4.2.7 lists the 29 intermediate code instructions honoured by
the interpreter. Note that there are no I/O instructions as all I/O is
performed by service routines: the Escape instruction allows Call to
invoke machine code routines as well as Global Cobol routines.

The notes in the table are as follows:

A. Transfer of Control instructions which are conditional on the F

register can execute following a tentative exception and clear
the tentative exception;

B. These operations are executed as no-operations when a tentative
exception is outstanding;

C. The Resume, Escape, Trace Load Qualifier and Load Length

instructions cannot be indexed.

These instructions are described in detail in the following chapters.

Instruction

class

Instruction

name

Title

Opcode

Note
s

Byte String Set Set Byte String
attributes

0

Move Move Byte String 1 B

Compare Compare Byte Strings 2

Exchange Exchange Byte Strings 26 B

Numeric String Binary Convert to Binary 3

Decimal Convert to Decimal 4 B
Arithmetic Load Load Accumulator 5

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 60 of 154

Store Store Accumulator 6 B
Round Round Accumulator 7 B
Add Add to Accumulator 8

Subtract Subtract from
Accumulator

9

Multiply Multiply Accumulator 10

Divide Divide into
Accumulator

11 B

Store Unsigned Store Unsigned
Accumulator

27 B

And AND Accumulator 28

Transfer of
Control

Jump Jump Conditionally 12 A

Call Call Section
Conditionally

13 A

Stop Stop Run Conditionally 14 A

Exit Exit Conditionally 15 A

Status Switching Resume Resume Failed Program 16 C

Escape Escape to Machine Code 17 C

Trace Trace Identifier 18 C

Parameter Stack Push Push Pointer onto
Stack

19

Pop Pop Pointer from Stack 20

Pop List Pop Parameter List
from Stack

21

Register Load Load Index Load Index Register 22 B

Load Qualifier Load Qualifier
Register

23 B,C

Load Length Load Length Register 25 B,C

Special Purpose Call Display Call Display SVC 24

Table 4.2.7 - Instruction list

4.3 Byte String Instructions
This chapters explains the instructions used in intermediate code to
manipulate byte strings. The Set instruction loads the T registers
which give the source address for Move and Compare instructions. Move
performs a byte string move, Compare a byte string comparison.
Exchange interchanges two strings. By using the Q register up to
65,535 bytes can be moved, exchanged or compared with one instruction.

4.3.1 Set - Set T Registers
Set establishes the T length and T pointer registers. T pointer
addresses the target of Set. T length is taken from the qualifier of
Set (or from the Q register if the previous instruction was Set
Qualifier). The length can therefore be between 0 and 32,767 bytes.

4.3.1.1 Exceptions
The following exceptions may occur:

16 No Base

4.3.1.2 Registers or Storage Modified
The following registers and storage are modified:

T pointer
T length
I, L and Q are cleared

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 61 of 154

4.3.1.3 Programming Notes
It is possible to use a zero qualifier to set up a null string.

4.3.2 Move - Move Byte String
Move transfers the byte string addressed by T pointer to its target.
The length involved in the transfer is the qualifier of Move (or the Q
register). Truncation occurs if this length is smaller than T length.
If, however, the T string is the smaller, then rightmost ASCII blanks
are inserted during the transfer.

4.3.2.1 Exceptions
The following exceptions may occur:

12 Memory Violation
16 No Base

4.3.2.2 Registers or Storage Modified
The following registers and storage are modified:

I, L and Q are cleared

4.3.2.3 Programming Notes
The move takes place one byte at a time from left to right. Hence this
instruction may be used to propagate a value through a string.

4.3.3 Compare - Compare Byte Strings
Compare sets the A accumulator to 0, -1, or +1 according to whether
the byte string at its target is equal to, greater than or less than
the T string. The length used in the comparison is the greater of the
T length and the instruction qualifier (or Q if set). The rounding
flag is cleared.

Comparison proceeds a byte at a time in ascending address order. If
the strings are not of equal length the smaller is padded with
rightmost ASCII blanks. Comparison stops as soon as two different
bytes are met, in which case the string containing the byte with the
highest binary value is the greater. If the end of the strings is met
and there is no difference, then equality is returned.

4.3.3.1 Exceptions
The following exceptions may occur:

16 No Base

4.3.3.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
I, L and Q are cleared

4.3.3.3 Programming Notes
The instruction qualifier may be zero, in which case the T string will
be checked for being all ASCII spaces.

4.3.4 Exchange - Exchange Byte Strings
Exchange interchanges the byte string addressed by the T pointer and
its target string. The length involved in the exchange is given by the
T length register - the length specified by the qualifier of the
exchange instruction (or the Q register) is ignored.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 62 of 154

4.3.4.1 Exceptions
The following exceptions may occur:

12 Memory Violation
16 No Base

4.3.4.2 Registers or Storage Modified
The following registers and storage are modified:

Storage areas addressed by T pointer and the instruction
I, L and Q registers cleared

4.3.4.3 Programming Notes
The effect of an exchange instruction on two overlapping areas is not
defined. On most processors the instruction executes faster if the
fields are even byte aligned.

4.4 Numeric String Instructions
The Decimal instruction converts the contents of the A accumulator
into a standard format numeric string at the target. There are no
trailing blanks.

The Binary instruction converts the numeric string at the target into
a binary value which is placed in the mill of the A accumulator. The
scaling factor for the A accumulator is deduced from the instruction
qualifier.

The format of the qualifier is given in Figure 4.4. The number of
digits preceding the decimal point must be at least 1, otherwise an
illegal qualifier exception will occur. Also, if the number of digits
(p + q) exceeds 19 an illegal qualifier exception will occur.

Figure 4.4 - Instruction qualifier

s

q q q p p p p

maximum number of digit
positions preceding the
decimal point (1 to 15)

maximum number of digit
positions following the
decimal point (0 to 7)

Sign flag
1 = quantity may be
signed
0 = quantity is
unsigned
(positive)

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 63 of 154

s=0, q=0 Length is p characters

1 p

s=1, q=0 Length is p+1 characters

1 p+1

s=0, q>0 Length is p+q+1 characters

1 p p+1 p+2 P+3 P+q+1

s=1, q>0 Length is p+q+2 characters

1 p+1 p+2 p+3 P+4 P+q+2

Notes
The integer part has leading zeros suppressed but at least one digit
is always printed (i.e. zero prints as a single '0'). If the
fractional part of the value has too few digits, then the remaining
digits are shown as zeros.

d represents the decimal point character (a period or a comma) which
is held in a field in the system area.

Figure 4.4.1 - Format of string produced by decimal instruction

4.4.1 Decimal - Convert Accumulator to Numeric String
The Decimal instruction converts the value in the accumulator to a
standard format numeric string in accordance with the instruction
qualifier. The string is stored in the target. The value of the
accumulator is not changed.

The format of the string produced is given by Figure 4.4.1. Note that
at least one digit must precede the decimal point.

Overflow will occur if the value in the accumulator is too large for
the format specified or if it is negative and an unsigned format is
specified. Overflow will also occur if the scaling factor of the
accumulator is not in the range -7 to +15.

4.4.1.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation

Integer part of
value

Integer part of value
with floating sign

Integer part of
value

d fractional part of
value

Integer part of
value with
floating sign

d fractional part of
value

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 64 of 154

16 No Base

4.4.1.2 Registers and Storage Modified
The following registers and storage are modified:

Target field in store
I, L and Q are cleared

4.4.2 Binary - Convert Numeric String To Binary
The Binary instruction converts a numeric string to a fixed point
number and stores the result in the accumulator.

The scaling of the accumulator is the number of decimal places
specified in the qualifier (q). The division rounding flag is cleared.

The length of the input string to be converted is determined from the
qualifier as follows:

s=0, q=0 length is p
s=1, q=0 length is p+1
s=0, q>0 length is p+q+1
s=1, q>0 length is p+q+2

If the input string is not a valid numeric string (see 4.2.1.4) or has
too many digits following the decimal point, then a numeric conversion
exception will occur. If the string contains more than p digits
(including leading zeros) before the decimal point, or if it is signed
and the format is unsigned, then an overflow exception will occur. An
overflow exception will also occur if the magnitude of the value input
is greater than or equal to 263 x 10-q. Extra digits following the
decimal point are ignored, and if fewer than q are supplied the
remainder are set to zero. If q=0 the string must not contain a
decimal point.

4.4.2.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
10 Numeric Conversion
11 Overflow
16 No Base

4.4.2.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
I, L and Q are cleared

4.4.2.3 Programming Notes
A value of spaces is not a valid numeric string and will cause a
numeric conversion exception.

A '+' sign may be input even if the format is unsigned, although this
reduces the number of digits which may be input in the number.

4.5 Arithmetic Instructions
The arithmetic instructions perform scaled fixed point arithmetic.
Numbers can have a maximum of 18 significant digits with up to 15
digits before the decimal point and 7 after it. To reduce Global Cobol

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 65 of 154

code size the Round, Add, Subtract, Multiply, Divide and And
instructions can optionally be requested to store their result in the
target. Thus Global Cobol ADD A TO B can be implemented by a Load and
Add rather than requiring a Load, Add and Store.

All the arithmetic instructions except Load, Store Unsigned and And
can suffer arithmetic overflow. However, this is processed as a
tentative exception to support the optional Global Cobol ON OVERFLOW
statement which can follow arithmetic statements.

If overflow occurs on any arithmetic statement the target field will
remain unchanged; in particular it will not be corrupted if overflow
is detected during a store operation.

To control scaling and the optional storing of the result in the
target the arithmetic instruction qualifier has a format somewhat
similar to that used with numeric string instructions:

The s bit is ignored in the qualifier of Load, Store and Store
Unsigned instructions.

Because the mill of the A accumulator is only 8 bytes in length a
maximum of 19 significant digits can be supported. Therefore the sum
of p and q must be no greater than 18 or an illegal qualifier
immediate program exception will take place when the instruction is
interpreted.

An illegal qualifier exception will also occur if p=q=0, since a fixed
point number with no digits before or after the point is meaningless.

The Add, Subtract, Store and Round instructions require numbers to be
scaled by division or multiplication by a power of ten so that the
target field and the accumulator have the same precision. For example,
if the A mill contains 1234 with an A scaling of 3, representing
1.234, and it is to be stored in a field with 1 decimal place then the
A mill must be divided by 102 so that it contains 12 corresponding to
scaling of 1 and representing 1.2. The scaling factor is always
updated to reflect the new scaling of the accumulator.

4.5.1 Load - Load Accumulator
The target of the Load instruction is loaded into the A mill. The A
scaling is set to the number of places following the decimal point (q)
as given by the qualifier. The rounding flag is cleared.

4.5.1.1 Exceptions
The following exceptions may occur:

s

q q q p p p p

maximum number of digit
positions preceding the
decimal point (0 to 15)

maximum number of digit
positions following the
decimal point (0 to 7)

'store in target' bit.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 66 of 154

7 Illegal Qualifier
16 No Base

4.5.1.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
I, L and Q are cleared

4.5.2 Store - Store Accumulator
Store scales the accumulator to match the target field and stores it
in the target field. If the value in the accumulator is too large for
the target field overflow will occur (see Table 4.2.1.1). The rounding
flag is cleared.

4.5.2.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

4.5.2.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
Target location in store
I, L and Q are cleared

4.5.2.3 Programming Notes
Note that the value in the A accumulator is modified by the Store
instruction.

4.5.3 Round - Round Accumulator
Round scales the accumulator to match the target field and rounds the
last digit of the result to the nearest digit.

If the A scaling factor is less than the scaling of the target (q)
then A is scaled up but no rounding is performed.

If the A scaling factor is equal to the scaling of the target then the
result is rounded away from zero if the rounding flag is set (this
flag is set if the next digit of the quotient would be 5 or greater).

If the A scaling factor is greater than the scaling of the target then
A is scaled down and if the most significant of the digits truncated
during scaling was a 5 or greater the result is rounded away from
zero.

The rounding flag is always cleared.

If the store in target option is specified then the accumulator is
stored in the target field.

Overflow will occur if the scaling or rounding gives a result outside
the range -263 x 10-r to (263-1) x 10-r, where r is the number of decimal
places in the result. Overflow will also occur if the store option is

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 67 of 154

specified and the result is too large for the target field (see Table
4.2.1.1).

4.5.3.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

 4.5.3.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
Target field (if store option specified)
I, L and Q are cleared

4.5.3.3 Programming Notes
This instruction is normally used with the store option specified; if
this option is not specified then the address of the target field is
not used by the instruction.

4.5.4 Add - Add to Accumulator
Add adds the target number to the number in the accumulator and places
the result in the accumulator.

The number of decimal places in the result, stored in A scaling, is
the greater of q (in the qualifier) and the original A scaling (e.g.
2.1 added to .234 would give 2.334). The rounding flag is cleared.

If the store option is specified in the qualifier then the accumulator
is scaled to match the target field and stored in the target field.

Overflow will occur if scaling or addition give a result which is not
in the range -263 x 10-r to 263-1 x 10r, where r is the number of decimal
places in the result. Overflow will also occur if the store option is
specified and the result is too large for the target field (see Table
4.2.1.1).

4.5.4.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

4.5.4.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
Target field (if store option specified)
I, L and Q registers

4.5.5 Subtract - Subtract from Accumulator
Subtract subtracts the target number from the number in the
accumulator and places the result in the accumulator.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 68 of 154

The number of decimal places in the result, stored in A scaling, is
the greater of q (in the qualifier) and the original A scaling (e.g. 2
minus .01 gives 1.99). The rounding flag is cleared.

If the store option is specified in the qualifier the accumulator is
scaled to match the target field and stored in the target field.

Overflow will occur if the result is not in the range -263 x 10-r to 263-
1 x 10-r, where r is the number of decimal places in the result.
Overflow will also occur if the store option was specified and the
result is too large for the target field (see Table 4.2.1.1).

4.5.5.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

4.5.5.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
Target field (if store option specified)
I, L and Q are cleared

4.5.6 Multiply - Multiply Accumulator
The value in the accumulator is multiplied by the value of the target
number, and the result is placed in the accumulator.

The number of decimal places in the result, stored in A scaling, is
the original value of A scaling plus the number of decimal places in
the multiplier (q).

The rounding flag is cleared.

Overflow will occur if either operand has the value -263 x 10-s where s
is its scaling (i.e. the largest negative value which may be held in 8
bytes). Overflow will also occur if scaling or subtraction give a
result whose magnitude is greater than or equal to 263 x 10-r where r is
the scaling of the result, as defined above.

If the store option is specified in the qualifier then the accumulator
is scaled to match the target and stored in the target. Overflow will
occur if the result is too large for the target field (see Table
4.2.1.1).

4.5.6.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

4.5.6.2 Registers and Storage Modified
The following registers and storage are modified:

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 69 of 154

A accumulator
Target field (if store option specified)
I, L and Q are cleared

4.5.6.3 Programming Notes
Note that the precision of the result can be greater than 7 decimal
places.

For some interpreters the time taken to execute a Multiply will depend
on the magnitude of the target number and hence, where possible, the
smaller of the two numbers should be used as the target of the
Multiply instruction.

4.5.7 Divide - Divide into Accumulator
Divide divides the value in the A accumulator by the value of the
target number, and places the result in the accumulator. The result is
positive if both operands have the same sign, negative if their signs
differ. The quotient is truncated towards zero.

The number of decimal places in the result, stored in A scaling, is
the original A scaling minus the number of decimal places in the
divisor (q).

If the magnitude of the remainder is greater than or equal to half the
magnitude of the divisor then the rounding flag is set to 1, if the
divisor and dividend have the same sign, and to -1 if different.
Otherwise it is cleared.

Overflow will occur in the following circumstances:

● The magnitude of the divisor is greater than or equal to 231 x 10-q;

● The magnitude of the dividend is greater than or equal to the

magnitude of the divisor times (231 x 10-r) where r is the number of
decimal places in the result, as defined above.

These conditions for overflow are equivalent to saying that both the
divisor and the quotient must be capable of being stored in a four-
byte numeric field, and that neither may have the largest negative
value which can be held in that field.

If the store option is specified in the qualifier then the accumulator
is scaled to match the target field and stored in the target. The
rounding flag is cleared. Overflow will occur if the result is too
large for the target field (see Table 4.2.1.1).

4.5.7.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
11 Overflow
12 Memory Violation
16 No Base

4.5.7.2 Registers and Storage Modified
The following registers and storage are modified:

A accumulator
Target field (if store option specified)

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 70 of 154

I, L and Q are cleared

4.5.7.3 Programming Notes
Division by zero gives an overflow exception. Note that the scaling of
the result may be negative.

4.5.8 Store Unsigned
Store Unsigned stores the accumulator in the target field without
checking for overflow. No scaling is allowed: if it is necessary a
scaling exception may occur.

4.5.8.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
12 Memory Violation
16 No Base
17 Scaling

4.5.8.2 Registers and Storage Modified
The following registers and storage are modified:

Target location in store
I, L and Q are cleared

4.5.8.3 Programming Notes
The Store Unsigned instruction is used to perform unsigned arithmetic,
in particular pointer addition or subtraction.

4.5.9 And - AND Accumulator
And performs a logical AND of the target field with the accumulator.
If the target field is shorter than 8 bytes, it is considered to be
extended on the left with zero bytes. No scaling is allowed: if any is
necessary a scaling exception may occur.

If the store in target flag is set the accumulator is stored in the
target field without checking for overflow (i.e. a Store Unsigned is
performed).

4.5.9.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
12 Memory Violation
16 No Base
17 Scaling

4.5.9.2 Registers and Storage Modified
The following registers and storage are modified:

Accumulator
Target field (if store option specified)
I, L and Q are cleared

4.6 Transfer of Control Instructions
The transfer of control instructions are used for branching (Jump
instruction); subroutine entry and exit (Call and Exit); and for
returning control to the monitor (Stop).

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 71 of 154

If, when the instruction is executed other than immediately following
a Resume, the interrupt-pending flag is non-zero, and the flag
register is zero, and the privilege status register is -1, then the
exception number given by the interrupt-pending flag is returned and
the interrupt-pending flag is reset to zero.

Permissible Combinations

 A Not zero is P+M = #06
 A Not negative is Z+P = #03
 A Not positive is Z+M = #05
 Unconditional is Z+P+M = #07
 Unconditional, clearing F, is F+not-F = #18

Figure 4.6 - Transfer of control instruction qualifier

The instruction qualifier is used to determine whether the instruction
succeeds, or whether the next sequential instruction is to be taken.
Figure 4.6 shows the format of the instruction qualifier. A condition
bit is set to 1 to specify that its associated condition is to be
applied, zero otherwise. Thus:

● With not-F set and other condition bits zero, transfer of control

only takes place if the flag register is zero;

● With the zero, positive and negative condition bits set

(qualifier=7) the transfer of control will always take place, i.e.
it is an unconditional instruction;

● With all condition bits set to zero, transfer of control can never

 take place. The instruction is an effective no-operation.

Figure 4.6 also shows the permissible combinations of conditions; the
effect of other combinations is not defined.

The transfer of control instructions are valid when a tentative
exception is pending providing they are conditional on F or not-F.
Such an instruction, which tests F, subsequently turns it off and
thereby clears the pending tentative exception.

When a transfer of control is to take place the address of the
instruction is saved so that it can be placed in the diagnostic logout
area if an immediate exception occurs.

4.6.1 Jump - Jump Conditionally

 F
'

F M P Z

Z: Execute if A=0

P: Execute if A>0

M: Execute if A<0

F: Execute if flag
set Not F: Execute if flag not
set
unused

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 72 of 154

If the Jump instruction does not succeed the next sequential
instruction is executed.

If the Jump succeeds then control is transferred to the address given
by the two-byte pointer at the target address. If this address is odd
an illegal branch exception will be returned.

4.6.1.1 Exceptions
The following exceptions may occur:

1 Break
8 Illegal Branch
15 Advance
16 No Base
20-29 Interrupts

4.6.1.2 Registers and Storage Modified
The following registers and storage are modified:

I, L and Q are cleared
If the instruction is conditional on the F register then the F

register is cleared
The interrupt-pending flag may be cleared

4.6.2 Call - Call Subroutine
If the Call does not succeed the next sequential instruction is
executed.

If the Call succeeds a new link stack entry is initiated, an immediate
link stack exception taking place if all 28 entries are already in
use. If the two-byte target, a pointer, is odd an illegal branch
exception occurs. Otherwise the pointer to the next sequential
instruction following the Call is remembered in the first two bytes of
the stack entry, the pointer to the target of the transfer instruction
in the next two bytes, and control is passed to the instruction
addressed by the target pointer.

4.6.2.1 Exceptions
The following exceptions may occur:

1 Break
8 Illegal Branch
14 Link Stack
15 Advance
16 No Base
20-29 Interrupts

4.6.2.2 Registers and Storage Modified
The following registers and storage are modified:

Link Stack and Link Stack Index (if Call succeeds)
I, L and Q are cleared
F is cleared if the instruction is conditional on the F register
The interrupt-pending flag may be cleared

4.6.2.3 Programming Note
Programs are normally entered by means of a Call from the monitor.
Hence there are 27 levels of subroutine available to the application
program. However, 12 of these levels are reserved for use by the

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 73 of 154

monitor, for example when called to perform I/O, leaving 15 levels
available to the application program.

4.6.3 Stop - Return to Monitor
If the Stop does not succeed then the next sequential instruction is
executed.

If Stop succeeds its two-byte target is established in the completion
code field in the system area, and an immediate program exception
(Stop, number 5) takes place.

4.6.3.1 Exceptions
The following exceptions may occur:

1 Break
5 Stop
15 Advance
16 No Base
20-29 Interrupts

4.6.3.2 Registers and Storage Modified
The following registers and storage are modified:

Completion Code in the system area
I, L and Q are cleared
F is cleared if the instruction is conditional on the F register
The interrupt-pending flag may be cleared

4.6.3.3 Programming Notes
Global Cobol is responsible for completion code assignment. The senior
byte of the completion code is generally used to identify the
component responsible for detecting the stop condition. The junior
byte further particularises the reason for the stop when a single
component is sensitive to a number of different stop conditions.

4.6.4 Exit - Return from Subroutine
If the Exit does not succeed the next sequential instruction is
executed.

If Exit succeeds its two-byte target is established in the completion
code field in the system area, and if the code thus established is
non-zero a tentative exception (Exit, number 9) takes place causing
the F register to be set on. If the privilege status register is equal
to the link stack index the privilege status is set to -1. The top
entry of the link stack is popped, and the instruction pointed to by
the entry (the next sequential instruction of the previous Call) is
interpreted. (In the event that the link stack is empty, control is
returned to a machine specific error routine with the completion code
in the parameter register, an Exit from the highest level routine
being the conventional means of ending interpretation.)

If Exit returns a non-zero completion code and the caller contains
logic which tests the F register, all will be well. Otherwise, since
the caller is unaware of the non-zero completion code the tentative
exception will become actual.

4.6.4.1 Exceptions
The following exceptions may occur:

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 74 of 154

1 Break
9 Exit
15 Advance
16 No Base
20-29 Interrupts

4.6.4.2 Registers and Storage Modified
The following registers and storage are modified:

Privileged Status register (only if Exit instruction successes)
Link Stack Index (only if Exit instruction successes)
Completion Code in system area F (only if Exit instruction

successes)
I, L and Q are cleared
F will be cleared if the instruction is conditional on the F

register and does not reset it
The interrupt-pending flag may be cleared

4.6.4.3 Programming Notes
Since programs are entered via Call from the monitor program, the top
link on the stack will be a return to the monitor, hence an Exit with
the link stack empty can normally only be issued by the monitor.

Global Cobol is responsible for completion code assignment. The senior
byte of the completion code identifies the component responsible for
detecting the Global Cobol 'exception'. The junior byte of the code
becomes the PIC 9(2) field $$COND, the Global Cobol 'exception
condition'.

4.7 Status Switching Instructions
The status switching instructions are special purpose instructions
which cannot be indexed or qualified by the Q register.

Resume allows the user program to be restarted at the failing
instruction following an exception. Escape enables machine code
programs to be executed from Global Cobol. Trace is a no-operation
whose purpose is to allow a five-character section or entry point
identifier to be optionally embedded in Global Cobol code.

4.7.1 Resume - Resume Failed Program
The Resume instruction is provided for use by debug routines written
in Global Cobol. Its qualifier is unused and it is set up as a two-
byte immediate instruction. It cannot be indexed. The I and Q
registers are ignored. When it is interpreted the status preserved in
the diagnostic logout area (and possibly modified by the debugging
procedure) is restored.

Interpretation proceeds by retrying the failing instruction pointed to
from the diagnostic logout area. A trap exception or interrupt on the
first instruction interpreted following a Resume is suppressed in
order to allow interpretation to continue after a trap exception
without having to clear the trap, and to allow at least one
instruction to be executed after an Advance interrupt.

4.7.1.1 Exceptions
None.

4.7.1.2 Registers and Storage Modified
The following registers and storage are modified:

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 75 of 154

A register, Privilege Status register
I, L, Q, F, T length, T pointer
Completion code and exception codes in the system area
Link Stack and Link Stack Index
Parameter Stack and Parameter Stack Index

4.7.1.3 Programming Notes
If the instruction to be resumed used the I, L or Q registers these
may have to be reset before resuming as they might have been cleared
before the exception was detected. This is not necessary, however,
following a trap exception.

The flag register in the logout area will always be zero and must be
reset if required.

The Global Cobol user is advised to resume his program on a statement
boundary following any exception apart from trap or break. Global
Cobol, therefore, does not currently support modification of the I, L,
Q or F registers in the diagnostic logout area.

4.7.2 Escape - Escape into Machine Code
The Escape instruction is a two-byte immediate mode instruction whose
qualifier is unused. It must be immediately followed by the machine
code program which is to be executed. Escape is coded at the beginning
or near the beginning of a routine which is entered from Global Cobol
via a Call.

When the Escape instruction is interpreted a machine code interface
area is set up. This involves converting any pointers in the parameter
stack to machine addresses in this area. The machine code program is
then entered with the parameter address register containing the
machine address of the interface area. The parameter stack is always
cleared by an Escape instruction.

The program can obtain parameters and communicate results using the
areas whose addresses were obtained from the parameter stack.

The machine code program completes by causing the interpreter to
execute a pseudo-Exit or pseudo-Stop instruction by passing control to
either the exit address or stop address defined in the interface area.
The target of these pseudo-instructions is the two-byte completion
code at the start of the interface area. This code will be zero on
entry to the machine code program.

If the routine completes by passing control to the exit address then
the completion code in the interface area is moved to the completion
code field in the system area, and if the code thus established is
non-zero a tentative exception (Exit, number 9) takes place causing
the F register to be set on. The top entry of the link stack is
popped, and the instruction pointed to by the entry (the next
sequential instruction of the previous Call) is interpreted.

If the routine completes by passing control to the stop address then
the completion code in the interface area is moved to the completion
code in the system area and an immediate program exception (Stop,
number 5) takes place.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 76 of 154

The instruction qualifier should be zero if the assembler routine to
be executed resides within the Global Cobol address space. A non-zero
value is used in some interpreters to indicate routines in the Global
nucleus which are outside the normal address space (this affects
details of the interface to the routine, such as how segment registers
are established).

4.7.2.1 Exceptions
The following exceptions may occur:

5 Stop
9 Exit

4.7.2.2 Registers and Storage Modified
The following registers and storage are modified:

Machine Code Interface area
Parameter Stack Index
Completion Code
Link Stack Index (pseudo-Exit only)

4.7.2.3 Programming Notes
Details of the interface to the machine code routines will depend on
the microprocessor being used.

4.7.3 Trace - Trace Identifier
The Trace instruction enables trace information to be embedded within
the code of a routine. The Trace instruction is always six bytes long
and consists of a 1-byte operation code followed by five bytes which
are ignored. These five bytes will normally be used to hold a 5-
character ASCII identifier for use by the debugging system.

A Trace instruction is always a 'no-operation' and the interpreter
continues by executing the next sequential instruction.

4.7.3.1 Exceptions
None.

4.7.3.2 Registers and Storage Modified
No registers or storage are modified.

4.7.3.3 Programming Notes
A Trace instruction containing the section name will normally be
generated by Global Cobol following each SECTION or ENTRY statement.
The second pointer of each link stack entry can be used to access
these instructions so that the debugging system can print out the
names of the routines which called the current routine.

4.8 Parameter Stack Instructions
The parameter stack instructions, Push, Pop and Pop List, maintain the
parameter stack used for passing parameters by name and in the
implementation of based variables. The parameter stack is also
affected by the Escape instruction.

The use of the qualifier is different for each of the instructions,
and is given in the instruction descriptions.

4.8.1 Push - Push Parameter onto Stack

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 77 of 154

The Push instruction places a pointer to its target on the top of the
parameter stack. If the address mode is immediate or the instruction
is indexed the qualifier must be the length of the target in bytes.
The qualifier is not used for the other address modes.

If the parameter stack is full (7 items already on stack) then a
parameter stack exception is returned.

4.8.1.1 Exceptions
The following exceptions may occur:

13 Parameter Stack

4.8.1.2 Registers and Storage Modified
The following registers and storage are modified:

Parameter Stack
Parameter Stack Index
I, L and Q are cleared

4.8.1.3 Programming Notes
Note that if the Push instruction is used with a fixed point immediate
operand, the length in bytes must be supplied as the qualifier rather
than the normal qualifier for fixed point numbers.

4.8.2 Pop - Pop Parameter from Stack
The Pop instruction removes the top pointer from the parameter stack
and places it in its two-byte target. The qualifier is not used.

If the parameter stack is empty a parameter stack exception occurs.

4.8.2.1 Exceptions
The following exceptions may occur:

13 Parameter Stack
16 No Base

4.8.2.2 Registers and Storage Modified
The following registers and storage are modified:

Parameter Stack Index
2-byte target field
I, L and Q are cleared

4.8.3 Pop List - Pop All Parameters from Stack
Pop List is an instruction provided to simplify and optimise the
processing of the USING clause when it appears in a Global Cobol ENTRY
statement. It also provides the mechanism by which a routine can be
made privileged.

The junior four bits of the qualifier form a number, n. The senior bit
(of the junior byte) is the privileged flag. The remaining 3 bits are
currently unused.

If the privilege status register is -1 (unprivileged) and the
privileged flag in the qualifier is set the current value of the link
stack index is stored in the privilege status register.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 78 of 154

If the privilege status register is not -1 (privileged) and the
privileged flag in the qualifier is zero the privilege status register
is reset to -1.

If n is not equal to the parameter stack index then a parameter stack
exception occurs and the parameter stack is not altered.

If n is zero then no further processing occurs, i.e. the instruction
simply checks that the parameter stack is empty. Otherwise n is in the
range 1 to 7 and the target is a list of n pointers. The instruction
pops the top entry from the stack and stores it at the location
addressed by the n'th pointer; the next entry is stored at the
location addressed by pointer n-1; and so on.

4.8.3.1 Exceptions
The following exceptions may occur:

13 Parameter Stack

4.8.3.2 Registers and Storage Modified
The following registers and storage are modified:

Storage locations addressed by the list of pointers
Parameter Stack Index
Privilege Status register
I, L and Q are cleared

4.9 Register Load Instructions
The three register load instructions enable the user program to set up
the I, L and Q registers. The qualifier in these instructions has the
same format as that used in an Arithmetic Load. The value placed in
the register is the integer part of the target. An illegal load
immediate program exception takes place if this is not in the range 1
to 32,767 inclusive, or 0 to 65,535 for the Q register.

If the qualifier is not a valid arithmetic instruction qualifier (see
chapter 5) then an illegal qualifier exception will occur.

4.9.1 Load Index - Load I Register
Load Index moves the integer part of the target into the I register,
providing it is in the valid range 1 to 32,767.

The non-zero I register will be used in indexing the subject
instruction immediately following Load Index (as described in 4.2.2.1)
unless it is Load Qualifier, Load Length, Trace, Escape or Resume. In
the case of Load Qualifier, Escape and Trace, I remains undisturbed
and available to index the next instruction eligible as subject.
Resume restores the I register from the diagnostic logout area,
ignoring its initial contents.

Once the I register is used for indexing it is zeroised. This prevents
further indexing taking place until a subsequent Load Index
instruction has re-established the register.

A Load Index instruction can be the subject of a preceding Load Index
instruction. In this case the first instruction simply sets the index
used in establishing the target of the second, the integer part of
which becomes the new index.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 79 of 154

4.9.1.1 Exceptions
The following exceptions may occur:

3 Illegal Load
7 Illegal Qualifier
16 No Base

4.9.1.2 Registers and Storage Modified
The following registers and storage are modified:

I register
L and Q registers are cleared

4.9.1.3 Programming Notes
If both the I and Q registers are to be set up for an instruction, the
Load Index must precede the Load Qualifier instruction.

If both the I and L registers are to be set up for an instruction, the
Load Index must precede the Load Length.

If all three I, L and Q registers are to be set up for an instruction,
the instructions must be in the order Load Index, Load Length, Load
Qualifier. If necessary, the Load Length instruction could be preceded
by a Load Qualifier instruction to establish the qualifier of the
length field.

4.9.2 Load Qualifier - Load Q Register
Load Qualifier is used to establish a qualifier value in the Q
register which will be used when the next instruction executes in
place of the value normally obtained from its second byte. The senior
8 bits of the Q register are ignored except in byte string
instructions where Q can be employed to specify a string length of up
to 65,535 bytes.

Once the Q register has been used for qualification it is zeroised.
This prevents its further use until a subsequent Load Qualifier
instruction re-establishes it. Note however that Escape and Trace do
not use the Q register, and therefore do not clear it.

The index register is ignored by Load Qualifier and therefore one or
more Load Qualifier instructions may be interposed between a Load
Index and the instruction which is the subject of the indexing.

4.9.2.1 Exceptions
The following exceptions may occur:

7 Illegal Qualifier
16 No Base

4.9.2.2 Registers and Storage Modified
The following registers and storage are modified:

Q register

4.9.2.3 Programming Notes
A Load Qualifier instruction is normally used either to set up a
qualifier greater than 255 or when the qualifier to be used is a
variable.

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 80 of 154

Note that if the Q register is non-zero when a Load Qualifier
instruction is executed that instruction itself uses the value in the
Q register for its qualifier.

In V5.2 interpreters no check is made on the value of the target. In
particular, it is possible to load a zero qualifier.

The effect of using a Load Qualifier instruction in front of a short
immediate mode instruction is not defined.

4.9.3 Load Length - Load L Register
Load Length moves the integral part of the target into the L register,
provided it is in the range 1 to 32,767. This length will be used when
the next instruction is executed in place of the operand length by
which the index is normally multiplied.

Once the L register has been used it is zeroed. This prevents its
further use until a subsequent Load Length instruction re-establishes
it.

The index register is ignored by a Load Length instruction so that a
Load Length instruction can be placed between a Load Index instruction
and the instruction which is to be indexed.

4.9.3.1 Exceptions
The following exceptions may occur:

3 Illegal Load
7 Illegal Qualifier
16 No Base

4.9.3.2 Registers and Storage Modified
The following registers and storage are modified:

L register
Q register is cleared

4.10 Special Purpose Instruction

4.10.1 Call Display - Call Display SVC
This is a special instruction which can only be used to call the
character display routine, SVC 5 (SVC = Supervisor Call). To invoke
SVC 5 using normal intermediate code instructions requires 3
instructions: a Set, a Push and a Call. Hence this instruction saves 8
bytes for each DISPLAY statement for a character variable.

Call Display establishes the address of the target in the T pointer
register. The length of the target is given by the low-order 7 bits of
the qualifier (or Q register if set), and this length is stored in the
T length register. The target may be indexed or a literal.

A pointer to the start of the instruction is placed on the top of the
parameter stack. If the parameter stack is full then a parameter stack
exception is returned.

The I, L and Q registers are cleared and execution continues as if an
unconditional Call instruction (qualifier = 7) had been executed with
address mode 0 and the target a pointer to location -12 (hex FFF4).

Chapter 4 - Intermediate Code Language

Global Development Toolkit Manual V8.1 Page 81 of 154

However, the interrupt-pending flag is not tested and so a break
cannot occur.

4.10.1.1 Exceptions
The following exceptions may occur:

13 Parameter Stack
14 Link Stack
16 No Base

4.10.1.2 Registers and Storage Modified
The following registers and storage are modified:

T pointer
T length
Parameter Stack
Parameter Stack Index
Link Stack
Link Stack Index
I, L and Q are cleared

4.10.1.3 Programming Note
The qualifier has the standard console control byte format, with the
length in the low order 7 bits, and the top bit set to 1 for a display
on a new line, or zero for a display on the same line.

Note that if this instruction is immediately preceded by a Load
Qualifier instruction, then the length of the target is given by the Q
register, but the number of characters to be displayed is given by the
instruction qualifier.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 82 of 154

5. Metajob Management

Metajob

Description
(S.xxxxxx)

Metajob File
(xxxxxx)

Metajob File
(in memory at
address #5000)

Metajob Listing
(L.xxxxxx) $MJOB (Metajob File

Builder)

$MTEST (Metajob
Initiator) or special
metajob initiator

Metajob
Dialogue in
High Memory

$MRUN (Metajob
Interpreter)

The Metajob Interpreter
is entered via a CHAIN
statement executed by the
initiator, and is
parameterised by the in-
memory metajob file.

Optional Test
Listing

(D.$MRUN on
$PR)

The metajob
initiator will
have set up
parameters &0…&Z
in an in-memory
copy of the
metajob file.

&0 set to MJOB
and the other
parameters are
null (spaces)

Dialogue is
created and
executed if &0 =
MJOB. Otherwise,
if &0 = MJOBx,
only a test unit
is output.

Figure 5.1.1 - The Metajob management system

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 83 of 154

5.1 Foreword
The Metajob Management System allows you to write programs in a high-
level metajob language which then generates job management dialogue
according to the values set up in parameter fields. It is particularly
designed for the production of dialogue to copy or install Global
software for a variety of configurations, and contains many special
statements for running the file utility, $F, and the librarian, $LIB.
However, it is not restricted to these utilities, and can be used to
generate any dialogue required.

A metajob description consists of directives and statements. Standard
structured programming IF...ELSE...END constructs are provided to
allow statements to be executed conditionally, according to parameter
settings. Furthermore, most statements use operands which can
themselves be parameterised and which are eventually evaluated when
the metajob is run. The parameter values are established by a user-
provided Global Cobol program known as a metajob initiator, which can
either prompt the operator for data or obtain values from
environmental information such as system variables. Great flexibility
is achieved by the coupling of this generalised metajob system with a
specialised initiator dedicated to a particular purpose, such as
Global System Manager installation.

5.1.1 The Metajob Management System
The three command programs $MJOB, $MTEST and $MRUN, illustrated in
Figure 5.1.1, constitute the Metajob Management System.

$MJOB, the metajob file builder, inputs a source file containing the
metajob program - known as the metajob description - and 'compiles'
its statements into a metajob file, which is a conventional program
file containing only a data division. At the same time a metajob
listing is produced on a specified unit. The listing contains standard
headings, the original source lines with sequence numbers, and error
and warning messages if any of the lines are faulty or suspect.

(In the figure, in order to save space, we have used the abbreviation
'mjob' in place of 'metajob'. This abbreviation is also used in
dialogue, error and warning messages, and in some of the operating
descriptions which follow.)

The second program of the system, $MTEST, is a general-purpose metajob
initiator, which allows you to set any parameter from the terminal. It
loads a specified metajob file into high memory (locations #5000
onwards) and establishes parameter values in a table area reserved for
this purpose at the very beginning of that file, preceding the
compiled statements. When all the values are set up, $MTEST chains to
$MRUN, the metajob interpreter.

$MTEST is useful for checking out a metajob during testing, but it is
not suitable for production work. You will normally replace it with
your own dedicated initiator which will load the metajob file,
establish the parameters and chain to $MRUN in the same way.
Alternatively you can run $MTEST under job management to provide a
specialised initiator.

$MRUN processes the metajob file passed to it in high memory. It
fetches the compiled statements one by one, evaluating any
parameterised operands using the values established by the initiator.
Like any true program, the metajob may contain conditional jump

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 84 of 154

instructions (derived from IF statements) which are effective, or not,
according to parameter values.

When used in 'live' mode $MRUN creates dialogue using the JOB$ system
routine, and the dialogue is actioned as soon as interpretation is
complete. However, by setting a reserved parameter, &0, to a special
value, you may instead output a test listing to the standard printer,
$PR, rather than produce dialogue for JOB$. The listing contains the
statements processed, and shows their operands with the parameters
evaluated. The sequence number of each statement is output so that you
can correlate information from the test listing with that from the
metajob listing produced earlier by $MJOB. Optionally, you can have
the dialogue each statement will generate in live mode printed on the
test listing.

To simplify the implementation the system performs only limited
validation of your metajob. $MJOB itself checks the integrity of the
structured programming constructs and ensures that statements are
recognisable and have the correct number of operands. $MRUN performs a
number of sequencing checks on the information it is processing and
will display (and optionally print) an error message and terminate if
one of these is invalidated. However, none of the testing takes
account of the detailed dialogue involved. For example, if an operand
ought to be a three digit unit address, but in fact contains a five
character string, all will be well as far as $MJOB and $MRUN are
concerned. The error will either become apparent when you examine the
test listing or will be found when the faulty dialogue is eventually
actioned in live mode.

5.1.2 Structure of this Manual
Immediately following this Foreword, section 5.2 explains how you
write a metajob description, and describes the various directives and
statements available. The statements are subdivided into related
groups and each group is treated in a section of its own. You should
read the whole of the chapter, referring to the example metajob in
Appendix A. Later, when you come to code a metajob Table 5.2.2 gives
you quick access to the specification of individual statements.

Section 5.3 explains how to use $MJOB to produce a metajob file from a
metajob description, and section 5.4 describes how you can use $MTEST
to set up parameters and run the metajob file you have created.

Section 5.5 describes how to write your own metajob initiator to
replace $MTEST in a live environment.

Appendix A contains a complete worked example which is referred to
throughout this manual. The source and metajob listing are provided,
together with test output created both by an example initiator and a
run of $MTEST. The example is not intended to be completely realistic,
but it contains fragments which are likely to be used in Global
distribution and installation, and shows most of the possible
combinations of statements and operands, together with the resulting
dialogues. There is also a compilation listing of the example
initiator, which should be studied in conjunction with section 5.5.

Appendices B and C contain explanations of the error and warning
messages that may be produced by $MJOB and $MRUN respectively.

5.2 The Metajob Description

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 85 of 154

A metajob description is a text file containing lines of up to 72
characters. Each line is in free format, with leading blanks and tabs
before the first significant character being ignored. Within the body
of a line, a blank, tab or any combination of blanks and tabs may
serve as a separator between different elements.

Lines themselves are of three types: directives, comments or
statements. The first line of a metajob description must be an MJOB
directive, and the last line an ENDMJOB directive. Between these there
may be any combination of comment lines, statement lines, or PAGE
directive lines.

There is an example metajob description listed in Appendix A1, and you
may find it useful to briefly examine it at this stage and refer to it
as you proceed through this chapter.

5.2.1 Comments and Directives

5.2.1.1 Comment Lines
Lines whose first significant character is an asterisk may be coded
anywhere between the MJOB and ENDMJOB directive. They are listed but
otherwise ignored:

* THIS IS A COMMENT

5.2.1.2 Comments on Instructions
Comments may appear to the right of the last operand of a statement
(or of its name, if there are no operands). They can be introduced by
an asterisk separated from the last operand or name by one or more
blanks or tabs:

PERFORM SYSDEV * CREATE SYSDEV VOLUME
OUTPUT SYSOPT 101 * SELECT SYSOPT

Comments may not be coded on the directive lines, MJOB, PAGE
andENDMJOB.

5.2.1.3 The MJOB Directive
The MJOB directive must be coded as the very first line of the metajob
description. Its format is:

MJOB mjob-id title

The mjob-id is really only present to enable you to document the name
that you intend to give to the metajob file when it is produced by the
$MJOB command from this metajob description. The name of the file is
actually determined from information keyed to the $MJOB command, but
you will normally choose to make this the same as the mjob-id. An
mjob-id is usually six characters or less, and the metajob description
source file should be named S.mjob-id, e.g. S.EXMJOB in the case of
the example in Appendix A1. The mjob-id is terminated by the first
blank or tab following it.

The title begins with the first character after the mjob-id which is
not a blank or tab. It can be up to 30 characters in length and may
contain embedded blanks. If more than 30 characters are present only
the first 30 will be used and if the end of the line is met before 30
characters have been encountered the title will be made up to 30
characters with trailing blanks. The title is stored in the program

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 86 of 154

header of the metajob file, so that it can become a member title if
this file is later incorporated into a program library.

The title also appears in the heading printed on the metajob
description listing, unless it is overridden by the title from a
subsequent PAGE directive.

5.2.1.4 The PAGE Directive
You can use the PAGE directive to cause $MJOB to advance the metajob
listing to a new page and print a header. You code:

PAGE ["character-string"]

The optional character-string may be supplied to change the title of
the listing (which is initially taken from the MJOB directive). If a
title is specified it will appear in all subsequent page headings
until a PAGE statement is met which contains a new title.

5.2.1.5 The ENDJOB Directive
The ENDJOB directive must be coded at the very end of the metajob
description. Normally it should be preceded by an EXIT or JUMP
statement to transfer control to some other point within the metajob.
However, if such a statement is not present $MJOB will automatically
implant an EXIT statement to prevent the interpreter accessing
information beyond the end of the file.

Name

Operands

Reference

Size

IF string-1 [string-2] 5.2.3.1 24/32
ELSE 5.2.3.1 32
END 5.2.3.1 16
SECTION name 5.2.3.2 16
PERFORM name 5.2.3.3 16
EXIT 5.2.3.3 8
JUMP name 5.2.3.4 16

SUPPRESS 5.2.4.1 8
VERIFY [OFF] 5.2.4.2 8/16
INPUT [volume-id] unit-id 5.2.4.3 16/24
OUTPUT [volume-id] unit-id 5.2.4.3 16/24
COMMAND [OFF] 5.2.4.4 8/16

SERIAL [number] [expiry date] 5.2.5.1 8/16/24
PROTECT file-id 5.2.5.2 16
COPY [file-id] [file-

id|size|<GROUP>]
5.2.5.3 8/16/24

LOAD 5.2.5.4 8
INSTALL file-id unit-address 5.2.5.5 24
PATCH file-id SYSRES-address

stack/bank
5.2.5.6 32

ALLOCATE file-id size 5.2.5.7 24
MOUNT 5.2.5.8 8
CHECK 5.2.5.9 8
DELETE file-id|selection 5.2.5.10 16
INIT [volume-id] 5.2.5.11 8/16

LIBRARY file-id [size] 5.2.6.1 16/24

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 87 of 154

OLDLIB OLDLIB | file-id [size] 5.2.6.2 16/24
MERGE file-id [name|<volume-id>] 5.2.6.3 16/24
TAG Identifier 5.2.6.4 16
INVOL volume-id [unit-id] 5.2.6.5 16
ENDLIB 5.2.6.6 8
EXTRACT library-id member 5.2.6.7 24

RUN [program-id] 5.2.7.1 8/16
RESPOND response (up to 64 chars) 5.2.7.2 8+length
MESSAGE message (up to 64 chars) 5.2.7.3 8+length
PAUSE message (up to 64 chars) 5.2.7.4 8+length

SET parameter [value] 5.2.8.1 16/24
MASK parameter mask 5.2.8.2 16/24

Table 5.2.2 Metajob Description Statements

5.2.2 Statements, Parameters and Operands
Table 5.2.2 lists the available metajob statements, showing the names
and the values of the zero, one, two or three operands that the
statement takes. The name must be the first significant information on
the statement line, and it must be separated from the operands (if
any) by one or more blanks and tabs. The name or last operand may
optionally be followed by one or more blanks and tabs and then an
asterisk introducing a comment.

The table shows the statements divided into groups, each of which is
described in a separate section below. This section itself explains
the general conventions applying to parameters and operands which
affect every type of statement.

The column in Table 5.2.2 indicates the size of each statement; this
varies in multiples of 8 as operands are included or omitted.

5.2.2.1 User Parameters
There are 35 user parameters known as &1,...&9,&A...,&Z. That is, the
parameter name is made up from the &-character concatenated with
either a digit other than 0, or an upper case letter. Each parameter
references a unique 8-byte field whose value can be determined by your
metajob initiator. Parameters can be coded in the operands of
statements so that they vary in accordance with information set up by
the initiator.

Although a parameter's value is stored in a 8-byte field, its
effective length may be between 0 and 8 bytes, since an ASCII blank is
considered to terminate the parameter. A parameter whose value does
not contain a blank is considered to be the full 8 bytes in length. On
the other hand, one whose value starts with a blank is 0 bytes long.
Such a parameter is said to be null (or undefined).

If a parameter value needs to contain one or more embedded blanks,
these must be represented by @ characters, which are converted to
spaces by job management. An @ character itself cannot be supplied as
dialogue.

5.2.2.2 The Mode Parameter, &0
The mode parameter, &0, is similar to a user parameter in as much as
it can assume an 8-byte value. However it is currently constrained to

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 88 of 154

one of three valid values: MJOB; MJOB1; or MJOB2. These are used to
determine whether the metajob runs live or in one of two test modes.

When the mjob file is built &0 is set to MJOB, and if this value is
unchanged the metajob operates in live mode, using the JOB$ system
routine to generate dialogue which is eventually actioned.

The initiator may change the mode parameter to either MJOB1 or MJOB2
to cause the metajob to run in a test mode in which JOB$ is not used.
Instead, the metajob statements to be executed are listed on file
L.$MRUN on $PR, the standard printer.

The difference between MJOB1 and MJOB2 modes is that in the first case
only the metajob statements themselves are listed, while in the second
case the dialogue which the statements would generate is printed as
well. The examples in appendices A4 and A5 are listings output in
MJOB2 mode.

Note that if you attempt to execute a metajob and &0 does not contain
one of the permissible values MJOB, MJOB1 or MJOB2 your job will
terminate in error.

5.2.2.3 Operands
A statement may contain zero, one, two or three operands. An operand
is made up of a combination of non-blank ASCII graphic characters and
parameters. It is separated from the statement name, another operand
or a comment by one or more blanks or tabs. A maximum of 8 characters
or parameters may be specified as an operand: if more characters or
parameters are present they will simply be ignored. For example, the
following are all maximum size operands:

&A&B&C&D&E&F&G&H

&A&BCDEF&G&H

ABCDEFGH

When a parameter is coded, its actual value will be substituted when
the operand is evaluated by the metajob interpreter, $MRUN. A null
parameter, zero bytes in length, will effectively be ignored. In
addition, only the first 8 characters of the operand resulting from
parameter substitution will be used. Thus, suppose, for the operands
coded above, the parameters were defined as follows:

&A = 12
&B = 3
&H = 456
others = null

Then the first operand would evaluate as 123456, the second as
123CDEF4, and the third, which contains no parameters, would remain as
ABCDEFGH.

An omitted operand, or one which is made up entirely of null
parameters, is known as a null operand.

The operand of a MESSAGE or RESPOND statement is treated differently.
It can be up to 64 characters long and can contain spaces. It is
terminated by the end of the line, or by the start of a comment,
trailing spaces being ignored.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 89 of 154

5.2.2.4 Operand Restrictions and &*
Because of the way the & character is used to identify parameters,
this character cannot be used in isolation within an operand.

You should note, too, that an operand cannot begin with an asterisk,
since if it does, it will be taken to be a comment. However, you may
code the special sequence &* in place of the asterisk character. This
has the value * when the operand is evaluated.

Thus, for example, if you need to run the command $CLIENT from the
unit assigned to $P you should code the statement:

RUN &*CLIENT

The operand evaluates to *CLIENT and the statement (explained later in
5.2.7.1) generates the dialogue:

:<ESCAPE>
GSM READY:*CLIENT

to run $CLIENT from $P.

5.2.3 Structural Programming Statements
The statements described in this section do not (usually) cause
dialogue to be generated but instead allow you to write a metajob
using conventional conditional structures and performed subroutines.

5.2.3.1 Conditional Structures
Conditionals are created using the IF, ELSE and END statements using
the following familiar format:

IF condition
.
. (statements to be executed if the condition is true)
.
[ELSE
.
. (statements to be executed if the condition is false)
.]
END

Conditional structures may be nested, for example:

IF condition 1
IF condition 2

.

. (statements executed if condition 1 and condition 2 are
both true)
.

END
ELSE

IF condition 3
.
. (statements executed if condition 1 is false and
condition 3 true)
.

ELSE
.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 90 of 154

. (statements executed if condition 1 is false and
condition 3 is false)
.

END
END

The maximum depth of nesting is 32 levels.

The condition may consist of either one or two operands. If the first
operand is null, the condition is false. If the second operand is null
or omitted, and the first is not null, then the condition is true.
Otherwise, the condition is true if and only if the character string
represented by the second operand is contained within the character
string corresponding to the first operand. In particular, if the two
operands are the same length (and not null) the condition is true if
they are equal, and false otherwise.

In the following example, &M is null if a single user system is being
installed, or MU for a multi-user system. The effect is to copy the
appropriate monitor, $MONITOR or $MONITMU, from the input volume to
the output volume. (The COPY statement itself is explained later: the
example is to illustrate a conditional structure used in conjunction
with parameter evaluation.)

IF &M
COPY $MONIT&M

ELSE
COPY $MONITOR

END

The test could also have been coded:

IF &M MU

although this would generate 8 bytes more metajob.

This second, simple example sets verification on, using the VERIFY
statement, if the parameter &V, which contains a single digit, is 1, 2
or 4:

IF 124 &V
VERIFY

END

The final example writes the message ONE ON, BOTH ON or NONE ON,
depending on whether one, both or neither of &A and &B are non-null:

IF &A
IF &B

MESSAGE BOTH ON
ELSE

MESSAGE ONE ON
END

ELSE
IF &B

MESSAGE ONE ON
ELSE

MESSAGE NONE ON
END

END

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 91 of 154

5.2.3.2 Sections and Paragraph Names
A metajob can be subdivided into any number of self-contained,
individually named sections using the SECTION statement. This takes
one compulsory operand, the section name. You simply code:

SECTION name

You can insert paragraph names by coding name., thus:

name.

Like any other operand, the name can be up to 8 characters in length.
However, unlike any other type of operand the name used in a SECTION
statement or paragraph name should not contain parameters, since it
cannot vary dynamically. Each name must be unique, not previously used
in a SECTION statement or paragraph name.

A section is considered to be delimited by another SECTION statement
or the ENDMJOB directive. Conditional structures should not span
sections.

5.2.3.3 Subroutining using PERFORM and EXIT
The PERFORM and EXIT statements allow you to execute the statements
introduced by a SECTION statement as a subroutine. You code:

PERFORM name

to pass control to the section of the same name. The name operand
following the PERFORM statement may contain parameters, but when
evaluated the operand must match a section name, or $MRUN will
terminate in error. For example, suppose a metajob contains two
essentially different processes, defined in SECTION DIST and SECTION
INST. Let &P be a parameter, set to either DIST or INST by the
initiator to select the required process. Then the statement:

PERFORM &P

coded at the very start of the metajob can be used to route control to
the required section.

The EXIT statement is coded to return control to the next sequential
statement following the last outstanding PERFORM. Just as in Global
Cobol, the metajob interpreter, $MRUN, remembers the address of the
statement following each PERFORM in an internal stack which is pushed
down whenever a PERFORM is interpreted. When an EXIT is processed the
top item in the stack is used to determine the statement to which
control is to be returned. This stack item is then made available for
re-use and the stack contents are 'popped up'. The maximum number of
outstanding PERFORMs that can be remembered in this way is 16.

An EXIT statement issued from the very highest level of control, where
there is no outstanding PERFORM, generates the dialogue terminator:

ENDJOB

which, in live mode, causes the entire dialogue so far constructed by
the metajob to be actioned. In test mode, where the dialogue has only
been printed, the highest level EXIT statement simply causes the test
run to terminate.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 92 of 154

An EXIT (or JUMP) statement should normally be coded immediately
before the ENDMJOB directive, but if you forget to do this the metajob
file builder will generate an EXIT statement for you automatically.

It is usual for an EXIT statement to terminate a section physically as
well as dynamically, so you will normally code an EXIT instruction
immediately prior to the next SECTION statement.

This is not, however, an absolute requirement, and indeed several
SECTION statements may appear without intervening EXIT statements to
provide, in effect, a subroutine with multiple entry points. For
example:

SECTION A+B+C
.
. group A statements
.
SECTION B+C
.
. group B statements
.
SECTION C
.
. group C statements
.
EXIT

Assume there are no JUMP statements present. Then when SECTION A+B+C
is performed, the group A, then the group B and finally the group C
statements are executed. Control 'drops through' the statements
SECTION B+C and SECTION C, which have no effect.

5.2.3.4 The JUMP Statement
The JUMP statement is equivalent to the Global Cobol GO TO, and can be
used to pass control to a section or paragraph name without affecting
the stack used by PERFORM and EXIT statements. In structured
programming JUMP should be employed sparingly if at all. However, the
statement has its uses, particularly in multiple entry point routines.
It is coded simply as:

JUMP name

where name, which may be parameterised, evaluates to a section or
paragraph name.

5.2.3.5 Subroutine Example
The following skeleton shows how a metajob performing the two
processes DIST and INST might be structured, assuming that these share
a common routine SUBR:

JOB EXAMP SUBROUTINE SKELETON
PERFORM &P * DIST OR INST
EXIT * END JOB

SECTION DIST
.

PERFORM SUBR
.

EXIT * RETURN TO CALLER

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 93 of 154

SECTION INST
.

PERFORM SUBR
.

EXIT * RETURN TO CALLER

SECTION SUBR

EXIT * RETURN TO CALLER
ENDMJOB

5.2.4 Dialogue Control Statements
The statements described in this section generate no dialogue
themselves, but instead control the dialogue resulting from other
statements.

5.2.4.1 The SUPPRESS Statement
The SUPPRESS statement should be coded if the dialogue resulting from
the metajob is to run in suppressed mode. If this is required a
SUPPRESS must be executed before any statement which generates
dialogue. This will cause the resulting dialogue to begin with the
division header:

DIALOGUE DIVISION (SUPPRESS)

Normally, if no SUPPRESS is encountered before the first dialogue
generating statement, the division header will be simply:

DIALOGUE DIVISION

Note that if a SUPPRESS statement is met after a statement generating
dialogue, $MRUN will terminate in error.

5.2.4.2 The VERIFY Statement
A VERIFY statement can be used at any point in a metajob to set the
verification flag on or off. (The flag is off at the very start.) You
code either:

VERIFY (to turn the flag on)
or:

VERIFY OFF (to turn it off)

If the single operand of the instruction is anything apart from the
word OFF, the flag will be turned on as though a VERIFY by itself had
been coded.

When the verification flag is on, the COPY and MERGE statements
(explained later) generate additional dialogue to compare the new
files or members copied or merged onto the output volume with the
originals on the input volume. You can contrast the expansion of the
COPY and MERGE statements in Appendix A4, where verification is on,
with those in Appendix A5, where it is off, to see the additional
dialogue which results.

5.2.4.3 The INPUT and OUTPUT Statements
The INPUT and OUTPUT statements are used to establish the volume-id
and unit-id for the input and output volumes. They are coded:

INPUT [volume-id] unit-id
or:

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 94 of 154

OUTPUT [volume-id] unit-id

For example:

INPUT 100
OUTPUT SYSRES $CP

The statements generate no dialogue themselves, but cause the
interpreter to remember the relevant volume and unit information so
that when the next file utility, LIBRARY, or MERGE statement is
processed the appropriate units are employed for input and output
devices. If a volume-id is supplied, then dialogue to perform volume-
id checking will also be generated.

INPUT and OUTPUT statements may be coded at any point within a
metajob, apart from within a library group (a set of statements
introduced by a LIBRARY statement and terminated by an ENDLIB). They
must have been used to establish the input and output units before the
first file utility or LIBRARY statement is executed, otherwise $MRUN
will terminate in error.

5.2.4.4 The COMMAND Statement
The COMMAND statement can be used at any point in a metajob to cause
the unit from which $F and $LIB are loaded to be changed from $P (the
initial default) to $CP or vice versa. You code either:

COMMAND (to load from $CP)
or

COMMAND OFF (to load from $P).

Note that this statement only affects loadings of $F and $LIB that are
generated automatically by the statements described in sections 5.2.5
and 5.2.6. It does not affect explicit loading of commands by RUN or
RESPOND statements.

5.2.5 File Utility Statements
The statements described in this section all generate dialogue for the
file utility command, $F. They may be coded anywhere within the
metajob apart from within a library group (a set of statements
introduced by a LIBRARY statement and terminated by an ENDLIB).

If a file utility statement is encountered but $F is not in control,
an <ESCAPE> response to obtain a ready prompt, followed by an *F or $F
response to run $F from the program residence or system device
(according to whether a COMMAND statement is in force), is generated.
Then input and output unit information as established by the INPUT and
OUTPUT statements is used to satisfy the input and output device
prompts. Next I and O instructions may be employed to check input and
output volume-ids. Only then will the dialogue associated with a
particular statement, as documented below, be generated. (The
preliminary dialogue that may occur is defined in detail in the
description of the MOUNT statement in 5.2.5.8 below.)

Note that each file utility statement eventually returns the dialogue
to $F's instruction prompt:

$66 FILE MAINTENANCE

5.2.5.1 The SERIAL Statement

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 95 of 154

There are three variants of the COPY statement which generate the file
utility's SER instruction to establish a product serial number and
optional expiry date. You code:

(A) SERIAL
or:

(B) SERIAL number
or:

(C) SERIAL number expiry-date

Variant (A) is used to establish a serial number of 0 with no expiry
date, so that template, or free, files may be produced. The dialogue
generated is:

:SER :<CR>
$66 FILE MAINTENANCE
:

Variant (B) is used to establish a product serial number without an
expiry date. The dialogue generated is:

:SER :number EXP:<CR>
$66 FILE MAINTENANCE

:

Variant (C) is used to establish both a product serial number and an
expiry date. The dialogue generated is:

:SER :number EXP:expiry-date
$66 FILE MAINTENANCE
:

5.2.5.2 The PROTECT Statement
The PROTECT statement generates the file utility's FIF statement to
fix the serial number and optional expiry date on a single file of the
output volume. You code:

PROTECT file-id

and the resulting dialogue is:

:FIF :file-id FIXED
$66 FILE MAINTENANCE
:

5.2.5.3 The COPY Statement
There are six different variants of the COPY statement which allow you
to generate the appropriate dialogue based on the file utility's COP
instruction to copy a single file, possibly renaming it or changing
its size, or to copy a selection or a group of files. You code:

(A) COPY file-id
or:

(B) COPY file-id new-file-id
or:

(C) COPY file-id new-size
or:

(D) COPY selection-code
or:

(E) COPY file-id <GROUP>
or:

(F) COPY

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 96 of 154

The first three variants generate dialogue of the form:

:COP :file-id TO:new-file-id|CR SIZE:new-size|<CR> COPIED
$66 FILE MAINTENANCE
:

This results in the copying of a single file, whose file-id will be
changed if variant (B) is used, or whose size will be altered with
variant (C). It is not possible to alter both the size and the file-id
at the same time, and furthermore the new file-id may not consist
entirely of digits, since if it did the statement would be assumed to
be variant (C). Similarly, the new file-id must not be the reserved
word <GROUP>, since this identifies variant (E).

Variant (D) is used to copy a selection of files identified by means
of a selection code which is either:

. meaning copy all unprefixed files
or:

.xxxxxx meaning copy all files with suffix xxxxxx
or:

x. meaning copy all files with prefix x.

The dialogue generated when this variant is used is of the form:

:COP :selection-code
first selected file:<CTRL B> COPIED

.

.(other selected files automatically copied)

.
$66 FILE MAINTENANCE
:

Variant (E) is used to copy a group of files. The group begins with
the file-id specified by the first operand, and terminates when either
the end of the volume is reached or a marker file, whose file-id
begins with two + signs, is encountered. If the starting file-id is
itself a marker it is copied normally and not used to terminate the
selection. The dialogue generated is of the form:

:COP :<CTRL C> FROM:file-id
.
.(list of copied files)
.
$66 FILE MAINTENANCE
:

Variant (F) is used to copy all files of the input volume. The
dialogue generated is:

:COP :<CTRL B>
.
.(list of copied files)
.
$66 FILE MAINTENANCE
:

Note that if the verification flag has been set on by a previous
VERIFY instruction, each variant will also generate similar additional
dialogue using the file utility's CFI instruction to compare the file,
selection or group created on the output volume with the original.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 97 of 154

5.2.5.4 The LOAD Statement
The LOAD statement generates the file utility's LOA instruction to
load the file utility extension, $FX, which contains the logic for the
INS and PAM instructions. You code:

LOAD

and the resulting dialogue is:

:LOA EXTENSION LOADED
$66 FILE MAINTENANCE
:

This statement must be issued before an INSTALL or PATCH statement is
attempted, otherwise $MRUN will be terminated in error.

Furthermore, you must ensure that the file utility remains loaded from
the time the LOAD is executed until the last INSTALL or PATCH
requiring the extension takes place. (The LOA instruction requires
that $FX is present on the unit from which the file utility itself was
loaded.)

5.2.5.5 The INSTALL Statement
The INSTALL statement generates the file utility's INS instruction to
install a physical bootstrap on the output volume, using an install
file and a bootstrap file from the input volume. You must specify the
file-id of the install file and the unit address of the volume upon
which it will reside at bootstrap time. You code:

INSTALL file-id unit-address

and the resulting dialogue is:

:INS :file-id SYSINS UNIT:unit-address INSTALLED
$66 FILE MAINTENANCE
:

An INSTALL statement should only be executed after a previous LOAD
statement has loaded the file utility extension.

5.2.5.6 The PATCH Statement
The PATCH statement generates the file utility's PAM instruction to
patch a monitor file on the output volume with the unit address of the
system residence device and a code letter (S or T) which indicates
whether the monitor is to be used as part of the starter or target
bootstrap procedure. The third parameter contains the system stack
size and optional minimum memory bank size to use in the form:

sssss/bb (specific sizes)
or:

sssss (specific stack size, default bank size)
or:

0/bb (default stack size, specific bank size)

You code:

PATCH monitor-file-id unitx stack/bank

(where unitx is the system residence device unit address concatenated
with S or T - e.g. 114T) and the resulting dialogue is:

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 98 of 154

:PAM :monitor-file-id SYSRES:unitx STACK/BANKS:stack/bank
$66 FILE MAINTENANCE

A patch statement should only be executed after a previous LOAD
statement has loaded the file utility extension.

5.2.5.7 The ALLOCATE Statement
The ALLOCATE statement generates the file utility's ALL instruction to
create a dummy file on the output volume, with a specified file-id and
size. The dummy file has relative sequential organisation, with a
record length of one byte. You code:

ALLOCATE file-id size

and the resulting dialogue is:

:ALL :file-id SIZE:size RECORD LENGTH:1 ALLOCATED
$66 FILE MAINTENANCE
:

5.2.5.8 The MOUNT Statement
You use the MOUNT statement when you require the file utility to
perform volume-id checking on the input or output volume following an
INPUT or OUTPUT statement, but do not wish to generate any other file
utility instruction. (MOUNT is unnecessary if one of the statements
described earlier in this section is to be used, since, as explained
in the introduction, each such statement automatically produces the
necessary preliminary dialogue if it is required.)

Suppose the file utility to be in control. Then, for example, the
statements:

INPUT input-volume-id input-unit-id
MOUNT

result in the dialogue:

$66 FILE MAINTENANCE

:<CR>
$66 INPUT DEVICE:input-unit-id
$66 OUTPUT DEVICE:output-unit-id
$66 FILE MAINTENANCE
:IO :input-volume-id :output-volume-id
$66 FILE MAINTENANCE
:

In this, the output-unit-id has been remembered from the last OUTPUT
statement. To take a more complicated example, assume the file utility
not to be in control. Then the statements:

INPUT input-unit-id
OUTPUT output-volume-id output-unit-id
MOUNT

result in:

:<ESCAPE>
GSM READY:*F

$66 INPUT DEVICE:input-unit-id
$66 OUTPUT DEVICE:output-unit-id
$66 FILE MAINTENANCE
:O :output-volume-id
$66 FILE MAINTENANCE

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 99 of 154

:

You should note that a single INPUT or OUTPUT statement will give rise
to at most one I, O or IO instruction for the file utility, since
internal input and output volume change flags control the generation.
The appropriate flag is set on when the INPUT or OUTPUT statement is
processed, and turned off when the associated dialogue is generated.

5.2.5.9 The CHECK Statement
The CHECK statement generates the file utility's VER instruction to
verify that every sector on the output volume is readable. You code:

CHECK

and the resulting dialogue is:

:VER volume-id VERIFIED
$66 FILE MAINTENANCE
:

5.2.5.10 The DELETE Statement
The DELETE statement generates the file utility's DEL instruction to
delete either a single file, or a selection, from the output volume.
You code either:

(A) DELETE file-id
or:

(B) DELETE selection-code

where in variant (B) the selection code is one of:

. meaning delete all unprefixed files

or:
.xxxxxx meaning delete all files with suffix xxxxxx

or:
.x meaning delete all files with prefix x.

The resulting dialogue from variant (A) is simply:

:DEL :file-id DELETED
$66 FILE MAINTENANCE

 :

and that from variant (B) is:

:DEL :selection code<CTRL B>
.

 . (list of selected files, automatically deleted)

 .
 $66 FILE MAINTENANCE
 :

5.2.5.11 The INIT Statement
There are two different variants of the INIT statement which can be
used to set up an empty volume with a given volume-id. This is
accomplished by means of a file utility SCR operation, followed by an
optional CHA instruction to change the volume-id, if required.
Therefore INIT, despite its name, cannot modify the access option,
which is fixed at some previous time when the volume in question was
initialised by $V. The two variants of INIT are:

(A) INIT

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 100 of 154

(B) INIT volume-id

Variant (A) simply generates a SCR instruction, leaving the existing
volume-id unchanged:

:SCR existing-volume-id?:Y SCRATCHED
$66 FILE MAINTENANCE
:

Variant (B) follows the scratch operation by a CHA instruction to
change the volume-id:

:SCR existing-volume-id?:Y SCRATCHED
$66 FILE MAINTENANCE
:CHA existing-volume-id TO:volume-id CHANGED
$66 FILE MAINTENANCE
:

5.2.6 Librarian Statements
The statements described in this section all generate dialogue for the
librarian command, $LIB. The LIBRARY and OLDLIB statements identify a
target output library and begin what is known as a library group. The
group will contain other instructions used to add, replace or delete
members of the target library. Eventually it will terminate with the
ENDLIB statement, which will close the target library.

The MERGE, TAG, INVOL, STOW and ENDLIB instructions described below
can only be coded within a library group. An attempt to execute one of
them from outside a group, when there is no outstanding LIBRARY
instruction, will lead to $MRUN terminating in error.

You should note that the INPUT and OUTPUT statements, together with
the file utility statements, cannot be executed within a library
group. You will normally, in fact, only use the statements described
in this section within the group, together with the structured
programming statements. In addition you may code the VERIFY, MESSAGE
and RESPOND statements should you so wish.

With the exception of the ENDLIB and EXTRACT statements, each
librarian statement leaves the dialogue at the $95 LIBRARY MAINTENANCE
prompt. ENDLIB leaves it at the $95 TARGET LIBRARY prompt.

The EXTRACT runs $LIB in a different mode, without an output library,
to extract members from input libraries. It cannot be coded within a
library group.

5.2.6.1 The LIBRARY Statement
You use the LIBRARY statement to create a new library with a specified
file-id on the output volume. This library is initially allocated the
maximum amount of contiguous space available, but the space is reduced
by a CLOSE TRUNCATE when the dialogue generated by the terminating
ENDLIB statement is actioned. An optional second operand of the
LIBRARY statement allows you to specify the number of bytes of free
space to be left in the library when it is closed, or STUBS to leave
spaces for stubs, or MAX to leave the maximum free space. You code:

LIBRARY file-id [size|STUBS|MAX]

The resulting dialogue depends on whether or not the librarian is
already in control, and whether or not an OUTPUT statement is

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 101 of 154

outstanding. In the worst case, when $LIB needs to be loaded from the
unit assigned to $P, the dialogue is:

:<ESCAPE>
GSM READY:*LIB
$95 TARGET LIBRARY:<CTRL C> VOLUME-ID:output-volume-id
$95 TARGET LIBRARY:file-id UNIT:output-unit-id
$95 NEW?:Y SIZE:<CR>
$95 LIBRARY MAINTENANCE
:I input-volume-id

$95 LIBRARY MAINTENANCE
:

The first two lines, which load the librarian, will not be generated
if it is already in control, and the third line, which checks the
output volume-id, will only be present if an OUTPUT statement is
outstanding. The output-unit-id used in the fourth line is that
established by the previous OUTPUT statement. The size operand is not
employed in this dialogue, but is remembered for use by the ENDLIB
statement.

Note that $MRUN will terminate in error if a LIBRARY statement is
attempted before both the input and output volumes have been
established by INPUT and OUTPUT. An error will also result if two
LIBRARY or OLDLIB statements are encountered without an intervening
ENDLIB.

5.2.6.2 The OLDLIB statement
You use the OLDLIB statement to update an existing library with a
specified file-id on the output volume. An optional second parameter
allows you to specify a size which is the number of bytes of free
space to be left in the library when it is closed, or STUBS to leave
space for stubs. You code:

OLDLIB file-id [size|STUBS]

The resulting dialogue depends on whether or not the librarian is
already in control, and whether or not an OUTPUT statement is
outstanding. In the worst case, when $LIB needs to be loaded from the
unit assigned to $P, the dialogue is:

:<ESCAPE>
GSM READY:*LIB
$95 TARGET LIBRARY:<CTRL C> VOLUME-ID:output-volume-id
$95 TARGET LIBRARY:file-id UNIT:output-unit-id
$95 PROCESS library-title?:Y
$95 LIBRARY MAINTENANCE
:I input-volume-id
$95 LIBRARY MAINTENANCE

:

The first two lines, which load the librarian, will not be generated
if it is already in control, and the third line, which checks the
output volume-id, will only be present if an OUTPUT statement is
outstanding. The output-unit-id used in the fourth line is that
established by the previous OUTPUT statement. The second operand is
not employed in this dialogue, but is remembered for use by the ENDLIB
statement.

Note that $MRUN will terminate in error if an OLDLIB statement is
attempted before both the input and output volumes have been
established by INPUT and OUTPUT. An error will also result if two

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 102 of 154

LIBRARY or OLDLIB statements are encountered without an intervening
ENDLIB.

5.2.6.3 The MERGE statement
There are three variants of the MERGE statement which allow you to
generate the appropriate dialogue, based on the librarian's MER or OFF
instructions, to merge the contents of a library, or just a single
member, into the target library, or introduce stubs for a library of
members which will be offline when the target library is resident:

(A) MERGE file-id
or:

(B) MERGE file-id name
or:

(C) MERGE file-id <volume-id>

In variant (A) the MER instruction is generated to include every
member of the library whose file-id you supplied:

:MER FROM UNIT:input-unit-id
$95 FILE:file-id MEMBER:<CTRL B>
.
. (list of included members)
.
$95 LIBRARY MAINTENANCE
:

In variant (B), the MER instruction is used to include just the single
member you named in the MERGE statement's second operand. To prevent
confusion with variant (C) this name must not begin with a < character
and end with a > character. The resulting dialogue is:

:MER FROM UNIT:input-unit-id
$95 FILE:file-id MEMBER:name INCLUDED
$95 LIBRARY MAINTENANCE
:

In variant (C), if the volume-id is the same as the current output
volume, as specified in the last OUTPUT statement, then dialogue as
for variant (A) is generated, to merge every member of the library.
Otherwise the OFF instruction is generated to indicate that the
members currently contained in the program library you have specified
will be offline, on the volume whose name you have supplied in angle
brackets, when the target library is resident:

:OFF UNIT:input-unit-id ON VOLUME:volume-id
$95 FILE:file-id MEMBER:<CTRL B>
.

. (list of stubs introduced)

.
$95 LIBRARY MAINTENANCE
:

Alternatively, variant (C) can be used to indicate that a single
program, held as an individual file, will be offline, on the volume
you have specified, when the target library is resident. The same
responses are generated, but the dialogue appears differently, since
the file-id specified as the first parameter is not a library-id:

:OFF UNIT:input-unit-id ON VOLUME:volume-id
$95 FILE:file-id ON volume-id
$95 LIBRARY MAINTENANCE
:<CTRL B>
$95 LIBRARY MAINTENANCE

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 103 of 154

:

The input-unit-id provided as a response to the unit prompt in all
cases is remembered from the previous INPUT statement. Variants (A)
and (B) will generate similar additional dialogue, using the COM
instruction in place of MER, if the verification flag has been set on
by a previous VERIFY statement.

5.2.6.4 The TAG Statement
The TAG statement is used to replace the first 8 bytes of the target
library title with an identifier specified by its first operand. You
code:

TAG identifier

and the resulting dialogue is:

:CHA existing library-id NEW LIBRARY-ID:<CR>
$95 OLD TITLE existing-title

$95 NEW TITLE:identifier<CTRL A>
$95 LIBRARY MAINTENANCE
:

The existing library title will have been determined from the title of
the first library input by a MERGE statement. Trailing spaces within
the identifier will be replaced by @-characters in order that the
first 8 bytes of the title are overwritten by the dialogue in line 3.

The TAG statement should immediately follow a MERGE statement
(although there may be intervening structured programming statements),
otherwise $MRUN will be terminated in error.

5.2.6.5 The INVOL Statement
The INVOL statement allows you to change the input volume and unit
from within a library group. (Remember you cannot use the INPUT and
OUTPUT statements.) You code:

INVOL volume-id [unit-id]

and the dialogue:

:I :volume-id

is generated so that $LIB performs volume-id checking on the input
volume, and ensures that the target library is still mounted. If you
specify a unit-id, that will be used for subsequent input files,
otherwise if omitted the current input unit remains in force.

5.2.6.6 The ENDLIB Statement
The ENDLIB statement is used to terminate a library group and close
the output library. Following it you may employ another LIBRARY or
OLDLIB statement to create an additional output library, or use file
utility statements or other statements, such as INPUT or OUTPUT, which
are not allowed within a library group. You simply code:

ENDLIB

resulting in the following dialogue:

:TRU NEW SPARE SPACE:size|<CR>|<CTRL B>
$95 LIBRARY MAINTENANCE
:END

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 104 of 154

$95 TARGET LIBRARY:

If you specified the size in bytes of the spare space required in the
LIBRARY or OLDLIB statement which introduced the group, this value
will be used in the first line of the dialogue. If you specified STUBS
then a reply of <CTRL B> is supplied to leave just enough space to
fill the library index with stubs, to a total of 100 members. If you
specified MAX then the library will not be truncated. Otherwise, if
the library was opened using an OLDLIB statement it will be left at
its original size, and if opened by a LIBRARY statement it will be
truncated to have no spare space.

5.2.6.7 The EXTRACT Statement
The EXTRACT Statement is used to extract a single named member from a
library. You code:

EXTRACT Library-id member

If the previous instruction was not an extract, then $LIB is loaded
using the dialogue:

:<ESCAPE>
GSM READY:$LIB
$95 TARGET LIBRARY:<CR>
$95 LIBRARY MAINTENANCE

The dialogue to extract the member is:

:EXT LIBRARY:library-id UNIT:input-unit
$95 EXTRACT:member TO:<CR> UNIT:output-unit

5.2.7 Dialogue Extension Statements
The statements described in this section allow you to generate
dialogue for programs other than $F and $LIB.

5.2.7.1 The RUN Statement
When the RUN statement is coded with no operands:

RUN

an <ESCAPE> response is generated which will normally result in the
Global Cobol monitor displaying its ready prompt. Alternatively an
operand may be supplied:

RUN program-id

resulting in the dialogue:

:<ESCAPE>
GSM READY:program-id
some prompt:

The RUN statement can therefore be used to run any program or command,
or if no parameter is specified, to obtain the ready prompt. It should
not be coded within a library group, otherwise $MRUN will terminate in
error.

5.2.7.2 The RESPOND Statement
The RESPOND statement is used to generate a response, or series of
responses, of up to 64 bytes in length. It is coded as:

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 105 of 154

RESPOND response

and simply generates the dialogue:

:response

RESPOND, which may be coded anywhere within a metajob, is usually used
in conjunction with RUN to construct dialogue which cannot be
generated using the standard metajob statement. For example, the
sequence:

RUN $A
RESPOND $PR :&P

will, if &P is 500, result in the following dialogue when the metajob
containing it is actioned:

:<ESCAPE>
GSM READY:$A

$69 UNIT:$PR ADDRESS:500
$69 UNIT:

Note that the second and subsequent responses must start with a colon.
If a response contains a space, it must be coded as an @ sign, unless
it is one of the special control responses, such as <CTRL A>. Thus for
example, you might code:

RESPOND V6.1@PROGRAM@LIBRARY
or:

RESPOND DEL :B.<CTRL B>

5.2.7.3 The MESSAGE Statement
The MESSAGE statement generates the dialogue to display a message,
which appears irrespective of whether or not a SUPPRESS statement has
been executed. You code:

MESSAGE message

resulting in the dialogue:

+message+

The message may be up to 64 characters long.

5.2.7.4 The PAUSE Statement
The PAUSE statement generates dialogue to display a message and then
wait until <CR> is keyed. The message is displayed irrespective of
whether or not a SUPPRESS statement has been executed. You code:

PAUSE message

which results in the dialogue

-message-

The message may be up to 64 characters long.

5.2.8 Parameter Manipulation Statements
The statements described in this section allow you to set a parameter
to a value, and to delete characters from an operand. In particular,

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 106 of 154

if you have a group of statements which are to be executed several
times using different parameters, you can code them as a subroutine,
using some spare 'work' parameters, and set up the work parameters
before calling the routine.

5.2.8.1 The SET Statement
The SET statement copies the value of the second operand to the
parameter specified as the first operand. It is coded as:

SET parameter [value]

where the first operand must be a single parameter.

For example, if subroutine A runs $A to assign &1 to &2, then you
could call it to assign $PR to &P by coding:

SET &1 $PR
SET &2 &P
PERFORM A

In practice, the subroutine would have to be more complex than this to
justify using this technique.

If the second operand is omitted, the parameter is set to null.

5.2.8.2 The MASK Statement
The MASK statement removes all except the bytes specified by a mask
from a parameter, resulting in the parameter containing the selected
value. It is used to economise on the number of parameters needed, by
allowing several short parameters to be combined. It is coded as:

MASK parameter mask

where the first operand is a single parameter, and the mask is a
string of up to 8 characters. Only characters in the parameter which
correspond to a 'Y' in the mask are selected.

For example, if &A contains a 3 character unit-id followed by a 3
character unit-address, you could use $A to make the assignment by
coding:

SET &1 &A
MASK &1 YYY
SET &2 &A
MASK &2 NNNYYY
RUN $A
RESPOND &1 :&2

Parameters &1 and &2 are assumed to be available as work parameters.

5.3 The Metajob File Builder ($MJOB)
The $MJOB command is used to create a metajob file from a metajob
description and produce a metajob listing. The metajob file is a
Global Cobol program file containing the parameter value area,
together with encoded metajob statements, which loads at locations
#5000 onwards. The metajob listing is simply an annotated print-out of
the description, which may contain warning or error messages if the
latter is suspect or faulty. If errors are found no metajob file is
produced.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 107 of 154

5.3.1 The Metajob Description Prompt
MJOB begins by prompting you for the file-id and unit of the metajob
description to be processed. If you do not explicitly key a prefix
when you input the file-id, $MJOB will assume that the file is
conventionally named and will append the S. prefix by default. For
example:

GSM READY:$MJOB

$700 MJOB DESCRIPTION:EXMJOB UNIT:204
$700 MJOB FILE:

indicates that the operator wishes to process metajob description
S.EXMJOB on unit 204.

5.3.2 To Quit
To quit and return control to the monitor, simply key <ESCAPE> to any
prompt output by $MJOB.

5.3.3 The Metajob File Prompt
When the metajob description has been specified you will be prompted
for the file-id and unit-id of the metajob file to be produced. For
example:

$700 MJOB FILE:EXMTWO UNIT:205
$700 LISTING UNIT:

If <CR> is keyed in response to the file prompt the suffix of the
metajob description is taken as the file-id of the metajob file,

If <CR> is keyed in response to the unit prompt the unit used is the
one specified for the metajob description.

5.3.4 The Listing Unit Prompt
Once metajob file details have been specified the listing unit prompt
is displayed:

$700 LISTING UNIT:205
$700 MJOB DESCRIPTION NOW BEING PROCESSED

If the suffix of the job description is EXMJOB then the above example
will cause the listing to be written to file L.EXMJOB on unit 205. If
the listing unit is a direct access device, the file will initially be
allocated the maximum contiguous space available. Any unused space
will be returned once $MJOB completes.

If <CR> is keyed in response to the listing unit prompt, the file will
be placed on unit $PR, normally the standard printer.

5.3.5 Processing
Once you have satisfied the listing prompt, the message:

$700 DESCRIPTION NOW BEING PROCESSED

appears and $MJOB begins to validate the metajob description file and
output the metajob file and listing. Once this is finished the
following message may appear if $MJOB has detected one or more
suspect, though not fatal, conditions:

$700 NUMBER OF WARNINGS nnnn

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 108 of 154

where nnnn is the decimal number of warning messages output to the job
listing. Finally, one of the following two messages appears:

$700 NO ERRORS FOUND - MJOB FILE CREATED

or:
$700 NUMBER OF ERRORS nnnn - MJOB FILE NOT CREATED

and control returns to the monitor, which displays its ready prompt.
The first of these indicates that, although warnings may have been
flagged, there have been no serious error conditions and a metajob
file has been produced. The second message shows that serious errors
have occurred and in consequence no metajob file has been created.

5.3.6 Operating Notes
If the listing file is being written to direct access storage and it
becomes full, $MJOB displays the message:

PRINT FILE EXHAUSTED

and control returns to the monitor. If there is not enough spare main
memory to create the metajob file, the message:

$700 - INSUFFICIENT SPACE TO CREATE MJOB FILE

is displayed and control returns to the monitor. All the free space
above $MJOB, which occupies approximately 10K bytes, is available for
the metajob file, which requires:

385 + S bytes

where S is the size of the statements encoded (see Table 5.2.2). This
size is printed at the end of the listing.

If either of these errors occur a metajob file will have been
allocated, even though no data will have been output. You can delete
the unwanted file either by using $F's DEL instruction, or by
rerunning $MJOB.

A metajob file will also have been allocated, and require deletion, if
$MJOB is terminated by an irrecoverable I/O error.

5.3.7 Example 1 - Creating Standard Metajob File EXMJOB
The following dialogue takes place when you process metajob
description S.EXMJOB to create a conventionally named metajob file,
EXMJOB. The job listing is written to the installation's standard
printer, $PR. Both the metajob description and the metajob file occupy
the volume on unit 204:

GSM READY:$MJOB
$700 MJOB DESCRIPTION:EXMJOB UNIT:204
$700 MJOB FILE:<CR> UNIT:<CR>
$700 LISTING UNIT:<CR>
$700 MJOB DESCRIPTION NOW BEING PROCESSED
$700 NO ERRORS FOUND - MJOB FILE CREATED
GSM READY:

5.3.8 Example 2 - Testing a Modification to EXMJOB
In this example, having modified S.EXMJOB slightly, we produce a
metajob file named EXMTWO on 100 and write the metajob listing,
L.EXMTWO, to 101.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 109 of 154

GSM READY:$MJOB
$700 MJOB DESCRIPTION:EXMJOB UNIT:205
$700 MJOB FILE:EXMTWO UNIT:204
$700 LISTING UNIT:205
$700 MJOB DESCRIPTION NOW BEING PROCESSED
$700 NUMBER OF ERRORS 2 - MJOB FILE NOT CREATED
GSM READY:

No metajob file has been output, since the metajob description was
faulty.

5.4 Using $MTEST to Initiate a Metajob Run
The $MTEST command is provided to allow you to set up the parameter
values of a given metajob file from the console, list these
parameters, and then eventually run the metajob. The command therefore
serves as a useful test aid. Normally, in live running, you will
replace it with your own specialised initiator.

5.4.1 The Mjob File Prompt
$MTEST begins by prompting you for the program-id of the mjob file. If
it begins with $ then the file will be loaded from the unit assigned
to $CP; otherwise the unit assigned to $P will be used. You can load a
metajob file whose name begins with a $-character from the unit
assigned to $P by keying an asterisk in place of the initial $. For
example:

GSM READY:$MTEST

$701 MJOB FILE:*EXAMP
.
. (parameter listing)
.
$701 PARAMETER SETUP:

This dialogue loads the mjob file named $EXAMP from the unit assigned
to $P, displays the current parameter values and outputs the parameter
setup prompt.

5.4.2 The Parameter Setup Prompt
You may reply to the parameter setup prompt:

$701 PARAMETER SETUP:

with one of the following:

x=value where x is a parameter-id, i.e. a digit or upper case
letter, and value is zero to eight characters
representing the value that the parameter, &x, is to
assume. If value is less than eight characters in
length, rightmost trailing blanks are inserted in the
parameter. In particular, you may key x= to set
parameter &x to spaces, the null value;

LIS to display the current parameter values on the screen;

RUN to run the mjob file once the required parameter values

have been established.

The parameter setup prompt is redisplayed following an x=value or LIS
response, so that you can continue modifying the parameters. When you
reply RUN $MTEST chains to $MRUN which interprets the metajob file.

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 110 of 154

5.4.3 Operating Notes
$MTEST and $MRUN must be on the same unit. You may, however, key
*MTEST in response to the ready prompt to cause $MTEST to be loaded
from $P and in this case $MRUN will also be loaded from $P.

Before replying RUN you must ensure that &0 contains one of the
following four or five byte character strings:

MJOB in which case $MRUN will create and execute job
dialogue;

MJOB1 to execute $MRUN in a test mode in which the metajob
instructions executed are listed on file L.$RUN on $PR,
the standard printer;

MJOB2 to execute $MRUN in a test mode in which both the

metajob instructions executed and the dialogue they
would generate are listed on file L.$MRUN on $PR.

Note that MJOB1 and MJOB2 are purely test facilities and do not cause
real dialogue to be generated and executed.

5.4.4 Example
The test library in Appendix A5 was produced by setting &0 to MJOB2,
and &C to X, in the example metajob file, EXMJOB. The following
dialogue took place when $MTEST was run to establish these parameters
($MTEST, $MRUN and EXMJOB were individual program files on the unit
assigned to $P):

GSM READY:*MTEST
$701 MJOB FILE:EXMJOB
.
. first parameter listing
.
$701 PARAMETER SETUP:0=MJOB2
$701 PARAMETER SETUP:C=X

$701 PARAMETER SETUP:LIS
.
. second parameter listing
.
$701 PARAMETER SETUP:RUN
(Listing L.$MRUN, showing statements executed and the
dialogue they would generate, is output on $PR)
GSM READY:

This parameter listing, automatically output at the beginning of the
job, shows the values established by $MJOB: &0 contains MJOB but the
other parameters are all spaces (i.e. null).

5.5 Writing Your Own Metajob Initiator
Although the $MTEST program is a useful debugging aid, for live
running you will normally provide your own specialised metajob
initiator to establish the metajob parameters appropriately. This
program must load the metajob file, set up the parameters, and then
chain to $MRUN. Appendix A3 contains the compilation listing of a
simple initiator developed to parameterise the example metajob.

5.5.1 Loading the Metajob File
Your specialised initiator will know the name of its mjob file, so to
load the file all that is necessary is a sequence such as:

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 111 of 154

LOAD metajob-id
ON EXCEPTION STOP RUN

The loaded file occupies locations #5000 onwards, so it is Important
that your initiator itself does not use these locations. This limits
the program size to 20K bytes, or 18.7K if the program is linked to
start at the debug address.

5.5.2 Updating the Parameters
Following the LOAD operation the system variable $$EPT points at a
288-byte area containing the 36 metajob parameters, each of which is a
PIC X(8) field. They are arranged in the order &0,...&9, &A...&Z. You
should define the parameter area by a level 01 group coded in the
linkage section, such as:

01 PARMS
 02 P-0 PIC X(8)
.
.
.
 02 P-9 PIC X(8)
 02 P-A PIC X(8)
.
.
.
 02 P-Z PIC X(8)

This area is then made addressable by the statement:

BASE PARMS ON $$EPT

The parameters can then be accessed individually, the field P-x
representing &x. (The & character itself, of course, cannot be used as
part of a Global Cobol symbol.) When you set up a parameter value, you
must ensure it does not contain leading or embedded spaces, as the
first space terminates the parameter's value.

You should note that when a metajob file is created by $MJOB, &0 is
set to MJOB and all the other parameters are spaces. However, the
parameter block can be updated under the control of a metajob using
the STOW instruction, as explained in 5.2.6.5.

You must ensure that &0 contains either MJOB, MJOB1 or MJOB2.

5.5.3 Chaining to $MRUN
Once it has set up the parameters, your initiator should complete by
chaining to the metajob interpreter, $MRUN, which will then either
create and execute dialogue, or produce a test listing according to
the setting of &0. You code either:

CHAIN "$MRUN"

to execute the command from $CP, or:

CHAIN "*MRUN"

to run it from $P. The second form will probably be the one most
commonly used, since often the initiator, interpreter and the metajob

Chapter 5 - Metajob Management

Global Development Toolkit Manual V8.1 Page 112 of 154

file itself will be members of a special application program library
used for product distribution and installation.

Alternatively, you can chain to $MTEST which will display the
parameter values you have set up and display its parameter prompt. You
can modify parameters if necessary, and then run the metajob. This is
usually the most convenient method of debugging a metajob initiator.

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 113 of 154

6. Macro Pre-Processor Language

6.1 Introduction
This document describes $MACRO, a general purpose macro processor. The
command operates by scanning one or more input text files sequentially
and producing a single output text file which normally is used as the
source for a subsequent compilation, assembly, or job file build.
Because it is normally used before compiling, assembling or jobbing, a
program such as $MACRO is known as a preprocessor. Its actions are
determined by options specified at run time, together with
preprocessor language statements which may appear anywhere within the
input. These statements are easily recognised because they begin with
a special character not employed in the programs $MACRO is used to
construct. We have chosen the %-character for this role.

It is important to realise that all $MACRO does is to scan the input
files line by line and produce lines of the output file, reporting
error and warning conditions on the screen. Obviously, the
preprocessor statements play a large role in determining what gets
written to the output file. To avoid frequent repetition of the clumsy
phrase 'written to the output file' we use the word generated instead.
Thus the previous sentence becomes: 'Obviously, the preprocessor
statements play a large role in determining what gets generated'.

In the description which follows we start by explaining how you run
$MACRO assuming that you wish to use the default options appropriate
for preprocessing most Global Cobol programs and job files. We then
describe the preprocessor language in detail. Section 6.4 defines
additional options which can optimise performance or allow you to
generate assembler language text. There is an example with listings in
Appendix D, and a summary of all the error and warnings messages that
can be produced by $MACRO in Appendix E.

Option

Type and Description

JOB MANAGEMENT CONTROL (6.4.1)
TE/NTE Terminate job management if errors are detected
TW/NTW Terminate job management if warnings are detected

TRANSLATION (6.4.2)
*=x Set comment character. Default is *
. =x Set label delimiter. Default is .

CONFIGURATION (6.4.3)
EX=n Set number of extension variables. Default is 100
MA=n Set maximum number of macro definitions. Default is 100
NL=n Set maximum nesting level. Default is 10

TRACE (6.4.4)
TR=n/NTR Trace preprocessor statements to macro nesting level n

SETUP (6.4.5)
v=string Set preprocessor variable v to the specified string

n is an unsigned integer; x is a single character; v is A...Z or
0...99
string may contain embedded blanks. No other part of an option may.
(where options appear as related pairs separated by /, bold text
indicates the default)

Table 6.2.3 - Preprocessor Options

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 114 of 154

6.2 Running $MACRO

6.2.1 The Input File Prompt
When you run $MACRO, it begins by prompting you for the name and unit
of the input file. This prompt is repeated until you key <CR> to the
input file prompt, or have specified the maximum of 10 input files.
For example:

GSM READY:$MACRO
$509 INPUT FILE:MACLIB UNIT:204
$509 INPUT FILE:SA100 UNIT:<CR>
$509 INPUT FILE:<CR>
$509 OUTPUT FILE:

If you do not supply a file prefix, F. is assumed (standing for first
source). When <CR> is keyed to the unit prompt the unit-id last
established is used.

The reason $MACRO allows for multiple input files is to enable you to
store preprocessor statements, such as macro definitions, to be used
in producing a number of different source files in a single initial
file known as a preamble. Thus, in the example the preamble is the
file F.MACLIB and it is to be used to generate information from
F.SA100. By changing the third line of the dialogue we could of course
use F.MACLIB to generate information using a different file. The point
is that if there are changes to the preprocessor statements stored in
the preamble you only have to update one file (although when this done
you may have to run $MACRO many times to preprocess the changes).

6.2.2 The Output File Prompt
Once all input files have been supplied $MACRO prompts for the name
and unit of the output file to be created. For instance:

$509 OUTPUT FILE:<CR> UNIT:<CR>
$509 OPTION:

If, as in the example, no prefix is keyed, S. is assumed by default.
If you key <CR> to the unit prompt the unit-id previously established
is used. If you key <CR> to the file prompt the file-id of the last
input file is used, but with S. replacing its prefix. For instance, if
you followed the dialogue of 6.2.1 with:

$509 OUTPUT FILE:<CR> UNIT:<CR>
$509 OPTION:

then the output file S.SA100 would be created on unit 101 from the
input files F.MACLIB and F.SA100, which would be scanned in that
order.

6.2.3 The Option Prompt
When the output file has been defined $MACRO displays its option
prompt. You may reply with any of the option codes defined in Table
6.2.3 (and explained in detail in section 6.4). The prompt reappears
to allow you to specify additional options one by one until you key
<CR>. For example, to set preprocessor variable %Z to the character
string FRED:

$509 OPTION:Z=FRED
$509 OPTION:<CR>
$509 PRE-PROCESSING

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 115 of 154

6.2.4 Pre-Processing
Once you key <CR> to the final option prompt $MACRO displays the
message:

$509 PREPROCESSING

and begins generating the output file from the input files. Error and
warning messages are reported on the screen and are also written to
the output file as comments of the form:

*** ERROR explanation

or:
* WARNING explanation

(The asterisk may be replaced by another character using a translation
option.) Once preprocessing is complete messages are displayed
detailing the number of errors and warnings, and control returns to
the monitor. For example, when there are no problems:

$509 NUMBER OF ERRORS 0
$509 NUMBER OF WARNINGS 0
$509 PREPROCESSING COMPLETE
GSM READY:

6.3 The Preprocessor Language
The description in this chapter assumes that $MACRO's default
configuration options are in force.

6.3.1 Macro Definitions
A macro is to a preprocessor what a subroutine is to a high level
language. When a named subroutine is called selected statements from
it are executed; when a named macro is referenced, selected statements
from it are generated. Just as the subroutine has to be coded before
it is called, so the macro has to be defined before it is referenced.

A macro is defined by prefixing the statement lines that make up the
macro body with the %%MACRO statement, and terminating them with the
%%ENDM statement:

%%MACRO macroname
lines
of
the
macro
body

%%ENDM

The %%MACRO statement associates a unique macroname with the
definition. The macroname, which may consist of any number of letters
and digits, is terminated by a space. Although the name may be more
than 8 characters in length $MACRO uses only the first 8 to
distinguish between different macros.

A macro definition must appear before any statement which references
it. Definitions may not be embedded within definitions, so if two
%%MACRO statements are encountered without an intervening %%ENDM an
error is returned.

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 116 of 154

To optimise performance $MACRO holds as many macro definitions as
possible in memory, but once the space is exhausted later definitions
have to be retrieved from their input file whenever they are
referenced. Therefore, if you are using a number of macros, make sure
the most frequently used ones appear first in the input.

6.3.2 Macro References
$MACRO considers each input line, apart from a preprocessor statement
or comment, to be a potential macro reference of the form:

[label.] [macroname string-1 string-2 ...] [* comment]

Thus, any characters starting a line which are terminated by a period
are considered to be a label and ignored. The next group of characters
delimited by spaces are treated as a potential macroname. However, if
no macro with this name is defined the line is not a macro reference
and it is simply written to the output file and not processed further.

When the line is a macro reference $MACRO splits up the text following
the macroname into zero or more different strings, assuming each of
them to be separated from its neighbour by one or more spaces. The
first string so decoded is placed in macro parameter %1, the second in
macro parameter %2, and so on up to %9 if nine such strings are
present. The process stops when a comment beginning with an asterisk
is encountered, or the line end is met. The statements from the macro
definition are then generated. These will normally contain parameter
references, %1, %2, etc., so that they can generate different code
depending on the macro reference. The situation is analogous to
subroutine parameter passing and a simple example should serve to make
it clear.

Suppose that a macro ZEROISE is defined as follows:

%%MACRO ZEROISE
MOVE 0 TO %1

%%ENDM

Then the following line

ZEROISE ALPHA * CLEAR ALPHA

is treated as a macro reference to ZEROISE and generates:

MOVE 0 TO ALPHA

If a label is used as well:

AA100. ZEROISE ALPHA

the lines:

AA100.
MOVE 0 TO ALPHA

are generated.

If spaces or asterisks are contained in the strings to be passed as
parameters, then the strings in question must either begin and end
with double quote marks or matching square brackets. The " characters

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 117 of 154

are passed as part of the parameter whereas the square brackets are
not.

For example:

ZEROISE "ALPHA BETA"

generates the invalid Global Cobol:

MOVE 0 TO "ALPHA BETA"

whereas:

ZEROISE [ALPHA BETA]

generates the expected multi-target move:

MOVE 0 TO ALPHA BETA

Note that this use of square brackets in the preprocessor language
itself conflicts with our normal use of them in describing optional
constructs. We will take care always to clarify which usage is
intended.

In addition to macro parameters %1 to %9, each macro reference has
associated with it a special parameter: %0, the reference counter.
This contains a value which is initially zero, but which is
incremented by one every time a macro reference is processed. Since,
like the other parameters, it can be concatenated with any text
string, %0 allows you to generate unique labels whenever a macro
definition is expanded. For example, suppose we have defined
ACCUMULATE thus:

%%MACRO ACCUMULATE
A%0.

ADD %1 TO %2
%%ENDM

then the two statements:

ACCUMULATE ALPHA GAMMA
ACCUMULATE BETA GAMMA

would, if they were the first two macro references, generate:

A1.
ADD ALPHA TO GAMMA

A2.
ADD BETA TO GAMMA

Note that just as a subroutine may itself call other subroutines, so
the statements within a macro definition may themselves reference
other macros. Just as there are always implementation limits on the
maximum level of subroutines allowed, so there are limits on how many
levels of macro may be nested in this fashion. The default
configuration option is to support 10 such levels. Each has its own
copy of parameters %0 to %9 just as in some machine languages each
subroutine has its own copy of the registers.

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 118 of 154

6.3.3 Macro Parameters, Preprocessor Variables and
Substitution
In addition to the ten parameters employed in macro referencing, there
are 126 preprocessor variables named %A to %Z, %%00 to %%99, which can
be used anywhere.

Macro parameters and preprocessor variables can each contain strings
of between 0 to 31 characters in length. The zero length string is
known as SPACE (or SPACES). Initially all preprocessor variables which
are not initialised by means of the setup option are set to SPACE.
During a macro reference any parameters for which there are no
corresponding strings are also set to SPACE. Thus, following:

ZEROISE ALPHA

the definition is generated with %0 set to the reference count, %1 set
to ALPHA and %2 to %9 to SPACE.

In most circumstances, when a parameter or variable is encountered it
is replaced by the character string it currently contains, a process
referred to as substitution. For example, if %%23 contains JIM then a
line coded as:

* BY %%23MINY %%23, %%23BO IS IN THE %%23NASIUM

expands to:

* BY JIMMINY JIM, JIMBO IS IN THE JIMNASIUM

IF %A is ERO, %B is E and %C is AL then:

Z%AIS%B %CPHA

expands to:

ZEROISE ALPHA

These examples show that substitution is applied not only to comment
lines but to potential macro reference lines before $MACRO checks to
see if the macro is defined and sets up the parameters. Indeed, the
only places where substitution does not occur are:

● preprocessor comment (%*) and %%PAGE statements;

● the preprocessor variable name identifying the variable to be

assigned by a preprocessor function;

● the preprocessor variable or macro parameter tested by the %%IF

statement and the condition used by that statement.

In the first case, substitution is avoided so that you can use the %
character when writing comments relating to the working of the
preprocessor statements themselves. For example:

%* IF %1 IS NOT NUMERIC SIGNAL AN ERROR

In the second and third cases, assigning and testing parameters or
variables, there is no substitution because $MACRO must retain the

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 119 of 154

name of the parameter or variable in order to carry out the function
or test.

Note that the substitution process is limited by the line length. If a
line longer than 72 characters results the extra rightmost ones are
eliminated and a warning message is generated.

6.3.4 Function Statements
Preprocessor variables can be assigned values using function
statements, the general format of which is:

function variable-name string

There are currently four functions defined: %%STR, %%LEN, %%NUM and
%%SPL. The variable-name must be %A to %Z, or %%00 to %%99. Spaces
must separate the function, variable-name and string.

Normally the string is considered to begin with its first non-blank
character and end with its last non-blank character. If it contains
leading or trailing spaces it must be embedded in square brackets. Two
adjacent square brackets, [], should be coded rather than the
characters SPACE to represent the empty string. Any square brackets
are eliminated when the variable is set up by the function. The string
size after substitution is of course limited by the line length.

6.3.4.1 %%STR - Assign String Value
The %%STR function is used to set a macro variable to the value of a
particular string, substitution taking place before the function is
evaluated. Thus if %X is 99:

%%STR %A -00%X

sets %A to the five character string -0099.

If the string contains more than 31 characters only the leftmost 31
will be transferred to the variable.

6.3.4.2 %%LEN - Calculate String Length
The %%LEN function enables you to determine the length of a given
string. Thus if %X is 99 as before:

%%LEN %A -00%X

sets %A to 5 and then:

%%LEN %A %A

sets %A to 1.

6.3.4.3 %%NUM - Assign Numeric Value
The %%NUM function is used to evaluate a numeric expression, and place
the result, an integer in the range -999999999999999 to
999999999999999, in the variable. After substitution the string must
be a numeric expression of the form:

[-] operand [operator operand...]

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 120 of 154

where the square brackets and ellipsis (...) are used as documentation
aids to represent optional constructs and repetition respectively, and
are not part of the string itself.

An operand may be an unsigned integer in the range 0 to
999999999999999 or another numeric expression enclosed in round
brackets. An operator may be one of +, -, / (divide), * (multiply).

All operations are integer, with division truncating fractions so that
the results are rounded towards zero. There is no operator precedence;
numeric expressions are evaluated strictly from left to right,
starting at the lowest level of bracketing.

For example:

4 * 3 + 2 = 14
2 + 4 * 3 = 18
2 + (4 * 3) = 14
-(5 +7) = -12
-5 +7 = 2

Non-significant leading zeros are suppressed, so with %X = 99 as
before:

%%NUM %A -00%X

sets %A to -99.

6.3.4.4 %%SPL - Split String into Substrings
The %%SPL function allows you to split the string coded as its second
operand into two substrings - alpha and beta, for example. Alpha
consists of those characters to the left of the first occurrence of
the slicer string or the entire string if it does not contain the
slicer. Beta consists of the characters to the right of the first
occurrence of the slicer string, or consists of SPACE if there was no
slicer or if it appeared only once as the rightmost character(s) of
the original string. If the slicer string itself is SPACE this is
treated specially. Alpha becomes the first character of the string and
beta the residue. Whatever the slicer is, both substrings will be
SPACE if the original string is SPACE.

%%SPL takes the slicer from the preprocessor variable specified as its
first operand. It then overwrites this value with substring alpha.
Beta is then placed in the first variable's successor. (%B is the
successor of %A, %C of %B etc.; %%01 is the successor of %Z; %%02 that
of %%01; and so on. The last extension variable has no successor and
will cause %%SPL to return an error if coded by mistake.)

The following example shows how a string of the form:

keyword = value

contained in macro parameters %1 is split so that %K contains the
keyword and %L the value:

%%STR %K =
%%SPL %K %1

In this second example macro parameter %2 contains a non-null string
which may begin with an initial asterisk. %L is set to the string with

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 121 of 154

its first character removed. Note how the first line sets the slicer
to SPACE by using adjacent square brackets. You cannot use the word
SPACE itself, otherwise the variable would be set to those five
characters:

%%STR %K []
%%SPL %K %2

6.3.5 Conditional Preprocessor Statements
To allow statement lines to be generated conditionally %%IF, %%AND,
%%OR, %%ELSE and %%END statements are provided to support the familiar
structured programming construct:

%%IF condition-description
[%%OR statements | %%AND statements]

statements generated if the condition is true
[%%ELSE

statements generated if the condition is false]
%%END

Here and in the following example the square brackets are used to
denote the optional nature of the construct and are not actually
coded.

The format of the %%IF statement is:

%%IF name [NOT] condition [string]

The name is that of a macro parameter or preprocessor variable. Table
6.3.5 lists the conditions you may code. The character and arithmetic
comparisons test the value of the parameter or variable supplied as
the first operand against that of the string. The type checking
comparisons simply check the value of the parameter or variable itself
and no string should be provided. NOT if coded as the second operand
reverses the meaning of the condition.

When a string is coded it is treated like a function string: it is
delimited by its first and last non-blank characters unless it
contains leading or trailing spaces in which case it must be enclosed
in square brackets. For a numeric comparison the string must assume
the form of a numeric expression after substitution. Character
comparison proceeds from right to left, byte by byte, using the ASCII
collating sequence in exactly the same way that Global Cobol character
variables are compared. For numeric Comparison the expression string
is evaluated and then the comparison takes place as though two Global
Cobol computational quantities were involved. Thus if %A is 34:

%A < 345 is true

%A < 40 is true

%A < 4 is true, but ...

%A .< 4 is false

Condition

Description

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 122 of 154

TYPE CHECKING
SPACE or
SPACES

True if parameter or variable not defined.

NUMERIC True if parameter or variable contains an integer in
the range:
 -999999999999999 to 999999999999999

CHARACTER COMPARISON
= or EQUAL True if parameter or variable alphabetically equal to

string.
> or GREATER True if parameter or variable alphabetically greater

than string.
< or LESS True if parameter or variable alphabetically less than

string.
NUMERICAL COMPARISON

.= or .EQUAL True if parameter or variable is arithmetically equal
to the string evaluated as a numeric expression.

.> or

.GREATER
True if parameter of variable is arithmetically greater
than the string evaluated as a numeric expression.

.< or .LESS True if parameter or variable is arithmetically less
than the string evaluated as a numeric expression.

Table 6.3.5 - Conditions Used in %%IF, %%AND & %%OR Statements

These examples show how important it is to use the right type of
condition in a test. For instance, if %X is 5 and %Y is 2 the
construct:

%%IF %X .> 4*%Y
group-1 statements

%%ELSE
group-2 statements

%%END

causes the group-2 statements to be generated, since the numeric
expression evaluates to 8. However, just forget the period in the
condition and erroneously code:

%%IF %X > 4*%Y

and the string involved in this character comparison evaluates to 4*2
and since %X is 5 it is alphabetically greater, so the group 1
statements are generated by mistake.

The %%OR statements and %%AND statements can be used just like the OR
and AND statements in Global Cobol to create compound conditions.
Their operands have the same format as those of the %%IF statement. As
in Global Cobol, more than one %%OR or %%AND statement may be coded
following the initial %%IF, but the two types of statement may not be
intermingled. That is:

%%IF %A = A
%%OR %B = B
%%OR %B SPACES

is valid, whereas:

%%IF %A = A
%%AND %B = B
%%OR %B SPACES

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 123 of 154

is not.

6.3.6 Error and Fail Handling
If you detect an error during preprocessing you can write an
explanatory message to the output file and the screen, and increment
the error count maintained by $MACRO, by executing the %%ERROR
statement:

%%ERROR message

which leads to the generation of a message line of the form:

**ERROR explanation

where the explanation that appears is the substituted message from the
%%ERROR statement. $MACRO then continues preprocessing the input file.

If the error you have detected is catastrophic and there is no point
in continuing, not even to detect other errors, you can abort $MACRO
by coding the %%FAIL statement:

%%FAIL message

This causes a message line of the form:

***FAIL explanation

to be written to the output file, which is then closed. The same
message is written to the screen and $MACRO aborts the run, returning
to the monitor. Job management is terminated, irrespective of the
options in force, if it is in control.

6.3.7 The Macro Exit Statement, %%MEXIT
The %%MEXIT statement enables you to exit from a macro definition
before the %%ENDM statement is encountered. You use it in
conjunction with conditional statements. For instance, suppose macro
CALC either takes no parameters, or requires its first parameter to be
numeric. You might structure the definition like this:

%%MACRO CALC
%%IF %1 NOT SPACE

%%IF %1 NOT NUMERIC
%%ERROR CALC PARAMETER NON-NUMERIC
%%MEXIT

%%ELSE
statements when parameter 1 numeric

%%END
%%ELSE

statements when no parameter
%%END

%ENDM

You can consider the %%MEXIT statement to be the dynamic end of the
macro (equivalent, say to a Global Cobol EXIT statement) whilst %%ENDM
is the contextual end (somewhat analogous to the ENDPROG statement).
You do not, of course, have to code a %%MEXIT immediately before a
%%ENDM. $MACRO automatically inserts one if it is needed.

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 124 of 154

6.3.8 Preprocessor Comments and the %%PAGE Statement
The characters %* appearing together anywhere in a line (even if
within square brackets or quotes) are considered to introduce a
preprocessor comment. The %* and the characters which follow, up to
the line end, are ignored by $MACRO. They are not subject to
substitution, they are not written to the output file, and if they
appear within a macro definition they are not stored in main memory.

By using %* you can include comments describing how macros or other
preprocessor constructs work. This allows you to document your macro
definitions without having your comments appearing as the result of
every macro reference. If you use language comments for this purpose
by mistake they will be generated unnecessarily and substitution will
take place, possibly leading to confusing results. For example,
contrast this correct way of commenting ACCUMULATE:

%%MACRO ACCUMULATE
%%IF %2 SPACES

ADD %1 TO SYSACC
%* UPDATE SYSACC IF %2 OMITTED

%%ELSE
ADD %1 TO %2

%%END
%%ENDM

which causes:

ACCUMULATE 100

to generate:

ADD 100 TO SYSACC

with what happens if you replace the preprocessor comment with the
very similar looking language comment:

*UPDATE SYSACC IF %2 OMITTED

If this were done:

ACCUMULATE 100

would generate:

ADD 100 TO SYSACC
*UPDATE SYSACC IF OMITTED

The comment is not only unnecessary, but parameter substitution, which
has eliminated %2 since it is undefined, has rendered it meaningless.

Any line whose first non-blank characters are %%PAGE is ignored by
$MACRO, but treated specially by $PRINT. When you use $PRINT to list a
file whose file-id begins with an F. prefix ordinary PAGE statements
are ignored, but %%PAGE statements cause printing to advance to a new
page. Statements are sequenced just as they are when an S. file is
printed.

6.4 $MACRO Options

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 125 of 154

This chapter explains the meaning of the options summarised in Table
6.2.3. The options are strings of characters keyed in response to the
prompt:

$509 OPTION:

In general they may be keyed in any order. The one exception is that
option EX, which is used to change the number of extension variables,
cannot be employed once an initial value has been established for any
variable using an setup option.

6.4.1 Job Management Options
The job management options only take effect when $MACRO is run under
job management. Keying TE will cause job management to be terminated
if one or more errors are reported. Option TW is the same, but applies
to warnings. NTE and NTW specify no termination on errors or warnings
respectively. The errors and warnings detected by $MACRO itself are
described in Appendix B. In addition, user errors may be reported by
means of the %%ERROR preprocessor statement defined in paragraph
6.3.6.

If a job management is to be terminated this happens at the end of the
run after the preprocessing complete message appears. The default if
neither job management option is supplied is to terminate on errors
but not on warnings.

6.4.2 Translation Options
The translation options are provided to allow $MACRO to generate
source code for various assembler languages.

By keying *=character you can change the start of comment character
appropriately. For example, suppose you keyed *=; to preprocess Macro-
11. This would cause $MACRO to recognise a semi-colon rather than
asterisk as the comment character terminating the strings of a
potential macro reference (6.3.2). Fail, error and warning messages
would begin:

;;; FAIL
;; ERROR
; WARNING

respectively, and the trace indicator (6.4.4) would become ;M;. Note
however that preprocessor comments would still be considered to start
with the %* sequence.

By keying .=character you can alter the label terminator character
used to detect initial labels in potential macro reference lines. For
example, for Macro-11 source you use .=:. The option .=1 is treated
specially. It is used for IBM-like assemblers where labels are not
terminated specially but any string beginning in column 1 is
considered to be a label.

6.4.3 Configuration Options
The configuration options allow you to vary (normally reduce) the
amount of memory $MACRO requires for its internal tables. Any space
saved will be made available for storing macro definitions, which may
increase performance if $MACRO is run in a small user area.
Alternatively, for special applications you may find it necessary to
increase the deepest nesting level.

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 126 of 154

The variables %%00 to %%99 are known as extension variables. Each one
requires 32 bytes of internal table space. Many applications find the
26 variables %A to %Z all they require. If this is the case EX=0
should be keyed to eliminate the extension variable table and save
3200 bytes of memory. In general if only the first n extension
variables, %%00 to %%n-1, are used you can key EX=n to save the space
associated with the rest of them. Of course, if you have used the EX
option but refer to an extension variable you have eliminated, $MACRO
generates an error message. The default if EX is not used is that all
100 of them are supported.

By keying MA=number you can define the maximum number of differently
named macros you wish to use. This determines the size of the
macroname table which requires 11 bytes per entry. The default is 100
macronames, so if you only use 10 keying MA=10 will save 990 bytes.
You cannot set MA greater than 100.

The nesting level defines to what extent macro definitions may
reference other macros. If no macros are employed the nesting level is
zero. If macros are used, but their definitions do not themselves
reference other macros, the level is 1. If the definitions do
reference other macros, but these so called inner macros do not
themselves reference other macros, then the level is 2. If the inner
macros reference others with no references the level is 3, ...and so
on. Each nesting level requires 320 bytes of table space in which to
store its copy of parameters %0 to %9. You can key NL=number to define
the number of nesting levels you require. The default is 10, so if you
can make do with 1, say, then NL=1 saves 2880 bytes of table space.

6.4.4 The Trace Option
Preprocessor comments, %%PAGE statements and macro definitions are
never written to the output file, and when the trace option is not
specified neither are macro reference lines nor preprocessor
statements.

If TR=0 is keyed macro reference lines and preprocessor statements
(excluding %%PAGE and %* comments) outside macro definitions are
generated, but when they are written to the output file they are
'commented out' by inserting the trace indicator *M* at the front of
the line or after a label starting a macro reference. For example:

AA100. ZEROISE ALPHA

is generated as:

AA100. *M* ZEROISE ALPHA

If %X contains 100:

ACCUMULATE %X

is generated as:

M ACCUMULATE 100

and:

%%NUM %X +1

Chapter 6 - Macro Pre-Processor Language

Global Development Toolkit Manual V8.1 Page 127 of 154

becomes:

M %%NUM %X 100 +1

As the second and third examples show, the trace always takes place
after substitution.

With option TR=0 no statements within macro definitions are traced. If
you key TR=1 you will be able to trace statements within macros at
nesting level 1 (i.e. the statements generated by macros referenced
outside macro definitions) but not the statements generated by inner
macros. In general you may key TR=n to trace statements generated at
nesting level 0, 1 ... n. If n is greater or equal to the maximum
nesting level all possible statements will be traced.

6.4.5 Setup Options
You may use setup options to establish initial values of the
preprocessor variables %A to %Z, and %%00 to %%99. You key variable-
name = string, leaving off the leading % character(s) and, optionally,
leading zeros. The string may contain leading, trailing or embedded
blanks; it is terminated by your keying <CR>. For example, to set %C
to GOOD SHOW and %%00 to CHAPS with a leading space, key:

A=GOOD SHOW

and then:

00= CHAPS

The statement:

%%STR %X %A%%00

will result in %X being set to GOOD SHOW CHAPS providing, of course,
that %A and %%00 have not been changed by earlier preprocessor
statements.

Note that if you key any setup options you cannot later use the EX
option to change the number of extension variables. If you wish to use
EX you should key it before setting up initial values.

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 128 of 154

Appendix A - Example Metajob System

This simple example metajob is not intended to be realistic, but is
provided to show typical expansions of the valid instruction and
operand combinations.

Appendix A1 is a listing of the metajob description, source file
S.EXMJOB, which is input to $MJOB in order to create the metajob file
along with its listing, L.EXMJOB, included in Appendix A2. A simple
metajob initiator has been constructed according to the rules laid
down in Chapter 5.5 and its compilation listing, L.EXINIT, appears in
A3.

Appendix A4 contains a test listing produced from EXMJOB following
execution of the initiator. The mode parameter, &0, has been set to
MJOB2 so that the statements processed, together with the dialogue
they will generate, are printed. The &D, &S, &V and &X parameters used
by EXMJOB have been set up so that the optional expiry date operand is
supplied for the SERIAL statement, and the optional extension size for
the LIBRARY statement. Because &V is non-null a VERIFY statement is
issued, causing subsequent COPY and MERGE statements to generate extra
dialogue to compare new files and members with the originals. Since &S
is non-null, a SUPPRESS statement is executed causing the dialogue to
begin:

DIALOGUE DIVISION (SUPPRESS)

Appendix A5 contains a second test listing from EXMJOB, resulting from
a run of $MTEST, as described in 5.4.4. Once again MJOB2 mode has been
used so that the executed statements, together with the dialogue they
will generate, are printed. This time, however, the &D, &S, &V and &X
parameters remain null. This means that the optional expiry date
operand for the SERIAL statement, together with the extension size
from the LIBRARY statement, are omitted. Since &V is null no VERIFY
instruction is issued and COPY and MERGE statements do not generate
verification logic. Similarly, because &S is null, no SUPPRESS
statement is executed, and the dialogue begins:

DIALOGUE DIVISION

By referring to either Appendix A4 or A5 you should be able to deduce
exactly what dialogue will be generated for any statement you code,
and thus supplement the description in Chapter 5.2. You will note that
the statements SECTION, IF, ELSE, END and JUMP do not appear on test
listings, since they only control the sequence of execution, and
neither generate dialogue nor set internal flags. The sequence number
on every statement which is printed identifies the originating
statement from the metajob description listing in Appendix A2.

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 129 of 154

PRINT OF S.EXMJOB ON UNIT 235 25/02/88 10.20.25 PAGE 1

 1 MJOB EXMJOB EXAMPLE MJOB FILE
 2 *
 3 * RUN THIS METAJOB TWICE
 4 * FIRST TIME ONLY SET &0, &C NON-NULL
 5 * SECOND TIME SET PARAMETERS AS FOLLOWS:
 6 * &0 MJOB, MJOB1 OR MJOB2
 7 * &C $ = BOS, ELSE MACHINE ARCHITECTURE CODE
 8 * &D DATE = EXPIRY DATE
 9 * &S Y = SUPPRESS DIALOGUE

 10 * &V Y = VERIFY
 11 * &X 10000 = LIBRARY EXTENSION SIZE
 12 *
 13 SECTION START
 14 IF &S
 15 SUPPRESS
 16 END
 17 MESSAGE EXERCISE HAS STARTED
 18 IF &V
 19 VERIFY
 20 MESSAGE VERIFY

 21 END
 22 INPUT 100
 23 OUTPUT SYSRES 101
 24 SERIAL 12345678 &D
 25 INIT SYSRES
 26 PERFORM SYSRES
 27 PERFORM SYSDEV
 28 SERIAL * NO SERIAL NUMBER
 29 INPUT BACRES 100
 30 MOUNT
 31 RUN &*SPECIAL

 32 RESPOND ABD :123 :XYZ@@11 TEXT
 33 RUN
 34 EXIT

A1 - MJOB Description, S.EXMJOB - Page 1

PRINT OF S.EXMJOB ON UNIT 235 25/02/88 10.20.25 PAGE 2

 35 PAGE "ROUTINE TO CREATE SYSRES"
 36 SECTION SYSRES

 37 LOAD * $F EXTENSION
 38 INSTALL ++2222A 100 * SO CAN INSTALL BOOTSTRAP
 39 COPY S.$2222A <GROUP> * COPY GROUP
 40 COPY $MONITOR
 41 PATCH $MONITOR 100T 2000/40
 42 COPY TESTFILE NEWNAME * COPY AND RENAME
 43 COPY $. * COPY SELECTION
 44 COPY .TEST * COPY SELECTION
 45 COPY
 46 DELETE TESTFILE
 47 DELETE #.

 48 EXIT

A1 - MJOB Description, S.EXMJOB - Page 2

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 130 of 154

PRINT OF S.EXMJOB ON UNIT 235 25/02/88 10.20.25 PAGE 3

 49 PAGE "ROUTINE TO CREATE SYSDEV"
 50 SECTION SYSDEV
 51 OUTPUT SYSDEV 101
 52 INIT
 53 LIBRARY P.DEV &X
 54 MERGE P.ONE
 55 TAG V11.1
 56 INVOL BACIPL 114
 57 MERGE P.TWO

 58 MERGE P.THREE <SYSRES>
 59 STOW MJOBMEMN
 60 PERFORM ETEST
 61 IF &C $
 62 ELSE * IF &C NOT = $ (BOS)
 63 MERGE P.FOUR $&CTRAM
 64 END
 65 ENDLIB
 66 PROTECT P.DEV
 67 VERIFY OFF
 68 COPY $COMWORK 32766

 69 CHECK
 70 EXIT
 71 *
 72 *
 73 *
 74 SECTION ETEST
 75 IF &C * IF CODE DEFINED
 76 EXIT * EXIT
 77 END
 78 MESSAGE ARCHITECTURE CODE NOT DEFINED
 79 JUMP ETEST * ELSE REPEAT MESSAGE ENDLESSLY

 80 ENDMJOB

A1 - MJOB Description, S.EXMJOB - Page 3

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 131 of 154

LIST OF EXMJOB EXAMPLE MJOB FILE 25/07/87 10.35.03 PAGE 1

 1 MJOB EXMJOB EXAMPLE MJOB FILE
 2 *
 3 * RUN THIS METAJOB TWICE
 4 * FIRST TIME ONLY SET &0, &C NON-NULL
 5 * SECOND TIME SET PARAMETERS AS FOLLOWS:
 6 * &0 MJOB, MJOB1 OR MJOB2
 7 * &C $ = BOS, ELSE MACHINE ARCHITECTURE CODE
 8 * &D DATE = EXPIRY DATE
 9 * &S Y = SUPPRESS DIALOGUE

 10 * &V Y = VERIFY
 11 * &X 10000 = LIBRARY EXTENSION SIZE
 12 *
 13 SECTION START
 14 IF &S
 15 SUPPRESS
 16 END
 17 MESSAGE EXERCISE HAS STARTED
 18 IF &V
 19 VERIFY
 20 MESSAGE VERIFY

 21 END
 22 INPUT 100
 23 OUTPUT SYSRES 101
 24 SERIAL 12345678 &D
 25 INIT SYSRES
 26 PERFORM SYSRES
 27 PERFORM SYSDEV
 28 SERIAL * NO SERIAL NUMBER
 29 INPUT BACRES 100
 30 MOUNT
 31 RUN &*SPECIAL

 32 RESPOND ABD :123 :XYZ@@11 TEXT
 33 RUN
 34 EXIT

A2 - MJOB Description Listing, L.EXMJOB - Page 1

LIST OF EXMJOB ROUTINE TO CREATE SYSRES 25/07/87 10.35.03 PAGE 2

 36 SECTION SYSRES
 37 LOAD * $F EXTENSION

 38 INSTALL ++2222A 100 * SO CAN INSTALL BOOTSTRAP
 39 COPY S.$2222A <GROUP> * COPY GROUP
 40 COPY $MONITOR
 41 PATCH $MONITOR 100T 2000/40
 42 COPY TESTFILE NEWNAME * COPY AND RENAME
 43 COPY $. * COPY SELECTION
 44 COPY .TEST * COPY SELECTION
 45 COPY
 46 DELETE TESTFILE
 47 DELETE #.
 48 EXIT

A2 - MJOB Description Listing, L.EXMJOB - Page 2

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 132 of 154

LIST OF EXMJOB ROUTINE TO CREATE SYSDEV 25/07/87 10.35.03 PAGE 3

 50 SECTION SYSDEV
 51 OUTPUT SYSDEV 101
 52 INIT
 53 LIBRARY P.DEV &X
 54 MERGE P.ONE
 55 TAG V11.1
 56 INVOL BACIPL 114
 57 MERGE P.TWO
 58 MERGE P.THREE <SYSRES>

 59 STOW MJOBMEMN
 60 PERFORM ETEST
 61 IF &C $
 62 ELSE * IF &C NOT = $ (BOS)
 63 MERGE P.FOUR $&CTRAM
 64 END
 65 ENDLIB
 66 PROTECT P.DEV
 67 VERIFY OFF
 68 COPY $COMWORK 32766
 69 CHECK

 70 EXIT
 71 *
 72 *
 73 *
 74 SECTION ETEST
 75 IF &C * IF CODE DEFINED
 76 EXIT * EXIT
 77 END
 78 MESSAGE ARCHITECTURE CODE NOT DEFINED
 79 JUMP ETEST * ELSE REPEAT MESSAGE ENDLESSLY
 80 ENDMJOB

METAJOB SIZE 1439 BYTES

A2 - MJOB Description Listing, L.EXMJOB - Page 3

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 133 of 154

LISTING OF EXINIT EXAMPLE METAJOB INITIATOR 25/02/88 10.28.53 PAGE 1

 2 PROGRAM EXINIT
 3 *
 4 0000 DATA DIVISION
 5 *
 6 0000 77 ZDAY PIC 9(6) COMP * DAY NUMBER
 7 0003 77 ZDATE PIC 9(6) COMP * DATE
 8 *
 9 *

 10 0006 LINKAGE SECTION
 11 *
 12 0000 01 PARMS * MJOB PARMS
 13 0000 03 P-0 PIC X(8)
 14 0008 03 P-1 PIC X(8)
 15 0010 03 P-2 PIC X(8)
 16 0018 03 P-3 PIC X(8)
 17 0020 03 P-4 PIC X(8)
 18 0028 03 P-5 PIC X(8)
 19 0030 03 P-6 PIC X(8)
 20 0038 03 P-7 PIC X(8)

 21 0040 03 P-8 PIC X(8)
 22 0048 03 P-9 PIC X(8)
 23 0050 03 P-A PIC X(8)
 24 0058 03 P-B PIC X(8)
 25 0060 03 P-C PIC X(8)
 26 0068 03 P-D PIC X(8)
 27 0070 03 P-E PIC X(8)
 28 0078 03 P-F PIC X(8)
 29 0080 03 P-G PIC X(8)
 30 0088 03 P-H PIC X(8)
 31 0090 03 P-I PIC X(8)

 32 0098 03 P-J PIC X(8)
 33 00A0 03 P-K PIC X(8)
 34 00A8 03 P-L PIC X(8)
 35 00B0 03 P-M PIC X(8)
 36 00B8 03 P-N PIC X(8)
 37 00C0 03 P-O PIC X(8)
 38 00C8 03 P-P PIC X(8)
 39 00D0 03 P-Q PIC X(8)
 40 00D8 03 P-R PIC X(8)
 41 00E0 03 P-S PIC X(8)
 42 00E8 03 P-T PIC X(8)

 43 00F0 03 P-U PIC X(8)
 44 00F8 03 P-V PIC X(8)
 45 0100 03 P-W PIC X(8)
 46 0108 03 P-X PIC X(8)
 47 0110 03 P-Y PIC X(8)
 48 0118 03 P-Z PIC X(8)

A3 - Initiator Compilation Listing, L.EXINIT - Page 1

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 134 of 154

LISTING OF EXINIT EXAMPLE METAJOB INITIATOR 25/02/88 10.28.53 PAGE 2

 50 0008 0 0 PROCEDURE DIVISION
 51 *
 52 0008 0 0 SECTION MAIN
 53 *
 54 * LOAD MJOB FILE AND BASE PARAMETERS
 55 *
 56 000E 0 0 LOAD "EXMJOB"
 57 0020 0 0 ON EXCEPTION STOP RUN

 58 0024 0 0 BASE PARMS ON $$EPT
 59 *
 60 * THE FOLLOWING STATEMENT, WHICH ESTABLISHES TEST MODE 2, MUST
 61 * BE REMOVED IF THIS JOB IS TO GENERATE LIVE DIALOGUE
 62 *
 63 002E 0 0 MOVE "MJOB2" TO P-0
 64 *
 65 * THE ARCHITECTURE CODE IN &C IS TAKEN FROM $$ARCH
 66 *
 67 003C 0 0 MOVE $$ARCH TO P-C
 68 *

 69 * THE EXPIRY DATE IS CURRENT + 100
 70 *
 71 0048 0 0 CALL DT-DY$ USING $$DATE ZDAY
 72 0056 0 0 ADD 100 TO ZDAY
 73 005C 0 0 CALL DY-DT USING ZDAY ZDATE
 74 0068 0 0 CALL DT-DS USING ZDATE P-D
 75 *
 76 * &S AND &V ARE BOTH SET ON, TO SUPPRESS DIALOGUE BUT NOT VERIFICATION
 77 *
 78 0076 0 0 MOVE "Y" TO P-S P-V
 79 *

 80 * &X IS SET TO 2K TO RESERVE THAT NUMBER OF BYTES IN LIBRARY P.DEV
 81 *
 82 0086 0 0 MOVE "2048" TO P-X
 83 *
 84 * FINALLY CHAIN TO $MRUN ON $P
 85 *
 86 0092 0 0 CHAIN "*MRUN"
 87 00A4 0 0 ENDPROG

A3 - Initiator Compilation Listing, L.EXINIT - Page 2

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 135 of 154

LISTING OF EXINIT STATISTICS 25/02/88 10.28.53 PAGE 3

NUMBER OF ERRORS 0
NUMBER OF WARNINGS 0

COMPILATION OPTIONS IN FORCE :

TR - TRACE INFORMATION GENERATED IN COMPILATION FILE

NLN - NO LONG NAMES, THE FIRST 6 CHARACTERS ARE SIGNIFICANT
SD - SYMBOLIC DEBUG RECORD GENERATED IN COMPILATION FILE

PROGRAM SIZE = 00A4 BYTES (HEXADECIMAL)

TOTAL NUMBER OF LINES 87 (EXCLUDING COMMENTS 57)

SOURCE FILE - S.EXINIT ON 235 CREATED 25/02/88

COMPILATION - C.EXINIT ON 235 SIZE 0,8K
LISTING FILE - L.EXINIT ON 204 SIZE 3,7K

MACHINE - PERTEC PC-3200
VERSION - V6.0

COMPILATION COMPLETED

A3 - Initiator Compilation Listing, L.EXINIT - Page 3

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 136 of 154

TEST OF EXMJOB EXAMPLE MJOB FILE 25/02/88 10.36.07 PAGE 1

NON-NULL PARAMETERS

&0 MJOB2

&C K

&D 12/12/87

&S Y

&V Y

&X 2048

 15 SUPPRESS
 17 MESSAGE

 DIALOGUE DIVISION (SUPPRESS)
 +EXERCISE HAS STARTED+
 19 VERIFY
 20 MESSAGE
 +VERIFY+
 22 INPUT 100
 23 OUTPUT SYSRES 101
 24 SERIAL 12345678 12/12/87
 :<ESCAPE> :*F
 :100 :101
 :O :SYSRES

 :SER :12345678 :12/12/87
 25 INIT SYSRES
 :SCR :Y
 :CHA :SYSRES
 26 PERFORM SYSRES
 37 LOAD
 :LOA
 38 INSTALL ++2222A 100
 :INS :++2222A :100
 39 COPY S.$2222A <GROUP>
 :COP :<CTRL C> :S.$2222A

 :CFI :<CTRL C> :S.$2222A
 40 COPY $MONITOR
 :COP :$MONITOR :<NULL> SIZE:<NULL>
 :CFI :$MONITOR WITH:<NULL>
 41 PATCH $MONITOR 100T
 :PAM :$MONITOR :100T :2000/40
 42 COPY TESTFILE NEWNAME
 :COP :TESTFILE :NEWNAME SIZE:<NULL>
 :CFI :TESTFILE WITH:NEWNAME
 43 COPY $.
 :COP :$. :<CTRL B>

 :CFI :$. :<CTRL B>
 44 COPY .TEST
 :COP :.TEST :<CTRL B>
 :CFI :.TEST :<CTRL B>
 45 COPY

A4 - Test Listing Using EXINIT - Page 1

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 137 of 154

TEST OF EXMJOB EXAMPLE MJOB FILE 25/02/88 10.36.07 PAGE 2

 :COP :<CTRL B>
 :CFI :<CTRL B>
 46 DELETE TESTFILE
 :DEL :TESTFILE
 47 DELETE #.
 :DEL :#.@@@@@@<CTRL B>
 48 EXIT
 27 PERFORM SYSDEV
 51 OUTPUT SYSDEV 101

 52 INIT
 :<NULL>
 :100 :101
 :O :SYSDEV
 :SCR :Y
 53 LIBRARY P.DEV 2048
 :<ESCAPE> :*LIB
 :<CTRL C> :SYSDEV
 :P.DEV :101 :Y
 :<NULL> :<NULL>
 54 MERGE P.ONE

 :MER :100 :P.ONE :<CTRL B>
 :COM :100 :P.ONE :<CTRL B>
 55 TAG V11.1
 :CHA :<NULL> :V11.1@@@<CTRL A>
 56 INVOL BACIPL 114
 :I :BACIPL
 57 MERGE P.TWO
 :MER :114 :P.TWO :<CTRL B>
 :COM :114 :P.TWO :<CTRL B>
 58 MERGE P.THREE <SYSRES>
 :OFF :114 :SYSRES :P.THREE :<CTRL B>

 59 STOW MJOBMEMN
 :PAT :MJOBMEMN
 :MJOB2@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@K@@@@@@@12/1
 :2/87@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@Y@@@@@@@@@@@@@@@@@@@@@@@Y@@@
 :@@@@@@@@@@@@2048@@@@@@@@@@@@@@@@@@@@ :<NULL>
 60 PERFORM ETEST

 76 EXIT
 63 MERGE P.FOUR $KTRAM
 :MER :114 :P.FOUR :$KTRAM
 :COM :114 :P.FOUR :$KTRAM
 :<NULL>
 65 ENDLIB
 :TRU :2048 :END
 66 PROTECT P.DEV
 :<ESCAPE> :*F
 :114 :101
 :FIF :P.DEV

 67 VERIFY OFF
 68 COPY $COMWORK 32766
 :COP :$COMWORK :<NULL> SIZE:32766
 69 CHECK
 :VER

A4 - Test Listing Using EXINIT - Page 2

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 138 of 154

TEST OF EXMJOB EXAMPLE MJOB FILE 25/02/88 10.36.07 PAGE 3

 70 EXIT
 28 SERIAL
 :SER :<NULL>
 29 INPUT BACRES 100
 30 MOUNT
 :<NULL>
 :100 :101
 :IO :BACRES :SYSDEV
 31 RUN *SPECIAL

 :<ESCAPE> :*SPECIAL
 32 RESPOND
 :ABD :123 :XYZ@@11 TEXT
 33 RUN
 :<ESCAPE>
 34 EXIT
 ENDJOB

A4 - Test Listing Using EXINIT - Page 3

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 139 of 154

TEST OF EXMJOB EXAMPLE MJOB FILE 25/02/88 10.23.22 PAGE 1

NON-NULL PARAMETERS

&0 MJOB2

&C $

 17 MESSAGE
 DIALOGUE DIVISION
 +EXERCISE HAS STARTED+
 22 INPUT 100
 23 OUTPUT SYSRES 101
 24 SERIAL 12345678
 :<ESCAPE> :*F
 :100 :101
 :O :SYSRES
 :SER :12345678 :<NULL>

 25 INIT SYSRES
 :SCR :Y
 :CHA :SYSRES
 26 PERFORM SYSRES
 37 LOAD
 :LOA
 38 INSTALL ++2222A 100
 :INS :++2222A :100
 39 COPY S.$2222A <GROUP>
 :COP :<CTRL C> :S.$2222A
 40 COPY $MONITOR

 :COP :$MONITOR :<NULL> SIZE:<NULL>
 41 PATCH $MONITOR 100T
 :PAM :$MONITOR :100T :2000/40
 42 COPY TESTFILE NEWNAME
 :COP :TESTFILE :NEWNAME SIZE:<NULL>
 43 COPY $.
 :COP :$. :<CTRL B>
 44 COPY .TEST
 :COP :.TEST :<CTRL B>
 45 COPY
 :COP :<CTRL B>

 46 DELETE TESTFILE
 :DEL :TESTFILE
 47 DELETE #.
 :DEL :#.@@@@@@<CTRL B>
 48 EXIT
 27 PERFORM SYSDEV
 51 OUTPUT SYSDEV 101
 52 INIT
 :<NULL>
 :100 :101
 :O :SYSDEV

 :SCR :Y
 53 LIBRARY P.DEV
 :<ESCAPE> :*LIB
 :<CTRL C> :SYSDEV
 :P.DEV :101 :Y

A5 - Text Listing USING $MTEST - Page 1

Appendix A - Example Metajob System

Global Development Toolkit Manual V8.1 Page 140 of 154

TEST OF EXMJOB EXAMPLE MJOB FILE 25/02/88 10.23.22 PAGE 2

 :<NULL> :<NULL>
 54 MERGE P.ONE
 :MER :100 :P.ONE :<CTRL B>
 55 TAG V11.1
 :CHA :<NULL> :V11.1@@@<CTRL A>
 56 INVOL BACIPL 114
 :I :BACIPL
 57 MERGE P.TWO
 :MER :114 :P.TWO :<CTRL B>

 58 MERGE P.THREE <SYSRES>
 :OFF :114 :SYSRES :P.THREE :<CTRL B>
 59 STOW MJOBMEMN
 :PAT :MJOBMEMN
 :MJOB2@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@$@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

 :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :<NULL>
 60 PERFORM ETEST
 76 EXIT
 65 ENDLIB
 :TRU :<NULL> :END
 66 PROTECT P.DEV
 :<ESCAPE> :*F
 :114 :101
 :FIF :P.DEV
 67 VERIFY OFF
 68 COPY $COMWORK 32766

 :COP :$COMWORK :<NULL> SIZE:32766
 69 CHECK
 :VER
 70 EXIT
 28 SERIAL
 :SER :<NULL>
 29 INPUT BACRES 100
 30 MOUNT
 :<NULL>
 :100 :101
 :IO :BACRES :SYSDEV

 31 RUN *SPECIAL
 :<ESCAPE> :*SPECIAL
 32 RESPOND
 :ABD :123 :XYZ@@11 TEXT
 33 RUN
 :<ESCAPE>
 34 EXIT
 ENDJOB

A5 - Test Listing USING $MTEST - Page 2

Appendix B - Error and Warning Messages From $MJOB

Global Development Toolkit Manual V8.1 Page 141 of 154

Appendix B - Error and Warning Messages From
$MJOB

This appendix describes the error and warning messages produced by the
metajob file builder, $MJOB, on its listing file. If an error occurs,
this indicates a serious fault and no metajob file will have been
created. $MJOB is able to recover following a warning, however, and
the description of the warning message specifies the recovery action
taken. Metajob files subject to warnings are executable, but it is of
course good practice to correct the metajob description so that a
clean listing can be obtained.

Usually the error or warning message follows the line to which it
applies, but where a missing line is referred to the message is
printed where the missing line should have been.

* WARNING 1 INSTRUCTION NOT RECOGNISED

The line is not a comment, nor does it identify a directive
(MJOB, ENDMJOB, Page), nor is it one of the statements listed in
Table 5.2.2. The spurious line is ignored.

*** ERROR 2 ESSENTIAL OPERAND MISSING

Insufficient operands have been specified for the statement
listed, which therefore cannot be compiled. No metajob file will
be produced.

* WARNING 3 SPURIOUS OPERAND IGNORED

More operands have been coded in the listed statement than are
actually required. The extra one(s) are simply ignored.

*** ERROR 4 ILLEGAL PARAMETER IN OPERAND

An operand contains an & character which is not followed by an
asterisk, a digit or an upper case letter. Such a sequence cannot
be interpreted, either as an asterisk (in the case of &*) or as a
parameter in the range &0...&Z, and in consequence this error
occurs.

* WARNING 5 ENDMJOB DIRECTIVE MISSING

The end of the metajob description file has been met before
encountering an ENDMJOB directive. This warning message is output
and then processing continues just as though an ENDMJOB had been
met: the metajob description and listing files will be closed,
and the metajob file will be created providing no errors have
occurred previously.

* WARNING 6 MJOB DIRECTIVE MISSING

The first non-comment line of the metajob description should be
an MJOB directive. If it is not this warning appears and no title
is established for the metajob file.

* WARNING 7 MJOB DIRECTIVE OUT OF PLACE

Appendix B - Error and Warning Messages From $MJOB

Global Development Toolkit Manual V8.1 Page 142 of 154

An MJOB directive has been encountered following the first non-
current line of the mjob description. The spurious directive is
ignored.

*** ERROR 8 SECTION NAME ALREADY DEFINED

The statement flagged is a SECTION statement whose name operand
is the same as that of a SECTION statement previously processed.
This error is equivalent to duplicate label definition in a
conventional language.

*** ERROR 9 'IF' NEST LEVEL NON ZERO

The IF nest level was found to be non-zero on encountering a
SECTION statement or an ENDMJOB directive, indicating that an END
statement is missing.

* WARNING 10 NO MATCHING 'IF' FOUND

An END statement has been encountered for which no corresponding
IF was previously detected. The spurious END statement will be
ignored.

*** ERROR 11 'IF...ELSE...ELSE' DETECTED

Consecutive ELSEs attached to the same IF statement have been
detected. The spurious second and subsequent ELSE statements will
be ignored.

*** ERROR 12 MORE THAN 32 NESTED 'IF's

The maximum nesting level for IF [ELSE] END structures, 32
overall, has been exceeded.

*** ERROR 13 FIRST OPERAND NOT PARAMETER

The first operand of a SET or MASK statement must consist of a
single parameter.

Appendix C - Error Messages From $MRUN

Global Development Toolkit Manual V8.1 Page 143 of 154

Appendix C - Error Messages From $MRUN

This appendix describes the run-time error messages output by the
metajob interpreter, $MRUN, if a condition is detected which prevents
it continuing. Each message is displayed on the screen and all (apart
from the error 0 message) are printed on the test listing if the
interpreter is operating in test mode. All errors are terminal and
cause $MRUN to return control to the monitor once the appropriate
message has been output.

With exception of error 0, all messages displayed at the screen end
with the phrase AT xxxx, where xxxx is the metajob listing line number
of the instruction responsible for the error.

*** ERROR 0 NO MJOB FILE SUPPLIED

This error occurs when $MRUN does not find the four character
metajob file identifier, MJOB at location #5000. This may be
because the metajob initiator has set up &0 incorrectly; this
parameter should be either MJOB, MJOB1 or MJOB2. This error will
also take place if you try to execute $MRUN from the ready
prompt. The command should be chained to from an initiator which
has loaded and parameterised the metajob file.

*** ERROR 1 STATEMENT OUT OF SEQUENCE AT xxxx

This error means that one of the following sequencing rules have
been broken:

● A SUPPRESS statement has been attempted, but dialogue has already

been generated by a previous file utility, librarian, or dialogue
extension statement.

● An INPUT, OUTPUT, SERIAL, INSTALL, PATCH, COPY, ALLOCATE, MOUNT,

RUN or LIBRARY statement has been attempted from within a library
group. (A library group is considered to start when a LIBRARY
statement has been processed and terminate when an ENDLIB
statement is executed.)

● A MERGE, INVOL, STOW or ENDLIB statement has been attempted from

outside a library group. There should have been a preceding
LIBRARY statement without an intervening ENDLIB.

● A TAG statement does not immediately follow a MERGE (ignoring

intervening structured programming statements).

*** ERROR 2 INSTRUCTION NOT RECOGNISED AT xxxx

The metajob file has been corrupted or the $MJOB command has
erroneously generated a statement with an invalid instruction
number, which cannot be processed by $MRUN.

*** ERROR 3 SECTION NOT PRESENT AT xxxx

A PERFORM statement has been attempted, but its operand, which
should be a section name, does not correspond to a section name
introduced by any SECTION statement appearing within the metajob
description.

Appendix C - Error Messages From $MRUN

Global Development Toolkit Manual V8.1 Page 144 of 154

*** ERROR 4 INPUT/OUTPUT UNIT NOT SET UP AT xxxx

A LIBRARY or file utility statement has been attempted before
input and output device information has been established by the
INPUT and OUTPUT statements.

*** ERROR 5 NO DIALOGUE AT xxxx

An EXIT statement issued from the highest level of control (in
order to start execution of the dialogue constructed by $MRUN)
has been attempted before any statement that generates dialogue
has been processed.

*** ERROR 6 PERFORM FROM 16TH LEVEL AT xxxx

A PERFORM statement has been issued when there are already 16
PERFORMs outstanding. The maximum subroutine nesting is 16
levels.

*** ERROR 7 NO PREVIOUS LOAD AT xxxx

An INSTALL or PATCH statement has been attempted but no previous
LOAD statement has been executed to bring the file utility
extension, $FX, containing the logic of the INS and PAM
instructions, into memory. Alternatively a LOAD has been executed
but a program other than $F has been run in 1he meantime, so the
extension is no longer in memory.

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 145 of 154

Appendix D - Example $MACRO Listings

The following pages contain printouts of a macro source file F.SAMPLE,
and the resulting compiler source file S.SAMPLE. The program is the
example program used in the Global Development Cobol User Manual, with
some macro statements added to allow the length of the text records to
be varied, and to allow all the file creation logic to be omitted.

Two preprocessor variables are used: %L must be set to the length of
the text records (1-80), and %D must be set to Y to create a display
only version, or N to create the full version. Another variable, %S,
is used to hold the size of the file which is calculated as %L*100.
The first listing is of the source file F.SAMPLE before it is
processed by $MACRO. Note the use of preprocessor comments to explain
the parameter usage.

The second printout is the output from $MACRO of a display only
version of S.SAMPLE with a text length of 40 characters. The file was
produced using the dialogue:

GSM READY:$MACRO
$509 INPUT FILE:SAMPLE UNIT:222
$509 INPUT FILE:<CR>
$509 OUTPUT FILE:<CR> UNIT:<CR>
$509 OPTION:D=Y
$509 OPTION:L=40
$509 OPTION:<CR>
$509 PREPROCESSING

$509 NUMBER OF ERRORS 0
$509 NUMBER OF WARNINGS 0
$509 PREPROCESSING COMPLETE

Note that if instead the options had been specified as D=N, L=70 the
resulting file S.SAMPLE would have been identical to that in the
Global Development Cobol User Manual.

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 146 of 154

PRINT OF F.SAMPLE ON UNIT 235 25/02/88 10.36.32 PAGE 1

 1 %* THIS SOURCE CAN BE MACROED TO PRODUCE EITHER THE EXAMPLE PROGRAM
 2 %* SAMPLE BY SPECIFYING %D=N, OR A PROGRAM DISPLAY, WHICH CONTAINS
 3 %* ONLY THE DISPLAY CODE OF SAMPLE, BY SPECIFYING %D=Y
 4 %*
 5 %* THE LENGTH OF THE TEXT RECORDS IS PARAMETER %L, WHICH MUST BE
 6 %* SET TO A VALUE BETWEEN 1 AND 80. THE STANDARD EXAMPLE PROGRAM
 7 %* USES 70.
 8 %*
 9 %%IF %D = Y

 10 PAGE "DISPLAY FILE FROM SAMPLE"
 11 PROGRAM DISPLAY
 12 *
 13 * THIS PROGRAM DISPLAYS THE RECORDS CREATED BY THE EXAMPLE PROGRAM
 14 * SAMPLE
 15 %%ELSE
 16 PAGE "SIMPLE EXAMPLE PROGRAM "
 17 PROGRAM SAMPLE
 18 *
 19 * THIS PROGRAM IS DESIGNED TO SHOW HOW A SIMPLE BOS/COBOL PROGRAM IS
 20 * CONSTRUCTED. IT DEMONSTRATES CONSOLE I/O, SEQUENTIAL AND RANDOM FILE

 21 * ACCESS, I/O EXCEPTION HANDLING AND GENERAL BOS/COBOL STATEMENTS.
 22 *
 23 * THE PROGRAM BUILDS UP A DISK FILE OF %L-BYTE RECORDS WITH
 24 * USER-DEFINED TEXT, AND THEN ALLOWS THE USER TO RETRIEVE AND DISPLAY
 25 * SPECIFIC RECORDS.
 26 %%END
 27 *
 28 DATA DIVISION
 29 *
 30 FD DF ORGANISATION RELATIVE-SEQUENTIAL *FD FOR DISK FILE
 31 ASSIGN TO UNIT "DSK" FILE DFFID

 32 KEY IS DFKEY
 33 RECORD LENGTH IS %L
 34 %%NUM %S %L*100
 35 SIZE IS %S
 36 *
 37 77 C-LINE PIC 9(2) COMP *LINE COUNT
 38 *
 39 77 Z-REPLY PIC X *OPERATOR REPLY
 40 *
 41 77 Z-TEXT PIC X(%L) *RECORD TEXT
 42 *

 43 %%IF %D NOT = Y
 44 01 M1 *TITLE AND DATE
 45 02 FILLER *TITLE
 46 03 FILLER PIC X(10) *TITLE INDENT
 47 VALUE SPACES
 48 03 FILLER PIC X(51) *TITLE TEXT
 49 VALUE "BOS COBOL DEMONSTRATION PROGRAM"
 50 02 M1-DAT PIC X(8) *SYSTEM DATE
 51 PAGE
 52 *
 53 * NOTE THAT WHEN A TABLE OF CHARACTER VALUES IS DEFINED AS BELOW,

 54 * THE INDIVIDUAL VALUE STATEMENTS ARE DIRECTLY CONCATENATED.
 55 * THEREFORE THE FULL-LENGTH VALUE MUST BE SUPPLIED FOR EACH TABLE ITEM.
 56 *
 57 01 FILLER
 58 02 K-MES OCCURS 5 PIC X(68)

Macro source, F.SAMPLE - Page 1

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 147 of 154

PRINT OF F.SAMPLE ON UNIT 235 25/02/88 10.36.32 PAGE 2

 59 VALUE " "
 60 VALUE "THIS PROGRAM CREATES A FILE OF USER DEFINED TEXT RECORDS"
 61 VALUE " "
 62 VALUE "ON UNIT DSK, AND THEN DISPLAYS USER SELECTED RECORDS. "
 63 VALUE " "
 64 VALUE " ---------------- "
 65 VALUE " "
 66 VALUE "A NULL REPLY IS ALWAYS VALID AND HAS THE EFFECT OF "
 67 VALUE " "

 68 VALUE "ESCAPING FROM THE CURRENT LEVEL OF DIALOGUE. "
 69 *
 70 %%END
 71 PAGE "MAIN CONTROL SECTION"
 72 PROCEDURE DIVISION
 73 *
 74 SECTION AA-MAIN
 75 *
 76 * THIS SECTION MAINTAINS THE FLOW OF CONTROL IN THE PROGRAM
 77 *
 78 *

 79 %%IF %D NOT = Y
 80 MOVE 1 TO C-LINE *
 81 DO UNTIL C-LINE > 5 *
 82 DISPLAY SPACE *DISPLAY 5 BLANK LINES
 83 ADD 1 TO C-LINE *
 84 ENDDO *
 85 *
 86 CALL DT-DS$ USING $$DATE M1-DAT *USE DATE SUB-ROUTINE TO
 87 *CONVERT SYSTEM DATE TO
 88 *SHORT DISPLAY FORMAT
 89 *

 90 DISPLAY M1 *DISPLAY TITLE AND DATE
 91 DISPLAY SPACE *
 92 DISPLAY SPACE *AND 3 BLANK LINES
 93 DISPLAY SPACE *
 94 *
 95 MOVE 1 TO C-LINE *
 96 DO UNTIL C-LINE > 5 *
 97 DISPLAY K-MES(C-LINE) *DISPLAY 5-LINE SIGN-ON MESSAGE
 98 ADD 1 TO C-LINE *
 99 ENDDO *
 100 *

 101 PAGE
 102 FOR TRAINING PURPOSES DELETE THESE THREE ERRONEOUS STATEMENTS.
 103 SEE THE BOS COBOL USER MANUAL (APPENDIX A)
 104 FOR INSTRUCTIONS TO REPLACE THEM WITH CORRECT STATEMENTS.
 105 *
 106 SUBTRACT 16 FROM $$LINE GIVING C-LINE *INITIALISE LINE COUNT
 107 *
 108 AA010. *LABEL FOR $DEBUG TRAP
 109 *
 110 DO UNTIL C-LINE NOT POSITIVE *PRODUCE ENOUGH BLANK LINES
 111 DISPLAY SPACE *TO POSITION THE

 112 ADD -1 TO C-LINE *"BOS READY:SAMPLE" DIALOGUE
 113 ENDDO *ON THE TOP LINE OF THE SCREEN
 114 *
 115 %%END
 116 AA020.

Macro source, F.SAMPLE - Page 2

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 148 of 154

PRINT OF F.SAMPLE ON UNIT 235 25/02/88 10.36.32 PAGE 3

 117 *REQUEST AND ACCEPT A FILE
 118 *IDENTIFIER FROM THE OPERATOR.
 119 *QUIT IF NULL KEYED.
 120 DISPLAY "SPECIFY FILE IDENTIFIER"
 121 ACCEPT DFFID NULL STOP RUN
 122 *
 123 %%IF %D NOT = Y
 124 AA030.
 125 *REQUEST AND ACCEPT AN

 126 *INSTRUCTION, REPROMPT FOR FILE
 127 *IF NULL KEYED.
 128 DISPLAY "CREATE OR DISPLAY(C/D)"
 129 ACCEPT Z-REPLY NULL GO TO AA020
 130 *
 131 IF Z-REPLY EQUAL "C"
 132 PERFORM CA-CREATE *CREATE FUNCTION IF "C" KEYED
 133 ON EXCEPTION GO TO AA020 *FILE ALREADY EXISTS
 134 ELSE
 135 IF Z-REPLY EQUAL "D"
 136 PERFORM CC-DISPLAY *DISPLAY FUNCTION IF "D" KEYED

 137 ON EXCEPTION GO TO AA020 *FILE DOES NOT EXIST
 138 END
 139 END
 140 *
 141 GO TO AA030 *REPROMPT FOR INSTRUCTION
 142 *IF NOT "C" OR "D" OR WHEN
 143 *CREATE/DISPLAY COMPLETE
 144 %%ELSE
 145 PERFORM CC-DISPLAY
 146 ON EXCEPTION GOTO AA020
 147 STOP RUN

 148 %%END
 149 %%IF %D NOT = Y
 150 PAGE "CREATE SECTION"
 151 SECTION CA-CREATE
 152 *
 153 * THIS SECTION OPENS A NEW FILE WITH A RECORD LENGTH OF 70 BYTES ON
 154 * LOGICAL UNIT DSK. THE USER KEYS IN THE TEXT WHICH IS WRITTEN TO
 155 * SEQUENTIAL RECORDS OF THE FILE UNTIL A NULL TEXT STRING IS KEYED,
 156 * WHEN THE FILE IS CLOSE-TRUNCATED (TO RETURN ANY SPARE FILE SPACE)
 157 * AND THE USER INFORMED BY A MESSAGE. CONTROL IS THEN RETURNED TO THE
 158 * "CREATE OR DISPLAY" PROMPT.

 159 *
 160 OPEN NEW DF *OPEN A NEW FILE.
 161 *IF THE FILE ALREADY EXISTS,
 162 *RETURN TO THE FILE IDENTIFIER
 163 *PROMPT VIA AN EXCEPTION
 164 ON EXCEPTION
 165 DISPLAY "FILE ALREADY EXISTS"
 166 EXIT WITH 1
 167 END
 168 *
 169 CA010.

 170 *REQUEST AND ACCEPT THE TEXT OF
 171 *THE NEXT RECORD. IF NULL TEXT,
 172 *CLOSE THE FILE
 173 DISPLAY "KEY NEXT TEXT RECORD"
 174 ACCEPT Z-TEXT NEWLINE NULL GO TO CA020

Macro source, F.SAMPLE - Page 3

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 149 of 154

PRINT OF F.SAMPLE ON UNIT 235 25/02/88 10.36.32 PAGE 4

 175 WRITE NEXT DF FROM Z-TEXT *WRITE THE ACCEPTED TEXT TO
 176 ON EXCEPTION *THE FILE. IF THE FILE IS FULL,
 177 DISPLAY "FILE FULL" *CLOSE IT
 178 GO TO CA020
 179 END
 180 *
 181 GO TO CA010 *ACCEPT NEXT INPUT RECORD
 182 *
 183 CA020.

 184 CLOSE DF TRUNCATE *CLOSE THE FILE AND DISPLAY
 185 DISPLAY "FILE " *THE FILE-CLOSED MESSAGE
 186 DISPLAY DFFID SAMELINE
 187 DISPLAY " CLOSED" SAMELINE
 188 EXIT *RETURN TO MAIN CONTROL
 189 %%END
 190 PAGE "DISPLAY SECTION"
 191 SECTION CC-DISPLAY
 192 *
 193 * THIS SECTION ATTEMPTS TO DO AN "OPEN OLD". FAILURE CAUSES THE
 194 * PROGRAM TO ISSUE A WARNING MESSAGE AND TO THEN RETURN TO THE

 195 * "SPECIFY FILE IDENTIFIER" PROMPT VIA AN EXIT WITH 1. SUCCESS RESULTS
 196 * IN THE USER BEING ASKED FOR A RECORD NUMBER, AND THIS IS USED TO
 197 * RETRIEVE THE SPECIFIED RECORD FROM THE FILE. A NULL RECORD NUMBER
 198 * CAUSES THE FILE TO BE CLOSED AND THE PROGRAM RETURNS CONTROL TO
 199 * THE "CREATE OR DISPLAY" PROMPT. IF THE RECORD NUMBER IS PAST THE
 200 * END OF FILE, AN ERROR MESSAGE IS GIVEN. OTHERWISE THE TEXT OF THE
 201 * RECORD IS DISPLAYED. THE NEXT RECORD NUMBER IS THEN REQUESTED.
 202 *
 203 OPEN OLD DF *OPEN THE EXISTING FILE.
 204 *IF THE FILE DOES NOT EXIST,
 205 *RETURN TO THE FILE IDENTIFIER

 206 *PROMPT VIA AN EXCEPTION
 207 ON EXCEPTION
 208 DISPLAY "FILE DOES NOT EXIST"
 209 EXIT WITH 1
 210 END
 211 *
 212 CC010.
 213 DISPLAY "KEY RECORD NUMBER" *REQUEST AND ACCEPT A RECORD
 214 ACCEPT DFKEY NULL GO TO CC020 *NUMBER. IF NULL, CLOSE THE FILE
 215 *
 216 READ DF INTO Z-TEXT *READ THE SELECTED RECORD

 217 *INTO THE BUFFER
 218 ON EXCEPTION *IF INVALID RECORD NUMBER
 219 DISPLAY "**ERROR** ATTEMPT TO READ OUTSIDE FILE LIMITS"
 220 ELSE
 221 DISPLAY Z-TEXT *IF VALID, DISPLAY RECORD
 222 END
 223 GO TO CC010 *ACCEPT NEXT RECORD NUMBER
 224 *
 225 CC020.
 226 CLOSE DF *CLOSE THE FILE AND DISPLAY
 227 DISPLAY "FILE " *THE FILE-CLOSED MESSAGE

 228 DISPLAY DFFID SAMELINE
 229 DISPLAY " CLOSED" SAMELINE
 230 EXIT *RETURN TO MAIN CONTROL
 231 ENDPROG

Macro source, F.SAMPLE - Page 4

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 150 of 154

PRINT OF S.SAMPLE ON UNIT 235 01/03/88 10.36.32 PAGE 1

 1 PAGE "DISPLAY FILE FROM SAMPLE"
 2 PROGRAM DISPLAY
 3 *
 4 * THIS PROGRAM DISPLAYS THE RECORDS CREATED BY THE EXAMPLE PROGRAM
 5 * SAMPLE
 6 *
 7 DATA DIVISION
 8 *
 9 FD DF ORGANISATION RELATIVE-SEQUENTIAL *FD FOR DISK FILE

 10 ASSIGN TO UNIT "DSK" FILE DFFID
 11 KEY IS DFKEY
 12 RECORD LENGTH IS 40
 13 SIZE IS 4000
 14 *
 15 77 C-LINE PIC 9(2) COMP *LINE COUNT
 16 *
 17 77 Z-REPLY PIC X *OPERATOR REPLY
 18 *
 19 77 Z-TEXT PIC X(40) *RECORD TEXT
 20 *

Compilation Source, S.SAMPLE - Page 1

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 151 of 154

 PRINT OF S.SAMPLE ON UNIT 235 01/03/88 10.36.32 PAGE 2

 21 PAGE "MAIN CONTROL SECTION"
 22 PROCEDURE DIVISION
 23 *
 24 SECTION AA-MAIN
 25 *
 26 * THIS SECTION MAINTAINS THE FLOW OF CONTROL IN THE PROGRAM
 27 *
 28 *
 29 AA020

 30 *REQUEST AND ACCEPT A FILE
 31 *IDENTIFIER FROM THE OPERATOR.
 32 *QUIT IF NULL KEYED.
 33 DISPLAY "SPECIFY FILE IDENTIFIER"
 34 ACCEPT DFFID NULL STOP RUN
 35 *
 36 PERFORM CC-DISPLAY
 37 ON EXCEPTION GO TO AA020
 38 STOP RUN

Compilation Source, S.SAMPLE - Page 2

Appendix D - Example $MACRO Listings

Global Development Toolkit Manual V8.1 Page 152 of 154

PRINT OF S. SAMPLE ON UNIT 222 01/03/88 10.41.35 PAGE 3

 39 PAGE "DISPLAY SECTION"
 40 SECTION CC-DISPLAY
 41 *
 42 * THIS SECTION ATTEMPTS TO DO AN "OPEN OLD". FAILURE CAUSES THE
 43 * PROGRAM TO ISSUE A WARNING MESSAGE AND TO THEN RETURN TO THE
 44 * "SPECIFY FILE IDENTIFIER" PROMPT VIA AN EXIT WITH 1. SUCCESS RESULTS
 45 * IN THE USER BEING ASKED FOR A RECORD NUMBER, AND THIS IS USED TO
 46 * RETRIEVE THE SPECIFIED RECORD FROM THE FILE. A NULL RECORD NUMBER
 47 * CAUSES THE FILE TO BE CLOSED AND THE PROGRAM RETURNS CONTROL TO

 48 * THE "CREATE OR DISPLAY" PROMPT. IF THE RECORD NUMBER IS PAST THE
 49 * END OF FILE, AN ERROR MESSAGE IS GIVEN. OTHERWISE THE TEXT OF THE
 50 * RECORD IS DISPLAYED. THE NEXT RECORD NUMBER IS THEN REQUESTED.
 51 *
 52 OPEN OLD DF *OPEN THE EXISTING FILE.
 53 *IF THE FILE DOES NOT EXIST,
 54 *RETURN TO THE FILE IDENTIFIER
 55 *PROMPT VIA AN EXCEPTION
 56 ON EXCEPTION
 57 DISPLAY "FILE DOES NOT EXIST"
 58 EXIT WITH 1

 59 END
 60 *
 61 CC010.
 62 DISPLAY "KEY RECORD NUMBER" *REQUEST AND ACCEPT A RECORD
 63 ACCEPT DFKEY NULL GO TO CC020 *NUMBER. IF NULL, CLOSE THE FILE
 64 *
 65 READ DF INTO Z-TEXT *READ THE SELECTED RECORD
 66 *INTO THE BUFFER
 67 ON EXCEPTION *IF INVALID RECORD NUMBER
 68 DISPLAY "**ERROR** ATTEMPT TO READ OUTSIDE FILE LIMITS"
 69 ELSE

 70 DISPLAY Z-TEXT *IF VALID, DISPLAY RECORD
 71 END
 72 GO TO CC010 *ACCEPT NEXT RECORD NUMBER
 73 *
 74 CC020.
 75 CLOSE DF *CLOSE THE FILE AND DISPLAY
 76 DISPLAY "FILE " *THE FILE-CLOSED MESSAGE
 77 DISPLAY DFFID SAMELINE
 78 DISPLAY " CLOSED" SAMELINE
 79 EXIT *RETURN TO MAIN CONTROL
 80 ENDPROG

Compilation Source, S.SAMPLE - Page 3

Appendix E - $MACRO Error and Warning Messages

Global Development Toolkit Manual V8.1 Page 153 of 154

Appendix E - $MACRO Error and Warning Messages

This appendix describes the error and warning messages generated by
$MACRO. Each is written to the output file and displayed on the
screen. The initial '*' characters can be replaced by the comment
character of your choice using $MACRO's *= option.

In some of the messages, the name of the function appears at the start
of the text. This is indicated as %%xyz in the messages below.

** ERROR - END OF MACRO DEFINITION NOT FOUND

The end of an input file was reached without encountering a
%%ENDM statement to terminate a macro definition.

** ERROR - 'IF...ELSE...ELSE' DETECTED
* WARNING - 'IF' NEST LEVEL NON-ZERO

At the end of an input file, the IF statement nesting level was
non-zero.

** ERROR - 'IF' NEST LEVEL TOO GREAT

The maximum nesting level for IF statements is 32.

** ERROR - INVALID MACRO DEFINITION

A macro cannot be defined within the definition of a macro.

** ERROR - LINE OUT OF CONTEXT

A %%AND or %%OR statement was not preceded by a %%IF statement,
or a mixture of %%AND and %%OR statements occurred within one
%%IF statement.

* WARNING - LINE TRUNCATED

The line has been truncated to 72 characters.

** ERROR - MACRO NESTING LEVEL TOO DEEP

The macro nesting level is specified using NL option. The default
is 10.

** ERROR - MISSING MACRO NAME
** ERROR - NO MATCHING 'IF' FOUND

%%END has been found with a preceeding %%IF.

* WARNING - PARAMETER TRUNCATED

The parameter value has been truncated to 31 characters.

* WARNING - TOO MANY PARAMETERS

A macro can have at most 9 parameters.

** ERROR - %%xyz INVALID EXPRESSION

Appendix E - $MACRO Error and Warning Messages

Global Development Toolkit Manual V8.1 Page 154 of 154

The expression was not correctly formed.

** ERROR - %%xyz INVALID 'IF' CONDITION

The conditional test is not one of the valid conditional
operators.

** ERROR - %%xyz INVALID PARAMETER

A parameter is either a constant when it must be a preprocessor
variable, or is not numeric in a numeric conditional test.

** ERROR - %%xyz MISSING PARAMETER

A mandatory parameter has been omitted.

** ERROR - %%xyz VARIABLE OUT OF RANGE

A preprocessor variable was specified whose number was greater
than the number of extension variables specified using the EX=n
option.

