

Global Speedbase Development Manual V8.1 Page 1 of 241

Global 16-bit Development System
 Speedbase Manual
 Version 8.1

Global Speedbase Development Manual V8.1 Page 2 of 241

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or
 transmitted, in any form or by any means,

electrical, mechanical, photocopying,
recording or otherwise, without

the prior permission of
TIS Software Limited.

Copyright 1994 -2001 Global Software

MS-DOS is a registered trademark of Microsoft, Inc.

Windows NT is a registered trademark of Microsoft, Inc.

Unix is a registered trademark of AT & T.

C-ISAM is a registered trademark of Informix Software Inc.

D-ISAM is a registered trademark of Byte Designs Inc.

Btrieve is a registered trademark of Pervasive Technologies, Inc.

Global Speedbase Development Manual V8.1 Page 3 of 241

TABLE OF CONTENTS

Section Description Page Number

0. Foreword ... 6

1. Speedbase Language Overview 7
1.1 Capabilities ... 7
1.2 Basic Concepts ... 8
1.3 Introduction to the Language Structure 9

2. Speedbase Database Manager.. 12
2.1 Introduction .. 12
2.2 Background .. 12
2.3 Speedbase DBMS Overview ... 13
2.4 The Database Life-Cycle ... 14
2.5 Indexing Capabilities ... 15
2.6 Record Relationships - Masters and Servants 16
2.7 Multi-user Access - Locking 18
2.8 Database Access Statements.. 21
2.9 Global Database Structure ... 25
2.10 Unix C-ISAM Database Structure 28
2.11 .. Restrictions 29
2.12 ... Performance Hints 31

3. Language Structure .. 33
3.1 Language Elements ... 33
3.2 Source Code Layout .. 35
3.3 Frame Structure ... 37
3.4 Control Structure ... 38
3.5 Managing Overlay Structures 41

4. Frame Header .. 44
4.1 The FRAME Statement ... 44
4.2 The SEQUENCE Statement .. 44
4.3 Frame Header Options .. 45
4.4 The ACCESS Statement .. 46
4.5 The CONTROLLING FRAME Statement 47
4.6 The SWAP-FILE Statement ... 47

5. Data Division ... 48
5.1 Data Division Structure ... 48
5.2 Data Definitions .. 48
5.3 Picture Clauses ... 50
5.4 Value Clauses ... 51
5.5 Redefinition's .. 53
5.6 The Print Format (PF) Construct 53
5.7 The File Definition (FD) Construct 62

6. Window Division ... 63
6.1 Window Division Structure ... 64
6.2 Window Formats & Operator Facilities 65
6.3 Control Structure ... 69
6.4 The Routines Section .. 75
6.5 Processing Database Records 78
6.6 Window Construct Syntax ... 80
6.7 Programming Notes ... 94
6.8 Example Order Entry Program 95

7. Procedural Statements ... 96
7.1 Structure ... 96
7.2 Screen Management Statements 97

Global Speedbase Development Manual V8.1 Page 4 of 241

7.3 Report Printing Statements....................................... 104
7.4 Database Access Statements....................................... 105
7.5 Arithmetic Statements .. 112
7.6 The MOVE Statement ... 113
7.7 Transfer of Control Statements 116
7.8 Conditional and Iterative Statements 118
7.9 Table Handling ... 124
7.10 ... The SUSPEND Statement 125
7.11 .. Global Cobol Support 126

8. Speedbase System Routines .. 127
8.1 B$CHK - $BASYS Presence Check 127
8.2 B$LOD - Load Speedbase System Area............................... 127
8.3 B$OPN - Open Database .. 128
8.4 B$FEX - Execute Frame .. 128
8.5 B$STA - Return Database Status 129
8.6 B$ST2 - Return Extended Database Status 130
8.7 B$PRC - Close Print File ... 130
8.8 B$CDB - Close Database ... 130
8.9 B$DSC - Clear Baseline ... 131
8.10 BXCL, BXSH - Get, Release Exclusive Access 131
8.11 ... B$WRJ - Right-justify Field 131
8.12 B$RBL - Database Re-index Facility 131

9. Speedbase System Variables 134
9.1 $PRUN - Printer Unit-id .. 134
9.2 $PGNO - Current Page Number 134
9.3 $LINO - Current Line Number 134
9.4 $RSPG - Restart Page Number 134
9.5 $PHLT - Printer Halt Suppress Flag............................... 134
9.6 $FUNC - Accepted Function Number 135
9.7 $MODE - Current Window Operating Mode 135
9.8 $FWFR and $BKFR - Frame-id to Load 136
9.9 $FNTX0 and $FNTX() - Keytop Names 136
9.10 $FNBY0 and $FNBY() - Function-key Values 136

Global Speedbase Development Manual V8.1 Page 5 of 241

APPENDICES

Appendix Description Page Number

A Speedbase Compiler.. 138
A.1 Compiler Dialogue .. 140

B Compiler Error and Warning Messages 144

C Sample Application ... 166

D EXIT and STOP Codes .. 177
D.1 EXIT Codes ... 177
D.2 STOP Codes ... 179

E Speedbase Text Editor .. 185
E.1 Editor Facilities .. 185
E.2 Edit Phase .. 187
E.3 Direct Commands .. 190
E.4 Executable Commands ... 192
E.5 Regenerating a Window .. 198
E.6 Generating New Windows ... 203
E.7 Error and Warning Messages....................................... 205

F Dictionary Maintenance Utility 208
F.1 Running the Utility ... 208
F.2 Establishing a New Meta-dictionary 209
F.3 Amending the Meta-dictionary 212
F.4 Printing the Dictionary Report 221
F.5 Generating the Dictionary 224
F.6 Clearing the Meta-dictionary 229
F.7 Creating a Meta-dictionary 230
F.8 Auto-sequence Indexes ... 232

G Speedbase Memory Allocation 234

Foreword

Global Speedbase Development Manual V8.1 Page 6 of 241

0. Foreword

This manual describes the Speedbase Development System, a high-level
programming language and associated utilities for use by developers of
commercial application products.

Chapter 1 introduces Speedbase, explaining the capabilities and
underlying concepts of the language. Chapter 2 provides a summary of
the facilities of the Speedbase database management system. For a full
account, see the Speedbase Presentation Manager Manual. Subsequent
chapters then treat each aspect of the language in detail. The
utilities are documented in the appendices.

In order to gain a fast appraisal of Speedbase, the following chapters
are recommended:

Speedbase Development Language Overview Chapter 1
Speedbase Database Manager Chapter 2
Window Division Chapter 6

The Speedbase Development System is distributed with a sample
application system, described in Appendix C. Following a review of the
above chapters, we recommend that you study both the source and
running frames of this application. The remaining chapters in this
manual may then be used for reference purposes.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 7 of 241

1. Speedbase Development Language Overview

1.1 Capabilities
The Speedbase Development Language is a high level compiled
programming language which allows extremely rapid development of
commercial data processing systems. It consists of a number of very
high level constructs, which are used to specify interaction between
stored data and the user. To make maximum use of the available
facilities, this data will normally be stored in a Speedbase database,
which provides full relational control and retrieval facilities.

Speedbase has dramatically expanded the functionality of traditional
development languages such as Cobol, while maintaining upward
compatibility. Speedbase encompasses the functionality of both
Assembler and Cobol, and statements from these language may be
interspersed with Speedbase high level facilities.

As a programming language, Speedbase has been aimed at the data
processing professional and is not regarded as an end-user product. It
has been designed to facilitate rapid development of complex business
systems, the design of which would be far beyond the capabilities of
most computer end-users. Speedbase may, of course, be used to develop
relatively simple applications, but its main strength lies in its
ability to control and integrate large volumes of diverse business
data.

This data control function is performed by a run-time environment
known as the Speedbase Presentation Manager, a network structured dbms
integrated with a sophisticated windowing system which has been
designed and optimised specifically for use on mini and microcomputer
systems. All frames written using the Speedbase Development Language
are automatically interfaced to the Speedbase Presentation Manager
which is present whenever Speedbase frames are executed.

Speedbase provides the following capabilities:

● High level window constructs are used to define operator dialogue

and provide a powerful, consistent and simple end-user interface.
This includes features such as window overlays, POP-UPs, dynamic
function key facilities, split-screen scrolling, partially scrolled
records and automatic window sequencing;

● Automatic enquiry mode facilities allow data records to be

retrieved by any of up to sixteen indexes for each record type.
These facilities operate within all application frames using the
database;

● High level Print Format construct defines report layouts. This

construct defines the print layout and automatically generates the
MOVE statements required to assemble the print line. Spooling, page
throw conditions and printing restarts are also handled
automatically;

● Instant access by each frame to up to four complete databases, each

containing up to 36 separate record types (files) and up to 90
indexes. Database open and close procedures are automatically
performed by Speedbase;

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 8 of 241

● Fast database accessing verbs including READ, FETCH and GET.
Retrieval of data records may take place either directly or via
each of up to 16 indexes associated with each record type. FETCH
FIRST, LAST, NEXT, and PRIOR are supported, allowing records to be
retrieved in both ascending and descending index order;

● Speedbase supports three generations of language constructs in a

single development environment. A single source frame can contain
assembler instructions (2GL), Cobol instructions (3GL), and fourth
generation (4GL) constructs such as windows;

● Fast, single pass compiler containing an integral linkage editor,

which directly generates executable frames;

● Full Data Division implementation including Cobol FD constructs to

allow interfacing to traditional indexed and relative sequential
files. BASED variable declarations are also supported for system
programming applications;

● Frames written using Speedbase are automatically multi-user, with

record level locking. Speedbase applications may be implemented on
either micro or mini computers providing simultaneous access to
more than a hundred screens. Over sixty different computer hardware
systems are currently supported, and both source and object frames
and user data are 100% compatible across this entire range;

● Speedbase supports local area network (LAN) implementations, and

allows databases to be dispersed across networks with up to twenty-
six file servers, supporting hundreds of screens. Record level
locking is supported across the entire network, thus allowing LAN
implementations without frame modifications;

● Speedbase supports the storage of its database in a series of C-

ISAM files in a Unix file structure. When stored in this form the
database may be accessed by other Unix application programs written
in languages such as Informix. A program produced by the Speedbase
Development System may access databases in either the usual Global
System Manager (GSM) format or in the Unix format, or both.

1.2 Basic Concepts
Speedbase application systems consist of programs known as frames.
Each frame is an individually loadable object program, which will
perform a particular task within the application, such as data entry
and maintenance of a particular record type, or the production of a
report. Each frame will usually require access to one or more
Speedbase databases, and these are normally opened by the Speedbase
menu program before execution.

Each Speedbase frame will usually consist of one or more windows in
which data will be presented to, and accepted from the operator.
Windows are used to present a particular view of the data stored
within a Speedbase database, and provide enquiry, data-entry and
maintenance facilities for this data. Complex frames are simply built
up from a series of these windows, each window performing some aspect
of the overall task.

For example, an order entry frame might consist of three windows. The
first window would be used to select a particular customer, the second

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 9 of 241

would allow data-entry of order header details such as delivery
address, and the third window would allow entry of individual order
detail lines. Each window would normally also provide enquiry and
update facilities. More complex tasks can then be built up from even
longer series of windows.

Windows are specified by using non-procedural code, and quite complex
applications can be produced in this way. It is quite usual, however,
to code procedural instructions to perform additional specialised
processing, such as application specific validation routines. Entry-
points are provided to allow this during many processing stages. It is
even possible for procedural code entirely to "take over" control of
the frame.

When procedural logic is required, it may be written using traditional
Cobol statements. Speedbase also provides assembler statements, which
may be used for highly technical programming tasks. All of these
statements can be coded within the same source frame, and this gives
the programmer an extremely flexible development environment.

Owing to the power of the Speedbase high level facilities, frames tend
to be small. A typical Speedbase frame would take up less than two
pages of code. A source program file therefore normally contains many
individual frames, which are compiled together. The Speedbase compiler
produces a single executable object file for each frame in the source
program. These object frames can then be executed after any required
databases have been opened.

The Speedbase compiler contains an integral linkage editor, which Is
used to link any required system routines into the object frames. It
is usual, however, for these routines to reside in a service module
which is automatically loaded when the frame is executed.

The service module contains most of the system routines normally used
by frames, such as the routines used to perform database I/O and
screen manipulation. A large fraction of the service module consists
of a series of page-able monitor overlays which although permanently
resident are outside the user memory space.

Most Speedbase frames will therefore easily fit into available memory.
Particularly large frames can, however, be segmented using a feature
called dependent frames. Dependent frames can automatically access all
data items and I/O channels resident in higher levels of the overlay
structure, and need only a single statement to be specified. This
feature allows complex overlay structures to be established during the
course of development, and needs little prior planning or design.

Speedbase also provides high-level facilities for the production of
reports. Using the PF construct, complex reports can be produced with
very little effort. The PF construct generates print-lines
automatically, handles page throws, provides for spooling, and takes
care of a variety of error conditions. This construct will normally be
used for the development of more complicated reports, more
straightforward listings being produced by Speedquery, the Speedbase
Query System.

Speedquery provides a generalised screen-driven method to access the
information stored on a Speedbase database. Speedquery allows end-
users to view data in quite sophisticated ways, and to produce either
on-line or printed output. This same facility can also be used by

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 10 of 241

professional developers to produce pre-formatted enquiry and report
frames.

The most striking feature of Speedbase applications is their
consistent "look and feel". All frames operate using the same powerful
conventions, and provide the same operator facilities. This means that
once an operator has learned to use a single Speedbase frame, little
effort is needed to understand the use of the rest of the application,
or any other Speedbase application.

1.3 Introduction to the Language Structure
Each Speedbase frame is made up of six main sections:

Frame Header Area identifies the frame, and defines the order

in which the frame will be executed.

Data Division is used to create database I/O channels, and to

define other variables used by the frame. Reports
are also defined here using the PF construct.

Window Division is used to define the screen formats by which

the data will displayed, and accepted from the
operator. It may contain many individual windows,
which are called at various stages of processing.
The windows are normally invoked automatically
when the frame is run, and each window is executed
in a predetermined sequence.

Procedure Division contains procedural instructions which may be

used to define any task. When coded, the division
completely takes over control of the frame, and
may be used to execute windows under application
frame control.

Load Division provides a convenient entry-point from which frame

initialisation tasks may be performed.

Unload Division provides a convenient entry-point from which

any frame termination tasks may be performed.

Of the above sections, only the frame header area is required and all
other sections are therefore entirely optional.

When a frame is executed, the Load Division, if present, is executed
first. This allows the programmer to introduce application code to
perform any special initialisation tasks.

If a Window Division has been coded, this is normally executed next.
This causes each window to be entered in turn. Within each window, the
operator may perform operations such as record addition, maintenance
and enquiries.

If, however, a Procedure Division has been coded this is executed
instead of the Window Division. Any windows coded within the Window
Division can then be executed directly under the control of the
Procedure Division.

Chapter 1 - Speedbase Development Language Overview

Global Speedbase Development Manual V8.1 Page 11 of 241

The Unload Division is executed on completion of either the Window or
the Procedure Division. This division can be used to perform any
termination task, such as completing a complex transaction update.

The Frame Header and Data Division are therefore non-procedural. The
Window Division is partly procedural, in that it allows instructions
to be coded within a special section of each window called the
Routines Section. This section is used to perform specialised tasks
such as field validation, and non-standard updates. The three
remaining divisions (Procedure, Load and Unload Divisions) are wholly
procedural.

A typical frame will normally contain simply the Frame Header Area and
Window Divisions. The header area would be used to create I/O channels
for any record types referenced in the database dictionary, and all
other processing would be controlled within the Window Division.
Speedbase frames usually contain few procedural instructions and quite
powerful frames can be produced using no procedural code at all.

Where traditional procedural statements are needed, they can be
introduced into the source program at many points. Normally Cobol-like
statements would be used but, if necessary, assembler code can also be
used. This ability to "mix and match" traditional code with fourth
generation constructs provides an extremely flexible development
environment. Speedbase frames are therefore used in a wide variety of
environments, ranging from system software applications to the most
complex of commercial systems.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 12 of 241

2. Speedbase Database Manager

2.1 Introduction
Before effective use can be made of the Speedbase Development
Language, an in-depth understanding is required of the Speedbase
Database Manager. Many functions of commercial application systems can
be handled automatically by designing systems to take advantage of the
new facilities offered by Speedbase. This chapter should therefore be
considered essential reading for all potential designers of systems to
be written using Speedbase.

2.2 Background
Before addressing detailed issues, it is worthwhile examining the role
of commercial data processing systems generally. Most organisations,
irrespective of size or ultimate purpose, are heavily involved in the
exchange and manipulation of information. As the size and complexity
of organisations has grown, so has the need to process accurately an
increasing volume of data.

The difficulty of processing manually such large volumes of data has
led to the introduction of computerised information systems. And as
organisations have introduced and benefited from such systems,
increased competitiveness has placed their rivals under pressure to
follow suit. This process has been so effective that few commercial
organisations are now viable without heavy reliance on computerised
data processing systems.

The demand for further improvements in information systems has,
however, by no means diminished. Only a few years ago, systems based
on batch processing, providing weekly or even daily turn-around, were
considered quite adequate. Today, developers are under intense
pressure to produce systems that not only provide instantaneous access
to up-to-the-minute data, but also permit that data to be viewed in a
variety of different ways, at a variety of differing levels. To
further complicate matters, the race is also on to integrate many
different types of information into this schema, to provide a complete
model of the organisation to which the data belongs.

It is not impossible to provide these kinds of facilities using
traditional computing techniques such as indexed and relative
sequential file access methods. The resulting systems are, however,
notoriously difficult and therefore costly to produce, and almost
impossible to modify in any fundamental way.

At this point consider Speedbase. The essential purpose of any
database management system is to provide a framework in which diverse
information can be rapidly collected, modified and retrieved in an
organised and integrated manner. Speedbase achieves this purpose by
concentrating on the natural relation-ships that exist between data.

For example, consider the simple order entry system in Figure 2.2a.
This example contains three data relationships between four data
records.

The customer record and order header record are related in the sense
that one customer may have a number of outstanding orders. Conversely,
a group of orders exists that belong to a given customer. This one-to-
many relationship is referred to as a master/servant relationship

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 13 of 241

(i.e. the customer record is a master to a group of order header
records).

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 14 of 241

Figure 2.2a - Simple Order Entry System - Record Relationships

A similar master/servant relationship also exists between the order
header and order line records (i.e. an order is composed of a number
of line items). This relationship also exists between the stock and
order line records.

There is nothing new about these kinds of data relationships, they
pre-date the invention of the computer by thousands of years. In
traditional DP systems these relationships are implied by processing
rules (i.e. procedural code). An implementation using traditional
methods would probably call for the creation of four separate files,
each containing one record type. Copious quantities of code would then
be produced to:

● Open and close the files, checking that the versions of each file

are correct and dealing with exception conditions.

● Ensure that orders can only be placed on pre-existing customers

(i.e. that order lines refer to existing orders and stock items).

● Ensure that stock and customer records cannot be deleted while

orders are still active, etc., etc.

Most of this code would need to reside in each program to guarantee
data integrity. A database management system permits of a different
approach. Once the relationships between various records in a database
have been defined, the responsibility for maintaining this kind of
data integrity is completely assumed by Speedbase. This removes
considerable functionality from application frames, making them easier
to create and modify.

It is a mistake, however, to regard Speedbase as merely a new
technique for simplifying application programs to reduce their size.
The emphasis is on treating an organisation's data as a common,
highly-integrated resource. Simply using Speedbase to automate
individual applications may be extremely useful, but it is unlikely to
maximize the potential of the database approach.

2.3 Speedbase DBMS Overview
The Speedbase database management system controls the storage,
retrieval and modification of data in an unlimited number of
databases. It forms part of the Speedbase Presentation Manager and is
permanently resident in each user partition requiring database access.
The Speedbase Presentation Manager performs four major functions:

2.3.1 Relational Integrity
Speedbase ensures that the integrity between related records is
maintained by suppressing invalid I/O requests. Roll-ups of numeric

Customer Stock

Order Header

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 15 of 241

data between related records are automatically performed using the
GVA/GVF facilities described later in this chapter.

2.3.2 Index Management
Each record type may have up to sixteen separate indexes. As records
are added, deleted or modified these indexes are dynamically
maintained by Speedbase. All indexes are bi-directional and may
therefore be read in ascending and descending order.

2.3.3 I/O Support
Speedbase supports ten main I/O verbs:

WRITE Add a record to the database
REWRITE Modify an existing record
DELETE Logically remove a record from the database
FETCH/READ Randomly retrieve record via any index
FETCH/READ NEXT Retrieve next record sequentially via

index
FETCH/READ PRIOR Retrieve prior record sequentially via index
FETCH/READ FIRST Retrieve first of group of records via

index
FETCH/READ LAST Retrieve last of group of records via

index
GET Relative (direct) record retrieval
UNLOCK Relinquish record lock

The FETCH and READ verbs differ only in their treatment of related
records. The FETCH verb will retrieve only the target record, whereas
the READ verb will retrieve the target record with all of its
associated master records. Variations of these verbs are also provided
to retrieve a specific servant record set (e.g. all invoices for a
specific customer).

2.3.4 Utility Support
Utilities are provided to support database backup and restore, rebuild
and re-organisation, conversion, status and size estimation functions.
These utilities are documented in the Speedbase Presentation Manager
Manual.

2.4 The Database Life-Cycle
A Speedbase database is initially defined using the Speedbase
dictionary maintenance utility $SDM, documented in Appendix F. The
dictionary stores information about the contents of each data record,
the relationships data records may have to each other, and the indexes
associated with each record.

Using this utility, a database may be defined to contain up to thirty-
six separate data record types of varying lengths. Each record may
have up to sixteen separate indexes associated with it, up to a
maximum of ninety indexes per database. In addition, each record may
act as a servant record to up to sixteen other master records,
allowing a comprehensive network of relationships to be implemented.

Once the dictionary has been produced, a new, empty database may be
created using the Speedbase database generation utility. This
establishes the database on one or more devices, and creates internal
database linkages. Few practical limitations apply to the size of the
created database. A small test database may be created occupying as

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 16 of 241

little as 100 Kbytes, while its production version might easily exceed
150 Mbytes.

Before records may be written to, or read from the database, it must
be opened, and this is normally done by a menu program. A menu program
can open up to four databases before transferring control to
application frames. Since the databases will already be open when each
application frame is run, there are usually no file open/close
overheads incurred when frames are loaded. This leads to exceptionally
fast application loading, and improved response for the user.

When a database dictionary is initially created, it is assigned a
generation number. Whenever changes take place to the database design,
the dictionary is assigned a new generation number, which the compiler
includes in all frames requiring access to the data-base. This is
checked against the generation number of the database opened at run-
time, which ensures that frames match the database in use.

A new generation number is automatically assigned by the Speedbase
dictionary maintenance utility when any data record layout is
modified, added or deleted, any index is modified, added or deleted,
any change takes place to relationships between records within the
database, or any GVA/GVF relationship is added, changed or deleted.

The Speedbase generation utility uses the new dictionary either to
create a new empty database, or to convert an existing database to the
new format. It is important to note that when this is done, all frames
accessing the new database must be recompiled before they can be
executed.

2.5 Indexing Capabilities
Each record may be indexed by zero to sixteen separate indexes
consisting of an optional primary, unique index and up to fifteen
secondary indexes. Each index in turn may be composed of up to eight
separate fields which do not have to be contiguously located within
the data record.

As records are added to the database, Speedbase automatically
maintains these index structures. It also incrementally re-organises
indexes as the need arises, thus avoiding overflow chains and
corresponding performance degradation. A Speedbase database therefore
does not require frequent re-organisation.

Primary index keys are regarded by Speedbase as uniquely identifying a
given record. The optional primary index key is used to establish and
maintain record relationships, and may therefore not be modified. Any
attempt to modify a record's primary index key during a rewrite will
cause the offending frame to be aborted. Secondary indexes, however,
may be modified, and always allow duplicate entries.

Index keys may contain computational fields, but when used must not be
negative. The key values are ordered in strict ASCII collating
sequence, and the introduction of negative computational numbers will
therefore not provide the expected index order. Index keys may not
start with a high-values byte (i.e. #FF).

All indexes maintained by Speedbase are bi-directional (i.e. may be
read forward or backwards) using the FETCH NEXT and FETCH PRIOR
statements.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 17 of 241

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 18 of 241

2.6 Record Relationships - Masters and Servants
Speedbase allows master/servant relationships to be defined between
record types within a single database. Relationships between records
may be established within a network structure (i.e. each servant
record may be linked to up to sixteen master record types). The
following example shows how the various record types in a simple order
entry system might be related:

Figure 2.6a - Master/Servant Record Relationships

In the above example, each customer may have a number of orders, thus
indicating a master/servant relationship between these records.

A similar relationship also exists between the territory record and
the order header record. Each order header record may in turn have a
number of order line records. The order header record therefore acts
as a servant to the territory and customer records, and as a master to
the order line record. The servant records relating to a specific
master (e.g. order lines within an order header) are called a servant
set.

The masters relating to a particular servant may be accessed
implicitly using the READ statement, or explicitly using FETCH or GET
statements. The servant set relating to a specific master are
retrieved by a FETCH statement using an appropriate primary or
secondary index.

When a servant record is linked to a master, the fields making up the
master's primary index must also be stored on the servant. These
fields, as stored on the servant record, are called the master access
key. The master access key defines which particular master record the
servant belongs to. This same key is also used by the Speedbase
rebuild utility to relink records during total database
reorganisation.

The relationship between a master and servant record is not fixed.
Servant records may be relinked to new masters as the need arises, and
this is achieved by simply amending the master access key. Speedbase
then automatically unlinks the record from the old master and links it
to the new one. Defining relationships between records has the
following effects.

2.6.1 Linkages
Speedbase establishes pointer fields on the servant record which point
directly to each of its master records. This linkage is direct and
allows for extremely fast access to these master records. Using the
READ verb, a servant record may then be read with all of its master

Territory Customer Stock

Order Header

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 19 of 241

records in one statement. This ease of access often avoids the need
for duplication of data at the servant record level.

This feature is particularly useful during serial processing of
records (e.g. during report printing). Rather than writing procedural
code to fetch related records at key breaks, processing may proceed at
the lowest level servant record, and corresponding master records are
automatically retrieved.

2.6.2 Integrity
Where a relationship is specified, Speedbase ensures that master
records are always correctly linked to associated servants. A servant
record simply cannot be written to the database without the prior
existence of appropriate master records. Similarly, a master record
cannot be deleted until all of its servant groups are empty. These
checks ensure that application frame errors are trapped and corrected
at development time.

2.6.3 GVF/GVA Processing
Numeric fields residing on servant records can automatically be
accumulated into one or more corresponding fields on associated master
records. The numeric field stored on the servant record is known as a
GVF, Group Value Field. This field is added automatically to one or
more GVAs, Group Value Accumulators, when a WRITE, REWRITE or DELETE
operation takes place. GVFs are normal computational numeric fields
stored on the servant record. They may be accessed and modified as
required.

Speedbase automatically maintains GVA fields to ensure that they equal
the sum of the corresponding GVFs. During a REWRITE instruction, GVA
fields are modified to reflect any changes in the value of GVFs.

GVF/GVA processing is also performed when a record is relinked to a
new master during a REWRITE. In this instance the value of the GVF
field is transferred to the new master at the same time as new
linkages are established. Speedbase will also automatically handle the
instance where a record is not only relinked to a new master, but GVF
values have also been changed.

GVF/GVA processing is handled by Speedbase at a system level and is
therefore extremely quick. The construct has very wide applicability
and may be used to replace explicit procedural updates during data
entry and updates, which could normally only be performed by batch
processes.

Note that GVA fields are held in a special systems area of the record,
see section 2.9.4, whereas GVF fields are part of the user area of the
record. A field may not therefore be both a GVF and a GVA.

In the above example, GVF/GVAs could be usefully employed to:

● total units on order (order line GVF to stock record GVA)

● total value of order (order line GVF to order header GVA)

● total orders outstanding (order header GVF to customer GVA).

GVA values are automatically re-established by the Speedbase rebuild
utility. This means that complex application recovery routines do not

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 20 of 241

have to be written for each new system. Where possible it is therefore
advantageous to use GVF/GVA constructs in preference to explicit
updates.

Care must be taken when designing a database that the GVA values of
master records cannot overflow even when large numbers of servants are
added. A GVA field will overflow when the computational size of the
field is exceeded. Since this is usually several times larger than the
displayed size of the field, a considerable margin for error is
implicitly provided. If, despite this, a GVA overflow does occur, the
database will need to be rebuilt or restored.

2.7 Multi-User Access - Locking
A Speedbase database may be updated simultaneously by many users.
Integrity of the data stored is ensured by the use of locks at record
level. Speedbase allows records to be locked in two ways, exclusively
and update-protected. These locks are automatically provided whenever
a record is retrieved from the database.

Exclusive locks A record can be exclusively locked by only one

frame at a time. Exclusively locking a record gives the
frame the ability to rewrite or delete the locked
record. Indeed, if an attempt is made to rewrite or
delete a record that is not exclusively locked, the
offending frame will be terminated with a stop code. In
the remainder of this manual, the term "lock"
designates this type of full, exclusive lock.

Placing a full lock on a record therefore indicates the
intention of the frame to update it. Since two frames
updating a record simultaneously would cause
unpredictable results, Speedbase stops other frames
from retrieving the record for update purposes. A lock
therefore confers update rights to the locking frame.
Conversely, it removes the ability of other frames to
gain update rights while the record remains locked.

Update-Protection A record may be update-protected by several frames

at the same time, and for this reason this lock is
sometimes referred to as a non-exclusive lock. Placing
update-protection on a record does not provide update
rights to the locking frame, but simply stops any other
frame from updating the record. Once protected, the
record cannot therefore be re-written or deleted by any
frame. This type of lock is referred to as a protect
lock in the remainder of this manual.

Records should therefore only be locked if they are to be updated or
deleted. If the only intention is to stop anyone else from updating
the record, then the record should be protected. This has some
implications when processing record structures, which is discussed in
the next section.

2.7.1 Locking Record Structures
Some consideration must now be given to processing records that form
part of a structure (i.e. are related). This may best be illustrated
by use of an example:

Order Header Stock Record

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 21 of 241

Figure 2.7a - Master/Servant Relationships and Locking

In the above example a master/servant relationship exists between the
order header and stock records, and the order line record. Whenever an
order line record is added to the database, it is therefore linked to
both an appropriate order header and stock record. Which particular
order and stock records it is to be linked to is defined by the master
access keys present on the order line record.

When a new order line record is added to the database, it is therefore
necessary to ensure that its associated masters exist. In this
example, the order line must relate to an existing order header and be
for a product that exists in a stock record. The only way to ensure
this in a multi-user environment is to FETCH and LOCK or PROTECT the
appropriate records before issuing a WRITE instruction. Simply
performing a look-up, without a lock, leaves the way open for another
concurrently executing frame to delete the required master record
before the WRITE instruction is completed.

To overcome this potential problem, the record must therefore be
locked or protected. If the master record will not be explicitly re-
written then protection will suffice. This has the advantage of
allowing other partitions to add servants to this master at the same
time, which is not possible if a full lock is used.

Following successful addition of a servant, the linked master records
cannot be deleted. Speedbase maintains a count of the number of
servant records linked to each master, and while this count is non-
zero, the record is considered to be active. The same considerations
apply during a REWRITE. If a master access key is modified prior to a
REWRITE instruction, then it is essential that the new master record
is locked or protected.

Thus, the golden rule is that master records about to be linked to a
servant by WRITE or REWRITE instructions must be locked or protected.
This ensures that these records cannot be deleted by another frame
during the update process, and avoids the possibility of deadlock
occurring. If, during a WRITE or REWRITE operation, Speedbase detects
that a required master record has not been locked or protected by the
application frame, then a recovery will be attempted.

During this recovery, Speedbase will attempt to retrieve the required
master records from the database and lock them so that the update may
continue. If this can be done, the update will be concluded
successfully, following which the offending frame will be terminated
with a stop code.

If this process fails, either because the required master record does
not exist, or is permanently locked, then the operation will be
terminated unsuccessfully, and the frame terminated with a stop code.
The database will be corrupted in this event, necessitating a
restoration or rebuild. It is important to note that although writing
or re-writing a record will normally cause that record to become
unlocked, the lock status of any associated master records will be
unaffected by the operation.

Order Line

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 22 of 241

As discussed, master records about to be linked to a servant record
must be locked or protected at the time of the WRITE or REWRITE
instruction. No such requirement exists, however, when a servant
record is deleted. Unlinking a master record as a result of a delete,
or re-write when a master access key is changed, does not require the
master record to be locked in any way.

Exclusively locking a given master record will therefore prevent other
partitions from adding further servant records to its group, but will
not prevent deletions of records from that group. Given that these
records may have GVF options, this means that GVAs residing on a
master record may be modified by Speedbase, even while locked or
update-protected.

The system area of a data record, which contains all GVA fields, is
therefore in effect treated as a separate record and managed entirely
under the control of Speedbase. This strategy has been implemented to
reduce the number of concurrent locks required during typical update
sequences, and thus optimises access to the database during extensive
multi-user operations.

2.7.2 Record Retrieval Locking Options
Whenever a record is retrieved it is usually fully locked so that
other partitions are unable to update it. This avoids the possibility
of two users simultaneously reading, modifying and updating a record,
which would cause the modifications made by one of the users to be
lost.

It is therefore necessary to specify whether a full lock or just
protection is required when a data record is retrieved, and this is
achieved by means of the NOLOCK, PROTECT and RETRY clauses. These
clauses may be specified on each of the record retrieval verbs (i.e.
READ, FETCH and GET) and are described as follows.

NOLOCK instructs Speedbase that the target record is not to be

locked or protected. The record is therefore retrieved
regardless of its lock status. If it is retrieved using the
NOLOCK option, it cannot later be rewritten.

PROTECT indicates that update-protection is to be placed on the

record. If successful, the record will be protected
following retrieval, which ensures that it cannot be re-
written or deleted by any other frame.

RETRY instructs Speedbase to retry retrieval following a

locked record condition. It is coded:

RETRY n

where n is a numeric integer in the range -1 to 127, which
indicates the number of retries to attempt in the event of a
locked record condition.

If neither the NOLOCK nor the PROTECT clause is specified, then the
record will be retrieved with a full, exclusive lock thus conferring
update rights to the retrieving frame.

A locked record condition can arise in only two ways, when a protect
lock is requested and the record is already fully locked, and when a

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 23 of 241

full lock is requested while the record is protected or fully locked.
In this event, Speedbase will wait and retry the operation a number of
times as specified by the RETRY clause.

If n is positive, Speedbase retries the retrieval operation that
number of times. On each retry Speedbase will display a LOCK message,
including the name of the locked record, on the base-line of the
screen. Each retry will take up to approximately two seconds,
depending on system loading. When the number of retries specified has
been exhausted, an exception condition will be returned which must be
trapped by the frame using an ON EXCEPTION statement.

If the number of retries coded is -1, this indicates to Speedbase that
no exception logic has been coded to deal with the condition. RETRY -1
therefore results in an indefinite number of retries which will
continue until the operation is successfully completed, or the frame
is aborted. RETRY -1 must therefore be used with great care, since its
indiscriminate use can lead to frame deadlocks. If neither the RETRY
nor NOLOCK clauses are coded the retrieval instruction defaults to
RETRY 8.

The NOLOCK, PROTECT and RETRY clauses thus allow a variety of
conditions to be dealt with. If the target record will not be re-
written, the NOLOCK clause should normally be used. This avoids a
frame unnecessarily suspending other partitions requiring the same
record. Most reporting frames would normally retrieve records using
the NOLOCK option.

If either a full or protect-lock is required but no code has been
written to handle the possible record locked exception, RETRY -1
should normally be coded. Under most other conditions, the default
RETRY 8 should be appropriate.

2.8 Database Access Statements
This section introduces the database access statements used to perform
I/O transfers to and from the database. This section is concerned with
the underlying processing of these statements, rather than the precise
syntax, which is covered in Chapter 7.

2.8.1 The I/O Channel
Before any input or output operations can be performed for any record,
an I/O channel must first be established within the application frame.
This channel consists of a record control block, which is similar in
concept to a Cobol FD, and a data record area. This data record area
is used to perform all transfers of data to and from the database.

I/O channels are established by the ACCESS statement, described in
Chapter 4. The access statement is a compiler directive, which causes
it to compile an I/O channel into the frame for each designated record
type. Using this statement, it is also possible to create multiple I/O
channels for the same record type, and this is also discussed in
Chapter 4.

The fields within the record area established by an access statement
may be referenced by instructions, like the MOVE statement, just like
any other data items. The record area is always pre-initialised by the
compiler, and will contain binary zeros, decimal zeros or spaces
depending on the types of its component fields.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 24 of 241

2.8.2 Concept of the Current Position
Speedbase maintains information on the status of each I/O channel
within the frame. As data records are written and retrieved from the
database, Speedbase establishes a current record position for each
record type. This record position is used to determine which record
will be retrieved during sequential processing such as FETCH NEXT or
PRIOR.

When a frame is first loaded from disk, all the I/O channels are
established at an imaginary point one record before the beginning of
the data record area. An initial READ NEXT instruction will therefore
retrieve the first record in sequence of the specified index. This
operation advances the current record position. The current record
establishes a position within each of the record's indexes. This
position will clearly differ depending on which index is being used.
For example, customer number 1, with a name of "Zettech" would
presumably be first when viewed through the customer number index, but
somewhere near the end of the name index.

All I/O operations re-establish the current position in each of the
indexes associated with the data record. It is therefore possible to
read a series of records via one index, switching to another mid-
stream. The current record position is not affected by unlocking the
data record.

2.8.3 Database I/O Operations
Speedbase supports ten basic I/O operations:

DELETE Deletes currently locked record

REWRITE Rewrites the currently locked record

WRITE Writes a new record to the database

READ/FETCH Retrieves a specific record

corresponding to specified index key value

READ/FETCH FIRST Retrieves the first record with key

value equal to or greater than that specified

READ/FETCH NEXT Retrieves the next record in the
sequence of he specified index

READ/FETCH LAST Retrieves the last record with key value

equal to or less than that specified

READ/FETCH PRIOR Retrieves the preceding record in the

sequence of the specified index

GET Retrieves a record using its Relative Record
Position (RRP)

UNLOCK Release lock from one or all data records

Of the above statements, the UNLOCK statement is not a true I/O
operation since no data transfer actually takes place. All other
operations affect the current record position as described in section
2.8.2.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 25 of 241

The DELETE statement allows a previously retrieved and locked record
to be removed from the database. This process entails the dismantling
of indexes referencing the record, after which the data record is
returned to a list of free records. This free record "slot" may then
be re-used during subsequent WRITE statements.

If the record being deleted has master records, linkages to these
records will also be dismantled. This causes the master record's
servant group count field (SGC) to be decremented. Any GVF fields will
also be subtracted from the corresponding master record's GVA fields.

The REWRITE statement allows a modified record to be re-written to the
database. A record that is to be re-written must previously have been
retrieved, and must be exclusively locked at the time the instruction
is executed. The processing that takes place for this instruction
depends on just what modifications have been made to the record. If
any indexes, other than the primary index, have been changed, the pre-
existing index entries are removed and new entries built to reference
the record.

If any master access keys have been changed, the record is unlinked
from the prior masters and linked to the new masters as specified by
this key. Such a change may also involve dealing with any GVF/GVA
relationships between the re-written record and its masters.

The WRITE statement adds a new record to the database. This process
includes a check to see if the record's optional primary index already
exists on the database, and if this is the case, an exception
condition will be returned. Processing continues by allocating the
next available free data record slot from a "free list". If none is
available, an exception condition will again be returned.

Indexes are then established for the record. Following this, linkages
are created to any master records associated with the written record,
and GVF fields are added to their corresponding GVA fields.

Before the data record is finally written to the database, the system
area part of the record is filled with binary zeros, #00. This ensures
that all GVA fields have a zero value when the record is initially
written. Any values previously existing in these fields will therefore
be lost by this operation.

The above three statements can therefore all cause processing to take
place of masters associated with the target record. Such processing
may be required to simply update the servant group count (SGC) field
on the master's data record, or may be more complex GVF/GVA updates.
It is important to note that all the I/O required to process each
master record actually takes place within the record area in the
appropriate I/O channel. If the DELETE, REWRITE or WRITE statements
are to be used, an I/O channel must therefore be established for each
of the target record's masters.

The DELETE and WRITE statements always require I/O on all the target
record's masters. The REWRITE statement will require I/O on master
records if any master access key has been modified or any GVF has been
changed. To perform this processing, the system area of each master
record is read, updated as necessary and re-written to the database.
This process takes place within the record area of the appropriate I/O
channel for each master, and therefore updates any system area data
previously stored there.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 26 of 241

The READ and FETCH statements are used to retrieve records from the
database via a specified index. These statements operate identically
except for the processing of any associated master record. The FETCH
statement will retrieve only its target record, whereas the READ
statement will retrieve its target record and any master records for
which I/O channels have been established.

The master records retrieved by the READ statement are always returned
unlocked and the instruction will release any previously existing
locks on those I/O channels. The main use of the statement is
therefore within read-only functions such as reporting, where locks
are not normally required.

The READ and FETCH statements may be used for sequential or direct
indexed access to the database. READ/FETCH FIRST/LAST statements are
used to retrieve the first or last record corresponding to a specified
key value. The READ/FETCH NEXT or READ/FETCH PRIOR instructions may
then be used to retrieve records sequentially from the current record
position. Records may be retrieved in ascending or descending index
key order.

The GET statement is used to facilitate direct access to the database
using a Relative Record Number (RRN). The RRN specifies the relative
position a record occupies in the data record area, and access using
this number is therefore direct, without the need for intermediate
index look-ups. While the GET statement therefore operates very
quickly, it is not significantly faster than sequential processing
using the FETCH NEXT statement.

The UNLOCK statement is used to unlock a data record which has
previously been locked by a successful READ, FETCH or GET statement.
The statement is used to relinquish the locked status of a record,
allowing it to be updated by another partition. The statement can be
used to unlock a particular I/O channel, or can be used to relinquish
all locks currently in force within the frame.

2.8.4 Retrieving Records within Structures
This section discusses the retrieval of records which form part of a
structure (i.e. are related). It explains how the database access
verbs can be used to get from one record type to others. Retrieving a
given record can be accomplished by means of the GET or FETCH
instructions. The GET instruction allows the target record to be
retrieved when its RRN position is known. The FETCH instruction is
used when one of the record's index key values is known, facilitating
access via any of the record's indexes.

Whenever a data record is written to the database it is linked to any
master record types declared when the dictionary was created. Links
are created on the written record which point directly to the record's
masters. When the READ statement is used to retrieve a record, these
links are used to retrieve the master records at the same time as the
target record. There are three ways of accessing the master records
for a given servant:

● Using the READ statement, the target record may be retrieved at the

same time as any associated masters. The READ statement first
performs a FETCH on the target record, and then retrieves the

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 27 of 241

associated master records using direct links. The retrieved master
records will always be unlocked following this operation.

● The primary key value of each master record is always stored on its

servant records. Therefore, if the servant record is first
retrieved, each master record may then be retrieved using a FETCH
instruction via the master's primary index.

● The processing performed by the READ statement may also be

implemented explicitly. Once the target servant record has been
retrieved, GET statements may be coded using the links stored on
the servant. The data names allocated to these links are explained
in Section 2.9.4.

Retrieving records at a higher relational level in the database is
therefore achieved either via the master record's primary index, or
directly using the links stored on the servant record.

Retrieving records at a lower relational level in the database is
always done by use of indexes. If, for example, you need to retrieve
all the invoices for a given customer, the invoice record must have an
index starting with the customer number, and invoice records are READ
or FETCHed by reference to this index.

Another way of stating this is that the master access key must also be
the most significant portion of at least one index on the servant
record. This index can be any of the record's primary or secondary
indexes.

The FETCH and READ statements have been extended to simplify retrieval
of servant record groups using indexes. This is achieved by use of the
KEY clause within the READ and FETCH statements. The key passed using
this clause may be shortened to select only a given servant group.
This short key facility is explained further in Chapter 7.

2.8.5 I/O Error Handling
Most of the above statements can fail with exception conditions. Where
the execution of a statement can result in an exception, this must be
trapped in the frame code using an ON EXCEPTION, or ON NO EXCEPTION
statement. The various exception conditions which can arise may then
be distinguished by testing the system variable $$COND. For
convenience all possible exception conditions generated by the
database manager have been listed in Table 2.8a below:

Exception Condition

$$COND

A data record is found permanently locked during the
execution of any READ, FETCH or GET statement. The record has
been retrieved and placed in the data record area, but is not
locked.

1

Requested record key not found during a READ or FETCH
operation. If the instruction is READ/FETCH FIRST, NEXT, LAST
or PRIOR, the next record in the sequence of the selected
index is returned. Otherwise no action takes place.

2

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 28 of 241

A READ/FETCH FIRST, NEXT, LAST or PRIOR failed because the
requested record key did not exist. The next record in
sequence was then found to be permanently locked. This is a
combination of both conditions 1 and 2 occurring
simultaneously.

3

End or start of file condition has occurred during a
READ/FETCH, FIRST, NEXT, LAST or PRIOR. At end of file, the
data record area is filled with high values (#FF's). At start
of file the data record area is filled with low values
(#00's).

4

The DELETE verb has attempted to delete an active record
(i.e. a record which is linked to a group of servants). No
processing has taken place.

5

A duplicate primary index key would result from execution of
the WRITE verb. No processing has taken place.

6

Data area full condition. No free data records are available
to honour a WRITE request (i.e. a "file full" condition).

7

The GET verb specified a relative record number which is
deleted.

8

Table 2.8a - Database Manager Exception Conditions

2.9 Global Database Structure
Unless your computer is running under the Unix operating system, your
Speedbase database consists of three, four or five files, stored on
disk. If you are running Unix you have the option to store your
Speedbase data in the Unix file structure. A Global Speedbase database
(i.e. one stored in the Global System Manager (GSM) file structure
rather than a Unix file structure) consists of a data dictionary file,
a main index file and one, two, or three datafiles. The names of the
files are as follows, where xxxxx is the database name:

File-id Description
DIxxxxx Data Dictionary
DBxxxxx Main Index File
DBxxxxx1 Data-file 1
DBxxxxx2 Data-file 2

(optional)
DBxxxxx3 Data-file 3

(optional)

Table 2.9 - Global format Speedbase Database Files

2.9.1 Database Dictionary
The database dictionary contains a description of the fields stored on
each record, complete with details of associated indexes and

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 29 of 241

relationships with other records in the database. The dictionary is
created by the Speedbase dictionary maintenance utility, see Appendix
F.

The five-character database name may vary for different copies of the
same database. The database dictionary also contains a database ID,
which is compiled into frames during compilation. At run-time, this
ID, as compiled into the frames, is checked against the ID of the
database to ensure that the correct database has been opened, and an
error is reported if these IDs do not match. The database dictionary
must be located on the same unit as the main index file.

2.9.2 Main Index File
This file contains index data for all records stored within the
database. It is created when the database is initially established
using the Speedbase generation utility.

2.9.3 Datafiles 1, 2 and 3
These files contain the data records stored within the database. Each
file contains one or more contiguous record areas for each record type
which are allocated at database creation time. A record area must be
wholly contained within a single datafile (i.e. may not span volumes).
Only datafile 1 necessarily exists, since all thirty-six possible
record types may be accommodated within it. Datafiles 2 and 3 would
normally be used to distribute the database over several physical
devices, either for performance or space availability reasons. All
three datafiles may occupy separate physical volumes to provide
optimised access performance.

2.9.4 Data Record Structure
A data record area may contain space for up to eight million data
records. Speedbase maintains a list of free data records within this
area, which are allocated when new records are written to the
database. Records are returned to this free list when deleted, and are
eventually re-used.

Data records are normally accessed via an index using READ or FETCH
instructions. Direct access is, however, possible using the record's
Relative Record Number (RRN). When a record is initially added to the
database, it is written to the next free data record "slot" which is
identified by the RRN. The record remains in this position until it is
deleted, or the database is reorganised using the data-concentration
option of the Speedbase generation utility.

In some particularly performance-critical applications it may be
desirable to access records by RRN rather than an index. Care should
be taken however since the RRN specifies a record location rather than
a particular record. In the instance where a record is deleted and the
resulting free "slot" re-used by a subsequent WRITE, access by RRN
will, of course, retrieve the new record. It should also be noted that
RRNs change whenever the Speedbase database is restored or conversion
utilities are used.

READ/FETCH NEXT/PRIOR instructions, using an index, will usually
provide faster performance. The reasons for this are beyond the scope
of this manual but confirm that RRN accessing would not be used in
typical commercial applications. Each data record is composed of two
distinct parts, the user data area and system area. The user data area
contains all fields specified, up to but excluding the first GVA

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 30 of 241

field. The system area contains all GVA fields. Figure 2.9a shows the
complete data record layout:

ST1

LINK1

. . .

LINKn

User data

GVA area

SGC

ST2

Figure 2.9a - Data Record Structure

2.9.4.1 ST1: Status Code 1 ($rtST1)
All data records begin with a PIC 9(2) COMP status code. This is
either positive to indicate the record is in use, zero to indicate the
record has never been used, or negative to indicate the record was
once in use, but has since been deleted and returned to the list of
free records. The status code holds the number of the minor backup
cycle during which the record was last modified, and is used to
control incremental back-ups. The data-name of this field is $rtST1,
where rt is the two-character record ID specified in the ACCESS
statement. This field may be examined by application frames but must
not be modified.

2.9.4.2 Linkn: Link to Masters ($rtLNK(n))
The Relative Record Number (RRN) of each linked master record is
stored on the servant data record. One 9(6) COMP (3 byte) RRN exists
on the data record for each master record. A record associated with
three masters will therefore contain three 9(6) COMP RRN links,
meaning a storage overhead of nine bytes per record. Which master each
link relates to is specified when the dictionary is created using the
Speedbase dictionary maintenance utility.

These fields may be accessed using the name $rtLNK(n) where rt is the
record ID of the servant record and n is the master number as declared
using the Speedbase dictionary maintenance utility. These links may be
used to provide direct access to master records using the GET verb.

RRN accessing using these direct links has been implemented primarily
for system programming purposes and is included in this manual for the
sake of completeness only. The implementation of the READ verb, which
retrieves a data record inclusive of all master records, performs the
same function as a FETCH on the servant record followed by GETs (with
NOLOCK) on each of the required masters. Furthermore, the READ verb
executes faster than a series of individual GETs.

If, despite this, your application would benefit from using RRN
accessing using these linkages, do not under any circumstances attempt
to modify these links. Speedbase does not check to see if you have,
and doing so results in database corruption.

2.9.4.3 Specified Fields
User-specified fields, as defined using the Speedbase dictionary
maintenance utility, follow any master links. The size of this part of
the record area is determined directly from the picture clauses
assigned to each field. An 01 group level field is automatically
generated by the compiler which includes all these data items,
including GVA's. The name of this group field is the same as the

Specified fields

User Area Systems Area

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 31 of 241

record ID. This field allows redefinitions of the specified fields
from within the Data Division, should this be necessary.

2.9.4.4 SGC: Sub Group Count ($rtSGC)
This 9(6) COMP field stores a count of the attached servant records
(i.e. the number of records to which it acts as master). When this
count is non-zero, the record may not be deleted. Any attempt to do so
will cause an exception condition to be returned. This count cannot be
modified by an application frame.

2.9.4.5 ST2: Status Code 2 ($rtST2)
This PIC 9(2) COMP status code indicates the status of the system part
of the data record. The code is either zero to indicate no changes
have ever taken place to the system area, or positive to indicate the
back-up cycle during which the system area was last updated. Status
code value is undefined if the record is deleted (i.e. ST1 is
negative).

2.10 Unix C-ISAM Database Structure
If your Speedbase database is stored in a Unix file system it has a
special file structure. In this case the Speedbase database consists
of a data dictionary file and a schema file, both stored in the usual
Global System Manager (GSM) file structure, and in addition, a special
index file and several datafiles and index files stored in the Unix
file structure. The names of the files are as follows, where xxxxx is
the database name and rt1 to rtn are up to thirty-six record types:

File-id Description File
format

Dixxxxx Data Dictionary Global
DBxxxxx Schema File Global
DBxxxxx Special Index

file
Unix

DBxxxxxrt1.dat C-ISAM data file
for rt1

Unix

DBxxxxxrt1.idx C-ISAM index file
for rt1

Unix

DBxxxxxrt2.dat C-ISAM data file
for rt2

Unix

DBxxxxxrt2.idx C-ISAM index file
for rt2

Unix

DBxxxxxrtn.dat C-ISAM data file
for rtn

Unix

DBxxxxxrtn.idx C-ISAM index file
for rtn

Unix

Table 2.10a - Unix Speedbase Database Files

The data dictionary is created by the application developer using the
dictionary utility of the Speedbase Development System. The data
dictionary is stored in the GSM file structure and is identical with
that for a Global Speedbase database as described in section 2.9.1.

The schema file is stored in the GSM file structure and is used by the
database manager to retain details of the C-ISAM data and index file
parameters. It is not accessible to application programs. The special
index file is stored in the Unix file structure and is used by the
database manager to retain the details required to provide the
advanced indexing facilities of Speedbase.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 32 of 241

Each database record type is stored in its own C-ISAM datafile. These
datafiles are accessible to other Unix software although you must not
update (i.e. write to these files) as to do so would interfere with
the operation of Speedbase itself. The structure of the data within
the datafile is identical with that described in section 2.9.4 for a
Global Speedbase database datafile.

Associated with each C-ISAM datafile is a C-ISAM index file. These
files are provided for the use of Unix programmers who wish to write
software to read the datafiles in various special ways. For example,
you might wish to extract name and address information from a customer
record in order to do a mailshot using a Unix word-processing product.
In introducing C-ISAM indexes you must ensure that you do not
interfere with the operation of the Speedbase database manager. For
example, you must allow duplicate index entries because these are a
common feature of a Speedbase database.

2.11 Restrictions

2.11.1 File Sizes
All file sizes are calculated in 512 byte (0.5 Kbyte) blocks. The main
index file may contain up to four million index blocks, giving a
maximum file size of 2000 Mbyte. The minimum size of the main index
file must be sufficient to accommodate one block for each index
managed by the system, and one further block for a control area. A
database containing twenty indexes therefore requires a minimum area
of twenty-one blocks (i.e. 10.5 Kbyte).

A database may consist of one, two or three further files which
contain data records. Data records are located in a contiguous space
within these files, known as areas. An area may contain space for up
to eight million data records, and each data file is subject to a
maximum size of 2^31 - 1 bytes (i.e. the largest number containable in
a 9(9) COMP field). This figure again exceeds 2000 Mbyte.

There is, however, a restriction on the placement of areas within a
given data file. Speedbase requires that each record area starts
within the first 32 Mbyte of the data file. The actual size of the
record area is then limited only by the maximum file size of 2000
Mbyte.

Since three data files may be generated for a given database, this
allows 96 Mbyte (3x32 Mbyte) of data area to be allocated as required.
If particularly large record areas are required, these can be placed
at the end of each data file to comply with this restriction. This
approach therefore allows three virtually unlimited record areas to be
allocated with a total of 96 Mbyte of smaller areas, and is therefore
unlikely to cause difficulties in practical implementations.

2.11.2 Record Types/Sizes
A database may contain thirty-six separate record types, each of
varying lengths. The absolute maximum record size that may be
allocated is 32 Kbyte, but overall frame size limitations would
indicate a smaller practical limit. Record sizes exceeding 4 Kbyte are
not recommended unless you can be certain this will not cause frame
size problems within the application.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 33 of 241

The Speedbase rebuild and generation utilities are affected by record
sizes, and if very large record sizes are allocated, may not run on
target machines with a limited user partition size. This is further
detailed in the Speedbase Presentation Manager Manual.

Speedbase allows data records to span physical sectors, and makes no
attempt to block data records so that they are exact multiples or
divisors of the target disk sector length. If you know the physical
sector size of the target computers, some small performance
improvement can be achieved by blocking data records. This is done
simply by introducing a filler into the data record's definition to
expand it to the appropriate length. Note that allowance must be made
for the system fields appended to the record by Speedbase - see
Section 2.9.

The performance gains achieved by blocking data records are, however,
very limited and not normally noticeable in practical implementations.
Measured against this must be the increased, wasted storage space and
therefore the probability of increased disk head movement during
indexed random accessing.

2.11.3 Key Extract Area Limitations
Whenever Speedbase retrieves a data record, it copies certain
significant fields from the target record into a special system area.
This Key Extract (KE) Area is used to assemble both index and master
access keys from their component fields. The KE area is also used to
copy the numeric value of each GVF on the data record.

When the data record is subsequently re-written, Speedbase compares
the KE area with the record area to be re-written and takes
appropriate action. If, for instance, an index key has been changed,
Speedbase will delete the existing index entry and create a new one.
If a GVF value has been modified, Speedbase will adjust the
corresponding GVAs on the master records. If a master access key has
been modified, the master record will be re-linked as appropriate.

The actual size of the KE area for a given record is therefore
determined by adding the lengths of each index key, master access key
and GVF. The following example shows a calculation for a record with
three indexes, two linked masters and five GVFs. The index key sizes
of the record are 16, 24 and 35 bytes. The primary indexes of the
master records are 15 and 10 bytes long. The record has five GVFs,
each 9(6,2) COMP (i.e. four bytes each) see Figure 2.11a:

Index, Key, GVF Segments Bytes
Primary Index 3 16
Secondary Index 1 2 24
Secondary Index 2 2 35
Master Access Key 1 2 15
Master Access Key 2 1 10
5 GVFs (e.g. each 9(6,2)
COMP)

5 20

Totals 15 120

Table 2.11a - Example Key Extract Area

This example record therefore requires a KE area of 120 bytes. During
the compilation process, this space will be allocated automatically,
as each I/O channel is created.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 34 of 241

The maximum size of the KE area is limited in three respects:

Maximum Length of the KE area is limited to 256 bytes.

Maximum Number of Segments is limited to 64. For the purposes
of this calculation, each GVF is
regarded as a segment. Where a field has
multiple GVF relations, this is counted
as a single segment. In the example, 15
segments are defined.

Field Placement All index, master access and GVF

fields must be amongst the first 125
fields on the data record as defined
using the Speedbase dictionary
maintenance utility.

2.11.4 Indexation
Each data record may have up to sixteen indexes, up to a total of
ninety indexes for all records residing in a database. If, for
example, the database contains thirty record types, each may have
three indexes. Each index may be composed of between one and eight
(inclusive) fields known as index key segments. The total length of
each index key must be between one and forty-seven bytes inclusive.

2.11.5 Relations
Each data record may act as a servant to zero to sixteen (inclusive)
master records. The number of servant record types that may be linked
to a given master record is not restricted.

2.11.6 GVF Fields
GVF/GVA relationships can only exist between related records. The
number of GVFs that may be declared for one record is limited to
sixty-four as well as overall KE area limitations.

2.11.7 GVA Fields
GVA fields must be declared together at the end of the data record.
These fields are included in a special part of the data record known
as the system area. The GVA part of the system area may not exceed 127
bytes. This is calculated by simply summing the lengths of each GVA
declared for a given record. For example, this would allow a record to
contain 25 PIC 9(9,2) GVAs.

2.11.8 Multi-Database Access
Up to four database dictionaries can be specified when compiling a
frame, and this therefore allows any one frame access to a maximum of
four databases. A menu program is also restricted to opening up to
four databases simultaneously.

2.12 Performance Hints
There is one guaranteed way to bring a Speedbase database to its knees
and this is achieved by introducing large numbers duplicate index key
values. Under no circumstances should a database be designed in which
any index could contain numerous index keys that are identical. By
numerous we mean any number over a hundred, with even fewer if the
index keys themselves are longer than say twenty bytes.

Chapter 2 - Speedbase Database Manager

Global Speedbase Development Manual V8.1 Page 35 of 241

When lists of identical keys build up in the index structure, the lack
of differentiation between the keys means that higher level indexes
cannot be properly built. When this occurs, sections of the index
start to behave similarly to overflow chains, displaying similar
degradation characteristics. In extreme circumstances, when thousands
of duplicate keys exist in an index, write, re-write and delete
performance can drop from the millisecond to the minute timescale.

To avoid this situation, simply extend any index that might generate
substantial numbers of duplicates with some variable that will provide
greater key discrimination. For example, it might be useful to index a
stock record by say, responsible department. Rather than leaving it
there, append the stock number to this index. This will have a
significant effect on performance and make the index more useful.

Another important consideration is to ensure that a partial rebuild is
performed from time to time to rebuild and optimise the indexes. This
is particularly important when the database is large and/or volatile.
We recommend that an index rebuild should be performed on a monthly
basis, more often if degradation becomes apparent.

It is also important to understand the effect of creating records with
multiple indexes, especially when significant numbers of records are
being stored. For example, in a record type with 10,000 records each
index will typically require four or five random I/O operations to
write. So if you design such a record type with sixteen indexes, it is
going to take at least seventy-five random I/O operations to write,
and this is not going to be instantaneous in a multi-user situation.
It is also often forgotten that it will take exactly as many I/O
operations to delete the record as to write it.

The effect of linking a large number of masters to a record type is
not as pronounced, but should also be considered. Each linked master
typically adds two I/O operations to each write and delete operation,
but this does not vary with file record volumes.

Taking the above points into consideration during database design will
help you to avoid the basic pit-falls, and should give you a high-
performance database system.

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 36 of 241

3. Language Structure

This chapter deals with the structure of Speedbase frames and is
arranged in four sections. Section 3.1 describes the elements, such as
character sets and symbols, that make up the Speedbase Development
Language. Section 3.2 describes how source code lines should be
presented, and Section 3.3 describes the physical layout of the
various divisions that may be coded within a frame. Section 3.4
describes the processing associated with these divisions and the order
in which they are executed.

3.1 Language Elements

3.1.1 Character Set
The character set is an ASCII 8-bit code with the top bit set to zero,
see Table 3.1a:

Classification

Members

Digits ASCII 0 to 9
Letters ASCII A to Z, a to z, $
Alphanumerics ASCII 0 to 9, A to Z, a to

z, $, -

Table 3.1a - The Character Set

Blank is represented by b in this document. Other special characters
will be introduced later.

3.1.2 Symbols
A symbol must start with a letter and be followed by any number of
alphanumeric characters. Normally the first six characters of each
symbol must be unique throughout the frame, the compiler ignoring the
seventh and subsequent characters, apart from listing them. Symbols
are used for data names, section names, paragraph names, entry names,
frame names and file names. The letter $ should not be used in a
symbol created by the application frame since it is employed in
symbols used by GSM software. In addition there are eight reserved
words in Speedbase and these should not be used as symbols. They are:

DEPENDING
FILLER
HIGH-VALUES
LOW-VALUES
NEXT
SPACE
SPACES
USING

Other language words such as IF, PIC and NOT can be used as symbols,
although it is recommended that they be avoided in the interests of
clarity.

3.1.3 Character Strings
A character string may be made up of any combination of the graphic
ASCII characters (i.e. those with a numeric equivalent in the decimal
range 32 to 126) When coded, the string appears as:

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 37 of 241

"character string"

For example:

"HELLO WORLD"

is a character string containing the eleven characters:

H E L L O b W O R L D

The compiler assumes that frames have been entered on computers with
industry-standard tab settings at character positions 9, 17, 25...
etc., and any tab characters are replaced with the appropriate number
of blanks.

Note that in some countries the ASCII lower case character codes are
used for different alphabets, for example Greek or Cyrillic.

3.1.4 Integers
Integers must be in the range -32768 to +32767. The plus sign is
optional when an integer is coded.

3.1.5 Numeric Strings
Numeric strings are character strings consisting of:

● optional leading blanks, followed by ...

● an optional + or - sign, followed by ...

● 1 to 15 digits, which may be omitted if the decimal point is

present. These in turn are followed by ...

● an optional decimal point which, if present, must be followed by

between 1 and 7 digits followed by ...

● optional trailing blanks.

The total number of digits must not exceed 18. Examples of valid
numeric strings are:

-3
3.14159
+1246
-0.120
.7

The strings:

3.
3.1b4159
+-12
.7-
+b9

are not valid numeric strings. Programmers familiar with Cobol should
note that in Speedbase a string of ASCII blanks is not a numeric

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 38 of 241

string, and such a string cannot therefore be used as a display
numeric zero.

3.1.6 Standard Numeric Strings
When a number is converted to character form, either for output or
for storage in a display numeric variable, it assumes the format of a
standard numeric string. In such a string:

● leading zeros will always be replaced by blanks (except in the

units position)

● the sign will be omitted if positive

● at least one digit will always precede the decimal point

● there will be no trailing blanks

● if the number is defined as fractional, a decimal point and the

number of decimal places specified will be printed, even if the
value is an integer.

For example, if a field is defined as signed with two digits before
the point and two after, then:

3 becomes bb3.00
 +02.13 becomes bb2.13

.1 becomes bb0.10
 -.2 becomes b-0.20

-21.43 becomes -21.43

3.1.7 Hexadecimal Strings
A hexadecimal string is coded as a # sign followed by pairs of ASCII
"digits" in the ranges 0-9, A-F inclusive. The number of digits in the
string must be even, since each digit pair makes up a single byte. For
example:

#07

is a single byte string, representing the ASCII bell character, and:

#FFFF

is a two-byte string, with each bit set to 1.

3.1.8 Standard Date Strings
Date items are always stored within the frame as three-byte
computational numbers (i.e. 9(6) COMP). When a date item is displayed
or accepted from the operator, the format DD/MM/YY is used. The
internal representation of this date is established by the
calculation:

(YY * 10,000) + (MM * 100) + (DD * 1)

3.2 Source Code Layout

3.2.1 Comments
Two types of comments may be coded, help text and frame code comments.
Frame code comments are preceded by an asterisk and may be coded on a

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 39 of 241

separate line or following any language statement. These comments are
simply ignored by the compiler.

Help text is introduced by a backslash character \ which must be the
first significant character on the code line. Help text must be coded
immediately after the WINDOW statement and is treated differently from
normal comments in that the text following the backslash character is
saved as part of the frame file. This text is displayed as a help
window when the user keys <HLP><HLP>.

3.2.1 Statement Format
A Speedbase statement, including comments, consists of a single line
of up to 72 characters. Statements may not be continued onto the next
line, neither may more than one statement appear on a line. The
individual constituents of a statement (e.g. language words,
variables, strings and comments) must be separated from each other by
one or more blanks or tabs but apart from this consideration the
spacing within a line is unimportant. However, the following
conventions result in a tidy, readable listing:

Paragraph names and the following should start in column one:

PF
01
77
FD
DATA DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION
ROUTINES DIVISION
FRAME
ENDFRAME
WINDOW
ENDWINDOW
FORMAT
ENDFORMAT
ACCESS
ENTRY
SECTION

Other statements should begin in column nine, except:

● Statement within the window and PF constructs;

● The level numbers (02 to 49) used in group data definitions. These

should be suitably indented to make the data structure clear;

● The VALUE statement, which should be coded underneath the preceding

PIC statement. The PIC statement itself should begin in column 33;

● Each TO statement which should be aligned with the TO of its GO TO

DEPENDING ON statement;

● Statements within a conditional or iterative structure. These

should be indented an additional four spaces for each level of
nesting, to highlight the frame structure;

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 40 of 241

● Comments should start in column 41 in the procedure division, and
49 in the data division, except "across the page" comments which
should start in column 1.

3.2.3 The Page Statement
The PAGE statement causes the compiler to skip to the head of the next
page on the frame listing. It is coded:

PAGE "title"

The statement is coded in the source file on a new line, on its own.
When the optional title is coded, this will be printed on the current
and subsequent pages.

3.2.4 The Copy statement
Copybooks may be included within source frames by the use of the COPY
statement:

COPY name [SUBSTITUTING "text"] [SUPPRESS]

where name is the one or two-character alphanumeric name of the
copybook to be copied into the frame. The SUBSTITUTING clause allows a
parameter string in the copybook to be replaced by the characters
specified by text. A parameter string is specified within the copybook
by coding a string of one or more "&" characters. When the book is
copied, these characters are then replaced by the specified text.

The library from which the specified book is to be copied is specified
at compilation time. Up to three copy libraries can be processed by
the Speedbase compiler. When the same copybook name is present in more
than one library, it is copied from the first library in which it is
present. The copied book may itself contain further COPY statements,
which may be nested to a maximum of seven levels.

3.3 Frame Structure
Speedbase frames are entered using the Speedbase editor $SDE, or
another suitable text editor. Each source file may contain 1 to 99
individual units known as frames. When the source file is compiled
each results in an executable object frame which runs under the
control of the Speedbase Presentation Manager. Each is introduced by
the FRAME statement and ends with the ENDFRAME statement. The last
statement in the source file must be ENDSOURCE. All other Speedbase
language statements are optional.

3.3.1 Speedbase Frame Skeleton
The main divisions of a Speedbase source frame file are:

FRAME frame-id
[Frame Header Area]

[DATA DIVISION]
[WINDOW DIVISION]
[PROCEDURE DIVISION]
[LOAD DIVISION]
[UNLOAD DIVISION]

ENDFRAME
[......
More frames

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 41 of 241

......]
ENDSOURCE

3.3.1.1 Frame Header Area
The Frame Header Area contains options which control various aspects
of the frame's execution. Examples of this are the SEQUENCE statement,
which specifies the order in which individual frames are to be
executed.

3.3.1.2 DATA DIVISION
The Data Division is used to define data-items used by the frame. For
example, print layouts may be constructed using the print format (PF)
construct.

3.3.1.3 WINDOW DIVISION
The Window Division is used to define interaction with the operator
and may contain one or more window constructs. These define the fields
to be displayed and accepted from the operator, and may also contain
procedural routines to perform specialised processing within each
window. The Window Division is normally executed automatically when
the frame is run.

3.3.1.4 PROCEDURE DIVISION
The Procedure Division takes control of the frame after
initialisation. It contains instructions which define the operation of
the frame, and may be used, for instance, to sequence the order of
windows displayed. It suppresses automatic invocation of the Window
Division, allowing the programmer to assume full control over the
operation of the frame.

3.3.1.5 LOAD DIVISION
The Load Division is used to perform initialisation tasks (e.g. the
opening of files). Control is transferred to the first statement of
the Load Division when the frame is run.

3.3.1.6 UNLOAD DIVISION
The Unload Division is used to perform close-down tasks (e.g. the
closing of files). The Unload Division is executed on termination of
the frame.

3.4 Control Structure
Frames are executed under the control of the Speedbase Presentation
Manager. A menu opens the required databases prior to execution and
performs authorisation checking. Thereafter, frames may either return
control to the menu, or may transfer control to other frames.

The Speedbase Presentation Manager creates a data area, called $BASYS,
in the high memory region of the user partition known as the user
stack. $BASYS contains the system variables used by Speedbase frames
and the special frame loader which controls the initialisation of
frames when they are executed. $BASYS may also be loaded explicitly by
a call to the routine B$LOD, see Section 8.2. Once $BASYS is loaded,
it remains on the user stack until the end of the user's session.

Once $BASYS has been invoked, Speedbase frames may be executed
directly from the GSM READY prompt, or from any menu. Most frames,
however, require access to one or more databases which must be opened
before any I/O activity can take place. While it is possible for a

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 42 of 241

frame to open the required databases itself, databases are normally
opened before frame execution.

Menus provide a convenient way of executing Speedbase frames, ensuring
that $BASYS is present, and automatically open up to four databases
before executing a selected frame. Once a database has been opened, it
remains open until control is returned to GSM. When a series of frames
is executed the databases therefore remain open until the last frame
completes. Because this eliminates file-open overheads, Speedbase
frames can be loaded very quickly.

Once a frame has been loaded, execution proceeds under the supervision
of a system program known as the frame controller which performs
certain initialisation tasks, then causes the various elements of the
frame to be executed in the following sequence:

Service Module containing system routines required by the
frame is loaded if not yet present.

Screen Initialisation The screen is optionally cleared,

and the optional screen header displayed.

Load Division The optional Load Division is then executed.

This allows the application programmer to
specify further initialisation tasks, such as
the opening of FDs.

Main Processing If a Procedure Division has been coded,

it is now executed. Windows coded within the
Window Division may be explicitly invoked by
procedural statements within the Procedure
Division. Otherwise, if no Procedure Division
has been coded, the Window Division is
automatically executed and the first window
invoked.

Unload Division Following completion of main processing,

the optional Unload Division is executed.
This allows the programmer to specify
termination tasks such as closing FDs.

Frame Termination The frame controller then performs the

termination tasks. If a print file was opened
during execution of the frame (by invoking
the PF construct), it is closed. Any
remaining locks outstanding on the databases
are relinquished. Control is then passed to
another frame, or a STOP RUN is executed.

If a STOP RUN statement is executed by the frame controller on
termination, any open databases are automatically closed and control
is returned to GSM. If the frame was executed from a menu program, GSM
will normally cause this menu to be re-displayed.

A frame may complete normally, or an exception condition may occur
during processing. Exception conditions may be reported by the Load,
Procedure and Unload Divisions by executing an EXIT statement with any
exception number at the highest level of control (e.g. EXIT WITH 1).
If no Procedure Division is coded, the Window Division is executed
instead, and this division can also return exception conditions.

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 43 of 241

Normal completion of a frame occurs when all the divisions complete
without reporting an exception, and this is called a forward exit. An
exception condition reported by any division always causes the frame
to be terminated, and this is called a backward exit from the frame.
The processing that takes place during a backward exit depends on
which division reported the exception:

● If an exception is reported by the Load Division, the frame

termination tasks described above are immediately performed. It
should be noted that the Window, Procedure, and Unload Divisions
are not executed under these circumstances.

● If an exception is reported by the Window or Procedure Divisions,

the Unload Division is immediately executed. The frame termination
tasks are then performed.

● If an exception is reported by the Unload Division, only the normal

frame termination tasks are performed.

It is possible to cause immediate termination of the frame by
executing a STOP RUN instruction at any time. This causes all further
processing to be cancelled, and an immediate exit to GSM takes place.
Although Speedbase will ensure that the database is properly closed
under these circumstances, other termination tasks will not take
place. The STOP RUN is therefore not recommended as a normal method of
terminating a frame, and should be used as a last resort only.

3.4.1 Creating a Chain of Frames
When a frame terminates, control is normally returned to GSM, which in
turn usually re-invokes the initiating menu. It is possible, however,
to specify that another frame is to be executed instead. On
termination, this causes the specified frame to be loaded and executed
just as if the operator had returned to a menu, and explicitly run the
frame from it.

This can be useful in a number of instances. For example, a batch run
may consist of a number of separate frames which must be run in a
particular sequence. Equally, a complex data-entry task may be too big
to fit into memory, and may need to be segmented into separate frames.

The order in which a series of frames is to be executed is specified
using the sequence statement. This statement is coded in the frame
header area, and allows two frame IDs to be specified. For example,
coding:

SEQUENCE frame1, frame2

causes frame1 to be executed on abnormal completion (i.e. backward
exit) and frame2 to be executed following normal completion (i.e.
forward exit). Using this statement, therefore, chains of frames can
be built up, each frame calling another in turn.

The sequence statement therefore normally specifies the names of the
actual frames to be loaded on termination. It is possible, however, to
simply return control to a menu, and this is achieved by coding the
special frame-id EXIT. For example coding:

SEQUENCE EXIT, frame2

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 44 of 241

causes an exit to the menu to take place on abnormal completion, and
causes frame2 to be executed on successful completion. If the sequence
statement is omitted, an exit takes place following both successful
and unsuccessful completion.

When control is passed to another frame using the sequence statement,
the databases remain open, but any record locks outstanding are
released. The incoming frame will overwrite the memory area occupied
by the preceding frame so that data processed by that frame is not
accessible to the next frame. The transfer of data between frames is
achieved by use of overlayed structures, as described in detail in
Section 3.5.

3.5 Managing Overlay Structures
Because of memory constraints, it is sometimes necessary to segment a
single function into a number of frames, allowing it to fit into
available memory. For example, consider an order entry function which,
to overcome this, has been split into three components. Frame one
might deal with the creation of order header information, frame two
with entry and update of order lines, and frame three with creating
factory orders.

There are two ways in which these frames could be organised. As
described above, the simplest solution is for each frame to call the
next, using the sequence statement. Once the first frame has completed
successfully, the second is invoked, and so on.

This approach is quite simple, but has the limitation that no
information can be passed. It is also important to note that since
each frame will physically occupy the same memory area, the I/O
channels are lost as each successive frame is loaded. This means, for
example, that the second frame would have to re-read the order header
record from the database to continue processing.

3.5.1 Dependent Frames
A more elegant solution involves the creation of a root frame on which
the three order entry frames will all be dependent. This root frame
contains the I/O channels and other common information to be shared by
the dependent frames. The dependent frames are then compiled so as to
occupy the memory area immediately following the root frame, so that
executing the dependent frames would not cause the root to be
overwritten.

Dependent frames are implemented using a variation of the frame
statement. For example, coding:

FRAME frame2 DEPENDENT ON frame1

specifies that the current frame, frame2, is dependent on frame1,
which is therefore the root frame. When frame2 is compiled, the
compiler checks the memory region used by frame1 which therefore
requires this frame to be online during compilation.

The memory area of the dependent frame automatically follows on from
the root frame. All the symbols defined and accessed within the root
frame are automatically global to the dependent frame, meaning that
all variables and I/O channels in the root frame are directly
accessible. Processing then commences by executing the root frame. The

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 45 of 241

root frame in turn loads and executes each dependent frame using the
EXEC statement.

The EXEC statement causes the specified frame to be loaded and
executed. On termination of the dependent frame, its sequence
statement, if any, is executed. If the statement has been omitted,
control is returned to the statement immediately following the EXEC in
the root frame. Otherwise, the dependent frame passes control to the
frame-id specified in the sequence statement of the dependent frame,
causing the next dependent frame to be loaded and executed.

Returning to the above example, let us assume that the order entry
function has now been split into four frames, a root frame, an order
header frame, a detail line frame, and a factory order frame. The root
frame would contain the I/O channels and other variables that are to
be shared between the dependent frames. When the root frame is
executed, it would then invoke the first dependent frame using the
EXEC statement.

The processing that then follows depends on whether any of the
dependent frames have a sequence statement. If this statement has been
omitted, control will be returned to the root frame as each dependent
frame terminates, and the root frame would therefore need to EXEC each
dependent frame in turn.

By using the sequence statement, it is possible for the dependent
frames simply to pass control to each other. Control is then returned
to the root frame when the entire sequence of dependent frames has
completed. For example, consider the following sequence statements
coded for each of the three dependent frames:

FRAME2 (Order Header) SEQUENCE EXIT, FRAME3
FRAME3 (Order Line) SEQUENCE FRAME2, FRAME4
FRAME4 (Factory Order) SEQUENCE FRAME3, EXIT

Control will be returned to the statement following the EXEC command
in the root frame in two ways, as a backward exit from FRAME2, or a
forward exit from FRAME4. Note that the exit from a dependent frame
never passes back an exception, irrespective of whether a forward or
backward exit actually took place. If it is important for the root
frame to distinguish between these, the dependent frame could set a
switch in the data division of the root frame before returning
control.

This process is shown diagrammatically in Figure 3.5a below:

Figure 3.5a Executing a Chain of Dependent Frames

It is therefore important to note that control is not necessarily
returned from the frame that was initially EXECed. Dependent frames
can be implemented on multiple levels. For example, a dependent frame
may itself have further dependent frames and so on. It is important,

Root frame

Frame 2 Frame 3 Frame 4

Chapter 3 - Language Structure

Global Speedbase Development Manual V8.1 Page 46 of 241

however, that each frame uses the sequence statement to invoke only
frames at the same level in the overlay structure, and that the EXEC
statement is used only to call overlays at the next level. This avoids
inadvertently leaving memory areas uninitialised.

It is also important to note that recompilation of the root frame will
require recompilation of all its dependent frames. This is because
recompilation of the root may change its size (and therefore the
location of variables and entry-points), meaning that the dependent
frames will have been compiled using the wrong addresses. It is
therefore a good idea to combine the root and dependent frames in a
single source file, so that they will always be compiled together as a
single unit.

If either of the above two rules is broken, the frame manager will
terminate the loaded frame with a stop code.

3.5.2 Controlling Locks in Overlayed Structures
As described earlier in this chapter, locks in force on database
records are automatically released when a frame terminates. It should
be noted, however, that only locks on local I/O channels are released
in this way. A local I/O channel is one that is declared using an
ACCESS statement in the Data Division of the terminating frame. I/O
channels declared in other frames (e.g. a root frame) will not be
affected.

In overlayed structures, I/O operations within a dependent frame may
take place on I/O channels resident in a root frame. On termination of
the dependent frame, these locks are retained, and only those locks in
force on I/O channels within the terminating frame are released. The
locks retained by the root frame will be released when it, in turn,
terminates.

This can be put to good effect when designing overlay structures. By
placing I/O channels at the appropriate level, I/O channels and their
locks may either be released or retained automatically as processing
continues. It should be noted, however, that the UNLOCK statement will
release locks for both local I/O channels and I/O channels defined
higher in the structure.

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 47 of 241

4. The Frame Header

The Speedbase Frame Header consists of a FRAME statement, which
introduces the new frame, followed by a number of optional statements.
It is coded:

FRAME frame-id [DEPENDENT ON frame-id1] ["frame-title"]
[SEQUENCE back-frame, forward-frame]
[NOCLEAR] [NOHEADER | SHORTHEADER]
[ACCESS [dbid:] rtid [rt2.... rtn]]
[CONTROLLING FRAME]
[SWAP-FILE [nnnnn]]

4.1 The FRAME Statement
The FRAME statement introduces the frame and assigns it a name. It is
coded:

FRAME frame-id [DEPENDENT ON frame-id1] ["frame-title"]

The frame-id specifies the name by which this frame will be known, and
is identical to the file-id of the generated object code file. The
frame-id must start with an alphabetic character, and may be followed
by up to five alphanumeric characters. When the compiler detects the
frame statement, it opens a new code file on the assigned object unit
as specified by frame-id. If a file of the same name already exists,
it is immediately deleted.

The DEPENDENT ON clause is used to indicate that this frame is an
overlay which is dependent on frame-id1, which must have been compiled
using the CONTROLLING FRAME statement. This causes the frame to be
compiled at a start address immediately following the root frame. All
variables, I/O channels, sections and entry-points defined in the root
frame automatically become global to the current compilation. This
clause is therefore used for the construction of frame overlays, which
is discussed in detail in Section 3.5.

When coded, the optional frame-title is displayed as part of the frame
header line on the first line of the screen. The frame-title is also
displayed by the GSM $LIB utility when frames are packaged into
program libraries.

4.2 The SEQUENCE Statement
The SEQUENCE Statement specifies the next frame to be loaded following
termination. It is coded:

SEQUENCE back-frame, forward-frame

where back-frame and forward-frame are the frame-ids of frames to be
executed following unsuccessful or successful completion respectively.
The frame designated by back-frame will be loaded and executed if the
current frame completes unsuccessfully. The frame designated by
forward-frame will be loaded and executed if the current frame
completes successfully.

The frame IDs specified in the sequence statement are not checked by
the compiler, since the referenced frames may not necessarily be
included in the current compilation. If the frame cannot be found on
the program residence unit ($P) at run-time, the offending frame will
be terminated with a stop code.

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 48 of 241

It is important to note that the frame IDs specified do not have to be
frames produced by the Speedbase compiler. Any loadable program can be
invoked by the sequence statement, and this includes GSM system
utilities, programs written using Global Cobol, and job management
streams. It should also be noted that the STOP RUN statement ignores
the frame IDs specified in the sequence statement, and immediately
terminates the frame, returning control to GSM.

When the sequence statement passes control to a new frame, any
databases open will remain open, although any active locks outstanding
will be released. It should be noted that FDs open on termination will
also remain open, and any locks explicitly established on these files
by use of the LOCK statement will also remain in force. The onus is
therefore on the application programmer to ensure that any FDs used
are properly closed.

A frame is regarded as having completed successfully if no exception
is returned by the divisions coded within the frame. Unsuccessful
completion is indicated by an exception being passed back by any of
the Window, Procedure, Load or Unload divisions. An exception may be
passed back from the Procedure, Load or Unload Divisions by coding
EXIT WITH 1 at the highest level of control.

When no Procedure Division has been coded, the Window Division is
automatically executed. This causes the first window coded within the
division to be invoked. Under these circumstances, an exception
condition can be passed back by the operator keying <ABO> at any field
within the window. An exception condition can also be returned by
application code terminating the window. This is explained in more
detail in Section 6.5 of this manual.

The special frame-id "EXIT" may be coded for either the back or
forward frame-ids. When this is done, further frames are not loaded on
termination, and the frame simply performs an unconditional EXIT at
its highest level of control. This would normally cause an exit to the
menu to be executed. This process also automatically closes any
databases opened by the partition.

If the sequence statement has been omitted, an exit to GSM will take
place as described above, irrespective of whether normal or abnormal
completion occurred. Omitting the statement therefore has the same
effect as coding:

SEQUENCE EXIT, EXIT

It is possible to modify the frame IDs coded in the sequence statement
at run-time, and two system variables have been provided for this
purpose. The two PIC X(6) variables $BKFR and $FWFR respectively
contain the back-frame and forward-frame IDs coded in the in the
sequence statement. Either variable may be amended at run-time to a
new frame ID, or to the keyword "EXIT" using the MOVE statement. See
Section 9.8

4.3 Frame Header Options
Three options may be coded within the frame header to control
initialisation and termination processing. These are coded:

[NOCLEAR] [NOHEADER | SHORTHEADER]

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 49 of 241

4.3.1 The NOCLEAR Option
The NOCLEAR option suppresses the clearing of the screen during frame
initialisation. This allows a screen to be built up progressively by a
number of frames executed in sequence. It should be noted that the
clear operation is only suppressed by this statement if it is
operating in formatted mode. If scrolled mode processing is in force,
the screen is cleared regardless of this option.

4.3.2 The NOHEADER Option
The NOHEADER option suppresses the display of a screen header on the
first line of the screen. Normally, a header line is displayed which
consists of the following fields:

Frame ID as coded in the FRAME statement
Frame Mode mode in which the frame is being executed
Frame Title title as coded in the FRAME statement
Operator ID operator's initials as keyed during sign-on
Date system date, $$DATE

4.3.3 The SHORTHEADER Option
The SHORTHEADER option causes a truncated header to be displayed on
the first line of the screen. This header consists only of the Frame
ID and the Frame Mode.

4.4 The ACCESS Statement
The ACCESS statement creates an I/O channel for one or more record
types residing on a Speedbase database. It is coded:

ACCESS [dbid:] rtid [rt3 ...rtn]
or:

ACCESS [dbid:] rtid SUBSTITUTING "rt2"

where dbid is the ID of the dictionary as specified during
compilation, and rtid is the name of the record type for which an I/O
channel is required. The first form allows I/O channels to be created
for a number of records. The second form is used to create an I/O
channel for a record type using a different record ID, specified by
rt2.

The statement creates a record area in a similar manner to the Cobol
COPY construct. Details of the required record layout are extracted
from the database dictionary as specified by dbid. When dbid is not
coded, the dictionaries are searched in the same order as specified to
the compiler. The first record found with the specified record-id is
then loaded.

By using the SUBSTITUTING clause, an I/O channel can be created using
a record-id that differs from the default record id in the dictionary.
For example, the statements:

ACCESS DB1:CU
ACCESS DB1:CU SUBSTITUTING "C2"

would cause two I/O channels to be created for record type CU, with
the second named C2. Each field defined within the record type, and
all system variables associated with the record would also start with
the substituted record-id, C2. This allows two customer records to be
processed independently within the same frame. The use of further

Chapter 4 - The Frame Header

Global Speedbase Development Manual V8.1 Page 50 of 241

access statements for record type CU would permit as many customer
records as required to be processed simultaneously.

If an accessed record type is to be written, rewritten or deleted, it
is essential that all master records linked to it are also declared in
an access statement. This is because the system area of these master
records may need to be updated during database I/O processing. It
should be noted that where multiple I/O channels are established for
the same record type, any system area updates resulting from servant
I/Os will take place in the first declared I/O channel.

4.5 The CONTROLLING FRAME Statement
The CONTROLLING FRAME statement must be coded if the frame being coded
will act as a controlling frame. The instruction causes the Speedbase
compiler to save the frame's symbol table which is required during the
subsequent compilation of frames that are dependent upon it. If the
statement is omitted, a compilation error will result during the
compilation of subsequent dependent frames.

4.6 The SWAP-FILE Statement
The screen image buffer associated with a pop-up window may be
incorporated in the application frame or may optionally be stored in a
swap file on disk. The storage of pop-up buffers on disk can reduced
significantly the storage requirements of the frame. To make use of
this option the SWAP-FILE statement is coded in the frame header. This
keyword causes the Speedbase compiler to allocate space for pop-ups
within the disk swap file rather than in the application frame for all
pop-ups in the frame and any frame dependant on it, whether or not
these dependant frames are part of the current compilation.

A particular pop-up window may be excluded from the disk swap file by
use of the $OPT NSW compiler option, see section 6.6. Note that pop-
ups wider than 85 characters are always excluded from the disk swap
file. When the root frame is executed the Speedbase database manager
allocates a disk file of size 32kb on logical unit BAW. This logical
unit should be assigned, usually in a menu, before the frame is
executed.

The swap file is named BAWxxxxn where xxxx is the operator-id and n is
the operator's partition number. The swap file is deleted
automatically on frame termination. The size of the swap file may be
coded explicitly in the header:

SWAP-FILE nnnnn

where nnnnn is the size of the swap file in bytes, in the range 1 to
65535 inclusive. You are recommended to use only the default size of
32767 bytes or the size 65535 bytes in order to minimize the
possibility of disk fragmentation.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 51 of 241

5. The Data Division

The optional Data Division is used to define data items accessed later
within the frame. As described in Chapter 6, data items may also be
implicitly declared by use of Window construct. The Data Division may
contain the following:

Data Definitions Definitions of working storage variables

used for calculation or other purposes. BASED
items, used to implement parameterised
subroutine CALLs, may also be defined.

Print Format (PF) constructs Used to define printed report layouts.

File Definitions FD constructs to allow access to

traditional index-sequential, relative-
sequential and text files.

5.1 Data Division Structure
The optional Data Division is introduced by the header:

DATA DIVISION

The end of the Data Division is indicated by the start of one of the
following Procedural Divisions or the end of the frame:

WINDOW DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION
ENDFRAME

Data declarations, FD and PF definitions may be coded within the Data
Division in any order. The Global Cobol LINKAGE SECTION header
statement is not supported by the Speedbase Development Language.
Linkage Section items may be declared anywhere within the Data
Division by use of the BASED clause.

5.2 Data Definitions
The Speedbase compiler provides the usual Cobol data definition
facilities. The language supports level 77 elementary items, as well
as level 01 group items which can themselves be subdivided into
elementary items, or as many as 19 levels of subgroup.

5.2.1 Defining Level 77 Elementary Items
Level 77 elementary items, which are not subdivided, may be defined in
the data division by coding:

77 data-name [REDEFINES name-1][OCCURS n] picture clause [BASED
name-2]

The data-name must be a symbol, you cannot use the reserved word
FILLER in its place. If an OCCURS clause is present the quantity n
must be an unsigned positive integer. The optional REDEFINES clause
allows you to redefine a previously declared item whose data-name you
specify as name-1. An item with a REDEFINES clause is known as a
redefinition. The optional BASED clause enables you to declare a
special type of item known as a based area whose location is

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 52 of 241

determined from the contents of the pointer whose data-name is name-2.
The statement establishes one or more elementary items whose
attributes are determined by the picture clause. When the OCCURS
clause is omitted, a single item is set up, when present, space is
allocated for a table of n such items.

5.2.2 Defining Group Items
Group items, which are subdivided, are introduced by a level 01 data
item, followed by any number of subordinate items, level 02 to level
49. Groups may be defined anywhere within the data division. The level
01 item is defined by coding:

01 data-name [REDEFINES name-1] [OCCURS n] [BASED name-2]

The quantities data-name, name-1 and name-2 should be supplied as
symbols, as necessary. If it is not required to refer to the group
explicitly the reserved word FILLER may be coded for the data-name. If
an OCCURS clause is present the quantity n must be an unsigned
positive integer. The optional OCCURS clause allows you to set up a
table, each entry of which has the format of the data area described
by the group. If the clause is omitted just a single occurrence of the
group will be established. When the clause is present space is
allocated for a table of n such groups.

Following the level 01 definition, the remaining subordinate items are
declared by statements of the form:

level-number data-name [OCCURS n] [picture clause]

The level-number must be two digits in the range 02 to 49 inclusive.
The data-name should normally be a symbol, although if it is not
required to refer to the item explicitly you may supply the reserved
word FILLER instead. If the OCCURS clause is present n must be an
unsigned positive integer.

If the picture clause is omitted, the item forms a subgroup containing
all the following items up to, but not including, the next item with
an equal or lower level number. If the definition does not contain an
OCCURS clause, a single occurrence of the subgroup will be
established. Where the clause is present space is allocated for a
table of n such subgroups.

If the picture clause is coded then the item is elementary and is
treated in exactly the same way as a level 77 elementary item. If the
definition of a group or subgroup contains an OCCURS clause then it is
termed a repeating group. No subordinate definition within a repeating
group may itself contain an OCCURS clause. This means that any tables
defined by repeating groups are one-dimensional only.

5.2.3 Example

01 AREA
 03 A PIC X * Elementary item
 03 B OCCURS 20 PIC X * Table of 20 elementary items
 03 C * Subgroup of AREA
 05 C-1 PIC X * Elementary item in C

 05 C-2 * Subgroup in C
 07 C-2-1 PIC X * Elementary item in C-2
 07 C-2-2 OCCURS 5 PIC X * Table of 5 elementary items in C-2
 03 D OCCURS 10 * Repeating group of AREA
 05 D-1 PIC X * Elementary item in D

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 53 of 241

 05 D-2 * Subgroup in D
 07 D-2-1 PIC X * Elementary item in D-2
 07 D-2-2 PIC X * Elementary item in D-2
 03 E * Subgroup of AREA
 05 E-1 PIC X * Elementary item in E
 05 E-2 OCCURS 8 * Repeating group in E
 07 E-2-1 PIC X * Elementary item in E-2
 07 E-2-2 PIC X * Elementary item in E-2

Figure 5.2.3a - Group Data Definition Example

Figure 5.2.3a shows a level 01 group named AREA, with the level
numbers of subordinate data items suitably indented so that the
structure of the data is readily apparent. The lines with a picture
clause (e.g. PIC X) all define elementary items, or in the case of B
and C-2-2, a single entry of a table of such items. Note how a table,
C-2-2, can itself be part of a subgroup. It could not of course be
part of a repeating group, because no item within such a group can
itself contain an OCCURS clause.

The example shows how subgroups and repeating groups can themselves
contain subgroups. Subgroup C contains subgroup C-2, and repeating
group D contains subgroup D-2. A subgroup can contain repeating groups
(e.g. E contains E-2). The only combination which is not possible is
for a repeating group to contain another repeating group, because of
the OCCURS clause limitation.

5.3 Picture Clauses
The picture clause has the general format:

PIC type[(qualifier)] [COMP]

where type indicates the type of item being declared, qualifier its
precision or length and the COMP phrase applies to computational items
only.

5.3.1 Character Pictures
The picture clause for a character item is:

PIC X(length)

where length is the number of characters required. If the length is 1,
PIC X may be coded.

5.3.2 Display Numeric and Computational Pictures
The display numeric and computational variable picture clauses are
written in one of the formats:

PIC 9(p) [COMP]

PIC S9(p) [COMP]

PIC 9(p,q) [COMP]

PIC S9(p,q) [COMP]

where p is the number of digits before the decimal point, in the range
1 to 15, and q is the number after the decimal point in the range 1 to
7. The sum p+q must not be greater than 18. If S is coded the variable
is signed. If p is 1, PIC 9 or PIC S9 may be coded. If COMP is coded

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 54 of 241

the variable is computational, otherwise it is display numeric. A
computational variable occupies 1 to 8 bytes, the actual number being
a function of p+q as tabulated in Table 5.3.2a:

p+q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Size 1 1 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8

Table 5.3.2a - Size of Computational Variables

Because arithmetic working is in binary, computational items are
themselves binary and are capable of containing numbers greater than
the size implied by p. Also, they can always hold negative numbers
even if their picture clause states that they are unsigned. The actual
range of values that a computational variable can assume is termed its
capacity. It is capacity, rather than the format specified in the
picture clause, which determines when overflow occurs during
arithmetic operations and moves to computational fields.

Note, however, that if you attempt to DISPLAY a computational item
containing a value which does not agree with its picture clause,
overflow will occur. Similarly, the picture information is used in
validating computational input obtained using the ACCEPT operation so
it is impossible to input a computational value which does not agree
with the receiving field's picture clause.

5.3.3 Pointer Pictures
A pointer is a data item, two bytes long, in which the location of a
data item or program statement can be stored. The value of a pointer
must be between 0 and 65535 (64 Kbytes - 1). It is represented by true
binary notation. The low address byte of a pointer is the most
significant and its senior bit is not interpreted as a sign bit but is
considered to represent the 32 Kbyte unit position. To indicate that a
data item is a pointer, code the picture clause:

PIC PTR

5.3.4 Date Pictures
The picture clause for an item which will contain a date is coded as
follows:

PIC D
 or:

PIC DATE

This causes the compiler to generate a PIC 9(6) COMP item.

5.4 Value Clauses
A VALUE clause can be used to initialise an elementary item defined in
working storage, providing that item is not part of a repeating group.
The formats of the VALUE clause are as follows:

VALUE "character string" * Format 1 (see below)
VALUE #hexadecimal string * Format 2 (see below)
VALUE numeric string * Format 3 (see below)
VALUE ZERO * Format 4 (see below)
VALUE LOW-VALUES * Format 5 (see below)
VALUE HIGH-VALUES * Format 6 (see below)
VALUE SPACE or SPACES * Format 7 (see below)

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 55 of 241

These formats are described in detail in the following sections.

5.4.1 Value Clauses for Character Items
Elementary character items may be initialised using formats 1, 2 and 4
to 7. Formats 1 and 2 only initialise the number of bytes specified by
the string, whereas formats 4 to 7 initialise the whole of the item to
ASCII zeros, LOW VALUES, HIGH VALUES, or ASCII blanks respectively.
Several VALUE clauses may be specified following a data definition, in
which case the values are concatenated. For example:

77 A PIC X(10)
VALUE "ABC"
VALUE "XYZ"
VALUE SPACES

causes the first 6 bytes of A to be set to ABCXYZ and the remaining 4
bytes to be set to blanks. Note that the coding of VALUE SPACES in
this example is unnecessary since uninitialised rightmost bytes of
character items are set to blanks by default. If the character
variable being initialised contains an OCCURS clause it is treated as
a single long character string during VALUE clause processing.

5.4.2 Value Clauses for Display Numeric Items
For elementary display numeric items formats 1, 2 and 4 to 6 are
valid. Format 1 converts the string specified to a standard numeric
string and initialise the item to this value. Format 2 initialises the
item to the value specified, left justified and padded with LOW-VALUES
if necessary. Formats 4 to 6 initialise every byte of the item to
ASCII zero, LOW-VALUES, or HIGH-VALUES respectively. Note that if the
data definition contains an OCCURS clause a separate VALUE clause must
be coded to initialise each occurrence. The first VALUE clause sets up
occurrence 1, the second occurrence 2, and so on.

5.4.3 Value Clauses for Computational Items
For elementary computational items formats 2 to 6 are valid. If format
2 is used the hexadecimal string specified must establish every byte
of the item and no more. Format 4 initialises every byte of the item
to binary zeros. Format 5 initialises each byte to binary zeros and
format 6 initialises each bit to binary ones. Note that if the data
definition contains an OCCURS clause a separate VALUE clause must be
coded to initialise each occurrence. The first VALUE clause sets up
occurrence 1, the second occurrence 2, and so on.

5.4.4 Value Clauses for Date Items
A format 2 or 3 VALUE clause can be used to give a date field a
specified numeric or hexadecimal value. A format 1 VALUE clause, where
the character string is a valid long or short date in dd/mm/yyyy
format, will cause the date field to be initialised to the internal
format representation of the date specified.

5.4.5 Bytes Not Initialised by Value Clauses
All bytes not themselves set up by VALUE clauses, are initialised to
binary zeros if the elementary item containing the bytes belongs to a
repeating group. If the item does not, then the bytes are set up
according to the data type established by its picture clause:

● Uninitialised bytes within character items are set to ASCII blanks

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 56 of 241

● Uninitialised display numeric items are set to ASCII zero - note
that this is an invalid value unless the item is an unsigned
integer

● Uninitialised computational items are set to binary zeros

● Pointer items are set to LOW-VALUES

Data items appearing within a redefinition do not cause any
initialisation to take place.

5.5 Redefinitions
A redefinition is a level 01 group or level 77 elementary item (e.g.
B) which redefines the storage occupied by another data item (e.g. A).
A redefinition is introduced using the REDEFINES clause in the data
definition:

01 B REDEFINES A [OCCURS n]
 03 etc.

 03 etc.
or:

77 B REDEFINES A [OCCURS n] PIC etc.

The data item being redefined (e.g. A) may itself have been declared
as level 77, level 01, or indeed as any of the subordinate levels from
02 to 49. It may also be the filename or map-name labeling a file or
map definition. However, it must have been defined previously in the
data division, or be one of the in-built system variables described in
Chapter 9.

The size of B in bytes should be no greater than that of A. If this
rule is broken, the compiler flags the first subordinate item of B
occupying storage outside that allocated to A with a warning message.
If either B or A is a data definition with an OCCURS clause, then the
size of the item for the purposes of this comparison is considered to
be the length in bytes of the total table defined by the OCCURS
clause.

5.6 The Print Format (PF) Construct
The PF construct is used to define printed report layouts. A frame
will normally contain a number of PF constructs, each of which defines
one or more print lines which are printed together in the report. The
construct defines both the source of each data item to be printed, and
the destination of that item within the print line. During execution,
the construct automatically causes these source fields to be moved to
their appropriate positions in the print lines. These print lines are
then written to the printer as normal.

The PF construct provides the following functionality:

Print File is automatically opened when the
construct is first executed. Output may be
directed to one of a number of printers or
may be spooled to any random access device.
This print file is automatically closed when
the frame finally terminates.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 57 of 241

Print Line Construction The construct automatically causes the
construction of print lines at run time. This
process causes source fields to be moved to
their assigned locations within these lines.
Any field conversion from internal to display
formats also takes place automatically.

Page Throws automatically take place when required.

This causes any page trailer and header lines
to be printed. No special logic is required
within the frame to deal with these
conditions.

Automatic Restarts are provided, allowing any report to be

re-printed starting from a given page. The
system also deals with any printer hardware
problems, allowing re-assignment of the
output device during printing.

The PF construct is executed by means of the PRINT verb, which may be
coded in any of the frame's Procedural Divisions. Reports may be
printed on blank listing paper, or on pre-printed forms. Special
stationery may be selected by using the MOUNT verb, which is also used
to specify non-standard form lengths. The construct may be used to
produce reports of virtually any complexity. Even troublesome
printouts such as combined Remittance Advice and Cheques can be
handled with remarkable ease.

5.6.1 Basic Principles

5.6.1.1 Print Segments
The first task in coding a report print frame is to analyse the
desired output. The purpose of this analysis is to determine which
lines are always printed together (i.e. in sequence). These groups of
lines are known as print segments, each segment being coded as a
single PF construct. This is perhaps best illustrated by reference to
a simple example report layout:

The above example consists of two header lines, a single detail line,
and a report total line which is printed at the end of the report.
Since the two header lines are always printed together, this
constitutes a single report segment. The detail line and report total
lines are printed independently of each other and therefore constitute
separate print segments. This example therefore consists of three
print segments and requires three PF constructs to be coded.

5.6.1.2 Fixed and Floating Segments
The location in which a segment is to be printed within a page may be
fixed or may float over an area of the page. Returning to the above
example, the header lines making up the report will always be printed
in a fixed position (e.g. starting at line one of each page). The

Sample Report Customer Listing Date 01/05/89 Page: 1

Cust No Customer Name Suburb Balance

XXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX 99999.99

Report Total 99999.99

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 58 of 241

detail and total lines are printed in a floating area, which covers
the rest of the page.

This area or position in which a particular print segment may be
printed is coded as part of the PF construct. Whenever a print
operation takes place, the current line position on the page is
checked. If this current line position is within the defined area,
then all is well, and the segment is simply printed. If the current
position is before the start of the print area, the paper is advanced
until it is within the print area. If the current line position is
beyond the area specified for the print segment, a page throw
automatically takes place.

5.6.1.3 Header and Trailer Print Segments
Several print segments may be related, and this relationship is coded
as part of the PF construct. This relationship specifies the sequence
in which PF constructs will follow each other. Two relationships may
be specified by the HEADER and TRAILER options.

These options are invoked when a page advance needs to take place.
Whenever printing a segment would cause an overflow of its designated
print area, a page advance will occur. Before actually skipping to the
next page, any trailer segments specified will first be printed. A
page advance then occurs, after which any header segments are printed.
Returning to the above example, the header lines segment will
therefore be printed automatically whenever printing a detail or total
line segment would cause a page throw to occur.

5.6.2 General Format
The general format of the PF construct is as follows:

PF rt [HEADER r1] [TRAILER r2]
[START FROM l1 [TO l2]]

or..
[START AT l3]
.......
detail Lines
.......
ENDFORMAT

5.6.3 The PF Statement
The PF statement introduces the Print Format construct and assigns it
a record-id, shown above as rt, which must be composed of an
alphabetic character followed by any alphanumeric character. This ID
is later used to differentiate between references to existing
variables and variable declarations within the PF construct detail
lines. It should therefore be unique (i.e. not referenced by an ACCESS
or RF Statement).

The HEADER option allows a header PF to be selected. This header will
be printed whenever a page throw is required. The record-id r1
specifies the ID of the header PF construct to be used. This header PF
construct must be coded previously within the current frame's Data
Division.

The TRAILER option allows a trailer PF to be selected. This format
will be printed whenever a page throw is required. The trailer PF will
be printed before a page advance takes place. The PF construct

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 59 of 241

describing the trailer must have been coded previously within the
current frame's Data Division.

5.6.4 The START Statement
The optional START statement specifies the area of the page where the
PF may be printed. This area is identified by line number, shown as l1
through l3 above. The first line of each page is always counted as
line one. Line numbers must be coded as numeric literals in the range
1 to 99 inclusive.

The line numbers specified by the START statement indicate the start
and end line numbers from which the PF may be printed. For example, an
end line number of 50 means that a PF print may take place at a point
up to line 50. If the PF has three print lines, this means that lines
50, 51 and 52 would be used for printing.

The statement has two formats. The START FROM format allows the lower
line number limit to be specified. The optional TO clause may then be
coded to specify the end line number of the area. When coded, this end
line number may not be less than the start line number. If the TO
clause is omitted, the end line number will be calculated at run time
as follows:

page length - length in lines, current segment - 6

if no trailer PF is coded, or:

trailer start line number - length in lines, current segment

if a trailer PF is coded. If the latter calculation leads to an
invalid line number the prior calculation will be performed, as if no
trailer PF had been coded.

The START AT format of the start statement simply specifies the same
line number for both start and end lines. The statement:

START AT 1

is therefore functionally equivalent to the statement:

START FROM 1 TO 1

If the START statement is omitted, START FROM 1 is assumed.

5.6.5 PF Detail Lines
The optional START statement is followed by a sequence of detail
lines. Each detail line may consist of zero or more text-items which
are simply moved into the print line when the PF construct is
executed. These may be followed by an optional data-item which may be
a field definition, or a reference to a previously declared field.

The general format of a text-item is:

n1 n2 "text to be printed"

The general format of a data-item is:

n1 n2 name [picture clause] [ADD (name-2)][FMT "options"]

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 60 of 241

where n1 and n2 above represent the line and column number co-
ordinates where the item is to be printed, name is the data-name of a
declared or referenced field, picture clause specifies the format of
the field as it is printed, the ADD option specifies automatic
addition to numeric field name-2 and FMT "options" causes the data-
item to be formatted for printing according to Table 5.6a.

5.6.5.1 Line and Column Numbers
The line number n1 specifies the line number relative to the start of
the print segment on which the item is to be printed. The first line
number is always counted as 1. The line number must be in the range 1
to 99 inclusive.

The column number n2 specifies the position at which the leftmost
character of the item is to be printed. This column number must be in
the range 1 to 132 inclusive. The last column number at which data may
be printed is column 132. If this right margin is exceeded, the
compiler will generate an error message.

Each time a new line number is declared, the Speedbase compiler
automatically generates a print line within working storage. For
example, if a print segment contains two lines, two 132 character
print lines will be created. The spacing between the lines is not
significant in the allocation of print lines. If data is to be printed
only on lines 1, 3 and 5, three print lines will be allocated. The
compiler "remembers" that a line advance is necessary before printing
lines 3 and 5. When this PF construct is printed, five lines will
therefore be output to the printer. The maximum number of print lines
that may be declared for a single PF construct is sixteen, exclusive
of line spacing.

The order in which the line numbers is declared is significant. The
compiler requires that they must be declared in line number order. It
is therefore not permissible to begin by coding say the fifth line of
the print segment, and then to code earlier lines.

5.6.5.2 The Data-Name
The data-name is always a variable name. This variable name may be
either a reference to a variable which has been declared elsewhere, or
may be a declaration for a variable stored within the print line. If
the data-name coded, name, begins with the two-character record ID
coded in the PF statement, then it is treated as a declaration.
Otherwise it is treated as a reference to an existing variable.

Referencing an existing field causes the compiler to treat that field
as a source. The compiler then generates code to cause this source
field to be moved to the target location in the print line. The target
location in the print line is defined by the line and column number
coded for the item.

5.6.5.3 The Picture Clause
When a referenced field is coded, the field's picture clause is
optional. If the picture clause is omitted, then it defaults to the
picture clause of the referenced item. If a picture clause is coded,
then this represents the picture clause of the item as it will appear
in the print line. The picture clause must be of an appropriate type,
so that a valid move instruction may be generated. Valid combinations
are documented as part of the MOVE statement in Chapter 7.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 61 of 241

Any field name beginning with the record-id coded in the PF statement
is treated as a field declaration within the print line. The variable
name coded must be unique to the frame and may be used as part of MOVE
and other procedural statements to address the print line directly.
Declared variables always require a picture clause which determines
the length and other attributes of the field and are used to allow
fields to be calculated or formatted in a special way prior to
printing. Procedure Division code is written to perform this function,
which then moves the field directly into the print line prior to
issuing the PRINT statement. A declared field can be the target of an
arithmetic statement, and indeed can be used like any other working
storage field.

5.6.5.4 The Add Option
The ADD option causes the field being printed to be added to an
accumulator as part of the execution of the PF. The option is used for
the calculation of report sub-totals and totals. Since ADD is an
arithmetic operation its source variable must be numeric
computational. Since declared variables are always display items, this
means that it can only be used as an option for referenced fields. The
target of the ADD option, shown as name-2 above, must also be a
numeric computational field. This field must previously have been
declared, normally as a working storage item within the Data Division.

Whenever a PF construct containing an ADD option is executed, the
value of the source field is added to the option's target. This target
can then later be used as the source of a PF construct used to print a
total line. Only one ADD option is permitted for each data item. If
multiple levels of totaling are required, the PF construct printing a
sub-total may itself contain an ADD option to calculate report totals.
This process can be repeated indefinitely to calculate any number of
totaling levels.

5.6.5.5 The FMT Option

Option

Condition

Print Formatting

As input

As printed

B field = 0 Blank when zero 00.00
C field < 0 Trailing CR -12.34 12.34CR
< Enclosed in () (12.34)
- Trailing - 12.34-
D field > 0 Trailing DR +56.78 56.78DR
> Enclosed in () (56.78)
+ Trailing + 56.78+
, None Comma insertion 90123 90,123
$ None Leading dollar 45.67 $45.67
0 Zero fill 8.90 0008.90
* Asterisk fill 1.23 ***1.23
L Date only Long date DD/MM/YYYY DD/MM/YYYY

Table 5.6a - The Print Formatting Options

FMT "options" is used to cause special formatting of the printed
output. Table 5.6a lists the five groups of options. You may specify
no more than one option from each group in any set of options.
Examples of invalid options would include:

BC<+,$

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 62 of 241

->+*
BCD,0*

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 63 of 241

Examples of valid sets of options and the resultant print formatting
are as follows:

Options

Field as
Input

Field as Printed

BCD, -678.90 678.90CR
0.00
+1234.56 1,234.56DR

B<, +789.01 789.01
-7890.12 (7,890.12)

B-+$, +345.67 $345.67+
$890.12 $890.12-

-+0 +345.67 00345.67+
-8901.23 08901.23-

CD* +456.78 **456.78DR
-901.23 **901.23CR

Table 5.6b - Examples of Print Formatting

5.6.6 Example Report

FRAME REPORT "CUSTOMER LISTING"
SEQUENCE MENU MENU
ACCESS CU * Create I/O channel to CUST record
DATA DIVISION
77 T-RTOT PIC 9(6,2) COMP * Working-storage field for report total

*
PF H1 * Print format for 2 header lines
START AT 1
01 01 "Sample Report Customer Listing"
01 37 "Date:" 01 42 $$DATE
01 51 "Page:" 01 56 $PGNO
03 01 "Cust No Customer Name"
03 38 "Suburb"
03 53 "Balance"
ENDFORMAT
*
PF D1 HEADER H1 * Print format for detail line

START FROM 5 *
01 01 CUSTNO * Customer number
01 11 CUNAME * Customer name
01 38 CUSUBB * Customer suburb
01 51 CUBAL ADD(T-RTOT) * Customer balance
ENDFORMAT
*
PF T1 HEADER H1
02 01 "Report Total" 02 51 T-RTOT
ENDFORMAT
*

PROCEDURE DIVISION
*
DO

FETCH NEXT CUIDX NOLOCK
ON EXCEPTION FINISH
PRINT D1

ENDDO
PRINT T1
EXIT
ENDFRAME

Figure 5.6c Sample Report-Printing Frame

Sample Report Customer Listing Date 01/05/89 Page: 1

Cust No Customer Name Suburb Balance

XXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX 99999.99

Report Total 99999.99

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 64 of 241

The frame listed in Figure 5.6c is all that is required to print the
report example from section 5.6.2, repeated above. The frame includes
three PF constructs each defining a print segment of the example
report. PF H1 defines the header lines of the report, PF D1 the detail
line and PF T1 the total line.

In PF H1 the statement START AT 1 means that this PF will only ever be
printed starting at the first line of the page. This is followed by a
number of text items which lay out the fixed text of the heading
lines. Two systems variables, $$DATE and $PGNO will also be printed.
These variables contain the system date and current page number
respectively. Whenever a page throw is required, the variable $PGNO is
automatically incremented.

PF D1 contains the layout of the detail line and consists of
references to fields on the customer record, CU, so picture clauses
are not therefore required. The field CUBAL is followed by the ADD
option to accumulate the total balance of all customers in the field
T-RTOT.

PF T1 contains the layout of the total line, which consists only of
the text "Report Total" and the balance of all customers, accumulated
in T-RTOT. The first line number declared for this PF is line two,
meaning that a one-line advance will take place before the PF is
printed. The same principle can also be used to achieve double line
spacing.

Both the detail and total line print formats have defined PF H1 as
their header. Whenever printing D1 or T1 would cause a page throw,
header H1 will therefore be printed first. This will also take place
when the first PRINT statement occurs, thus forcing out the header PF
on to the first page of the report.

The Procedure Division contains all the code necessary to "drive" the
frame. It starts by establishing a DO loop. The FETCH NEXT statement
then reads each customer record sequentially. The PRINT statement
causes this record to be printed and the total balance accumulated
into the variable T-RTOT.

An end-of-file condition ultimately occurs and is trapped by the
following ON EXCEPTION statement. The FINISH verb in this statement
transfers control to the end of the DO loop, where the total line is
printed. The EXIT statement returns control to the Speedbase
Presentation Manager, which re-loads the menu program.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 65 of 241

5.6.7 System Variables used for Printing
The following system variables relate to PF handling:

Name

Explanation

$PRUN

Printer unit ID. This PIC X(3) variable specifies the printer
unit which is to be used to output reports generated by the PF
construct. This ID is initially set up to the unit "$PR", but
may be changed to some other random access device unit ID. If
changed, this unit ID remains in force until the end of the
current session.

$PGNO

Current page number. The page number of the page currently
being printed on is stored in this 9(4) COMP variable. The
page number is automatically set to zero when the printer is
opened in response to the first PRINT statement in the frame.
It is automatically incremented whenever a page throw takes
place. $PGNO may be referenced in a PF construct to print the
current page number on each page. It must NOT be modified by
the application frame.

$LINO

Current line number within the page. This 9(4) COMP variable
indicates the number of lines that have so far been printed
within the current page. It is set to zero when the printer is
initially opened, and reset as page throws occur. It is
automatically incremented as lines are output to the printer.
It must NOT be modified by the application frame.

$RSPG

Restart page number. This 9(4) COMP variable indicates the
first page number from which re-printing should commence. The
variable normally contains zero to indicate that printing
should not be suppressed. The variable is reset to zero
whenever the printer is closed. A restart option may be
provided within a print frame by setting it to the page number
from which re-printing should commence.

Chapter 5 - The Data Division

Global Speedbase Development Manual V8.1 Page 66 of 241

$PHLT

Printer halt suppress flag. This 9 COMP variable is used to
control the print interrupt feature. When printing normally
commences, the following message is displayed:

 Type <Ctrl G> to halt printing

During a print run, the operator may then interrupt printing
by keying <Ctrl G>. Printing may then be restarted, directed
to another device or suppressed. If suppressed, the program
will normally continue processing, but without producing a
report. Moving -1 to $PHLT also allows the operator to
suppress printing, but in this event the frame will be
terminated by issuing a STOP RUN instruction.

Moving the value 1 to $PHLT suppresses the interrupt feature.
It should be noted that any changes made to $PHLT remain in
force until the end of the session.

5.7 The File Definition (FD) Construct
The Global Cobol File Definition (FD) statement is supported by the
Speedbase compiler to permit access to traditional ISAM, RSAM and TFAM
files. These facilities would not normally be used in an Speedbase
application, as the Speedbase database access method and PF construct
provide enhanced functionality.

FD constructs have been provided solely to allow interfaces to
existing GSM file-based applications to be implemented. The syntax and
operation of FD constructs is described in detail in the Global Cobol
Language Manual.

Please note that the ORGANISATION Statement required in the COBOL
implementation for the text file access method (TFAM) is not required
by the Speedbase compiler, and should not be coded.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 67 of 241

6. The Window Division

This chapter describes the structure and operation of the Window
Division. Section 6.1 provides a brief overview of window
functionality, section 6.2 defines the structure of windows. Section
6.3 describes the layout of windows and the facilities provided for
the operator. Section 6.4 explains how windows are controlled,
describing the processing that takes place when a window is invoked.
The Routines Section and the processing of database records are
described in sections 6.5 and 6.6. Section 6.7 covers the syntax of
the window construct in detail, followed by section 6.8 in which
special programming facilities and considerations are discussed.
Appendix C provides examples of the facilities described in this
chapter.

A window defines the screen format by which a particular record type
may be presented to, and accepted from the operator. The processing
involved in this is handled by a window manager, which normally allows
operations such as record addition, selection, maintenance, deletion
and enquiries to take place. The window manager provides the following
facilities:

Multiple Windows A screen may contain any number of
windows. These may co-exist on the screen,
overlay each other, or pop-up during
processing.

Window Sequencing The sequence in which windows are invoked is

either automatic or specified in the
application program.

Scrolled Windows A window may be fully, partially or non-

scrolled. A scrolled window may display up to
twenty records. Scrolled and non-scrolled
windows may co-exist on the same screen.

Enquiry Facilities Records may be retrieved via any index,

and may be paged in both ascending and
descending order.

Processing Routines Routines Section entry-points allow

procedural code to be performed during window
execution.

Optional Fields All fields within a window are optional,

and can be suppressed at run-time in the
Routines Section.

Colour Support All windows automatically support colour and

monochrome facilities on appropriate
terminals.

Re-entrant Processing The window manager allows windows to be

invoked from a window already executing.

Function Key Support Keyboard operations are carried out
using function keys. Using the <HLP> key, a
menu of currently enabled functions is

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 68 of 241

automatically displayed, allowing the
operator to select an appropriate function.

Dependent Windows Windows can be restricted to operate only on

a given set of records, (e.g. invoices for a
given customer).

Automatic Validation Input fields are automatically validated

for type and converted to the appropriate
format.

6.1 Window Division Structure
The optional Window Division is introduced by the statement WINDOW
DIVISION and is followed by one or more window constructs. The Window
Division is terminated by the start of the next division, or by the
ENDFRAME statement. A skeleton of the Window Division is shown below:

[WINDOW DIVISION]

[$OPT NSW]
WINDOW id [USING rt [DEPENDENT ON rt2]]
[window-options]
window-body
[ROUTINES SECTION]

ENDWINDOW

...more windows...

Each window defines fields that will be displayed and accepted for a
particular record type known as the target record. This target record
type must be stored on a Speedbase database. The window will then
normally allow such operations as addition, maintenance, deletion and
enquiry to take place on this target record type.

Each window may also contain a Routines Section, in which additional,
application-specific procedures may be coded. The Routines Section
contains a number of entry-points, which are called during processing
of the window. These entry-points allow, for example, additional
validation to be performed on accepted fields, and may be used to
perform additional updates on completion of each transaction.

A window may occupy all or part of the screen. An example of a typical
window, as it appears on the screen, is shown in Figure 6a. A screen
may be constructed from many such windows, and these windows may
overlay each other during the course of processing.

When a frame is run, the first window is normally executed
automatically. However, if a Procedure Division has been coded, it is
executed instead and windows are then executed under its control.
Procedural statements provide control over window display, clearing
and data entry functions.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 69 of 241

6.2 Window Formats and Operator Facilities

6.2.1 Window Formats

Figure 6.2a - A Typical Speedbase Window

Figure 6.2a shows a typical Speedbase window as it appears on the
screen. This window contains two quite separate areas, known as the
scrolled and non-scrolled areas. In the example, the scrolled area is
located in the top portion of the window and currently contains eight
records, TR01 to TR08.

The scrolled area of the window therefore contains a number of "slots"
in which a record may be entered or displayed. Each one of these is
called a Record Display Area (RDA). Thus the example window has eight
RDAs, each of which is currently occupied by a record. The cursor is
always positioned on one of these RDAs, and when this contains a
record, it is called the current record.

Given the limited size of screens, it is often not possible to display
a complete record in the scrolled portion of the screen. To overcome
this, windows can also contain a non-scrolled area. This area is used
to display those fields from the current record which could not be

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 70 of 241

accommodated in the scrolled region. In the example, purchase and
sales history fields are displayed for the current record, TR01.

The non-scrolled area is optional and, when used, does not need to
occupy any particular position on the screen. Equally the scrolled
area is optional, may be placed anywhere on the screen and may be as
large as desired, each record using as many lines as required. When
scrolling is not needed, windows may also be laid out in traditional
vertical form, so that only a single record is shown at a time.

6.2.2 Operator Facilities
The operator controls a window using the functions shown in Table
6.2b. These functions are invoked using the terminal's function or
control keys, which are set up using the Speedbase customisation
utility, $BACUS. Twenty functions have been provided to allow the
operator to perform a variety of tasks:

Mnemonic

Description

$FUNC

RET Accept current field, select
record

0

UF1 User Function 1 1
UF2 User Function 2 2
UF3 User Function 3 3
NXT Go to next window 4
PGE Forward-page window 5
BPG Back-page window 6
UP Back one record (Uparrow) 7
DWN Forward one record (Downarrow) 8
SKP Skip fields to next tab-stop 9
ABO Abort program 10
BCK Terminate window (Back to

prior)
11

CLR Clear the window 12
DTE Delete current record 13
HME Cursor home 14
BFL Back one field 15
ENQ Enquiry mode - select index 16
INS Insert record 17
UDL Undelete record 18
MOV Move record 19

Table 6.2b - Window Operations (Keystrokes)

The result of using each of these functions is as follows:

<RET> The RETURN key is used to complete entry of a field, or to

accept the default displayed. RETURN is also used to select
an existing record in the window for further processing,
such as maintenance or deletion.

<UF1> The <UF1>, <UF2> and <UF3> keys are used to invoke special

program-dependent functions coded within the application
frame. For example, <UF1> might be used to display a pop-up
stock enquiry window from within an order-line entry window.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 71 of 241

<UF2> The <UF1>, <UF2> and <UF3> keys are used to invoke special
program-dependent functions coded within the application
frame.

<UF3> The <UF1>, <UF2> and <UF3> keys are used to invoke special

program-dependent functions coded within the application
frame.

<NXT> The NEXT key indicates completion of the current window and

causes the next window in sequence to be executed. It is
normally used to indicate successful completion from a
repeating window.

<PGE> The PAGE key causes the next page of records to be displayed

in ascending key value within the current window. If the
window is empty, the first page of records is displayed.

<BPG> The BACK-PAGE key causes the preceding page of records to be

displayed in the current window. If the window is empty, the
last page of records is displayed.

<UP > The UPARROW key moves the cursor from the current record to

the record display area (RDA) immediately above it. If used
at the first RDA the window is scrolled down one record.

<DWN> The DOWNARROW key moves the cursor from the current record

to the immediately following RDA. If used at the last RDA
the window is scrolled up one record.

<SKP> The SKIP key skips over fields, up to the end of the record

or the next tab-stop field. All skipped fields are processed
as if the operator had keyed <RET>.

<ABO> The ABORT key is used to abort the frame.

<BCK> The BACK key is used to terminate the current window, and

usually transfers control back to the preceding window in
the frame. If there is no preceding window in the frame, it
is usually terminated as if <ABO> had been keyed.

<CLR> The CLEAR key clears data from the current window.

<DTE> The DELETE key causes the current record to be deleted, and

removed from the window. The window is normally scrolled
into the position previously occupied by the deleted record,
so that there are no "gaps" in the display.

<HME> The HOME key is used to position the cursor at the first

record displayed in the window. If already at the first
record, the cursor is positioned at the last record
displayed.

<BFL> The BACKFIELD key is used to step back to the preceding
field in a record.

<ENQ> The ENQUIRE key causes the window to be cleared, and enquiry

mode to be entered. The cursor is positioned on the first
field of the currently selected index. If <ENQ> is keyed
again, the next available index is selected, to change the
order in which records will be displayed. Use of the <PGE>

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 72 of 241

or <BPG> keys displays the first or last page of records in
the order of the selected index. The operator may also
specify a starting position for this display by entering
part or all the index key.

<INS> The INSERT key is used to insert a record before the

currently displayed record. The window is normally scrolled
apart to create a blank RDA, after which the operator may
enter the new record. Note that on re-display the inserted
record will be displayed in its index order, which will not
necessarily place it in the same position relative to other
records.

<UDL> The UNDELETE function is used to re-create the record

deleted by the last delete operation. The record is
displayed at the current record position.

<MOV> The MOVE function is used to change the order in which

records are displayed, where an auto-sequence index is in
use.

The type of processing taking place determines which functions may be
used. For example, the delete function has no meaning when a record is
being added. In order to select any of the currently available
functions, an experienced operator will normally use the appropriate
function key. The less experienced operator may key <HLP> to make use
of the help facility.

When <HLP> is keyed, a menu of the currently available functions is
displayed together with the associated key-top names from the
operator's keyboard. The operator may then choose an appropriate
function from this menu. If <HLP> is keyed again, the help text stored
in the frame is displayed as a help window. Any function-keys that may
be described in the help window are labeled with the appropriate key-
top name. For example, a help-text phrase mentioning the <NXT>
function could have the key-top "End" in place of <NXT>, so that the
operator may see exactly which key to use on the keyboard in use at
the time.

6.2.3 Enquiry Facilities
In order for the enquiry facilities to operate, the target record type
must have at least one index. Most records have more than one index by
which they may be retrieved (e.g. a customer record could be indexed
by customer number as well as name). All enquiries operate using one
of these indexes, and the index currently in use is known as the
current index.

The current index specifies the order of displayed records when the
window is paged. If, for example, the current index is the customer
name index, then records would be displayed in name order. When a
window is first entered, one of the record's indexes is designated as
the current index. This is often the primary index, but another may be
specified within the window construct. The operator may, however,
select a different index by using the <ENQ> key, which clears the
window and causes enquiry mode to be entered. The cursor is then
placed on the first field of the current index, which allows the
operator to see which index is in use. Keying <ENQ> again simply
selects the next index available on the record.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 73 of 241

The operator may then use the paging operations <PGE> or <BPG> to
display the first or last page of records via the selected index.
Alternatively, the operator may key in all or part of the index
followed by <PGE> or <BPG>, and in this case only records following
the requested index keys will be displayed. For example, keying "B"
<PAGE> would display all customers who have a name starting with an
ASCII value of "B" or greater (e.g. BURNS, COLLINS). Keying <RET>
instead of <PGE> causes the window manager to search for an exact
match only, and if not found, to output an error message.

Once one or more records have been displayed on the screen, the
operator may use the <UP > and <DWN> keys to move the cursor onto
another record within the window. Alternatively, keying <PGE> or <BPG>
displays the next or prior page of records from that last displayed.

These facilities provide a mechanism for selecting a record from the
database. Once the cursor has been positioned on the required record,
the operator may key <RET> to select it for maintenance, or may key
<DTE> to cause the record to be deleted. These operations are
explained in more detail later in this chapter.

The operator may key the index values to be searched for only when the
record display area is blank, and this is normally achieved by keying
<ENQ>. The <ENQ> key clears all data from the window, thus conforming
to this rule. The enquiry facilities therefore operate in different
ways depending on whether or not a record is displayed in the current
record display area.

When there is a current record, the operator may page forward or back
as previously described, or may use the <UP > and <DWN> keys to select
another record within the window. Alternatively the operator can use
the <RET> or keys to select the current record for maintenance
or deletion.

When there is no current record, the operator may key in all or part
of the required index key, and then retrieve records corresponding to
this entered key value. Again, the <UP > and <DWN> keys may also be
used to move to another record display area within the window.

The <PGE>, <BPG>, <UP > and <DWN> keys may be used at any time, even
when record addition or maintenance is in progress. When used, these
keys cause the record maintenance or addition to be completed, just as
if the operator had keyed <SKP>, where after the operation specified
by the key takes place.

6.3 Control Structure
When a frame is first executed, the first window is usually invoked by
the frame controller. If a Procedure Division is coded it is executed
instead and has full control of the further processing of windows.

6.3.1 Basic Functions
All detailed operations of a window are controlled by a system routine
called the Window Manager. The window manager looks after low-level
functions such as cursor positioning, field display and accept,
database I/O operations and record locking. Only three high-level
statements are therefore necessary to control the operation of windows
at run-time. These are:

DISPLAY Displays the window form (i.e. fixed text and/or data).

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 74 of 241

CLEAR Clears the entire screen, a specific window, or

clears only the data from a specific window.

ENTER Transfers control to the window, which may then
perform its various tasks, such as enquiry and
maintenance.

6.3.1.1 DISPLAY
This statement is used to display either the window form, and/or to
display data (i.e. a record) within this form. The window manager
keeps track of the status of all windows within a frame. When a frame
is first entered, clearly none of the window forms are as yet
displayed. The display of the window form normally takes place
automatically when it is entered, or displayed.

This normally means that windows are activated (i.e. the window form
displayed) as the need arises. It is possible, however, to over-ride
this by explicitly activating numerous windows using the display verb
with the TEXT option. When a window is activated, a box is displayed
around the area occupied by it and the various text items are
displayed within this area. If the window is a POP-UP, the image under
the window is saved prior to this display. This allows the screen to
be reset to its original state when the POP-UP window is later
cleared.

6.3.1.2 CLEAR
This statement has three variants. Normally the clear statement clears
all windows from the screen (i.e. both the window form and any
displayed data). The clear statement may be used, however, to clear a
specific window, which must be active when the instruction is
executed. Clearing a specific window, also known as window removal,
usually causes the area underneath it to be reset to the screen
background colour. However, if the cleared window is a POP-UP, then
the image that existed underneath the window before it was activated
is redisplayed, causing the screen to be reset to its original state.

6.3.1.3 ENTER
This statement causes a window to be executed. When a window is
entered, the operator is normally able to add, maintain or delete a
number of records. Enquiries may also be performed in order to select
a record from the database for maintenance or deletion.

During this processing, routines coded in the Routines Section may be
called to perform various tasks such as field validation. Provided
these routines do not detect errors, the record will then be written,
or rewritten, to the database. This normally concludes processing and
control is returned to the statement immediately following the ENTER
statement. Alternatively, the operator may abort the window by keying
<BCK> or <ABO>, which is regarded as an abnormal exit, and causes an
exception condition to be returned.

6.3.2 Window Processing Modes
Windows operate in a number of modes during the different stages of
processing. These modes are listed in Table 6.3a below:

Mode

Description

Function

$MODE

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 75 of 241

ENQ Enquiry Initiate an enquiry 1
DSP Display Display existing record 2
MNT Maintenance Modify existing record 3
DEL Deletion Delete existing record 4
EDT Edit Create new record from

existing
5

ADD Addition Add new record 6
INS Insertion Insert new record 7

Table 6.3a - Window Processing Modes

6.3.2.1 ENQ and DSP Modes
ENQ and DSP Enquiry and display modes operate together. Enquiry mode
operates when the operator initiates an enquiry, and display mode is
used to display the results of this enquiry. During enquiry mode, the
operator may key in all or part of the record's index fields as
previously described in Section 6.2.3. Then, keying <RET> or <PGE> or
<BPG> initiates a search for records containing the required index
keys. If any records are found, display mode is activated and the
retrieved records are displayed on the screen. While in display mode,
the operator may move the cursor between displayed records, or display
follow-on pages of records, using the <PGE> and <BPG> keys.

6.3.2.2 MNT Mode
MNT Maintenance mode allows the user to maintain the currently
displayed record. The record is first retrieved and displayed and is
usually selected by keying <RET> with the cursor positioned on it. In
this mode, the operator may amend all non-protected fields on the
record, on completion of which the record is re-written to the
database.

6.3.2.3 DEL Mode
DEL Delete mode operates when the user requests the deletion of an
existing record. The operator normally instigates a deletion by
placing the cursor on the required record, and then keying . As
for MNT mode, this record will first have been retrieved using enquiry
and display modes. Upon deletion, the record is simply deleted from
the database, and the resulting "gap" in the window is removed by
scrolling the following records.

6.3.2.4 ADD and INS Modes
ADD and INS Add and insert modes are both used to add a new record to
the database. The only difference between these modes is that add mode
is used to add a record at the end of the displayed list of records,
whereas insert mode is used to insert a new record before another
record in the window. The operator enters add mode by placing the
cursor on a blank record or by keying <CLR>, and enters insert mode by
keying <INS>. Other than these minor differences, processing is
identical, and these modes are only distinguished to allow the
application programmer to perform any additional processing required
for record insertion. This is further discussed in section 6.7.

If the record to be added has a primary index, a check will usually
take place to ensure that the record does not already exist. If it
does, the operator will be prompted:

Record Key already exists; Enquire? :

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 76 of 241

Keying Y to this prompt causes the record to be retrieved and
displayed just as if the operator had used the enquiry functions to
achieve this. In add and insert modes, the operator may enter all non-
protected fields in the record, on completion of which the record is
written to the database.

6.3.2.5 EDT Mode
EDT Edit mode is used only for windows that do not access the
database, for example a window that is used to accept parameters for a
print program. These windows can operate only in add and edit modes.
The difference between these modes is that add mode initialises data-
items as each field in the record display area is processed, whereas
edit mode does not. Add mode therefore always starts with an empty
Record Display Area, whereas edit mode starts with a displayed RDA.
Edit mode therefore acts similarly to record maintenance in
maintenance mode. Edit mode is selected by simply displaying the
various fields in the record using the display verb, after which the
window is entered in the usual way.

6.3.2.6 Summary of Modes
These functions are essentially all that ever occurs in an on-line
commercial application system. Records are initially created,
retrieved many times, sometimes being modified, and are then finally
deleted when no longer relevant. Complex on-line processes are simply
built up from a number of such functions.

Consider, for example, an order-entry application. The first task is
to determine which existing customer the order belongs to. This is
achieved by a window using enquire and display modes on the customer
record. This is then followed by a window which either identifies an
existing order-header record (ENQ and DSP modes again), or allows a
new one to be created (ADD mode).

Individual detail lines are then processed by a further window where
new order lines are created (ADD mode). Existing order lines might
also be reviewed (ENQ & DSP modes) and possibly maintained (MNT mode).

Specialised windows may be constructed by disabling certain modes. By
disabling the ENQ mode, the operator is restricted to data-entry of
new records. Disabling ADD mode means that only existing records can
be processed. Equally, the window may be made to perform enquiries
only.

6.3.3 The Processing Cycle
The operations that take place during the processing of a single
record are collectively called the window processing cycle, which is
outlined in Figure 6.3b:

I/O

ADD

INS

ENQ

Start

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 77 of 241

Figure 6.3b - The Window Processing Cycle

When a window is entered, either ADD or DSP modes will normally be
activated. If the current Record Display Area (RDA) is not in use, ADD
mode will be activated. If the RDA is in use (i.e. a record is
currently displayed) DSP mode is activated. Direct entry into ENQ mode
will only take place if the RDA is empty and ADD mode has been
suppressed.

On entry into the window, an initial mode is therefore selected
automatically by the window manager. The operator may then use the <UP
> and <DWN> keys to move between record display areas, or use the
<PGE> and <BPG> keys to display follow-on pages. Other functions such
as <CLR> may also be used. After some initial cursor-key activity, the
operator can only do one of the following things:

● Abort the window using the <ABO> or <BCK> keys.

● Move the cursor to a blank RDA to add a new record (ADD mode).

● Place the cursor on a record in the window and key:

<RET> to select the record to maintain it (MNT mode)
 <DTE> to delete the record (DEL mode)
 <INS> to insert a record at the current RDA (INS mode).

Ignoring EDT mode for the moment, the action starts once ADD, INS, MNT
or DEL mode is entered. The processing steps involved in these modes
are discussed below:

ADD and INS modes The operator may enter each unprotected field
in turn, accepting or overiding defaults as
required. Once the last field has been
entered, the record is automatically written
to the database.

DEL

MNT

PROCESS
ROUTINE

End

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 78 of 241

MNT mode The operator may amend any unprotected fields
on the record, after which the record is
rewritten to the database.

DEL mode The record is automatically deleted from the

database and removed from the screen.

After any of the above I/O operations, the optional Process Routine is
executed. Several other entry-points are provided in addition to the
process routine within the optional routines section. These entry-
points allow the application programmer to add application-specific
code which is executed during the window processing cycle. A detailed
description of these may be found in section 6.4. The Process Routine
has been included in this section because it is particularly useful.
It is called at the end of the processing cycle and may be used to
perform additional tasks, such as writing an entry to an audit log.

After the optional process routine has been executed, the window will
normally exit, returning successful completion. Instead of exiting, it
is possible to pass control to further windows, and this is discussed
in the following section.

6.3.4 Creating Chains of Windows
Each window in the Window Division may be executed individually under
the control of the Procedure Division. Chains of windows can be
constructed, however, in much the same way as chains of frames. Each
window may contain a sequence statement which specifies the next
window to execute following successful or unsuccessful completion. For
example, coding:

SEQUENCE W1, W3

will cause control to be transferred to window W1 on unsuccessful
completion (backward exit), and otherwise to window W3 (forward exit).
The keyword "EXIT" may also be coded in this statement, and this
causes control to be returned. Omitting the sequence statement is the
same as coding:

SEQUENCE EXIT, EXIT

which causes control to be returned under all circumstances.

By using the sequence statement, several windows may therefore be
executed before control is finally returned. Any of the windows in the
sequence may actually return control, provided the sequence statement
permits this. If it is important to know which window actually
returned control, this can be achieved by setting a flag within the
routines section.

A chain of windows will therefore complete successfully or
unsuccessfully, and this will cause control to be returned. If the
window was invoked using the ENTER statement within the Procedure
Division, control will be returned to the statement immediately
following it. If unsuccessful completion occurred, this will be
indicated by an exception condition, which may be trapped by an ON
EXCEPTION statement within the Procedure Division. If no Procedure
Division was coded, control will be returned to the frame manager.

6.3.5 Controlling Window Exits

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 79 of 241

It is important to note that the operator may abort a window at any
time using the <BCK> or <ABO> keys, which causes unsuccessful
completion to be returned. The <BCK> key causes the backward exit
specified in the sequence statement to be taken, and this is normally
used to transfer control back to the preceding window. If enabled, the
<ABO> key ignores this backward exit, immediately terminating window
processing. If no back-window-id is coded the treatment of <BCK> and
<ABO> is identical.

Complex processes usually consist of a number of windows each
performing a stage in the overall task. The conditions under which
windows may follow each other on successful completion can often be
important. For example, consider an order entry frame composed of
three windows, the first used to maintain order header information,
the second used to amend item lines, and the third used to enter
optional delivery schedules.

In this example, the item-line and delivery schedule windows would
need to repeat in order to allow multiple lines to be entered.
Furthermore, it is necessary to ensure that an order header has been
established before any item lines can be processed. This control is
achieved using the REPEAT option.

When the REPEAT option is not used, successful completion will take
place after a record has been added, inserted, selected, maintained or
deleted. Following deletion the status of the I/O channel is
undefined. For all other functions, the processed record is still
present in the I/O channel, but is unlocked. The REPEAT option is used
to control both when a forward exit may take place, and the lock
status of the I/O channel at that point. It has three variants:

REPEAT (with no other clauses) causes the window processing cycle to
be repeated indefinitely, and no forward exit is therefore possible.

REPEAT UNTIL NEXT causes the window to be repeated until the operator
keys <NXT>. When this clause is coded, the operator can key <NXT> at
any time during window processing, and this means that the status of
the I/O channel will be undefined.

REPEAT UNTIL CURRENT RECORD specifies that a current record is
required before a forward exit may take place. This option is often
used to select a record for further processing, such as selecting a
customer prior to entering an order. This clause has two effects, it
stops a forward exit from taking place following deletion, and it
causes the record lock to be retained.

Returning to the above example, the REPEAT UNTIL CURRENT RECORD option
would be used in the header window to ensure that an order header
record is returned locked on successful completion. The REPEAT UNTIL
NEXT option would be used by the item-line window to allow a transfer
to the third window at the operator's discretion.

6.4 The Routines Section
A ROUTINES SECTION may be coded for each window containing a number of
entry-points called during the processing cycle. Any valid procedural
instruction, as documented in Chapter 7, may be coded within the
section, including window management statements such as ENTER and
DISPLAY. It is therefore permissible to enter or display other windows
from within the Routines Section, providing these are not currently

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 80 of 241

executing. The entry-points provided by the routines section are
divided into two types, entries called during field level processing,
and entries called during record level processing, see Table 6.4a:

Routine

Description

Function

Level

B-name Before field Suppress optional
fields

Field

V-name Validate field Perform extra
validation

Field

D-name Default routine Default field contents Field
R-FETCH Record fetch Reject retrieved

records
Record

R-SELECT Record select Suppress selection Record
R-DELETE Record delete Suppress deletion Record
R-WRITE Record write Suppress record write Record
R-REWRITE Record rewrite Suppress rewrite Record
R-PROCESS Record process Extended processing Record
R-TERM Record terminate Release locks Record

Table 6.4a - Routines Section Entry-Points

Each of the above routines may return an exception to the window
manager using the EXIT statement. EXIT WITH 1 has a general "incorrect
- do not proceed" meaning. Other exit conditions are also used, and
these are further explained below.

6.4.1 The Before Routine
The Before Routine is called immediately before the field is accepted
or displayed. Returning control with exit condition 1 (i.e. performing
EXIT WITH 1) causes the field to be suppressed. When suppressed, the
area on the screen normally occupied by the field is cleared, and no
further processing takes place for it. Note that Before routines are
not called in ENQ mode processing. Returning control with exit
condition 2 causes the field accept operation to be suppressed as if
the PRO option were coded.

6.4.2 The Default Routine
The Default Routine is called before a field is processed and allows a
default to be provided. Note that the routine is only called during
ADD and INS modes, since fields are regarded as pre-initialised
during MNT mode. The default is simply MOVE'd into the field and the
operator may accept or change it. Before moving a default value into
the field, the default routine should check that the field has not
already been initialised. Uninitialised fields will be set to spaces
if character fields and zero for computational and display numeric
fields. It is also important to note that this routine is not called
in Maintenance mode.

[Earlier versions of this manual included the phrase: It is also
important to note that this routine is called during record
maintenance. In maintenance mode, most if not all of the fields will
already contain correct values by virtue of having been read from
disk. The routine should therefore ensure that new defaults are only
provided when necessary. If no default is provided by the routine,
exit condition 1 should be returned.]

6.4.3 The Validation Routine

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 81 of 241

The Validation Routine is called immediately after a field has been
accepted, and may be used to perform additional validation such as
range checks. Returning exception 1 indicates that the field is
invalid, and causes it to be re-input. Note that the validation
routine is called even if it is not possible to ACCEPT the field (e.g.
a protected field).

6.4.4 The Fetch Routine
The Fetch Routine is called whenever the window manager fetches a
record from the database. The routine may be used to create derived
fields before the record is displayed. Where special display formats
are required, the routine may also be used to convert fields from
database to external formats. It is called immediately after retrieval
of the target record, but before any other processing has taken place.

The routine can also be used to suppress the retrieval of certain
records, such as suppressing inactive customers. This is achieved by
returning exit condition 1, and causes the window manager to proceed
as if the record did not exist. This allows a selection of records to
be displayed during enquiry operations.

6.4.5 The Select Routine
The Select Routine is called when the operator attempts to select a
record, usually to enter MNT mode. The record will already have been
fetched and is displayed. The routine may be used to stop the operator
from selecting the record, and this is achieved by returning exit
condition 1. For example, this might be useful to stop the operator
from attempting to amend an invoiced order.

6.4.6 The Delete Routine
The Delete Routine is called after the operator has keyed to
delete the current record, but before the deletion is performed by the
window manager. The routine may reject the deletion request by
returning exception condition 1. For example, this may be required to
stop the deletion of an invoice before it has appeared on a statement.

The routine may also be used to remove unwanted servant records. For
example, when the operator requests the deletion of an order header,
the routine might automatically delete all servant order lines thus
allowing the deletion to succeed.

6.4.7 The Write Routine
The Write Routine is called immediately before a new record is written
to the database during ADD or INS mode. The routine may be used to
complete fields on the record, before it is actually written (e.g.
calculate the extended value of a line item). Returning exit condition
1 returns the operator to the last input field on the record, and
suppresses the write operation.

6.4.8 The Rewrite Routine
The Rewrite Routine is called immediately before an existing record is
re-written to the database during MNT mode. This routine is otherwise
identical to the write routine.

6.4.9 The Process Routine
The Process Routine is called after processing has been completed
(i.e. on completion of ADD, INS, EDT, MNT or DEL modes). It may be
used to perform additional updates, such as writing details of the
transaction to an audit log. The system variable $MODE may be examined

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 82 of 241

by the process routine to determine in which mode the record was
processed if this is important, see Section 6.3.2.

When the routine is called, the record that has just been processed by
the window manager is still contained within the I/O channel. The
fields of the record may therefore be examined by the routine. It is
important to note, however, that the I/O operation (i.e. write,
rewrite or delete) will already have taken place. In the case of
deletion, this means that the record no longer exists on the database
at the time that the process routine is called.

Following ADD, INS, and MNT modes, the current record in the I/O
channel will normally be locked, to ensure that it is not modified or
deleted while the process routine executes. For ADD, INS and MNT
modes, the record will be locked exclusively. For SEL mode the record
will be protected (locked non-exclusively) unless the LOCK or NOLOCK
options are in force.

Returning Exit condition 1 (i.e. performing an EXIT WITH 1) from the
process routine returns unsuccessful completion of the window, and
causes the back-action to be taken as defined by the window's optional
Sequence statement. It should be noted that this has no effect on the
processing of the last transaction, which will already have been
written to the database.

Returning Exit condition 2 causes window processing to be terminated
just as if the operator had keyed a series of <BCK> keys to terminate
the current series of windows as defined by the window's sequence
statement. Where no sequence statement has been coded, the effect of
this is identical to returning exception condition 1.

6.4.10 The Terminate Routine
The Terminate Routine is called when the operator terminates record
processing in MNT, EDT, ADD or INS modes by keying a function such as
<BCK>, <HME>, <CLR>. It may be used, for example, to release locks
established by earlier, now aborted, record processing, such as may
have occurred within the window's validation routine. System variable
$FUNC may be examined to determine the function used to terminate
record processing. Note that the variable $MODE is not defined when
the R-TERM routine is processed. Note that the R-TERM routine must not
be used to unlock any window target record type.

6.5 Processing Database Records
This section discusses the operation of the window construct when used
to process records with masters. The locking requirements of such
records are discussed in section 6.5.1 with an explanation of the
automatic retrieval that takes place in display mode. Section 6.5.2
describes the operation of dependent windows, used to process subsets
of records.

6.5.1 Locking Master Records
As described in Chapter 2, special locking requirements exist when
processing records that are linked to master records. For example,
consider the following structure:

Order Header

Order Line

Stock Item

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 83 of 241

In the above structure, the Order Line record has two masters, the
Order Header record and the Stock Record. When an order line record is
added to the database, these masters must be locked before the I/O
operation takes place. This ensures that a master record is not
deleted by another user while the order line record is being added to
the database.

Similar considerations also exist when maintaining a record. If for
example, the stock number can be changed during maintenance, the new
stock record must be locked before the order line is written to the
database. Ensuring that these master records are correctly locked is
the responsibility of the application programmer, and the simplest way
to achieve this is to code FETCH statements in the validation routines
of the appropriate fields.

If fields that are not stored on the target record are displayed (e.g.
the display of the stock description from the stock record within the
line item window) the application programmer must also ensure that the
appropriate stock record is retrieved during processing. The simplest
way of dealing with these "off-record" fields involves naming these
record types as part of the window statement definition, and this is
discussed in section 6.6.1.

Another method of fetching these additional records is to write a
fetch routine in the routines section. The fetch routine will be
called by the window manager each time a target record is retrieved.
Associated records can therefore be retrieved within this routine by
coding an appropriate FETCH or GET statement.

This does, of course, have some bearing on performance. If it is
necessary to retrieve, for example, eight associated records for each
line within the window, then this will be much slower than just
retrieving the displayed target record. When coding scrolled screens
this can be particularly important, given that a number of records,
and all their masters, will need to be fetched.

In order to improve paging performance within scrolled screens it is a
good idea to place these fields within the non-scrolled area. These
non-scrolled fields are only displayed once when the window is paged,
in order to display the current record. The associated records then
only need to be fetched once, improving performance considerably.

With this approach, a before routine should be coded for the
appropriate off-record fields. This routine is called immediately
before the field is displayed, and should therefore contain the fetch
or get operation needed to retrieve the record. As record displays
always take place in display mode, it is only necessary to perform
these I/O operations in this mode.

6.5.2 Dependent Windows
A window generally allows access to all records of a particular type
stored on the database. For example, a window processing invoice
records will normally allow all invoices on file to be processed,
subject only to the operation of the fetch routine within the routines
section. It is quite a usual requirement however, for a window to
process a subset of those records only, for example, allowing access
only to invoices for a particular customer.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 84 of 241

This requirement exists in many data-processing functions. For
example, an invoice entry program composed of an invoice header window
and a detail line window would have this requirement. When the invoice
line window is entered, it should provide access only to the detail
lines for the current invoice.

Dependent windows provide the facilities to achieve this effect. When
the window construct is coded, dependency on a higher level record
within the database is established using the WINDOW statement. For
example:

WINDOW W1 USING IN DEPENDENT ON CU

This statement introduces the window W1, with a target record type IN
(invoice record). The DEPENDENT ON clause restricts the operation of
the window to a subset of records, in this case to those invoices that
belong to record CU (customer record).

When the window is entered, an enquiry will return only invoice
records that belong to the current customer record. The window manager
does this by examining the I/O channel of the customer record, and
thus determines which particular customer record is currently being
processed. Only invoices that belong to this particular customer can
then be retrieved or added.

Before entering window W1, a customer record must therefore be
established, and this is done simply by reading the required customer
record, using either the FETCH or READ statements. Alternatively, a
preceding window may be used to do this (e.g. a selection window
operating on customer records) which must be entered before the
invoice window is executed.

Dependent windows can only operate if on the target record an index
exists which starts with the same fields as the primary index of the
"Dependent On" record type. For example, if the primary index of the
customer record is the customer number, then an index must exist on
the invoice record that also starts with this customer number. Such an
index is needed to enable the efficient retrieval of invoices for the
customer. If such an index does not exist, dependency cannot be used.

This implies that there is a master/servant relationship between the
records, but there is no requirement for a formal linkage since all
processing is performed using indexes. This feature operates simply by
prefixing the indexes declared for the target record with the primary
index of the "Dependent On" record type. The window manager then
checks all retrieved records to ensure they conform to this prefix.

When processing dependent windows, the fields of the controlling key
are moved automatically into the appropriate fields of the target
record at the start of record processing. This saves the application
programmer the task of initialising these fields before the record is
written to the database.

6.6 Window Construct Syntax
The window construct is coded within the Data Division. Its general
format is as follows:

[$OPT NSW]

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 85 of 241

WINDOW id [USING rt1 | rtidx [rta rtb... rtn] [DEPENDENT ON rt2 |
(fielda, ... fieldn)]]
[\window help-text [$TR-key]]
[SEQUENCE id1 [Clear-opt], id2 [Clear-opt]]
[POP-UP | QREM]
[EDT] [ADD] [INS] [ENQ] [SEL] [MNT] [DEL] [UDL]
[REPEAT [UNTIL [NEXT | CURRENT RECORD]]]
[LOCK | NOLOCK]
[SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]]
[SBOX]
[LINE l1 [l2 ... l8]]
[BASE AT line col]
[ENABLE [NXT] [ABO]]
[DISABLE [SKP] [CLR] [HME]]
[AUTOPGE | AUTOBPG]
[LI CL Longname LI CL Name Pic Options...]

(Detail Lines)

[ROUTINES SECTION]

(Routines Section entry-points)

ENDWINDOW

The construct is introduced by the WINDOW statement and may optionally
be preceded by the compiler directive $OPT NSW. If coded this
directive causes the compiler to exclude the window from the disk swap
file. You may wish to exclude a pop-up from the swap file, see section
4.6, if it is important for it to be displayed and removed in the
shortest possible time. The WINDOW statement is followed by optional
window help-text. This in turn is followed by a number of optional
clauses which specify a number of run-time parameters, such as in
which modes the window may be operated. The window-body is then
introduced by an optional header line (shown as LI CL Longname...
above). This is in turn followed by the actual text and data fields to
be displayed and accepted. The optional Routines Section may then be
coded. This section contains additional procedural code which is
executed during window processing. The ENDWINDOW statement indciates
the end of the window construct, which may be followed by further
window definitions, or the Procedure, Load or Unload Divisions.

6.6.1 The Window Statement
The WINDOW statement introduces the window construct and specifies its
target record type. It is coded:

WINDOW id [USING rt1 | rtidx [rta rtb... rtn] [DEPENDENT ON rt2 |
(fielda, ... fieldn)]]

where id is a unique two-character window-id by which the window is
identified, rt1 is the name of the target record, and rta to rtd are
master records to be fetched with the target record rt1. rt2 is the
record-id of the record type upon which displays are dependent unless
a field list, fielda, ... fieldn is defined. A default index, rtidx
may be specified as the default index for use in enquiries by coding
an index name instead of rt1.

The window-id is a two-character alphanumeric name which must start
with an alphabetic character, and is used to reference the window
during processing, such as when using the ENTER verb. It must

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 86 of 241

therefore be unique amongst the windows declared within the frame, and
should not be the same as any record-id referenced by the ACCESS
statement.

The optional USING clause specifies that the record-id of the window's
target record type is rt1, access to which must previously have been
declared using the ACCESS statement. When used instead of rt1, the
index name rtidx simultaneously defines the record-id and default
current index by which records are to be retrieved using the <PGE> and
<BPG> operations. If the record-id is coded, the first index defined
for that record in the database dictionary will be used as the default
index.

Up to four master records which are to be retrieved with the target
record are specified by rta to rtd. Whenever the window manager
fetches the target record, these master records will also be
retrieved, in much the same way as the READ verb. This facility is
used to display fields that are not stored on the target record (e.g.
when displaying the stock description from the stock record within
order line items). Note that records retrieved using this facility
will be unlocked.

This facility can only be used for records that are directly linked to
the target record type. If this is not the case, the same effect can
be achieved by coding a fetch routine within the routines section.
This routine must then perform the necessary fetch or get operations
to cause the required records to be retrieved.

Omitting the USING clause indicates that the window is not associated
with records residing on the database. The window will therefore
operate in ADD and EDT modes only, and any necessary I/O operations
will have to be explicitly coded within the frame.

The optional DEPENDENT ON clause has two different uses. If coded in
conjunction with record type rt2, it restricts access to the group of
records belonging to record rt2, which must be established before the
window is executed. For example, it may be desirable to process only
those invoices that belong to a given customer. This is achieved by
first reading, or creating that customer record, and then invoking the
invoice window.

When the DEPENDENT ON clause is used with record-id rt2, only indexes
that begin with the primary index of rt2 will be used to retrieve the
target record type. In other words, an index must start with the same
fields as the primary index of the master record. Returning to the
example, enquiries can use only those indexes that start with the
customer number. This allows the window manager to get straight to the
invoices belonging to the customer without having to scan through the
entire file. If no such index exists this clause may not be used. If
index rtidx is specified instead of rt1, it must also meet these
criteria.

The DEPENDENT ON clause may instead be followed by a list of fields
containing the significant portion of the index key upon which the
operation of the window will be dependent. For example, coding:

WINDOW W1 USING IN DEPENDENT ON (Z-CUST)

makes the operation of this window dependent on the value contained in
field Z-CUST, which must be set up before the window is entered.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 87 of 241

When compiling this statement, the compiler searches for an index
which starts with index segment named INCUST, which must have the same
picture clause as the field Z-CUST. The important point here is that
the last four characters of the field name serve to identify the
corresponding index key segment as stored on the target record. These
requirements are conceptually similar to the establishment of Master
Access Keys, described in Appendix F.

Where a list of fields is coded to define dependent operation, each
field must be defined in the same order as at least one index
supported by the target record type. The picture clause of each field
must match the picture clause of the corresponding index key segments,
and the specified fields must be located in contiguous memory
locations. For example, let us create an order line item window which
shows only the order lines for a given order. Given that the order
line record contains an index composed of:

Customer Number OLCUST X(4)
Order Number OLORDN X(5)
Stock Number OLSTCK X(8)

we must specify a window which is dependant on both the customer and
order number fields. This should be done by coding the following in
the Data Division:

01 Z-KEY * Dependency key for order lines
 03 Z-CUST PIC X(4) * - Customer number

 03 Z-ORDN PIC X(5) * - Order number

The Window Statement would then be coded:

WINDOW W1 USING OL DEPENDENT ON (Z-CUST, Z-ORDN)

During compilation, the compiler identifies the appropriate index from
the names of the specified field segments, and checks that the picture
clauses are identical. At run time, it is then necessary to move the
required customer and order numbers into Z-CUST and Z-ORDN
respectively, prior to entering the window.

6.6.2 Optional Clauses
A number of optional clauses may be coded following the WINDOW
statement. These are:

[\window help-text [$TR-key]]
[SEQUENCE id1 [Clear-opt], id2 [Clear-opt]]
[POP-UP | QREM]
[EDT] [ADD] [INS] [ENQ] [SEL] [MNT] [DEL] [UDL]
[REPEAT [UNTIL [NEXT | CURRENT RECORD]]]
[LOCK | NOLOCK]
[SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]]
[SBOX]
[LINE l1 [l2 ... l8]]
[BASE AT line col]
[ENABLE [NXT] [ABO]]
[DISABLE [SKP] [CLR] [HME]]
[AUTOPGE | AUTOBPG]

6.6.2.1 Window Help-text

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 88 of 241

Window help-text lines have the backslash character \ as the first
significant character on the line, must be contiguous, and follow
immediately after the WINDOW statement. Key-top names may be embedded
in the help-text by coding $TR-key where key is any of the function-
key mnemonics listed in Table 6.3b. For example, to display the help-
text "Key End for next window" you should code "\Key $TR-NXT for next
window". The help window is displayed when <HLP> is keyed twice (i.e.
<HLP><HLP>).

6.6.2.2 Sequence Clause
This clause defines the sequence in which the window is to be
executed. It is coded:

SEQUENCE id1 [Clear-opt], id2 [Clear-opt]

where id1 is the window-id to be entered on unsuccessful completion of
the window, and id2 is the window-id to be entered following
successful completion of the window. The keyword EXIT may be coded for
either id1 and/or id2, and this causes the window manager to return
control on completion, instead of executing a further window.

Clear-opt specifies a window clearing action to be taken on completion
of the window and may be one of the following:

CLR Clear Screen. The screen is totally cleared, leaving
only the screen header displayed.

CLW Clear Window. The window is removed from the screen. If

the window is a POP-UP, the prior image is re-
displayed. Otherwise the area occupied by the window is
over-written with spaces in the window background
attribute.

CLD Clear Data. Data displayed within the window is

cleared. If the sequence statement is omitted, an exit
will take place both on successful and unsuccessful
completion, and no clearing action will take place.

6.6.2.3 Clearing controls
The POP-UP and QREM clauses are used to control the way a window is
cleared from the screen. The POP-UP clause causes the screen image
under the window to be saved when it is activated. When the window is
cleared using the CLW option (see below) or the CLEAR window
statement, this image is re-displayed, thus resetting the screen to
its prior state.

The QREM clause is used to improve clearing performance. When a
ordinary window (i.e. not a POP-UP) is removed using the CLW option or
CLEAR window statement, the area underneath it is cleared by
displaying spaces. This can take some time, especially if the window
is large. The QREM clause causes the window to be removed using the
clear-to-end-of-line facility, which operates much faster, but also
has the effect of clearing the area to the right of the window. This
option should therefore only be used when the area to the right of the
window is otherwise unused.

6.6.2.4 Mode Enabling Clauses
This section describes the following optional processing modes:

EDT

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 89 of 241

ADD
INS
ENQ
SEL
MNT
DEL
UDL

If none of the above clauses is coded, defaults are allocated as
follows. If the USING clause has been coded in the window statement
(i.e. the window operates on a target record type) all clauses other
than EDT and UDL are enabled. Otherwise only the ADD clause is
enabled. These defaults are over-ridden by coding any of the above
clauses which are described below:

6.6.2.4.1 The EDT Clause
The EDT clause enables edit mode, used only on windows that do not
operate on a target record type and should not be used in scrolled
windows. It allows the data fields processed by the window to be pre-
initialised using the display verb and entry into the window then
allows the operator to edit the displayed fields as a whole. This
clause is typically used in windows which accept run-time parameters
(e.g. those required in a print program). Coding EDT automatically
enables ADD mode.

6.6.2.4.2 The ADD Clause
The ADD clause enables add mode, normally entered when the cursor is
positioned on a blank record. This allows the operator to enter the
fields on the record, on completion of which a new record is written
to the database. Unless this mode is enabled addition of new records
cannot take place, so only existing records can be processed by the
window.

6.6.2.4.3 The INS Clause
The INS clause enables insert mode which allows a new record to be
inserted before an existing record displayed in the window. When the
operator keys <INS>, the window is scrolled apart to create a new
blank record display area into which the new record can be inserted.
Since the insert instruction requires existing records to be
displayed, the INS clause also enables ENQ and DSP modes. ADD mode is
also enabled by this instruction.

6.6.2.4.4 The ENQ Clause
The ENQ clause enables enquiry and display modes. Enquiry mode is
activated whenever a database search is initiated, and is therefore
required in order to display existing records within the window. This
mode is also entered explicitly when <ENQ> is keyed. If the database
search is successful, display mode is activated in order to display
the retrieved records.

If the ENQ clause is not coded, the user will be unable to retrieve
and display records from the database, and is therefore restricted
simply to adding new records. Since enquiry mode requires a target
record type, the window statement must contain the USING clause.

6.6.2.4.5 The MNT Clause
The MNT clause, when coded, the operator may key <RET> to select the
current record for maintenance. Unprotected fields on the record may
then be edited, on completion of which the record is re-written to the

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 90 of 241

database. Since maintenance operates on existing records, ENQ and DSP
modes are automatically enabled.

6.6.2.4.6 The SEL Clause
The SEL clause allows an existing record to be selected from the
window. This clause is coded when a window is used for selection
purposes only, an example of this being the selection of a customer
prior to invoice entry. It is used instead of the MNT clause when no
maintenance is to take place on the selected record. The window
manager suppresses record editing and the re-write of the record that
would otherwise take place. Since record selection operates on
existing records, ENQ and DSP modes are automatically enabled. Unless
the SEL clause is coded, the operator is able to position the cursor
on a different record within the display, but is unable to select it.

6.6.2.4.7 The DEL Clause
The DEL clause allows the operator to select a record for deletion by
placing the cursor on the required record, which is then deleted by
keying <DTE>. If this clause is omitted, record deletion is disabled.
Since deletion operates on existing records, ENQ and DSP modes are
automatically enabled.

6.6.2.4.8 The UDL Clause
The UDL clause allows the operator to undelete the last deleted record
by keying <UDL>. Coding this clause causes the compiler to create an
area within the frame which will contain a copy of the last deleted
record. Keying <UDL> activates ADD or INS mode, each field on the
record being moved from the saved area instead of being accepted from
the operator. The UDL clause automatically activates ADD, INS, ENQ,
DSP and DEL modes.

6.6.2.4.9 Programming Notes
If the window does not have a target record type (i.e. the USING
clause was not specified in the WINDOW statement) the window may only
operate in ADD and EDT modes. Coding any of the clauses INS, ENQ, SEL,
MNT, DEL, UDL will therefore result in an error during compilation.

The MNT and SEL clauses are mutually exclusive, and may not be coded
for the same window. The SEL clause means that MNT mode is not to be
entered following selection of a record. Coding SEL alone means that
the window may only be used to do an enquiry and select a particular
record. This option is often used to set up a controlling record for
use by a subsequent dependent window (e.g. to select a given customer
prior to processing that customer's invoices in a subsequent window).

If ENQ is the window's only valid mode, the processing cycle described
earlier in this chapter can never complete, since the window simply
stays "stuck" in enquiry mode. However, if the REPEAT UNTIL NEXT
clause was coded, the operator will be able to use the <NXT> key to
indicate successful completion. Otherwise, successful completion
cannot occur.

6.6.2.5 Record Status Controlling Clauses
The following clauses control record lock status and window
termination. They are coded:

REPEAT [UNTIL [NXT | CURRENT RECORD]]
LOCK | NOLOCK

6.6.2.5.1 The REPEAT option

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 91 of 241

The REPEAT option causes the window to loop until a terminating
condition is reached. If the option is not coded, successful
completion will be returned following a single processing cycle. When
the REPEAT clause is coded on its own, the processing cycle will
continue indefinitely, and no successful exit is therefore possible.

6.6.2.5.2 The REPEAT UNTIL NXT option
The REPEAT UNTIL NXT option enables the <NXT> key, and allows the
operator to indicate completion of the window at any time.

6.6.2.5.3 The REPEAT UNTIL CURRENT RECORD option
The REPEAT UNTIL CURRENT RECORD option specifies that a current record
is required before successful completion is permitted. When coded,
this option ensures that a valid target record is contained in the I/O
channel, and this record will be locked in accordance with the locking
options discussed in the following section. This option must therefore
be coded whenever the status of the I/O channel on successful
completion is important.

Note that this option has no effect on the operation of the <ABO> and
<BCK> keys, which may be used to force unsuccessful completion of the
window at any time. The status of the I/O channel on unsuccessful
completion of a window is therefore undefined under all circumstances.

6.6.2.5.4 The LOCK and NOLOCK option
The LOCK and NOLOCK options are used to specify the lock level
required when a record is selected without further processing. When a
record is added, deleted, or maintained a full (exclusive) lock is
always placed on the record. The locking options are therefore only
used with the SEL option described in section 6.6.2.4.

When the SEL option is coded, a selected record will normally be
delete-protected (non-exclusively locked) so that it cannot be deleted
by another concurrently executing frame. Coding the LOCK option causes
a full lock to be placed on the record. Coding the NOLOCK option
suppresses locking of the target record.

Note that the record lock, specified using the above options or as
defaulted, is normally released on completion of the window. It will
only be retained if REPEAT UNTIL CURRENT RECORD is coded. The lock
status of the I/O channel following unsuccessful completion is
undefined.

6.6.2.6 The SCROLL statement
The SCROLL statement is used to define a scrolled region within the
window. It is coded:

SCROLL n1 [BY n2] [SPLIT n3 OFFSET n4]

where n1 is the number of records in the scrolled area, each of n2
contiguous lines. The number of columns in which the window is
arranged for vertical split scrolling is defined by n3 and the offset
between these columns by n4.

The scroll statement specifies that the data fields defined later
within the window are to be scrolled, thus allowing multiple records
to be displayed within the window at once. Note that text fields are
never scrolled, and are therefore always displayed at the coded line
and column positions.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 92 of 241

The number of records to be displayed is defined by variable n1.
Normally, each record will take up only one line within the display,
but multi-line records can be specified by using the BY n2 clause.
Thus, if the scrolled region is to contain eight records, each using
two physical lines on the screen, the following would be coded:

SCROLL 8 BY 2

The scrolled region would therefore occupy sixteen lines (8 x 2).

The Window Manager allows this scrolled region to be split vertically
into several columns, and this is achieved by the SPLIT clause. The
number of columns into which the scrolled region is to be split is
specified by variable n3, and the vertical displacement between the
two columns is specified in characters by variable n4. For example,
consider a scrolled region split into three columns:

 AAAA AAAAAAAAAAAA GGGG GGGGGGGGGGGG MMMM MMMMMMMMMMMM
 BBBB BBBBBBBBBBBB HHHH HHHHHHHHHHHH NNNN NNNNNNNNNNNN
 CCCC CCCCCCCCCCCC IIII IIIIIIIIIIII OOOO OOOOOOOOOOOO
 DDDD DDDDDDDDDDDD JJJJ JJJJJJJJJJJJ PPPP PPPPPPPPPPPP
 EEEE EEEEEEEEEEEE KKKK KKKKKKKKKKKK QQQQ QQQQQQQQQQQQ
 FFFF FFFFFFFFFFFF LLLL LLLLLLLLLLLL RRRR RRRRRRRRRRRR

This scrolled region contains eighteen record display areas (areas
AAAA to RRRR), each taking up one line. The region has been split into
three columns, and the offset between the columns is twenty
characters. This is coded:

SCROLL 18 BY 1 SPLIT 3 OFFSET 20

The BY 1 clause could be omitted, since this is the default.

The SCROLL statement applies to all the following data fields coded
within the window, except those with the NSC option - see Section
6.6.4.2. It is normal for a window to contain both scrolled and non-
scrolled fields, and these do not necessarily have to be coded in
order. For example, the window may have a few scrolled fields,
followed by a few non-scrolled fields, and ending again with scrolled
fields.

6.6.2.6 The SBOX and LINE Statements
All windows are displayed with a box around the outer extremities of
the displayed text and data items. The dimensions of the box are
calculated by the Speedbase compiler so that the top and bottom lines
of the box are immediately above and below the first and last used
display lines respectively. The vertical lines of the box are normally
displayed two characters before and after the first and last used
column respectively. Fields should therefore start at, or after,
character position three on the screen, and should not be placed
higher than line two, or line three if a screen header is also
displayed.

6.6.2.6.1 The SBOX Statement
The SBOX statement causes the box to be drawn immediately to the left
and right of the first and last used column positions, thus creating a
slightly narrower box than would normally be produced. This allows

Column 1 Column 2 Column 3

Offset

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 93 of 241

data and text to be displayed from column position two as opposed to
column three. If used, the SBOX statement must be coded prior to any
text or data item definitions.

6.6.2.6.2 The LINE Statement
The LINE statement specifies horizontal lines which will be joined to
the vertical lines of the window's box. It is coded:

LINE l1 [l2 ... l8]

where l1 to l8 are up to eight line numbers at which lines are to be
drawn.

6.6.2.8 The BASE AT Statement
The BASE AT statement specifies the window position offset. It is
coded:

BASE AT line col

where line col is the line and column position of the top left-hand
corner of the window (e.g. coding BASE AT 9 20 places a window 8 lines
down and 19 characters towards the right of the screen).

6.6.2.9 The ENABLE Statement
The ENABLE statement is used to enable the <NXT> and <ABO> functions.
Coding:

ENABLE ABO

has the effect of enabling the Abort function, which allows the
operator to abort a chain of windows. This function avoids the user
having to key <BCK> several times in order to terminate a series of
windows.

Windows supporting MNT mode normally cause the operator to enter
maintenance mode on selection, before the next window is entered.
Coding:

ENABLE NXT

allows the operator to select the current record using the <NXT> key
while in display mode. The window manager then automatically skips
through all the fields on the record just as if the operator had keyed
<RET> in response to each field. This feature is useful when
processing master/servant windows, when maintenance is not necessarily
carried out within the initiating window.

6.6.2.10 The DISABLE Statement
The DISABLE statement allows the <SKP>, <CLR> and <HME> options to be
disabled. It is coded:

DISABLE [SKP] [CLR] [HME]

The statement simply removes these function keys during processing of
the window. This is useful in simple windows such as menus, where
functions such as <CLR> could cause confusion.

6.6.2.11 The Auto-page Statements
The AUTOPGE and AUTOBPG statements cause a page or back-page operation
to occur when the window is initially entered, as if <PGE> or <BPG>

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 94 of 241

had been keyed. These options are useful, for example, in enquiry
windows, where it is often convenient to display the first or last
page of records on entry. The options are mutually exclusive, and
operate only when a clear (i.e. empty) window is entered.

6.6.3 The Window Body
The window body contains details of the text and fields that are to be
displayed and accepted within the window, and may contain options that
control its general layout. The format of the window body is as
follows:

LI CL Longname LI CL Name Pic Options...

(Detail Lines)

The window body may be introduced by a comment line which may be
helpful in laying out the source code. The compiler will ignore any
line at the start of the window body that begins with the characters
LI. This is then followed by the window's detail lines which are
described in the following section.

6.6.4 Window Detail Lines
The detail lines define both the window's form (i.e. fixed text items
with their boxes) and data items (i.e. variables that are to be
displayed and accepted). A detail line consists of one or more text
items, and/or one or more data-items. Text items specify fixed text
which will be displayed at a fixed position on the screen. Data-items
specify variable data which may be accepted and displayed on the
screen in various positions.

6.6.4.1 Text Items
Text items are used to display fixed text on the screen at a given
line and column position. The general form of a text-item is as
follows:

line col "text"

where line is the line number (counting the top line as 1) at which
the text is to be displayed, col is the column number at which the
text is to be displayed, and text is the text to be displayed at that
position, as offset by the BASE AT statement. For example, coding:

10 20 "Customer #"

would cause the characters Customer # to be displayed on the screen at
line 10, column 20.

Fixed text items are normally displayed on the screen when the frame
is executed. The basic screen form, composed of all the text items,
boxes and lines of all the coded windows within the frame is displayed
in this way, providing the operator with an "empty" screen. Text items
are always displayed at the coded line and column positions, and are
therefore unaffected by the SCROLL verb.

Line and column numbers must both be unsigned positive integer
literals. Line numbers may be coded from 2 to 46 inclusive. Column
numbers may be coded from 2 to 127 inclusive, so long as the item
being displayed, as offset by the BASE AT statement, would not cause
column 131 to be exceeded.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 95 of 241

6.6.4.2 Data Items
A data-item specifies a variable that is to be displayed and/or
accepted from the screen. The general form of a data item is:

line col name [options]

Where line col is the line and column number at which the item is to
be displayed, as offset by the BASE AT statement, name is the variable
name of the item to be displayed and/or accepted, and options consists
of one or more option clauses which specify how the item should be
processed.

6.6.4.2.1 Line and Column Numbers
Line and Column Numbers must be unsigned positive integer literals.
Line numbers may be coded in the range of 2 to 46 inclusive. Column
numbers may be coded in the range 2 to 127 inclusive, as long as the
item displayed would not cause column 131 to be exceeded. It should be
noted that the line and column position coded will be modified at run-
time by the operation of the SCROLL verb, as documented earlier in
this chapter, and offset by the BASE AT statement.

6.6.4.2.2 Variable Name
The Variable Name is a reference to an existing variable that has
previously been declared within the Data Division or by an ACCESS
statement.

6.6.4.2.3 Field Options
Field Options may be coded following the picture clause in order to
affect the way the field is processed at run-time These are:

DIS Display only field, the field is only displayed
PRO Protected field, the field cannot be entered or amended
NOE No-edit field, the field may not be amended
NUL Null allowed (i.e. the field may be left blank)
TAB Stops the cursor at this field after a <SKIP>
CHK Perform duplicate record check after this field
UF1 Enable UF1 when this field is accepted
UF2 Enable UF2 when this field is accepted
UF3 Enable UF3 when this field is accepted
NSC The field is non-scrolled in an otherwise scrolled
window
CNV Lower-case characters to be converted to upper-case
YN Yes/No validation to be performed on field input
TXT A text item specified in the form of a variable
RJF Right-justify field
FMT Specifies the display formatting to be applied to the
field
HOT Specifies field auto-inputs without need to key <RET>.
TTL Display field using display attribute 5 (Titles).
ERR Display field using display attribute 8 (Error
message).
A12 Display field using attribute 12.
A13 Display field using attribute 13.
A14 Display field using attribute 14.

These options are discussed below.

6.6.4.2.3.1 DIS Option
DIS (Display) is similar to a protected field in that the operator
will not be able to modify it. The display option is used, however, to

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 96 of 241

indicate that the field contains valid data and should not be
initialised during ADD mode. If despite this, a default routine has
been coded, then this will nevertheless be called.

6.6.4.2.3.2 PRO Option
PRO (Protected) specifies that the field may not be modified by the
operator under any circumstances. During ADD mode, the field will be
initialised to binary zeros, spaces or "0". If a default routine has
been coded, it will be called to initialise the field instead.

6.6.4.2.3.3 NOE Option
NOE (No Edit) prohibits the user from modifying the field in MNT and
EDT modes, but allows normal access to the field during ADD mode. It
is used to protect fields that may not be changed after the record has
been written.

6.6.4.2.3.4 NUL Option
NUL (Null allowed) specifies that the field may be left blank, in the
case of a character field, or zero, in the case of a numeric field. In
the case of dates, this option allows a null date, " / / ", to be
entered. If this option is not coded the window manager will re-input
the field if any blank or zero values are entered, or defaults
accepted by the operator.

6.6.4.2.3.5 TAB Option
TAB causes the cursor to stop at the current field whenever the <SKP>
key is used, and therefore acts as a tab-stop. This allows fields to
be arranged in blocks within the window, allowing the operator to skip
from one block to the next. If the TAB option is not used in the
window, then the <SKP> operation will automatically jump to the last
field.

6.6.4.2.3.6 CHK Option
CHK causes a duplicate-record check to take place during processing of
the associated field in ADD and INS modes. This option is used to
check that the record being created does not already exist on the
database. In effect, a duplicate key check takes place using the index
key entered so far. If this key is found and ENQ mode is enabled, the
baseline message:

Record key already exists - Enquire?

is displayed. The operator may then enquire on the duplicate record.
This option should be coded after all primary index key fields have
been entered. This option is particularly recommended for maintenance
programs, since it allows the operator a fast way of enquiring on
records without having to use the ENQ key to switch between modes.

6.6.4.2.3.7 UF1 Option
UF1 enables the use of the <UF1> key when the associated field is
accepted. If coded, a validation routine should be written within the
routines section, which should examine system variable $FUNC to check
whether this key had been entered, and if so, take the appropriate
action.

6.6.4.2.3.8 UF2 Option
UF2 enables the use of the <UF2> key when the associated field is
accepted.

6.6.4.2.3.9 UF3 Option

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 97 of 241

UF3 enables the use of the <UF3> key when the associated field is
accepted.

6.6.4.2.3.10 NSC Option
NSC specifies that the field is not to be scrolled within a window
coded using the SCROLL clause. If the SCROLL clause has not been
specified, all fields are automatically non-scrolled, and there is
therefore no point in coding this option. Option NSC is used to define
those fields that will be displayed in the non-scrolled portion of the
window, as described in section 6.2.1.

6.6.4.2.3.11 CNV Option
CNV specifies that any lower-case characters input are to be converted
to upper-case before the field is validated, or any other processing
is carried out.

6.6.4.2.3.12 YN Option
YN causes the field to be re-input unless it is Y or N.

6.6.4.2.3.13 TXT Option
TXT specifies that the field variable is to be displayed as text in
the scrolled-text attribute unless the TXT option is immediately
followed by the NSC option, in which case it is displayed in the non-
scrolled-text attribute. This option is used where the text to be
displayed varies under program control.

6.6.4.2.3.14 RJF Option
RJF causes the field to be accepted, stored and displayed in right-
justified form.

6.6.4.2.3.15 FMT Option
FMT "options" specifies the output formatting to be applied to the
field. Table 6.6a lists the five groups of options.

6.6.4.2.3.16 HOT Option
HOT Field entry terminates as if <RET> entered when last byte of the
field is keyed. This saves having to key <RET> for the field.

Option

Condition

Output Formatting

As input

As output

B Field = 0 Blank when zero 00.00
C Field < 0 Trailing CR -12.34 12.34CR
< Enclosed in () (12.34)
- Trailing - 12.34-
D Field > 0 Trailing DR +56.78 56.78DR
> Enclosed in () (56.78)
+ Trailing + 56.78+
, None Comma insertion 90123 90,123
$ None Leading dollar 45.67 $45.67
0 Zero fill 8.90 0008.90
* Asterisk fill 1.23 ***1.23
L Date only Long date DD/MM/YYYY DD/MM/YYYY
8 Date only Short date 8 byte

input
DDMMYYYY DD/MM/YYYY

6 Date only Short date 6 byte
input

DDMMYY DD/MM/YY

Table 6.6a - The Output Formatting Options

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 98 of 241

You may specify no more than one option from each group in any set of
options. Examples of invalid options would include:

BC<+,$
->+*
BCD,0*

Examples of valid sets of options and the resultant output formatting
are as follows:

Options

Field as
Input

Field as Output

BCD, -678.90 678.90CR
0.00
+1234.56 1,234.56DR

B<, +789.01 789.01
-7890.12 (7,890.12)

B-+$, +345.67 $345.67+
$890.12 $890.12-

-+0 +345.67 00345.67+
-8901.23 08901.23-

CD* +456.78 **456.78DR
-901.23 **901.23CR

Table 6.6b - Examples of Output Formatting

6.6.4.3 Data Item Processing
The processing applied to each data item depends on the mode the
window is operating in at the time, the field options in force, and
the operation of the field level routines within the routines section.
The usual order of events is as follows:

1 The before-routine is executed to suppress the field

2 The field is initialised, to spaces or low-values, if it is being

processed for the first time in ADD or INS modes

3 The default routine is executed to allow a new value to be placed
in the field

4 The field is displayed and accepted

5 The validation routine is executed

6 If the CHK option has been coded for the field, a duplicate key

check takes place at this time

The field options cause some steps to be omitted. The DIS option
disables field initialisation, step 2, and stops the field from being
accepted in all modes other than ENQ. The PRO option prevents the
field from being accepted in all modes other than ENQ. The NOE option
prevents the field from being accepted in MNT and EDT modes. The CHK
option causes step 6 to take place. The UF1, UF2 and UF3 options
enable the corresponding keys if the field is accepted.

Consider the effect the various modes have on the processing of data
items:

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 99 of 241

ENQ starts an enquiry and data entry of index key fields

DSP displays existing records from the database

MNT causes modification of an existing record

DEL causes deletion of an existing record

ADD causes creation of a new record

INS causes creation and insertion of a new record

EDT causes creation of a new record by editing an existing one

In ENQ mode the before-routine is not called, since index key fields
may not be suppressed at run time. The current index fields are
accepted irrespective of options NOE, DSP and PRO.

In DSP mode, fields within the record are display-only. The before-
routine is called to suppress display of certain fields, the
validation and default routines being ignored. If it is necessary to
default certain fields prior to display, this should be done using a
fetch routine in the routines section. The field options have no
effect on processing during DSP mode.

In MNT mode, fields coded with NOE, DSP and PRO options are not
accepted. It should be noted, however, that the default routine is
called. This feature may be used to re-calculate a protected field,
such as a line total, during the maintenance process. If a field is
neither accepted nor re-defaulted using its default routine, then it
will not be redisplayed during processing.

In DEL mode, no field-level processing takes place.

In ADD and INS modes, fields coded with DIS and PRO options are not
accepted. Fields coded with the DIS option are also not cleared at
step four. If the CHK option has been coded, a duplicate key check
will take place at step six.

In EDT mode, fields coded with DIS, PRO and NOE options are not
accepted.

6.6.5 The Routines Section
The optional Routines Section is coded immediately following the
window body. It is introduced by the header:

ROUTINES SECTION

The routines section consists of a number of routines which are called
during the various stages of window processing. Each routine is
identified by a special label which determines when during the
processing cycle it will be executed by the window manager.

Each routine may contain any of the procedural instructions described
in Chapter 7, and on completion of processing must return control to
the window manager by executing an EXIT instruction. The various
routines that may be coded are described in detail in section 6.5.

Chapter 6 - The Window Division

Global Speedbase Development Manual V8.1 Page 100 of 241

6.7 Programming Notes

6.7.1 Insert Mode Utilisation
INS mode is provided for use with auto-sequenced indexes, described in
Appendix F. It is of limited use with ordinary indexed records since
the position at which a record is inserted within a set of records is
always determined by the index order. If INS mode is enabled within a
window using a normally-indexed record structure, the operator will
still be able physically to insert a record within the window, but on
redisplay this record will appear in its normal index order.

6.7.2 Memory Considerations
The code generated by the window construct is very compact, and the
only major consideration in program design lies in the use of pop-up
windows. When pop-ups are activated, the screen image under the window
is saved for later re-display. The Speedbase compiler makes space
within the frame memory area for this purpose, which therefore reduces
the space left for other tasks.

The memory area set aside equals three times the number of characters
occupied by the pop-up, including it's box. This will be of some
concern when very large pop-ups are used. For example, a pop-up
measuring 20 lines by 60 characters will reduce the remaining
available memory area by 3600 bytes (20 x 60 x 3).

When memory space is tight, it is therefore a good idea to keep the
dimensions of pop-ups as small as possible. This will also reduce the
time taken physically to display and remove the pop-up from the
screen.

When very large record types are used, the undelete (UDL) option may
also cause memory problems. This option causes the Speedbase compiler
to create an area into which the last deleted record is copied, which
will therefore reduce available memory by the size of the target
record type.

6.8 Example Order Entry Program
Appendix C describes an example order entry program which makes use of
the window facilities described in this chapter. This sample program
forms part of the demonstration program S.DEMO which is distributed
with the Speedbase Presentation Manager and the database DBDEMON.

New users of Speedbase are encouraged to review this sample program,
referring back to this chapter in order to gain an understanding of
the principles of window operation and other features of the Speedbase
Presentation Manager.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 101 of 241

7. Procedural Statements

This chapter describes the procedural statements that may be coded in
a Speedbase Development Language frame. The chapter has been organised
into three main sections. Section 7.1 explains where procedural
instructions may be coded, and explains the use of sections, labels
and called entry-points. Procedural statements are then explained in
detail within their various classifications in the subsequent
sections.

7.1 Structure
The statements described in this chapter can be coded in four
divisions within each frame. These are:

WINDOW DIVISION
PROCEDURE DIVISION
LOAD DIVISION
UNLOAD DIVISION

Within the window division, procedural statements are introduced by
the routines section statement. Elsewhere within the frame, procedural
statements are introduced by the procedure, load and unload division
statements. If the window division is to be used it must be coded
first. The procedure, load and unload divisions may be coded in any
order.

Each of the divisions may contain any of the procedure statements
supported by the Speedbase compiler, described later in this chapter.
The divisions are simply regarded as entry-points which are called as
execution of the frame proceeds. This is explained in Section 3.4.
Subroutines coded in one division may be performed, called or jumped-
to from code in any other division, and this allows common routines to
be shared as required.

7.1.1 Sections and Paragraphs
A section is introduced by the statement:

SECTION section-name

where section-name is a symbol as defined in Section 3.2.2.

A paragraph name is established by coding any valid symbol immediately
followed by a full stop. For example:

SYMBOL.

Paragraph names may either be coded on their own line or may precede
any procedure statement. Only one paragraph name may be coded on a
line. Once established, paragraph and section names may be used as the
target of the PERFORM and GOTO statements.

Paragraph names are also used to identify routines within the routines
section. These special paragraph names are prefixed by a single
character and a hyphen (i.e. V- to indicate when, during window
processing, they should be executed). It should be noted that these
special paragraph names cannot be performed or jumped to. If it is
necessary to call such a routine, a further section name or paragraph
name should be coded.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 102 of 241

7.1.2 Parameter-Passing Subroutine Calls
Parameters may be passed to subroutines by coding an ENTRY statement
as the first statement of the routine:

ENTRY entry-name [USING A B ...]

where entry-name is a symbol as specified in Section 3.2.2. Each
operand A, B, etc. in the optional USING clause above must be a BASED
item. These items must be defined as either level 01 or level 77
within the data division. Items at an intermediate level (i.e. levels
02-49) cannot be used as parameters within this statement.

Up to seven operands may be coded for an entry statement. These
operands are passed to the routine by means of the CALL statement as
follows:

CALL entry-name [USING A B ...]

The number of parameters coded in the call must be the same as the
number of parameters expected by the corresponding ENTRY statement.

7.2 Screen Management Statements
This section describes statements used to accept and display
information on the screen. These statements are:

DISPLAY Display a field or complete window
ERROR Display an error message
ACCEPT Accept a field
ATTRIBUTE Set current display attributes
CLEAR Clear a window or the entire screen
ENTER Execute a window

7.2.1 The DISPLAY Statement
Three forms of the DISPLAY statement are available:

DISPLAY name [AT line col | SAMELINE] [FMT "options"]

DISPLAY name [LINE line COL col | SAMELINE] [FMT "options"]

DISPLAY WINDOW window-id [TEXT]

where name is a text literal or the name of the variable to be
displayed, line and col are the line and column position on the screen
at which the variable is to be displayed, FMT "options" defines the
output formatting for the field and window-id is as defined in the
WINDOW statement.

The first two forms of the statement are used to display individual
variables on the screen. The last form is used to display complete
windows. The following discussion applies to the first two forms of
the display statement.

7.2.1.1 Displaying Fields
The first two forms of the display statement cause the contents of the
variable name to be displayed at the coded line and column positions.
If no line or column position is coded, the display operation takes
place at the baseline (i.e. the last line of the screen). The display
operation will normally take place at the start of the baseline (i.e.
at column 1) unless the SAMELINE option is coded. If the SAMELINE

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 103 of 241

option is coded the display takes place after any immediately
preceding baseline display or accept.

If the display statement is a baseline display (i.e. no line or column
numbers are coded) the display takes place using display attribute 7,
otherwise it takes place using the current display attribute in force,
as documented in Section 7.2.4.

FMT "options" is used to format the field as displayed. Table 7.2a
lists the five groups of options.

Option

Condition

Output Formatting

As input

As output

B field = 0 Blank when zero 00.00
C field < 0 Trailing CR -12.34 12.34CR
< Enclosed in () (12.34)
- Trailing - 12.34-
D field > 0 Trailing DR +56.78 56.78DR
> Enclosed in () (56.78)
+ Trailing + 56.78+
, None Comma insertion 90123 90,123
$ None Leading dollar 45.67 $45.67
0 Zero fill 8.90 0008.90
* Asterisk fill 1.23 ***1.23

Table 7.2a - The Output Formatting Options

You may specify no more than one option from each group in any set of
options. Examples of invalid options would include:

BC<+,$
->+*
BCD,0*

Examples of valid sets of options and the resultant output formatting
are as follows:

Options

Field as
Input

Field as Displayed

BCD, -678.90 678.90CR
0.00
+1234.56 1,234.56DR

B<, +789.01 789.01
-7890.12 (7,890.12)

B-+$, +345.67 $345.67+
$890.12 $890.12-

-+0 +345.67 00345.67+
-8901.23 08901.23-

CD* +456.78 **456.78DR
-901.23 **901.23CR

Table 7.2b - Examples of Output Formatting

7.2.1.2 Displaying Windows
The third form of the display statement is used either to display the
screen form (i.e. fixed text) and/or variable data contained within a

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 104 of 241

window. When the TEXT keyword is coded, only the fixed text will be
displayed, and the window will become active. When the TEXT keyword is
omitted, only the variable data within the window will normally be
displayed. However, if the window has not yet been activated, the text
portion of the window will first be displayed, thus activating it.

DISPLAY WINDOW window-id TEXT statement is often used to activate a
number of windows at the start of a frame so that the complete, but so
far empty screen is displayed prior to processing. When this is not
done, windows are activated as required, for example when executed
using the ENTER statement.

DISPLAY WINDOW window-id statement is used to display the data fields
within a window. The various fields defined within the window must be
initialised prior to the display operation. The most frequent use of
the display statement without the TEXT option is to initialise a
window prior to entering it in EDT mode, explained in Chapter 6, or to
refresh a record that is currently displayed.

Note that this statement provides no control over scrolled windows. If
it is used to display data into a scrolled window, this data will be
displayed into whichever Record Display Area happens to be current. It
is therefore not possible to use this statement to display successive
RDAs within a window.

While this statement can be used to display data within a window
associated with a target record type, care must be taken to ensure
that the I/O channel of the target record type matches with the data
being displayed. The simplest way to ensure this is not to use the
statement in such windows for any purpose other than to refresh the
currently displayed record.

The display statement may be used within the routines section, and
thus cause re-entrant calls on the window manager. If however any
attempt is made to display a window that is currently executing, such
as when attempting to display a window from its own routines section,
the frame will be aborted with a stop code.

7.2.2 The ERROR Statement
The ERROR statement is used to display an error. It is coded:

ERROR message

where message is a text literal or variable error message. When
executed, the ERROR statement causes the console bell to sound, and
the message is displayed on the baseline. This message is always
displayed using display attribute 8.

7.2.3 The ACCEPT Statement
The ACCEPT statement is coded as follows:

ACCEPT name [AT line col | LINE line COL col | NEWLINE]
[keys] [CNV] [NUL] [YN] [RJF] [FMT

"options"]

where name is the variable to be accepted, line and col are the screen
position at which it is to be accepted, keys is a list of function
keys enabled for the accept operation, CNV, NUL, YN and RJF are input
options and FMT "options" specifies the formatting to be used when the

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 105 of 241

accepted field is re-displayed. Where line or col are variables, these
must be 9(4) COMP. If no line or column position is coded, the accept
operates at the baseline immediately after any previous baseline
displays, unless the NEWLINE clause is coded, in which case the
baseline is cleared before the accept operation takes place.

If CNV is coded, lower-case characters are converted to upper-case
before re-display. Unless NUL is coded a null reply causes the field
to be re-input. If YN is coded the field is re-input unless the reply
is Y or N. If RJF is coded, the field is displayed and stored in right
justified form. The accept operation first displays the contents of
the variable name at the requested position. The accept process may
consist of the operator modifying or accepting the displayed default,
or keying an entirely new field value. The accept is normally
completed by keying <RET>, after which the new field value is returned
in name. If FMT "options" has been coded the field is formatted
according to the set of options specified before being re-displayed,
see Table 7.2a. Function keys other than <RET> can be enabled by
coding a list of keys, see Table 7.2c. Of the function keys, <RET> is
always enabled in order to allow the completion of the accept
operation. All the other functions are enabled by coding the
appropriate mnemonic. For example, coding:

ACCEPT field AT 02 20 NXT BCK

causes the field to be accepted at line 2, column 20, and allows the
use of the <NXT> and <BCK> keys to return an exception.

7.2.3.1 Successful Completion
Successful completion of the accept operation takes place when the
operator enters, accepts or modifies the displayed default value and
keys <RET>.

7.2.3.2 Exception Conditions
An Exception Condition is returned if the operator keys any of the
enabled function keys. When any function keys are enabled, an ON
EXCEPTION statement must be coded immediately following the accept
statement. When the accept statement returns an exception, the system
variable $FUNC will contain a value between 1 and 19, see Table 7.2c.
If more than one function key is enabled, $FUNC should be examined to
determine which was used.

If a function in the range 10 (Abort) to 19 (Move) is keyed, any input
so far keyed by the operator is always discarded and the contents of
the variable name is unchanged. The accepted variable can therefore
only change if the accept operation is terminated with a function in
the range 0 (Return) to 9 (Skip).

Mnemonic

Normal Usage

$FUNC

RET Accept current field, select
record

0

UF1 User Function 1 1
UF2 User Function 2 2
UF3 User Function 3 3
NXT Go to next window 4
PGE Forward-page window 5
BPG Back-page window 6

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 106 of 241

UP Back one record (Uparrow) 7
DWN Forward one record (Downarrow) 8
SKP Skip fields to next tab-stop 9
ABO Abort program 10
BCK Terminate window (Back to

prior)
11

CLR Clear the window 12
DTE Delete current record 13
HME Cursor home 14
BFL Back one field 15
ENQ Enquiry mode - select index 16
INS Insert record 17
UDL Undelete record 18
MOV Move record 19

Table 7.2c - Function Key Mnemonics

7.2.3.1 Programming Notes
The accept operation makes use of a number of additional function keys
which are used during field editing, such as character insertion and
deletion. In addition, the user may use the <HLP> key during the
accept operation, and this causes two types of help to be displayed.

The first help window contains a menu of the currently enabled
functions, listed in the same order as in the accept statement. It is
therefore useful to enable function keys in the order that places the
most important functions first in this help menu.

The second help window appears if the users keys <HLP> again. This
time the help message displayed is the one coded prior to the accept
statement. When designing the frame, it is therefore important to pay
attention to its layout, so that sensible help messages are displayed
at each accept operation.

7.2.4 The ATTRIBUTE Statement
The ATTRIBUTE statement is used to select the current display
attributes for use in field displays and accepts. It is coded:

ATTRIBUTE n

where n is a numeric literal or 9(4) COMP attribute type number. The
attributes used in the display of fields and text items are those set
up by the operator with the Speedbase customisation utility and listed
in Table 7.2d.

Type

Description

1 Scrolled data fields in the current record
2 Scrolled data fields in other records (de-emphasised)
3 Text items within the scrolled area (emphasised)
4 Text items outside the scrolled area (de-emphasised)
5 Title line at top of screen (line 1)
6 Help text and function key menu
7 Base line messages
8 Error messages
9 Lines and boxes
10 Non-scrolled data fields

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 107 of 241

16 Currently accepted field
17 Screen background colour
18 Window background colour

Table 7.2d - Attribute Types

Table 7.2d describes the types of fields that may be displayed, and
their associated type numbers. Using the Speedbase customisation
utility, different display attributes are allocated to each field
type. For example, field type 1, which is used to display scrolled
fields within the current record, might be assigned the attributes
bright blue on black. Therefore, if the statement ATTRIBUTE 1 is
coded, the following fields are displayed bright blue on black. When
an accept takes place the field is always re-displayed on completion
using the current attributes set up in the previous attribute
statement.

Thus the field types shown above represent a customised set of video
facilities, which are to be used whenever fields of that type are
displayed. The video facilities for a given field type are referred to
as an attribute set which is identified using the associated field
type or attribute number.

When a display takes place on the baseline (i.e. when no line or
column number is coded) attribute 7 is always used. If a line and
column are coded, the display takes place using the current attribute.
Displays using line and column positions are referred to as formatted
displays in the rest of this section.

When a frame is first entered, the current attribute is set to
attribute 10, the attribute normally used to display non-scrolled
data-fields. If no other action is taken, all formatted displays in
the frame take place using this attribute. It is possible, however, to
change the current attribute using the ATTRIBUTE statement. For
example, executing the statement:

ATTRIBUTE 1

changes the current attribute to attribute 1, and causes all further
formatted displays to be performed using this attribute.

Any of the attributes listed in Table 7.2d may be selected using the
ATTRIBUTE statement, with the exception of attribute 16. This
attribute is used by the accept operation in order to highlight the
currently accepted field. It is important to note that the current
attribute only controls the attribute in which a field will be re-
displayed after an accept operation. During the accept operation the
field will always be shown in attribute 16.

Note that setting the default attribute has no effect on the operation
of the window manager which always "knows" what type of fields it is
displaying, and therefore automatically selects the appropriate
attribute.

7.2.5 The CLEAR Statement
The CLEAR statement is used to remove data from a particular window,
to completely remove a window, or to completely clear the screen. It
is coded:

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 108 of 241

CLEAR [WINDOW window-id [DATA]]

where window-id is the ID assigned by the window statement.

If the CLEAR statement is coded without a window-id, the entire screen
is cleared, thus de-activating any currently displayed windows. If the
screen contains a screen header, this will be re-displayed as part of
the clear operation. Otherwise, the screen is entirely cleared of all
data and text.

When the CLEAR statement is coded with a window-id, the specified
window is removed from the screen. If the window is a POP-UP, the
screen-image under the window at the time it was activated is re-
displayed. Otherwise, the area under the window is cleared back to
screen background attribute 18.

When CLEAR window-id DATA is coded, only the data items displayed
within the specified window are cleared. After this instruction is
executed only the fixed text portion of the window is displayed.

7.2.5.1 Programming Note
A CLEAR statement may be executed in the routines section, causing a
re-entrant call on the window manager. If an attempt is made to clear
a window that is currently executing, the frame will be terminated
with a stop code. This error is most commonly made when using the
CLEAR statement without a window-id, since this causes all windows to
be cleared.

7.2.6 The ENTER Statement
The ENTER statement causes a window to be executed. It is coded:

ENTER WINDOW window-id [line:col]

where window-id is the ID assigned by the window statement. This
normally allows the operator to add, select, maintain, or delete one
or more records stored on a database. The functions actually available
to the operator will depend on the options coded for the window. These
options are described in detail in Chapter 6.

The optional line and col clause is used to define a new position on
the screen for the window, and thus allows the window to be
dynamically positioned. The variables define the top left-hand corner
of the window, and may be coded as constants or as 9(4) comp
variables. If either line or column number is zero, then the window
will revert to its normal position.

7.2.6.1 Successful Completion
Depending on the options specified in the window construct, one or
more records may have been processed, and the window will have been
successfully completed. Control will be returned on successful
completion only when this is permitted by the window's sequence
statement. This statement is described in section 6.3.4.

7.2.6.2 Exception Conditions
Unsuccessful Completion occurs when the window is aborted by the user
keying <ABO> or <BCK> or by the window's process routine returning any
exception. When the <ABO> function is keyed, or any exception other
than 1 is returned by the process routine, control is immediately
returned to the statement following the ENTER instruction. Otherwise

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 109 of 241

the window specified in the sequence statement, if any, is entered
next.

These conditions can be differentiated by testing the system variable
$$COND. If $$COND=1, <BCK> was keyed, if $$COND=2, <ABO> was keyed. If
an exception is passed back by the window's process routine, this
exception number will also be passed back in $$COND. These exception
conditions must be trapped by coding an ON EXCEPTION statement
immediately following the ENTER verb.

7.3 Report Printing Statements

7.3.1 The PRINT Verb
The PRINT verb is used to print a PF construct. It is coded:

PRINT pf [NEWPAGE]

where pf is a record ID defined by a PF statement in the data
division. Processing of the PRINT verb proceeds as follows:

If the verb is being used for the first time within the frame, a print
file is opened. This process automatically causes any headers defined
by the PF construct to be printed.

If the printer's current line position is before the start-line number
coded for the PF, an appropriate paper advance takes place. If
printing the PF would cause its end-line number to be exceeded, or the
NEWPAGE option has been coded, a page advance will take place. This
process involves printing any trailer PF constructs, followed by a
page throw, which is in turn followed by the printing of any header
PFs.

The print lines are then assembled as specified by the PF construct.
This causes all text and data-items to be moved to the print lines,
which will include conversions of computational fields to display
format. If any ADD options were coded, these are also processed at
this time. The assembled print lines are then output to the printer,
after which they are cleared with spaces.

The PRINT statement can fail if an overflow condition takes place.
This can occur when executing an ADD option, or when converting
computational numbers to display format. In this event the program
will be terminated with Program Check 11 - Overflow. This condition
cannot be trapped within the application program. It is therefore
essential that output fields are made sufficiently large to
accommodate any printed variables.

 7.3.2 The MOUNT Verb
The MOUNT verb is used to load non-standard stationery on the printer.
It is coded:

MOUNT description LENGTH n USING pf

where description is that of the form to be mounted, n is the length
of the form in print lines, and pf is the record-id which is to be
used to produce a test alignment pattern.

The MOUNT verb should be executed before the first PRINT operation
using the desired form takes place. The MOUNT verb causes a print file

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 110 of 241

to be opened, and establishes a new form length. The output device
specified may be a real printer or a print spooler.

In either case, the output from the program will eventually be
printed. When printed, the operator is prompted as follows:

UNIT nnn description

where nnn is the unit number assigned to the physical printer on which
the output is eventually printed, and description is as coded in the
MOUNT verb. Once the operator has indicated that the appropriate forms
are mounted, the alignment PF indicated by the MOUNT statement will be
printed. This is then followed by the prompt:

UNIT nnn IS ALIGNMENT OK?

If the operator confirms this prompt, the mount statement will
complete. Otherwise, the alignment pattern will be repeated, until the
operator indicates correct alignment.

The rest of the report is then produced as normal. Stationery may
again be changed by executing a further MOUNT verb. When printing of
the report is complete the operator is automatically requested to
replace normal stationery by the prompt:

UNIT nnn REPLACE STANDARD STATIONERY

The MOUNT verb can fail if the print unit is a real printer and the
operator indicates inability to mount the required form. This
exception condition can be trapped by coding an ON EXCEPTION statement
immediately following the MOUNT verb.

7.3.3 Report Printing in Dependent Frames
As discussed earlier, the printer will be closed automatically on
frame termination. Note, however, that the printer is always closed by
the frame that opened it (i.e. if the printer is opened by the root
frame, then it will be closed when the root frame terminates). If
opened by a dependent frame, then it will be closed when that
dependent frame terminates.

7.4 Database Access Statements
This section describes statements used to access the database:

WRITE Adds a record to the database
REWRITE Modifies an existing record
DELETE Logically remove a record from the database
FETCH/READ Randomly retrieve record via any index
FETCH/READ NEXT Retrieve next record sequentially via
index
FETCH/READ PRIOR Retrieve prior record sequentially via
index
FETCH/READ FIRST Retrieve first of group of records via
index
FETCH/READ LAST Retrieve last of a group of records
GET Relative (direct) record retrieval
UNLOCK Relinquish record lock

7.4.1 The WRITE Verb
The WRITE verb causes a single record to be added to the database:

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 111 of 241

WRITE rt [LOCK]

where rt is the name of record type defined in an ACCESS statement.
The statement causes the record stored in area rt to be added to the
database. It changes the current record position so that the next
FETCH NEXT/PRIOR instruction will retrieve the record immediately
following or preceding the written record.

When rt is a servant record to one or more master records, these
records must previously have been retrieved and must be locked when
the WRITE instruction is executed.

If the LOCK clause is coded the record will be exclusively locked
following successful completion. If the LOCK clause is omitted, the
record will be unlocked following this operation.

7.4.1.1 Successful Completion
The system part of the data record stored in area rt will have been
zeroed, and the new record added to the database. Indexes and linkages
to any master records will have been established, and any GVA fields
residing on the target record's masters will have been updated. The
updates of these master records take place within the corresponding
data record area within the application program, and therefore causes
these GVA fields to be "refreshed". The lock status of these master
records remains unchanged following successful completion.

7.4.1.2 Exception Conditions
If no free data records exist at the time the call is performed, an
exception code will be returned. If writing the record would lead to a
duplicate primary index key, an exception code will be returned. If
the required master records are not locked at the time of the
instruction, the frame is terminated with a stop code. If the
operation causes the database to exhaust its free index block pool,
the frame is terminated with a stop code. If any of the indexes to be
created begins with a HIGH-VALUES byte (i.e. #FF) the frame is
terminated with a stop code.

7.4.2 The REWRITE Verb
The REWRITE verb allows a previously retrieved and exclusively locked
record to be re-written to the database:

REWRITE rt [LOCK]

where rt is the name of record type defined in an ACCESS statement. In
order to REWRITE a data record, it must previously have been
retrieved, and must be exclusively locked at the time the instruction
is executed. The statement is used to update a record, and causes the
record stored in area rt to be re-written to the database. If the LOCK
clause is coded, the record will be exclusively locked, following
successful completion, or unlocked following unsuccessful completion
of the re-write. The nature of the update that takes place is
dependent on the fields on the data record that were modified:

If any fields comprising secondary index keys were modified, the
existing index entries referencing the data record are deleted, and
new index entries established. The primary index key may not be
modified by this instruction.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 112 of 241

If any fields comprising master access keys were modified, the record
is unlinked from the previously existing master records, and linked to
the new masters. These new master records must be locked or protected
at the time the verb is executed.

If any GVF field has been modified, the corresponding master record
GVA fields will be similarly amended. This process will also occur if
any master access key has been changed. This process takes place
within each master record data record area as discussed in the
previous section.

The REWRITE instruction only re-writes the user-data part of the
record. Modification of GVA fields residing on the re-written record
will therefore have no effect.

7.4.2.1 Successful Completion
The user part of the data record stored in area rt will have been re-
written to the database. Indexes and linkages to any master records
will have been amended as necessary, and any GVF field changes
reflected in their target GVAs. The lock status of any master records
remains unaffected following successful completion, whereas the target
record will be unlocked unless the LOCK clause has been specified.

7.4.2.2 Exception Conditions
If an attempt has been made to modify the primary index key of the
record, the frame will be terminated with a stop code. If the record
to be re-written is not locked, the frame will be terminated with a
stop code. If any new master records are not locked/protected at the
time of the instruction, the frame will be terminated with a stop code
(some later versions of Speedbase will generate an exception under
these conditions). If index modification causes the database to
exhaust its free index block pool, the frame will be terminated with a
stop code. If any of the indexes to be created begin with a HIGH-
VALUES byte (i.e. #FF) the frame will be terminated with a stop code.

7.4.3 The DELETE Verb
The DELETE verb logically removes a previously retrieved and locked
record from the database:

DELETE rt

where rt is the name of record type defined in an ACCESS statement. In
order to DELETE a data record, it must previously have been retrieved,
and must be exclusively locked at the time the instruction is
executed. The record to be deleted may not have an active servant
group (i.e. it may not act as a master to any servant records).

7.4.3.1 Successful Completion
Deletion of a record causes all index entries referencing it to be
removed, following which the record is unlinked from any associated
master records. This process includes removal of GVF values from their
corresponding GVA fields. The statement causes the data record to be
returned to a free list of data record "slots". These free slots may
then subsequently be re-used by the WRITE instruction.

7.4.3.2 Exception Conditions
If the record has an active servant record group, an exception
condition will be returned, and no action will have taken place. If
the record is not locked when the instruction is executed, the frame
will be terminated with a stop code.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 113 of 241

7.4.4 The READ and FETCH Verbs
The READ and FETCH verbs both retrieve data records via a specified
index:

READ | FETCH [option] idx-name [KEY key-value | idx-name2] [lock-
option]

where option is one of FIRST, NEXT, LAST or PRIOR. The index via which
retrieval is to take place is determined by idx-name. Since index
names are always unique, this also defines the target record type to
be retrieved. An optional index key-value may be coded following the
KEY clause. This specifies the required key value, or range of key-
values to be returned by the verb. Alternatively, the KEY clause may
include an index name, idx-name2, in which case the record is
retrieved via index idx-name according to the key value of the last
record accessed in the I/O channel specified by idx-name2. The
optional lock-option is one of NOLOCK or PROTECT, and may also include
the optional RETRY clause.

The FETCH verb always retrieves the target record only, whereas the
READ verb will retrieve the target record with all master records for
which an I/O channel has been established. The master records so
retrieved are always returned unlocked. In all other respects these
verbs are identical. The following discussions therefore apply equally
to the READ and FETCH verbs.

The FETCH instruction, without an option, is used to retrieve a record
with a particular index key. The required index key may be explicitly
coded using the KEY clause, or may be placed into the appropriate
fields within the data record. If the requested key is found, the
record is retrieved. Otherwise an exception is returned and no further
processing takes place.

The FETCH FIRST instruction retrieves the first record in the sequence
of the requested index. When the KEY clause is coded, the first record
equal to or greater than the requested key is returned. The retrieved
record key is checked and an exception condition generated if this
does not match the requested key value. If the KEY clause is not
coded, the first record within the specified index is retrieved.

The FETCH LAST instruction retrieves the last record in the sequence
of the requested index. When the KEY clause is coded, the last record
equal or less than the requested key is returned. The verb then checks
the retrieved record key, generating an exception condition if this
does not match the requested key value. If the KEY clause is not
coded, the last record within the specified index is retrieved.

The FETCH NEXT instruction retrieves the next record in the sequence
of the specified index. It is therefore used to retrieve records
sequentially by ascending key value. If the KEY clause is coded the
retrieved record key is checked. If this key does not match the
requested key, an exception condition is returned.

The FETCH PRIOR instruction retrieves the preceding record in the
sequence of the specified index. It is used to retrieve records
sequentially by descending index key value. If the KEY clause is coded
the retrieved record key is checked. If this key does not match the
requested key, an exception condition is returned.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 114 of 241

The FETCH, FETCH FIRST and FETCH LAST instructions are therefore used
to retrieve randomly a record via a selected index. The FETCH NEXT and
FETCH prior instructions may then be used retrieve further records
sequentially in the order of this index.

7.4.4.1 The Key Clause
The optional KEY clause may be used to specify a key value required
from the operation. If the KEY clause is omitted from the FETCH verb,
the required key will be assembled from the appropriate fields within
the data record. No other operations (i.e. FETCH FIRST, LAST, NEXT and
PRIOR) require a key value. If coded, however, the supplied key is
matched against the returned key and if these differ an exception
condition is returned.

When the KEY clause is used, the length of the specified key is
significant if shorter than the actual key length of the index. If a
short key is used in a FETCH instruction, it will be extended to the
right with binary zeros, and the retrieval will then either succeed or
fail on the basis of this extended key. In all other instructions, the
key length as passed is used to determine if a corresponding record
key has been found.

7.4.4.2 The NOLOCK, PROTECT and RETRY Clauses
These clauses are used to specify whether a record lock is required
when the record is retrieved, and if so the action to take if the
required record is already locked. These clauses are described in
detail in section 2.7.

7.4.4.3 The FETCH Statement
The FETCH statement is used to retrieve a record with a specific index
key value. This key value may either be explicitly coded using the KEY
clause, or may be placed into the appropriate field within the data
record area prior to execution. If a short key value is passed, it
will be extended to the right with binary zeros prior to the lookup.

7.4.4.3.1 Successful Completion
If an index key value is found on the database corresponding to the
requested key, the data record is read into its record area. This
changes the current record position to the record so retrieved. In the
event that more than one record exists with the required key value,
the first record in sequence will be returned. The sequence of records
containing duplicate keys is determined by their relative position
(i.e. in RRN order).

If NOLOCK was coded, the record will be unlocked. If PROTECT was
coded, the record will be delete protected. Otherwise the record will
be exclusively locked.

7.4.4.3.2 Exception Conditions
If the requested index key value is not found, an exception condition
is returned, and no processing takes place. In this event, the data
record area as established prior to the instruction remains unchanged.
If the target record was locked, and the NOLOCK option was not coded,
a locked record exception is returned and the data is returned
unlocked.

7.4.4.4 The FETCH FIRST and FETCH LAST Verbs
The FETCH FIRST/LAST verbs perform a random lookup to retrieve the
first/last record in the sequence of the specified index. If no KEY
clause is coded, the first/last record within the specified index is

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 115 of 241

returned. If the KEY clause is coded, the first/last record with a
corresponding key value is returned. The FETCH FIRST statement returns
the first record with a key value not less than the requested key. The
FETCH LAST statement returns the last record with a key value not
greater than the requested key.

If the KEY clause is coded, the index key of the retrieved record is
matched against the requested key. This match takes place on the basis
of the actual length of the key specified in the KEY clause. If the
retrieved key differs from the requested key an exception is returned.
Note that the operation will have completed successfully in all other
respects.

7.4.4.4.1 Successful Completion
A data record is retrieved as requested. If NOLOCK was coded the
record is unlocked. If PROTECT is coded the record is delete
protected. Otherwise the record is exclusively locked. If the KEY
clause is coded, a record corresponding to the requested key value has
been retrieved. The operation will have changed the current record
position.

7.4.4.4.2 Exception Conditions
If the target record was locked, and no NOLOCK option is coded, a
locked record exception is returned and the data record is returned
unlocked. If the retrieved record did not correspond to the requested
key value specified in the optional KEY clause, a record key not found
exception is returned. Note that the above exceptions can occur
simultaneously.

The FETCH FIRST/LAST verbs can experience an end/start-of-file
exception condition, when no equal-or-greater/equal-or-smaller key
exists. The data record area will be filled with LOW-VALUES, #00s, in
a start-of-file condition and HIGH-VALUES, #FFs, in an end-of-file
condition.

7.4.4.5 The FETCH NEXT and FETCH PRIOR Verbs
These verbs allow sequential retrieval of records in the sequence of
the specified index. The FETCH NEXT instruction retrieves records in
ascending index key order, whereas the FETCH PRIOR instruction
retrieves records in descending index key order.

If the KEY clause is coded, the index key of the retrieved record is
matched against the requested key. This match takes place on the basis
of the actual length of the key specified in the KEY clause. If the
retrieved key differs from the requested key an exception will be
returned. Note that prior to version 8.1 the data record is returned
locked (if so requested) following a key mismatch. In V8.1 and later
the next/ prior record is always returned unlocked, irrespective of
the requested lock.

7.4.4.5.1 Successful Completion
The next/preceding record in sequence will have been retrieved as
requested. If NOLOCK is coded the record is unlocked. If PROTECT is
coded it is delete protected. Otherwise the record is exclusively
locked. If the KEY clause is coded, a record corresponding to the
requested key value is retrieved. The operation will have changed the
current record position.

7.4.4.5.2 Exception Conditions

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 116 of 241

If the target record was locked, and no NOLOCK option is coded, a
locked record exception is returned and the data record is returned
unlocked. If the retrieved record did not correspond to the requested
key value specified in the optional KEY clause, a record key not found
exception is returned. Note that the above exceptions can occur
simultaneously.

The FETCH NEXT/PRIOR verbs can experience an end/start-of-file
exception condition when an attempt is made to read past the
last/first record. The data record area will be filled with LOW-
VALUES, #00s, in a start-of-file condition, and HIGH-VALUES, #FFs, in
an end-of-file condition.

7.4.4.6 Using the FETCH Verb to Retrieve Servant Groups
The short key facility makes retrieval of servant record groups very
simple. This is perhaps best illustrated by an example:

SECTION U01-PROCESS-ONE-CUST

 *
FETCH FIRST INCUS KEY CUCUSN NOLOCK * Get 1st invoice

 ON EXCEPTION EXIT WITH 1 * None at all!
 DO * Process each invoice

 Process each invoice here ...

 FETCH NEXT INCUS KEY CUCUSN NOLOCK * Get next invoice
 ON EXCEPTION FINISH * Key break exception
 ENDDO * All invoices read
 EXIT * So just exit.

The FETCH FIRST statement retrieves the first invoice record. A short
key has been passed which contains only the customer number, whereas
the index is composed of two fields (i.e. the customer number and
invoice number). The statement returns an exception condition if no
invoice is found for the customer. Otherwise, the first invoice record
for the customer will be returned.

A DO loop is then established in which the invoice is processed, which
is followed by a FETCH NEXT to retrieve the next invoice for the
customer. The KEY clause causes Speedbase to test the retrieved
record. If the retrieved key does not match the supplied customer
number, an exception is generated. This is trapped on the next line,
causing a transfer out of the DO loop. A normal EXIT then takes place.

Similar principles can also be used to retrieve records in descending
order. To achieve this, a FETCH LAST instruction would have been
coded, followed by an iteration of FETCH PRIORs.

7.4.5 The GET Verb
The GET verb allows the direct (i.e. non-indexed) retrieval of a
record:

GET rt [KEY n] [lock-option]

where rt is the name of a record type declared in an ACCESS statement,
n is the relative record number to be retrieved, and lock-option is
either NOLOCK or PROTECT.

The relative record number of the record to be retrieved may be
specified by the KEY clause. If the KEY clause is not used, the record
last accessed is retrieved. If the KEY clause is specified n must be a
9(6) COMP variable containing the RRN of the required record. The RRN

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 117 of 241

specifies the relative record position of the record to be retrieved.
The first record stored is 0, the second is 1 and so forth.

The lock-option shown above is optional but must be one of NOLOCK or
PROTECT. The optional RETRY clause may also be coded. These clauses
are used to specify whether a record lock is required when the record
is retrieved, and if so the action to take if the required record is
already locked. These clauses are described in detail in section 2.8.

7.4.5.1 Successful Completion
The data record residing at the RRN is retrieved. If the NOLOCK option
is coded the record is unlocked. If the PROTECT option is coded the
record is delete protected. Otherwise the record is exclusively
locked.

7.4.5.2 Exception Conditions
If the target record was locked, and the NOLOCK option was not coded,
a locked record exception is returned and the data record is returned
unlocked. If the RRN specified is higher than the last used RRN on
file, an end-of-file condition is returned. In this event the data
record will be filled with HIGH-VALUES (#FFs). If the RRN specified a
deleted record, an exception condition is returned. The data record is
retrieved under these circumstances, but is not locked irrespective of
the lock-option in force.

7.4.5.3 Programming Note
Speedbase keeps track of the highest RRN ever accessed for each record
type stored in the database, and this is known as the logical end-of-
file. If a GET instruction specifies any record past this point an
end-of-file condition is returned, and the data record area is filled
with HIGH-VALUES (#FFs).

If the RRN specified is a deleted record, a data-transfer is performed
and an exception condition is returned. This facility has been
provided for system programming purposes only. The contents of the
data record are modified by the DELETE verb, and cannot therefore be
used to perform recovery or other procedures.

7.4.6 The UNLOCK Verb
The UNLOCK verb is used to release a locked or delete protected
record:

UNLOCK rt

where rt is the name of a record type declared in an ACCESS statement.
The UNLOCK verb may be used to unlock a record previously locked or
protected by a FETCH, READ or GET statement. The verb releases the
lock of its target record so that updates may be performed on it by
other concurrent partitions. If the verb is executed when no current
lock is in force, no action takes place. The verb cannot therefore
result in an exception condition.

Any pre-existing lock is usually automatically relinquished when any
database I/O executes successfully, such as when executing a FETCH. It
is not therefore necessary to code explicit UNLOCK statements before
executing any of the database access verbs.

7.5 Arithmetic Statements
The arithmetic statements are listed in Table 7.5a:

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 118 of 241

Statement

Operation

ADD A TO B [ROUNDED] B + A B
ADD A TO B GIVING C [ROUNDED] B + A C
SUBTRACT A FROM B [ROUNDED] B - A B
SUBTRACT A FROM B GIVING C [ROUNDED] B - A C
MULTIPLY A BY B [ROUNDED] B x A B
MULTIPLY A BY B GIVING C [ROUNDED] B x A C
DIVIDE A INTO B [ROUNDED] B / A B
DIVIDE A INTO B GIVING C [ROUNDED] B / A C

Table 7.5a - Arithmetic Statements

In arithmetic statements, A may be a computational variable or
literal. B may be a computational variable or, if the GIVING clause is
present, a computational literal. C may be a computational or display
numeric variable. No other combinations are valid.

7.5.1 Arithmetic Truncation and Rounding
If the result of an arithmetic operation contains more digits
following the decimal point than are contained in the receiving
variable, the extra digits are truncated. However, if the ROUNDED
phrase was coded and the most significant digit thus truncated was 5,
6, 7, 8 or 9 then the least significant digit of the receiving
variable is incremented, otherwise it remains unchanged.

7.5.2 Overflow
Any arithmetic statement will suffer overflow if the result exceeds
the capacity of a receiving computational variable, or does not
satisfy the picture of a receiving display numeric variable. Overflow
will also take place if the capacity of internal fields used to hold
intermediate results is exceeded.

You may check for overflow by coding the ON OVERFLOW statement as the
statement immediately following the arithmetic statement. If no such
ON OVERFLOW statement is coded and overflow occurs the program will be
terminated with an error. If an arithmetic statement suffers overflow
it is suppressed and the receiving variable remains unchanged.

7.5.3 Examples
Suppose A and B are declared as PIC 9(2,1) COMP and PIC 9(2,2) COMP
respectively. Then, for the statement:

ADD 1 TO B GIVING A ROUNDED

if B = 3.42 we have 1 + 3.42 (i.e. 4.42) yielding A = 4.4 and if B = -
4.75, we have 1 + -4.75 (i.e. -3.75) yielding A = -3.8

Consider the division of B by A, where A = 1.1 and B = 0.28:

DIVIDE A INTO B GIVING A ROUNDED

We have 0.28/1.1 (=0.254545...) yielding A = 0.3.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 119 of 241

To summarise, a useful rule to remember is that truncation is towards
zero and that rounding, when the digit involved is 5 or more, is away
from zero.

7.6 The MOVE Statement
The MOVE statement is coded:

MOVE A TO B [C D...]

where A is a literal, figurative constant or variable and B, C, D...,
etc. are variables. A maximum of seven variables may follow the word
TO. Where more than one variable follows TO the content of A is moved,
in turn, to each of these variables. In the simple move, MOVE A TO B,
execution depends on the data type of each operand. Table 7.6a shows
that, of the 25 types of move theoretically possible, 15 are
supported.

MOVE to
From

PIC X

PIC 9 COMP

PIC 9

PIC PTR

PIC D

PIC X Yes No Yes No Yes
PIC 9 COMP No Yes Yes No Yes
PIC 9 Yes Yes Yes No Yes
PIC PTR No No No Yes No
PIC D Yes Yes Yes No Yes

Table 7.6a - Valid Data Types for MOVE A TO B

7.6.1 Character to Character Move
The contents of A are moved to B, one byte at a time from left to
right. The leftmost (low location) byte of A is copied to the leftmost
byte of B, then the next byte of A is copied to B, and so on. If A is
shorter than B, then B is padded with rightmost blanks. If B is
shorter than A the MOVE stops once B has been filled. In this case
character truncation, as distinct from the numeric truncation
described in section 7.5.1, occurs.

In addition, A may be a figurative constant, and you may code:

MOVE HIGH-VALUES TO B * Each byte set to #FF
MOVE LOW-VALUES TO B * Each byte set to #00
MOVE SPACE TO B * Each byte set to ASCII blank, #20
MOVE SPACES TO B * Each byte set to ASCII blank, #20

The A and B fields involved in a character to character move may
overlap. Indeed, the following example shows how overlapping fields
may be used to set every byte of a long field to a particular value,
in this case ASCII E. This operation is called a ripple move and is
useful for initialising large data items:

 01 A
 03 A1 PIC X
 03 B PIC X(999)

 MOVE "E" TO A1

 MOVE A TO B

A special form of the MOVE statement allows processing of partial
fields:

MOVE f1(s1:l1) TO f2(s2:l2)

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 120 of 241

where: f1 and f2 are non-indexed PIC X or Group Item
variables.

s1 and s2 define the start position within f1 and f2.
l1 and l2 define the number of bytes to move from s1 and s2.

The above allows you to move all or part of a field as defined by the
start position and length. Start and Length may be coded as numeric
literals or as computational fields. Note that start and length MUST
both be => 1, or unpredictable results will occur.

7.6.2 Character to Display Numeric Move
This is treated like a character to character move as described in
Section 7.6.1. You must be careful that the number of bytes in the B
field is sufficient since the move can result in the loss of digits if
character truncation takes place.

7.6.3 Character to Date Move
The date in standard form, "dd/mm/yy", "dd/mm/yyyy" (with or without
the "/" separators), is moved to the PIC 9(6) COMP date format. If the
date is invalid (e.g. 31/02/89) the move will result in an exception.

7.6.4 Computational to Computational Move
A is transferred to B, taking account of the precision of the two
operands. If B is of lower precision than A the difference in
precisions will result in arithmetic truncation. If B is of
insufficient capacity to contain A, overflow will occur.

7.6.5 Computational to Display Numeric Move
A is converted to standard display numeric format according to the
picture of B. If A is too large, or is negative when B is unsigned,
overflow will occur.

7.6.6 Computational to Date Move
As for computational to computational move.

7.6.7 Display Numeric to Character Move
This is treated like a character to character move as described in
Section 7.6.1. You must be careful that the number of bytes in B is
sufficient or the move can result in the loss of digits if character
truncation takes place.

7.6.8 Display Numeric to Computational Move
A is converted to binary according to its picture clause and the
result is stored in B. Arithmetic truncation will take place if the
precision of A is greater than that of B. If A is too large, or does
not contain a valid numeric string conforming to the picture clause of
A, overflow will occur. It will also take place if A is valid but B is
of insufficient capacity to contain the result.

7.6.9 Display Numeric to Display Numeric Move
The numeric string A is converted to standard numeric string format in
B. If A is too large, or does not contain a valid numeric string
conforming to the picture clause of A, or is negative when B is
unsigned, overflow will occur.

7.6.10 Display Numeric to Date Move

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 121 of 241

As for display numeric to computational move.

7.6.11 Pointer to Pointer Move
The contents of the two-byte pointer at A are transferred, unchanged,
to the two-byte pointer at B.

7.6.12 Date to Character Move
Converts the internal 9(6) COMP date format to the standard date 8
byte date string "dd/mm/yy". In order to produce a long X(10) string
in the form "dd/mm/yyyy", the MOVEL (Move Long) verb should be used
(i.e. MOVEL COMP-DATE TO LONG-DATE).

7.6.13 Date to Computational Move
As for computational to computational move.

7.6.14 Date to Display Numeric Move
As for computational to display numeric move.

7.6.15 Date to Date Move
The date A is moved to the date B.

7.6.16 Overflow
Overflow can occur, for the reasons described above, in the following
types of move operation:

● computational to computational

● computational to display numeric

● display numeric to display numeric

● display numeric to computational

You may check for overflow during a simple move, or the last operation
of a compound move, by coding the ON OVERFLOW statement, see Section
7.7, immediately following the MOVE statement. If no such ON OVERFLOW
statement is coded and overflow occurs the program will be terminated
in error. This will also occur if ON OVERFLOW follows a compound move
but the operation suffering overflow was not the last. If a move
operation suffers overflow it is suppressed and the receiving variable
remains unchanged.

7.7 Transfer of Control Statements

7.7.1 The GO TO Statement
GO TO unconditionally transfers control to a paragraph or section. It
is coded:

GO TO A

where A is the name of a paragraph or section, or the name or a
pointer set to address the first executable instruction of a paragraph
or section.

7.7.2 The GO TO DEPENDING ON Statement
The GO TO DEPENDING ON statement provides a switch capability. It is
coded:

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 122 of 241

GO TO DEPENDING ON data-name

TO label-1
TO label-2
....
TO label-n

where label-1, label-2 label-n are paragraph or section names.
The data-name must be the name of a computational variable whose
integral part, i, is in the range 1 to n when the statement is
executed. In this case control is passed to label-i as if the
statement:

GO TO label-i

had been executed. If i is greater than n the results will be
unpredictable since there is no upper bound range checking.

7.7.3 The PERFORM Statement
The PERFORM statement passes control to a paragraph or section. It is
coded:

PERFORM A

where A is the name of a paragraph or section, or the name of a
pointer set to address the first executable instruction of a paragraph
or section. The statements beginning at the indicated section or
paragraph are executed until control is returned to the statement
following the PERFORM by an EXIT statement.

7.7.4 The CALL Statement
The CALL statement passes control to an entry point identified by the
entry-name appearing in an ENTRY statement. The ENTRY statement may
reside either in the current compilation, or in a compilation to be
linkage edited with it. It is coded:

CALL A [USING B C ...]

where A is an entry name, or the name of a pointer set to address the
first executable instruction at the entry point. A maximum of 7
parameters may be passed in the optional USING clause.

If the CALL statement does not possess a USING clause then neither
must the ENTRY statement. Otherwise the parameters in the two USING
clauses involved must correspond one for one. Each operand of a CALL
statement's USING clause may be a variable, literal, paragraph name,
section name, or entry name. However, the figurative constants HIGH-
VALUES, LOW-VALUES, SPACE and SPACES must never appear.

Each operand in the target ENTRY statement must be of the same type as
the corresponding operand of the CALL statement, and must be defined
as a based item. It may not be a subordinate (level 02-49) item, nor
the redefinition of such an item.

When a variable is passed as a parameter the corresponding ENTRY
operand is a level 77 item or level 01 group describing the storage
area the variable occupies.

If an integer literal is passed the corresponding ENTRY operand should
be a level 77 item or level 01 group describing a single PIC S9(4)

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 123 of 241

COMP field. This will overlay the integer literal, and must therefore
be read-only.

If a character literal is passed the corresponding ENTRY operand is a
level 77 item or level 01 group describing the character string. This
will overlay the character literal and must therefore be read-only.

When a paragraph name, section name or entry name is passed, the
corresponding ENTRY operand should be a level 77 item or level 01
group describing a single PIC PTR field. This pointer will address the
paragraph, section or entry point in question, and must remain read-
only. The pointer form of the GO TO, PERFORM or CALL statement can
then be used to invoke the passed paragraph, section or entry point
from the called routine.

7.7.5 The EXIT Statement
The EXIT statement causes control to be returned to the statement
following the last outstanding PERFORM or CALL statement. When a
PERFORM or CALL is executed the address of the following statement is
stored on an internal stack. The previous contents of the stack are
"pushed down" so that a number of outstanding PERFORMs or CALLs can be
nested. When an EXIT is executed the top item in the stack is used to
determine the statement to which control is to be passed. This stack
item is then made available for re-use and the stack contents are
"popped up".

The EXIT statement is therefore the dynamic end of a sequence of code
entered by a PERFORM or CALL. An explicit EXIT statement, rather than
an implied exit at the end of a paragraph, section or group of
sections, makes code easier to follow and facilitates structured
programming. Note that an EXIT statement issued from the highest level
of a program, causes control to be passed to the next frame as defined
by the Frame Header SEQUENCE statement.

7.7.6 The STOP RUN Statement
The STOP RUN statement causes immediate termination of the frame.
Although Speedbase ensures that any open databases are properly
closed, other termination tasks, such as those specified by the Unload
Division, will not take place. It should be noted that a print file
opened using the MOUNT or PRINT statements will not be closed properly
when a STOP RUN statement is executed and, if spooled to disk, will be
lost. This statement should therefore be used with care, and would
normally only be used following irrecoverable error conditions.

7.7.7 The Finish Statement
The FINISH statement can be coded anywhere within a DO loop, as
described in Section 7.8.2. It has the effect of transferring control
to the statement following the next ENDDO, thereby exiting from the
loop in a clear and structured manner.

7.7.8 Prefixed Transfer of Control Statements
The transfer of control statements:

GO TO label
PERFORM label
EXIT
FINISH
STOP RUN

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 124 of 241

may be prefixed by IF condition, ON OVERFLOW, ON EXCEPTION, ON NO
OVERFLOW and ON NO EXCEPTION. See Section 7.8.1. The result is to make
execution of the transfer of control statement dependent on the
condition defined by the prefixing clause. For example:

IF A ZERO GO TO LAB2
MOVE A TO B
ON OVERFLOW PERFORM AA223
DELETE GA
ON NO EXCEPTION EXIT

7.7.9 The EXEC Statement
The EXEC statement is used to load and execute a dependent frame. It
is coded:

EXEC A

where A is the name of a dependent frame, which must have been coded
to be DEPENDENT ON the frame performing the EXEC statement. The
statement causes the requested frame to be loaded into memory, where
upon it is immediately executed. Control is returned to the statement
following the EXEC when the dependent frame, or chain of dependent
frames, terminates execution.

The EXEC Statement never returns an exception. In the event that the
dependent frame cannot be loaded, for example because it could not be
found, the frame is terminated with an EXIT code.

7.7.9.1 Programming Note
The EXEC statement may only be used to call dependent frames. It Is
not possible to EXEC a Cobol program. Control may however be passed to
such a program using the sequence statement in the header of a non-
dependent frame (i.e. one in which the DEPENDENT ON clause is not
used).

7.8 Conditional and Iterative Statements

7.8.1 Format of Conditional Structures
There are two basic formats for conditionals. Format 1 is:

IF condition | ON [NO] OVERFLOW | ON [NO] EXCEPTION
*
[OR statements | AND statements]
*
............ * Statements to be executed if condition true
(group A)
*
[ELSE
*
............ * Statements to be executed if condition
false (group B)]
*
END

Format 2 is:

IF condition | ON [NO] OVERFLOW | ON [NO] EXCEPTION
*
GO TO label | PERFORM label | EXIT | FINISH | STOP RUN

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 125 of 241

In format 1, if the statements in group A are not terminated by a GO
TO, GO TO DEPENDING ON, EXIT or STOP RUN, when the ELSE statement is
encountered control is passed to the statement following END. If the
ELSE statement is missing there are no group B statements. In this
case if the group A statements are not terminated by an unconditional
transfer of control, when the END statement is met it is ignored and
execution continues with the next statement.

Similarly, if the group B statements are not terminated by a GO TO, GO
TO DEPENDING ON, EXIT or STOP RUN then, when their last statement has
executed, control drops through the END statement and continues with
the next statement.

The statements ELSE and END must be coded on new lines and cannot be
combined with other statements.

Format 1 conditionals may be nested up to 32 times and contain
iterative structures, see Section 7.8.2. An END statement terminates
the most recent conditional statement which has not yet been matched
by an END statement. An ELSE statement refers to the most recent
conditional statement which has not yet been matched by an END
statement.

Format 2 conditional statements may appear within format 1
conditionals. Format 2 statements always generate less code than the
equivalent logic coded using Format 1.

7.8.2 Format of Iterative Structures
There are three formats for iterative structures (i.e. DO loops).
Format 1:

DO
*
........ * Statements to be executed
*
ENDDO

Format 2:

DO WHILE condition
*
[OR statements | AND statements]
*
......... * Statements to be executed while the
condition remains true
*
ENDDO

Format 3:

DO UNTIL condition
*
[OR statements | AND statements]
*
........ * Statements to be executed until the
condition becomes true
*
ENDDO

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 126 of 241

In Format 1 the enclosed statements are executed over and over until
some transfer of control (such as GO TO or FINISH) causes an exit from
the loop.

In Format 2 the enclosed statements are executed zero or more times,
while the condition remains true. The condition is tested before the
first iteration, and then before each subsequent iteration. As soon as
it is not satisfied, the statement immediately following the ENDDO
receives control. It is possible therefore that the statements between
DO and ENDDO may not be executed at all.

Format 3 is similar to Format 2 except that the enclosed statements
are executed only as long as the condition remains false.

DO loops may be nested up to 16 times and may contain conditional
structures. An ENDDO statement terminates the most recent DO statement
which has not yet been matched by an ENDDO statement.

Condition Clause

Equivalent

Restrictions

A EQUAL B A = B A, B must either both be PIC X
or PIC PTR or,
if B is PIC 9 COMP then A may be
PIC 9 or PIC 9 COMP. One but not
both may be literal.

A NOT EQUAL B A NOT = B
A LESS B A < B
A NOT LESS B A NOT < B
A GREATER B A > B
A NOT GREATER B A NOT > B
A SPACES A SPACE A must be PIC X
A NOT SPACES A NOT SPACE
A HIGH-VALUES
A NOT HIGH-VALUES
A LOW-VALUES
A NOT LOW-VALUES
A ZERO A must be PIC 9 COMP or PIC 9
A NOT ZERO
A POSITIVE
A NOT POSITIVE
A NEGATIVE
A NOT NEGATIVE
A NUMERIC A must be PIC 9
A NOT NUMERIC

Table 7.8a - The Condition Clause

7.8.3 The Condition Clause
The condition clause that appears in IF and DO statements may assume
any of the formats summarised in the left-hand column of Table 7.8a.
The mathematical symbols = > < may be coded in the place of the words
EQUAL, GREATER and LESS, respectively, and the figurative constants
SPACE and SPACES are synonymous. The conditions are divided into four
groups, depending on the restrictions which apply to the operand or
operands.

Comparison of display numeric and computational items obeys the normal
rules of arithmetic. The comparison of character variables and
pointers takes place, byte by byte, from the left-most byte at the low
address to the right-most byte at the high address. The bytes being
compared are treated, for the purposes of the comparison, as 8-bit

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 127 of 241

unsigned numbers. If two strings of unequal length are compared, the
shorter will be considered to be extended to the right with ASCII
blanks. A figurative constant is treated as a character string of
exactly the same length as the variable with which it is being
compared.

The condition:

A NUMERIC

is true only if the variable A contains a valid numeric string which
is compatible with the picture clause of A.

The following three examples show the use of condition clauses in a
Format 1 conditional, Format 2 conditional and iterative structure:

IF COUNT > 100 * Format 1 conditional
MOVE 0 TO COUNT

END

*
IF NAME SPACES GO TO ASKRTN * Format 2 conditional
*
DO WHILE COUNT POSITIVE * Iterative structure

ADD -1 TO COUNT
PERFORM CALC

ENDDO

7.8.4 Compound Conditions
Compound conditions may be established by coding groups of one or more
OR statements or AND statements immediately following one of these
eight initial conditional statements:

IF condition
ACCEPT... NULL
ON OVERFLOW
ON EXCEPTION
DO WHILE condition
ON NO OVERFLOW
ON NO EXCEPTION
DO UNTIL condition

The format of a compound condition is either:

initial conditional statement
OR condition-1
.......
OR condition-n

or:
initial conditional statement
AND condition-1
.......
AND condition-n

The first compound condition is true if any of the condition clauses
it contains is satisfied, but the second form is only true if all of
the constituent conditions hold. Once sufficient conditions have been
evaluated to establish the result of the compound condition, no
further conditions are evaluated. It is not allowable to mix AND and
OR statements in the group following the initial conditional
statement, and if you attempt to do so the compiler will flag any out-
of-place statement in error.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 128 of 241

Here are two examples using compound conditions:

IF COUNT > 100
OR COUNT NEGATIVE * Count zeroised if not

MOVE 0 TO COUNT * between 0 and 100
END
DO WHILE COUNT POSITIVE
AND NAME NOT SPACES
AND ERRFLAG ZERO

ADD -1 TO COUNT
PERFORM CALC

ENDDO

7.8.5 The ON OVERFLOW Statement
The ON OVERFLOW statement is used for checking for the overflow
condition which may result following an arithmetic statement, or a
MOVE, DISPLAY or EDIT statement. ON OVERFLOW must be coded as the
statement immediately following the one generating the condition to be
tested. If this is not done and an overflow condition arises the frame
is terminated in error.

Note that the second of the two examples which follow shows the coding
required if you simply wish to ignore an overflow condition:

ADD COUNT TO ACCUM * Set ACCUM negative
ON OVERFLOW * If any count not
OR COUNT NEGATIVE * positive and in range

MOVE -1 TO ACCUM
END

ADD COUNT TO ACCUM * Ignore any
ON OVERFLOW * overflow condition
END

7.8.5 The ON EXCEPTION Statement
The ON EXCEPTION statement is used for checking for the exception
condition that can be returned as the result of CALL'ing or
PERFORM'ing certain types of routine, database processing or console
I/O operations. ON EXCEPTION must be coded as the statement
immediately following the one generating the condition to be tested.
If this is not done and an exception condition arises the frame is
terminated in error.

A CALL or PERFORM statement may not necessarily be liable to an
exception condition. Whether this is the case or not depends on the
routine invoked by the statement. If it inevitably returns control by
means of an EXIT statement it will always return normal completion,
and the invoking CALL or PERFORM statement will never suffer an
exception. However, it is possible, and often very useful, to write
routines which generate exception conditions to indicate when special
circumstances have arisen.

When an exception occurs the system variable $$COND, the condition
number, is set to a positive value. This is normally 1, except when
the same statement can generate an exception for a variety of
different reasons. In this case $$COND assumes values 1, 2... and so
on, each of which distinguishes a different condition. System variable
$$RES, the result code, may also be established when an exception
occurs, to give further information about the cause of the exception.

If you need to process the condition number or the result code, handle
$$COND and $$RES at the very beginning of the logic introduced by your

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 129 of 241

ON EXCEPTION statement. Normally you should immediately save their
values with MOVE statements, or branch on $$COND with a GO TO
DEPENDING ON, or code a sequence of IF statements. This is because the
majority of Global Cobol statements cause the values in $$COND and
$$RES to be destroyed by the time they return.

Note, in particular, that the statement:

DISPLAY $$COND

which you might be tempted to write for debugging purposes, should not
in fact be used. If you code it by mistake as part of your exception
handling logic it will not have the desired effect since $$COND will
be reset before it comes to be displayed and all that will appear at
the console will be zero. The correct technique is indicated by the
first example below. The second shows the coding required if you
simply wish to ignore an exception condition:

CALL EXRTN
ON EXCEPTION * If exception and
AND TESTFL POSITIVE * if test flag on

MOVE $$COND TO Z-WORK * computational work field
DISPLAY "EXCEPTION CODE " * displayed
DISPLAY Z-WORK SAMELINE * not $$COND

ELSE
DISPLAY "NORMAL COMPLETION"

END
*
DELETE RT * Delete record

ON EXCEPTION * ignore exceptions
END

7.8.6 The ON NO OVEFLOW and ON NO EXCEPTION Statements
These statements check for the reverse condition to those checked by
the ON OVERFLOW and ON EXCEPTION statements. For example:

ON NO OVERFLOW
statements to be executed when no overflow has occurred

END

They should be used in preference to the construct:

ON OVERFLOW
ELSE

statements to be executed when no overflow has occurred
END

7.9 Table Handling
A table consists of a number, n, of fixed length entries occupying
contiguous storage. Each entry is identified by its index, a number
between 1 and n. The first entry has index 1, the second index 2 and
so on. Tables are defined by repeating groups or elementary items with
OCCURS clauses.

The table handling operations cause a rapid examination of the table
to take place, a selected field from each entry being compared with a
key, whose length and value you specify. When comparison takes place
the key and the current entry are treated like character variables and
compared byte by byte from left to right.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 130 of 241

After the table handling operation completes you will either be
returned the index of the entry which satisfied your request or, if
the request was not satisfied, a table operation exception.

7.9.1 The SEARCH Statement
The SEARCH statement is used to identify the first entry of a table
equal in value to a supplied key. It is coded:

SEARCH tc table key [entry-length]

where tc is the name of a table control area of the following format:

01 TC
 03 TCKEYL PIC 9(2) COMP * Supplied key length
 03 TCTERM PIC X * Supplied terminator
 03 TCINDEX PIC 9(4) COMP * Returned index

You must set up the key length and terminator yourself, but GSM will
return the index field.

The table parameter is a variable identifying the location at which
the search is to begin, and key is a literal or variable containing
the supplied key.

The fourth parameter, the entry-length, must be supplied if you are
searching a repeating group, when the key length and entry length will
be different. It must be a 9(4) COMP integer. If the parameter is
omitted the entry length is assumed to be equal to the key length, as
will normally be the case if you search a table of elementary items.

The key field is assumed to be located at the start of each table
entry, and the search operation proceeds as follows:

● The first table entry is selected.

● If the first byte contains the terminator value, TCTERM, EXIT with

1 is returned and processing terminates.

● If the key field (i.e. the TCKEYL bytes at the start of the entry)

is equal to the key supplied as the third parameter of the SEARCH
statement, processing terminates normally.

● Otherwise the next entry is selected, using the fourth parameter or

TCKEYL if it is omitted, and processing continues as at the second
step above.

On termination the index of the entry last processed is stored in the
TCINDEX field. This will either identify the first entry satisfying
your request or, if an exception took place, it will identify a dummy
entry starting with the terminator value. You must ensure that such an
entry is placed immediately following the table if it is possible to
search for a key which is not present, otherwise GSM will continue
examining the memory following the table, with unpredictable results.

If there is a possibility that the key value is not present in the
table the SEARCH statement should be immediately followed by an ON
EXCEPTION statement to process this condition. If the ON EXCEPTION
statement is not coded and the key is not present the frame is
terminated in error.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 131 of 241

7.9.2 The SCAN Statement
The SCAN statement is used to identify the first entry of a table
whose value is equal to or greater than a supplied key. It is coded:

SCAN tc table key [entry-length]

where tc, table, key and the optional entry-length parameter are as
defined in Section 7.9.1.

SCAN functions identically to SEARCH, except that the criterion for
terminating the search normally is that the key field, the TCKEYL
bytes at the start of each entry, should be equal to or greater than
the key supplied by the third parameter. If the fields involved are
character data items, the ASCII collating sequence determines the
result of the comparison. If the fields are both non-negative
computational items of the same precision the result is determined by
the numeric value as you would expect. However, table scans involving
negative or display numeric keys, or computational keys of different
precision, should be avoided since the outcome is difficult to
predict.

If it is possible that no key field in the table will satisfy the
scan, you must delimit the table with a dummy entry starting with a
byte containing the terminator value, and you should follow the SCAN
statements involved with ON EXCEPTION statements to trap possible
table operation exceptions.

7.10 The SUSPEND Statement
SUSPEND causes the program to be suspended for a period of time. It is
coded:

SUSPEND [seconds]

The optional seconds parameter is the name of a PIC 9(4) COMP variable
or integer literal containing the number of seconds for which the
program is to be suspended. If the parameter is omitted, or the value
supplied is less than 1, the program is simply suspended for a brief
period, as if it had reached the end of its time-slice, allowing other
processes to execute.

If characters are keyed at the console when a program is suspended,
the suspend will be cancelled so that the program can process the
input if necessary.

7.10.1 Programming Notes
The SUSPEND statement should be used when you know your program cannot
proceed until some other user completes an activity. Since the only
way of co-operating jobs communicating is by means of shared files, a
typical use of SUSPEND by, say, a special purpose spooling program,
might be as follows:

● Read the shared communications file to see if a report requires

printing.

● If no report is available, execute a SUSPEND for 60 seconds, then

repeat the first step.

● Otherwise, print the report, then update the communications file to

indicate it has been printed.

Chapter 7 - Procedural Statements

Global Speedbase Development Manual V8.1 Page 132 of 241

● Repeat this process.

7.11 Global Cobol Support
The Global Cobol File Management Manual contains full information
regarding the GSM Relative Sequential and Indexed Sequential Access
methods, both of which are supported by the Speedbase compiler.

File sorting is also supported using the SORT, RELEASE and RETURN
verbs which are documented in the Global Cobol Language Manual.

The EDIT verb used for display editing of numeric fields is also
supported within the language syntax. This verb, which is provided for
compatibility reasons, is documented in the Global Cobol Language
Manual.

Use of the above facilities requires the presence of a licenced copy
of the system library C.$MCOB during compilation, which must be
specified as part of the compilation parameters. If these statements
are used without the presence of this system library, an "UNDEFINED
CALL" error messages will result during compilation.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 133 of 241

8. Speedbase System Routines

Certain system routines distributed in the library C.$BALIB, listed in
Table 8a, may be called directly, and are documented in this chapter.
Note that the routines must never be called by frames operating in a
Speedbase environment prior to V3.0.

Routine

Description

Parameters

B$CHK $BASYS Presence Check
B$LOD Load Speedbase System Area
B$OPN Open Database name unit lock-flag
B$FEX Execute Frame frame
B$STA Return Database Status $rt area1 area2
B$ST2 Return Extended Status $rt area3
B$PRC Close Print File
B$CDB Close Database name
B$DSC Clear Baseline
B$XCL Get Exclusive Access dbid
B$XSH Release Exclusive Access dbid
B$WRJ Right-justify Field window-id fld
B$RBL Database Re-index Routine dbid ...

Table 8a - Speedbase System Routines

8.1 B$CHK - $BASYS Presence Check
This routine may be called to test whether the Speedbase system area
has been loaded onto the user stack. The following statement:

CALL B$CHK

will execute successfully if $BASYS is present. An exception condition
is returned if the system area has not yet been loaded. There is no
point in calling this routine from an executing frame, since the
system area must by definition already be present. It may be used by a
Global Cobol program in preparation for executing a frame.

8.2 B$LOD - Load Speedbase System Area
This routine causes the Speedbase system area $BASYS to be loaded onto
the user stack. The routine first checks to see if the systems area is
present by calling B$CHK and, if it is, only the console screen is
cleared. Otherwise $BASYS is placed on the user stack and is loaded
with the appropriate customisation details from the T>nnn file, where
nnn is the current terminal number.

There is no point in calling this routine from an executing frame,
since the system area must by definition already be present. It may be
used by a Global Cobol program in preparation to executing a frame.

The routine is invoked by the parameter-less call:

CALL B$LOD

An exception will be returned if the routine was unable to load
$BASYS. This may occur because of I/O errors, insufficient room on the
user stack, or because $BASYS could not be found.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 134 of 241

8.3 B$OPN - Open Database
This routine is used to open a database. The call is of the form:

CALL B$OPN USING name unit lock-flag

where name is the PIC X(5) name of the database to be opened, without
the preceding "DB", unit is the ID of the unit on which the main index
file resides, and lock-flag is a 9 COMP variable with the value 0 to
allow shared access or 1 to provide exclusive access to the database.

The routine causes the designated database to be opened, placing a
database access block of at least 448 bytes on the user stack. The
routine may be called several times to open a number of databases.
There is no restriction on the number of databases that may be opened
using this routine, subject only to memory restrictions.

Any databases opened may then be accessed by both the calling frame
and/or subsequent frames. The only requirement is that the database
must be open before the first I/O operation accessing it takes place.
Databases remain open until specifically closed or a STOP RUN
condition occurs, when all opened databases are automatically closed.

This routine may be called from a Global Cobol program preparatory to
running a frame. If this is done it is essential that the Speedbase
system area $BASYS is first loaded, and this must be checked using the
B$CHK or B$LOD routines.

8.3.1 Exception Conditions
The open call may fail for a number of reasons, and the systems
variable $$COND may be tested to discriminate between these as
follows:

Exit
code

Description

21 Database is already open
22 Database not found or invalid file

type
23 Database data-file not found or

invalid type
24 Database is in use
25 I/O error
26 Insufficient memory available on user

stack

Table 8.3a - B$OPN Exception Codes

Condition 23, data-file not found, is a common error often caused by
invalid unit assignment. The main index file contains the unit-id of
each data-files which, if a logical unit-id, must be correctly
assigned prior to the call.

8.4 B$FEX - Execute Frame
This routine is used to load and execute a frame from within the
Global Cobol environment. The call:

CALL B$FEX USING frame

causes the frame, which must not be a dependent frame, to be loaded
into memory and immediately executed. This routine acts similarly to

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 135 of 241

the Global Cobol CHAIN verb, in that the incoming frame will overlay
the memory region occupied by the calling frame, and control is
therefore never returned.

Prior to executing the call, it is essential the Speedbase system area
$BASYS is present on the user stack. This must be ensured by calling
the B$CHK or B$LOD routines. B$FEX does not return exceptions, so in
the event that the requested frame is not found, processing is
terminated with an EXIT or STOP code.

8.5 B$STA - Return Database Status
This routine returns database status information for a specified
record type. The call is of the form:

CALL B$STA USING $rt area1 [area2]

where $rt identifies the record for which status information is
required and area1, area2 are areas into which this information is
returned. $rt is an internal name for the I/O channel, where rt is the
name of the record-type as specified in the ACCESS statement. It is
essential that the record ID is prefixed by the $ symbol. Area1
returns information that is specific to the requested record type. Its
format is as follows:

01 A1 * Layout of Rec Status Block
 03 A1NAME PIC X(6) * Record Name
 03 A1RLEN PIC 9(4) COMP * Record Length
 03 A1RRN PIC 9(6) COMP * Record no (RRN) of last I/O
 03 A1LOCK PIC S9 COMP * I/O Channel Lock Status
 03 A1SIZE PIC 9(6) COMP * Size of extend in records
 03 A1FREE PIC 9(6) COMP * Number of free records

The field A1RRN contains the relative record number of the last I/O
operation. The field A1LOCK contains the current lock status of the
I/O channel. This is either 0 (no lock), 1 (Protect Lock) or 2
(Exclusive Lock). Field A1SIZE shows the total number of records of
the requested type that may be stored in the database and A1FREE how
many of these are free for use by subsequent WRITE operations.

If the optional second parameter area2 is passed, more general
information relating to the database as a whole is also returned. The
format of area2 is as follows:

01 A2 * Layout of DB Status Block
 03 A2DBID PIC X(5) * Database ID
 03 A2DGEN PIC 9(4) COMP * Database Generation No
 03 A2NRCS PIC 9(2) COMP * Num Rec-types stored on DB
 03 A2BACY PIC X * Backup Cycle ID
 03 A2BASR PIC 9(2) COMP * Incremental Backup Serial No
 03 A2SIZE PIC 9(6) COMP * Size of Index Block Pool
 03 A2FREE PIC 9(6) COMP * No of free IDBs remaining

Field A2DBID and A2DGEN return the database-id and generation number.
A2NRCS returns the number of different record types stored within the
database. Fields A2BACY and A2BASR return the current backup cycle-id
and incremental backup serial number respectively. The use of these
fields is described in the Speedbase Presentation Manager User Manual.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 136 of 241

The fields A2SIZE and A2FREE relate to the common index pool which
contains index data for all record types stored within the database.
The field A2SIZE contains the size of the index pool in Index Blocks
(IDBs), and A2FREE numbers the unused IDBs.

Note that the database for which information is being requested must
be open at the time of the call. If this is not the case the routine
returns an EXIT 25550.

8.6 B$ST2 - Return Extended Database Status
This routine returns extended database status information for a
specified record type. The call is of the form:

CALL B$ST2 USING $rt area3

where $rt identifies the record and hence the database for which
extended status information is required and area3 is an area into
which this information is returned. $rt is an internal name for the
I/O channel, where rt is the name of the record-type as specified in
the ACCESS statement. It is essential that the record ID is prefixed
by the $ symbol. The format of area3 is as follows:

 01 A3 * Layout of DB Status Block
 03 A3DBID PIC X(5) * Database ID
 03 A3DGEN PIC 9(4) COMP * Database Generation No
 03 A3NRCS PIC 9(2) COMP * Num Rec-types stored on DB
 03 A3BACY PIC X * Backup Cycle ID
 03 A3BASR PIC 9(2) COMP * Incremental Backup Serial No
 03 A3SIZE PIC 9(6) COMP * Size of Index Block Pool
 03 A3FREE PIC 9(6) COMP * No of free IDBs remaining
 03 A3DBNM PIC X(5) * Name of Database
 03 A3DBUN PIC X(3) * Unit id of Main Index File
 03 FILLER PIC X(9) * Reserved

Fields A3DBNM and A3DNUN allow you to determine the name and unit of
the currently open database which therefore allows you to close and
subsequently re-open it using the B$OPN call. These fields are
additional to those included in Area2 of the B$STA routine.

8.7 B$PRC - Close Print File
This routine causes the print-file opened by a prior PRINT or MOUNT
statement to be closed. It is coded:

CALL B$PRC

The printer is normally closed automatically when the frame
terminates. This call allows the printer to be closed earlier where
this is advantageous.

8.8 B$CDB - Close Database
This routine causes a database opened in the current session to be
closed. It is coded:

CALL B$CDB USING db-name

The database db-name, which must be open at the time of the call, is
closed. All locks outstanding prior to the call are released. If the
USING clause is omitted, all open databases are closed.

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 137 of 241

8.9 B$DSC - Clear Baseline
This routine enables you to clear the baseline. The parameter-less
call:

CALL B$DSC

causes any characters displayed on the baseline using the ACCEPT or
DISPLAY verbs to be removed from the screen.

8.10 BXCL, BXSH - Get, Release Exclusive Access
These routines allow you to gain or release exclusive access to a
database, which must be open at the time of the call. Code:

CALL B$XCL USING dbid

to gain exclusive access to the database dbid. The call causes the
database to be re-opened in exclusive mode. In the event that
exclusive access cannot be granted because the database is in use in
another partition, exception condition EXIT 25524 is reported and
should be trapped by use of an ON EXCEPTION statement.

To relinquish exclusive control of database dbid, code:

CALL B$XSH USING dbid

which causes the database to be re-opened in shared mode. Note that
the database dbid must be open when either of these routines is
called. If this is not the case STOP 25582 results.

8.11 B$WRJ - Right-justify Field
This routine causes a field accepted within a window to be right-
justified. This is useful when processing fields which may be numeric
or character, depending on customisation. Coding:

CALL B$WRJ USING window-id fld

causes the character field fld to be accepted as a right-justified
field during processing of the window window-id. Make the call before
the window is entered (e.g. in the Load Division). Right-justification
of the field stays in force until the frame terminates. Several field
in the window made be dynamically specified as right-justified by
multiple calls of the routine.

8.12 B$RBL Database Re-index Facility
This routine allows the indexes of a single or all record types to be
rebuilt. The rebuilding process is functionally identical to a partial
database rebuild as performed by the database rebuild utility $BARBL.
This system routine may be run from time to time to re-organise
indexes following heavy processing such as mass deletions or
insertions in order to optimise performance. The routine has the
advantage that only a selected record type need be re-built, thus
potentially saving unnecessary re-building time of other record types.

The call is of the form:

CALL B$RBL USING dbid rcid opr col row

where:

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 138 of 241

dbid is the PIC X(5) Database ID of the database to be rebuilt,

which must be open with exclusive access prior to the call.

rcid is the PIC X(2) ID of the record type to be rebuilt. If this
parameter contains spaces then the indexes of all record
types will be rebuilt.

opr is the PIC X operator response flag, which if set to "Y"

will request a pause before continuing. Otherwise this flag
should be set to "N".

col is an optional PIC 9(2) COMP variable containing the column

number at which the status window is to be displayed. The
column number must be in the range 1 to 34 inclusive. If
this parameter is not provided, the default is column 17.
Note that this parameter, if coded, MUST be coded as a
variable. A numeric literal must not be coded.

row is an optional PIC 9(2) COMP variable containing the row

number at which the status window is to be displayed. The
row number must be in the range 1 to 18 inclusive. If this
parameter is not provided, the default is row 18. Note that
this parameter, if coded, MUST be coded as a variable. A
numeric literal must not be coded.

Following the call, the status window will be displayed and the
indexes of the designated record type(s) are rebuilt. On successful
completion control is returned without exception.

8.12.1 Programming Notes
The rebuilding process is memory intensive, and requires quite
substantial amounts of memory to perform quickly. We recommend that
the routine is called from frames that contain only a minimal amount
of additional code. For this reason, we recommend that database
opening and closing and so forth is performed in a prior frame or
overlay.

8.12.2 Exception conditions
The following exception conditions may be returned:

Exit
code

Description

1 Specified database was not open
2 Specified database was open non-

exclusively
3 Database Dictionary was not found or

in use
4 Database Dictionary file was of

invalid file type
5 Database Dictionary file was corrupt
6 Database and Dictionary generations

are different
7 Database is corrupt and cannot be

rebuilt
8 Record ID supplied was invalid
9 Record ID supplied has no indexes
11 Insufficient memory to start re-

indexation

Chapter 8 - Speedbase System Routines

Global Speedbase Development Manual V8.1 Page 139 of 241

Exit
code

Description

12 Key Errors during re-index; database
is corrupt

13 Unix C-ISAM channel cannot be opened

Table 8.12a - B$OPN Exception Codes

Any serious error detected during the re-building process will cause
the routine to terminate with a stop code. Note that this will leave
the database in a partially rebuilt state, and a full re-build should
be performed before further processing using the database rebuild
utility $BARBL.

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 140 of 241

9. Speedbase System Variables

This chapter describes the system variables supported by the Speedbase
compiler and listed in Table 9a. Unless specifically stated to the
contrary, system variables must not be modified, and must therefore be
treated as read-only items by an application frame.

Variable

Description

Picture
clause

$PRUN Printer unit-id X(3)
$PGNO Current page number 9(4) COMP
$LINO Current line number 9(4) COMP
$RSPG Restart page number 9(4) COMP
$PHLT Printer halt suppress flag 9 COMP
$FUNC Accepted function number 9(2) COMP
$MODE Current window operating mode 9 COMP
$FWFR Forward frame-id to load X(6)
$BKFR Backward frame-id to load X(6)
$FNTX0 Keytop name, <RET> key X(7)
$FNTX() Keytop name, functions 1-19 X(7)
$FNBY0 Function-key value, <RET> function X
$FNBY() Function-key value, functions 1-19 X

Table 9a - Speedbase System Variables

9.1 $PRUN - Printer Unit-id PIC
X(3)
This variable specifies the printer unit which is to be used to output
reports generated by the PF construct. This unit-id is initially set
up to the unit "$PR". It may be changed to any valid random access or
printer device unit number or logical-id (e.g. 220, 500, FLS, PR1). If
changed, this unit-id remains in force until the end of the current
session.

9.2 $PGNO - Current Page Number PIC
9(4) COMP
The page number of the page currently being printed on is stored in
this variable. The page number is automatically set to one when the
printer is opened in response to the first PRINT statement in the
frame. It is automatically incremented whenever a page throw takes
place. $PGNO may be referenced in a PF construct to print the current
page number on each page.

9.3 $LINO - Current Line Number PIC
9(4) COMP
This variable indicates the number of lines that have so far been
printed within the current page. It is set to zero when the printer is
initially opened, and reset as page throws occur. It is automatically
incremented as lines are output to the printer.

9.4 $RSPG - Restart Page Number PIC
9(4) COMP
This variable indicates the first page number from which re-printing
should commence. The variable normally contains zero to indicate that
printing should not be suppressed. The variable is reset to zero

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 141 of 241

whenever the printer is closed. A restart option may be provided
within a print frame by setting it to the page number from which re-
printing should commence.

9.5 $PHLT - Printer Halt Suppress Flag
 PIC 9 COMP
This variable is used to control the print interrupt feature. When
printing normally commences, the following baseline message is
displayed:

Type <Ctrl G> to halt printing

During a print run, the operator may then interrupt printing by keying
<Ctrl G>. Printing may then be restarted, directed to another device
or suppressed. If suppressed, the frame will normally continue
processing, but without producing a report. Moving -1 to $PHLT also
allows the operator to suppress printing, but in this event the frame
will be terminated by issuing a STOP RUN instruction. Moving the value
1 to $PHLT suppresses the interrupt feature. Note that any changes
made to $PHLT remain in force until the end of the session.

9.6 $FUNC - Accepted Function Number PIC
9(2) COMP
Following an accept operation, this variable returns the Speedbase
function number of the key used. The possible function numbers are
shown in Table 9.6a below:

Mnemonic

Description

$FUNC

RET Accept current field, select record 0
UF1 User Function 1 1
UF2 User Function 2 2
UF3 User Function 3 3
NXT Go to next window 4
PGE Forward-page window 5
BPG Back-page window 6
UP Back one record (Uparrow) 7
DWN Forward one record (Downarrow) 8
SKP Skip fields to next tab-stop 9
ABO Abort program 10
BCK Terminate window (Back to prior) 11
CLR Clear the window 12
DTE Delete current record 13
HME Cursor home 14
BFL Back one field 15
ENQ Enquiry mode - select index 16
INS Insert record 17
UDL Undelete record 18
MOV Move record 19

Table 9.6a - Returned $FUNC Values

9.7 $MODE - Current Window Operating Mode PIC 9
COMP

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 142 of 241

The variable $MODE allows the current window processing mode to be
discerned. A window may operate in up to seven modes, listed in Table
9.7a below:

Mode

Description

Function

$MODE

ENQ Enquiry Initiate an enquiry 1
DSP Display Display existing record 2
MNT Maintenance Modify existing record 3
DEL Deletion Delete existing record 4
EDT Edit Create new record from existing 5
ADD Addition Add new record 6
INS Insertion Insert new record 7

Table 9.7a - Window Processing Modes

A full description of window processing modes may be found in Section
6.3.2.

9.8 $FWFR and $BKFR - Frame-id to Load PIC
X(6)
These system variables specify the frame-id to be loaded following
successful and unsuccessful completion of the current frame
respectively.

These variables are normally initialised by use of the frame header's
SEQUENCE statement, but may be modified by simply moving a new frame-
id into the appropriate variable at run-time.

If the variable contains spaces, no frame is loaded on completion.
Please note that this differs from the Sequence statement, where the
keyword EXIT must be coded to achieve this.

9.9 $FNTX0 and $FNTX() - Keytop Names PIC
X(7)
These variables contain the keytop names allocated to each of the
Speedbase functions by the $BACUS customisation program. $FNTX0
corresponds to the keytop name used for <RET>, Speedbase function
zero, and $FNTX is an array containing the keytop names for Speedbase
functions 1-19, <UF1> through <MOV>. The entry number within the array
corresponds to the Speedbase Function number $FUNC as described in
Table 9.6a above.

The variables contain the keytop names as customised using $BACUS for
the current terminal, and can be useful within operator prompts.

9.10 $FNBY0 and $FNBY() - Function-key Values
 PIC X
These variables contain the function-key values generated by the
current terminal for each of the Speedbase functions. $FNBY0 contains
the code generated for the <RET> function, on most terminals this is
#0D. $FNBY is an array containing the key values generated for
Speedbase functions 1-19, <UF1> through <MOV>. The entry number within
the array corresponds to the Speedbase function number $FUNC as listed
in Table 9.6a.

Chapter 9 - Speedbase System Variables

Global Speedbase Development Manual V8.1 Page 143 of 241

These variables may be used in combination with the TYP$ system
routine. The TYP$ routine allows you to place characters into the
console's type-ahead buffer, which are then input during subsequent
accept operations. The format of the call is as follows:

CALL TYP$ USING area length

where area identifies the characters to be placed in the type-ahead
buffer, and length is a PIC 9(4) COMP variable or numeric literal
specifying the length of area.

It should be noted that TYP$ always places characters at the front of
the type-ahead buffer, from which characters are first retrieved by
accept operations. If multiple calls on TYP$ are required, you must
therefore make these in reverse order.

The function key byte values may be used during window processing as
well as normal accept operations. For example, the following code
segment would display a page of territory records starting from TR10
in the demonstration system frame TERR:

CALL TYP$ USING $FNBY(5) 1 * 1 <PGE> Display next page
CALL TYP$ USING "TR10" 4 * 2 Key value "TR10"
CALL TYP$ USING $FNBY(16) 1 * 3 <ENQ> Enter ENQ Mode
ENTER WINDOW W1

Remembering that the type-ahead buffer must be filled in the reverse
order to the operations required, line 3 causes the <ENQ> function to
be placed in the type-ahead buffer, and forces the window into enquiry
mode. Line 2 supplies the key value "TR10", and line 1 requests a page
operation from this key value. The window is then entered in the
normal way.

9.10.1 Programming notes
The type-ahead buffer is limited to the size (normally) defined in the
configuration file, and you must not therefore attempt to save more
characters than this. If you do, TYP$ will return exception condition
3.

The type-ahead buffer may already contain characters keyed in by the
operator. If this does not leave enough room for your characters to be
stored, TYP$ will return exception 2. In this event, you could execute
the BELL verb, which clears the type-ahead buffer as well as sounding
the console bell. You must then perform the TYP$ calls again.

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 144 of 241

Appendix A - The Speedbase Compiler ($SDL)

The Speedbase Development Language Compiler generates executable
frames in a single-pass compilation process. It processes a source
file which may contain one or more individual frames, producing
executable frame files as its main output. Figure Aa provides a
diagrammatic view of the main input and output files processed by the
compiler. Of these, only the frame source and generated object frames
necessarily exist, all other inputs and outputs being optional.

The compiler may reference the records defined in up to four database
dictionaries, details of which are compiled into executable frames.
The database dictionaries are created and maintained using the
Speedbase dictionary maintenance utility, see Appendix F. Each frame
may access any of the records defined in the dictionaries using the
ACCESS statement, which causes record layouts and other details to be
copied into the application frame. This is a similar concept to a
Cobol copy library.

The Speedbase compiler contains an integral linkage editor which is
invoked during compilation if the need arises. Most frames will
normally make use of a service module, which contains most of the
frequently used system routines. This module is loaded automatically
whenever a frame is executed, and therefore avoids linking system
routines into each application frame.

When system routines not resident in the service module are used, the
compiler automatically links them into the frame. These routines may
be system routines distributed in the Speedbase routine library
C.$BALIB, or any other compilation files or libraries created using
the Global Cobol compiler.

When a dependent frame is compiled, the controlling frame is used as
an input during the compilation process. The various field and I/O
channel definitions are transferred to the dependent frame, which
allows it to access these items as if declared locally. The compiler
may also make use of up to four copybook libraries, which are accessed
using the COPY statement.

The compiler can produce any number of object frames in a single
invocation, limited only by the size and number of free directory
entries of the specified object device. A practical limitation in the
order of 50 to 99 frames per compilation therefore usually exists.

The created object frames are executed under the control of the
Speedbase Presentation Manager. The Presentation Manager contains
routines which control the transfer of information between the frame
and screen or printer, such as those used to control video attributes.
A frame cannot be executed directly, but must run using a loader
program, see Section 8.4, or a menu. The menu opens the databases
required, and manages service module loading prior to running a frame.

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 145 of 241

$SDL
Compli
er-

linker

Frame
source

Data
Dictionary

Frame
listing

Service
module

Copy
library

Controlling
frame

Compilation
library or
module

Frame

Figure Aa The SDL Compiler I/O Structure

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 146 of 241

A.1 Compiler Dialogue
The Speedbase compiler is invoked by using a menu entry set up for the
purpose or by keying $SDL at a menu or GSM READY prompt. The following
is an example of dialogue which may be used to compile the sample
application listed in Appendix C:

GSM READY:$SDL
$A3 SOURCE:V3DEMO UNIT:S

$A3 OBJECT UNIT:$P SIZE:60000
$A3 DICTIONARY 1:DEMON UNIT:FLS GENERATION 6
$A3 DICTIONARY 2:<CR>
$A3 LISTING UNIT:$PR
$A3 COMPILATION OPTION:<CR>

The above dialogue specifies that the source file S.V3DEMO residing on
logical device S is to be compiled. Object programs are directed to
the logical device $P, the program residence unit, and are restricted
to a maximum size of 60,000 bytes. The dictionary to be used in this
compilation is then specified. This dictionary, located on logical
device FLS, is then found by the compiler, which displays its
generation number in confirmation.

No further dictionaries are required for this compilation, and this is
indicated by entering <CR> in response to the second dictionary
prompt. A compilation listing is required, and this has been directed
to the logical device $PR. No further compilation options are
specified.

Compilation of the frames in the source file S.V3DEMO then commences.
As compilation of each new frame begins, the following message is
displayed on the screen:

COMPILING frame-id

where frame-id is as specified in each FRAME statement. If a file with
this frame-id already exists on the specified object unit, this
message is appended by the following text:

OLD VERSION DELETED

Some care must therefore be taken that existing files are not
inadvertently deleted. In most installations it is wise to reserve a
specific unit to act as object unit for Speedbase compilations.

The compiler therefore produces a number of individual object frame
files on the designated unit. It is good practice to combine these
files into a program library immediately following compilation. This
is achieved using the $LIB Librarian utility which is described in
detail in the Global Cobol User Manual. The remainder of this section
describes each of the Speedbase compiler prompts in detail.

A.1.1 The Source Prompt
The SOURCE prompt is used to specify the file and unit-id of the
source program file to be compiled. The file specified must be a text
file and must begin with an S. prefix. This prefix is automatically
assumed and should not therefore be entered. The unit-id specified may
be any logical or physical random access device.

A.1.2 The Object Unit and Size Prompts

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 147 of 241

The OBJECT UNIT prompt allows the specification of the object unit to
which the generated executable programs are to be directed. This unit
may be any logical or physical random access device. This is followed
by the SIZE prompt. This prompt allows the specification of the
maximum size of each object file. This maximum must be large enough to
contain the largest single object program in the compilation. If <CR>
is entered in response to this prompt, a default of 60,000 bytes will
be used and the object file truncated on completion of its
compilation.

A.1.3 The Dictionary and Unit Prompts
The DICTIONARY prompt requests the name of up eight dictionaries to be
referenced during the compilation. The dictionary name is limited to
five alphanumeric characters, the prefix DI is assumed and should not
therefore be entered.

This is followed by the UNIT prompt to allow the specification of the
unit on which the dictionary resides or is to be created. This unit-id
may be any logical or physical random access device. The generation
number of the specified dictionary is then displayed.

It is possible that a dictionary may be invalid, owing to serious
errors during dictionary maintenance. If this is the case the compiler
will display the following message:

$A3 INVALID DICTIONARY

In this event, the dictionary will have to be corrected before any
further attempt is made to compile frames using it.

A.1.4 The Listing Unit Prompt
The LISTING UNIT prompt allows the specification of the unit-id to
which the program listing is to be directed. The unit-id may be a
logical or physical device, being a physical printer or random access
device used for spooling. If the unit-id entered is a printer (i.e.
has a unit number in the range 500 to 599) this device is simply
opened.

If the unit-id entered is a random access device, the user is prompted
for the file size, in bytes, to be allocated. The size entered should
be large enough to contain the entire listing for all programs within
the source file. If no size is entered, the largest possible spool
file will be created. This file will be truncated on completion of the
compilation run.

The listing file created is of text-file format and can therefore be
examined using the $INSPECT utility. This listing file has a file name
"L.file" where file is the name of the source file as entered in
response to the SOURCE prompt. If <CR> is entered in response to the
LISTING UNIT prompt, the default printer unit $PR will be selected.
The production of the listing may be suppressed altogether by entering
<CTRL A> for this prompt.

A.1.5 The Compilation Option Prompt
The following compilation options may be specified:

ST Prints a symbol table for each program on the listing
BL Prints a binary listing showing generated object code
COP Copies selected member into target library

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 148 of 241

NCX Causes copybook content not to be listed
NSL Suppresses print of source program lines
LNK Used to specify compilation files for linkage editing
LM Specifies production of a linkage edit map
HIGH Specifies highest memory address that may be used
BASE Specifies an explicit base address
SD Enables Symbolic Debugging of the program using $DEBUG.
HT Specifies off-line storage of help text.

These options are further explained below:

A.1.5.1 The ST option
The ST option causes a symbol table to be printed on the program
listing. The symbol table is printed at the end of each compiled
program. The table shows the symbol names declared within the
compilation with the appropriate addresses. This information is often
useful during program debugging.

A.1.5.2 The BL option
The BL option causes full details of generated object code to be
printed on the compilation listing. This object code is shown in
hexadecimal form next to the corresponding source program
instructions. The principal use of this option is to allow patches to
be produced for application programs. If you have no intention of
doing this, the option is best avoided since it produces a somewhat
cluttered listing.

Object code is always printed on the right hand side of the listing.
In some circumstances the generated code may not be printed exactly
next to the source code line to which it belongs. For example, in
compound conditional statements where some code cannot be generated
until the entire construct has been processed.

The addresses for the targets of forward jumps and calls within the
program are also not known at the time these instructions are
processed, and the listing file is printed. The addresses printed in
this case refer to the code address of the previous reference to the
so far undeclared entry. Similar considerations also apply to the use
of HIGH-VALUES and LOW-VALUES figurative constants, the location and
length of which are not known until the entire program is compiled.

A.1.5.3 The COP option
The COP option allows up to three copy libraries to be specified using
the following dialogue:

$A3 COMPILATION OPTION:COP

$A3 COPY LIBRARY:name UNIT:unit-id
$A3 COPY LIBRARY:<CR>

where name is the name of the copy library and unit-id is the unit
where the copy library resides. The unit-id defaults to the unit-id of
the program source file if <CR> is keyed. This dialogue allows up to
six copy libraries to be specified. As each is entered, there is a
pause as the copy library is opened and indexed.

A.1.5.4 The NCX option
The NCX option causes copybook content not to be listed within the
frame listing.

A.1.5.5 The NSL option

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 149 of 241

The NSL option suppresses printing of source program lines to the
compilation listing. Only source lines on which errors occurred are
printed.

A.1.5.6 The LNK option
The LNK option is used to specify up to four compilation files or
libraries to be used during by the link phase of the Speedbase
compiler. Note that the specified compilation files and/or libraries
are only linked into each frame if actually referenced using the CALL
statement. During compilation, the Speedbase compiler keeps track of
calls made on system library or other external routines, and these are
automatically linked into the program during the last phase of
compilation of each frame.

This facility will normally be used to link system subroutines, such
as those required by the EDIT and SORT verbs. It is, however, also
possible for the developer to produce his own subroutines or
subroutine libraries using Global Cobol. The LNK option dialogue is
shown below:

$A3 COMPILATION OPTION:LNK
$A3 COMPILATION MODULE:module-name UNIT:unit-id
$A3 COMPILATION MODULE:<CR>

where module-name is the name of a compilation module or library,
entered without the C. prefix, and unit-id is the unit on which the
module or library resides. If <CR> is entered in response to the UNIT
prompt, the unit-id will be defaulted to the object-unit previously
entered.

A.1.5.7 The LM option
The LM option causes a link map to be printed at the end of each frame
listing. This link map shows the names of all modules linked into the
object frame, with the addresses at which each module was loaded.

A.1.5.8 The HIGH option
The HIGH option is used to control the use of memory. When you develop
application software products it is important to ensure that they will
fit in the available user area on the user's computer. You might, for
example, decide to limit your frames to the use of a 50 Kbyte user
area. To do so, use the HIGH option with an address of C800. The HIGH
option dialogue is as follows:

$A3 COMPILATION OPTION:HIGH HIGH ADDRESS LIMIT #:high

where high is the first unused address, in hexadecimal (e.g. C800).

If you compile a frame which uses a higher address than you have
specified with the HIGH option, the ENDFRAME statement of the
offending frame is marked with compiler error 291. Note that in the
compilation listing the ENDFRAME statement always includes the address
of the first free memory location following the frame. In this case
the address will be greater than you have specified in the HIGH
option.

A.1.5.9 The BASE option
The BASE option allows an explicit base address to be specified. This
is then used as a program base for all frames in the compilation
source. If it conflicts with either a specified controlling frame or

Appendix A - The Speedbase Compiler ($SDL)

Global Speedbase Development Manual V8.1 Page 150 of 241

services module it is reset to the default and an error message is
displayed.

A.1.5.10 The SD option
The SD option Causes symbolic debug tables to be compiled into the
program thus allowing you to use the symbolic debugging facilities of
$DEBUG when testing your program.

A.1.5.11 The HT option
The HT option Causes help text to be stored offline. Offline help text
is stored within the program file but in such a manner that no program
address space is used, thus making more space available for
application code. Note that programs compiled with option HT must be
run with Speedbase V8.1 or later. If run on earlier versions, the
message " No help Available " will be displayed in response to the
<HLP> function.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 151 of 241

Appendix B - Compiler Error and Warning
Messages

This appendix describes the error and warning messages produced by the
Speedbase compiler. All the messages listed may be printed as warnings
or errors, depending on the context in which the error occurred. The
Speedbase compiler will attempt to produce an executable code file
irrespective of the seriousness of the errors detected during
compilation, to avoid unnecessary re-compilations during the
development process.

Compilations containing warnings only are generally correctly
executable, but should be corrected as a matter of good practice.
Programs compiled with errors must be corrected and re-compiled before
any serious attempt is made at system testing.

Most error messages indicate the exact location at which the error was
detected by means of an up-arrow character. This character points to
the current source code segment being compiled at the time of error
detection and should be used as a guide only.

1 STATEMENT NOT RECOGNISED

A program statement is invalid (e.g. spelt incorrectly) or may not be
used within current program division (e.g. PERFORM in Data Division).

2 OPENING BRACKET "(" EXPECTED

An opening bracket is missing from a statement.

3 CLOSING BRACKET ")" EXPECTED

A matching closing bracket is missing.

4 UNSIGNED INTEGER EXPECTED

An unsigned integer value is either missing or invalid.

5 "ENDSOURCE" STATEMENT EXPECTED

The ENDSOURCE statement has not been coded as the last statement in
the program source file.

6 END OF LINE NOT SEEN

The code line is not terminated by an end-of-line or a comment. The
rest of the line is ignored by the compiler.

7 LISTING FILE SPACE EXHAUSTED

The listing file used to produce the compilation listing is full, or a
non-recoverable error has occurred on the printer. Further printing is
suppressed, but the compilation will otherwise be correctly concluded.

8 INVALID CHARACTER

The source program file contains an invalid character, such as lower
case letters outside of quotes, or an invalid end-of-line terminator.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 152 of 241

9 TRAILING QUOTE MISSING

A trailing quote (") is missing from an embedded string literal. The
rest of the source line is taken to be part of the literal string.

10 SYMBOL TABLE PAGING ERROR

An irrecoverable I/O error has taken place during a symbol table
swapping operation and the compilation is aborted. Correct hardware
problem before re-compiling.

11 INVALID SYTAB OPERATION REQUESTED

An invalid symbol table operation has been requested. Compiler
internal error.

12 SYMBOL TABLE SPACE EXHAUSTED

The symbol table is full. This condition will arise if any single
program requires more than approximately 3750 symbols (e.g. data
names, sections or labels, etc.) to compile. The only recourse is to
reduce the size of your program.

13 OBJECT OR WORK FILE IS FULL

This error may arise if the object file size specified as a
compilation parameter was too small. In this instance you should
increase the size of the file.

14 LEVEL NUMBER EXPECTED

A Global Cobol data item level number in the range of 01 to 49 or 77
was expected but not found.

15 VALID ONLY FOR LEVELS 01 AND 77

REDEFINES or BASED may only be coded for data items at level 01 or 77.

16 DATA-NAME EXPECTED

A data-name is expected within a Window construct. This name must be
at least 3 characters long.

17 INVALID SYMBOL

An invalid symbol has been coded or omitted altogether. Symbols must
begin with a $ or a character in the range "A" to "Z".

18 LEVEL NUMBER IS INVALID

A Global Cobol data item level number has been detected but is not in
the range 01 - 49 or 77.

19 DUPLICATE NAME DECLARATION

A symbol name has been declared twice within the program, or a
variable has been defined with the same name as a systems variable.

20 UNDECLARED DATA-NAME

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 153 of 241

The data-name specified as the target of a redefinition or base is
undeclared.

21 "PIC" EXPECTED

The clause "PIC" is missing from, or spelt incorrectly in, a Global
Cobol data item definition.

22 9, S9, X, D, OR PTR EXPECTED

An invalid picture clause has been coded or altogether omitted.
Picture clauses must start with 9, S9, X, D or "PTR".

23 "BASED" INVALID WITH A REDEFINITION

A data item declaration cannot contain both the REDEFINES and BASED
clauses.

24 BASE MUST BE A PIC PTR ITEM

The symbol specified as a base pointer in a data item declaration has
not been given the picture clause "PTR".

26 "PIC" INVALID FOR LEVEL 01

A level 01 data item declaration may not contain a picture clause.

27 INVALID PICTURE CLAUSE

The picture clause is present, but has been incorrectly coded. For
example, PIC S99 instead of PIC S9(2).

28 ARRAY MUST BE SINGLE DIMENSION

An attempt has been made to declare a two dimensional array, by coding
an OCCURS clause for an item which already belongs to an occurring
group. This is not permitted.

29 ZERO LENGTH GROUP

A group data item does not contain any elementary data items, or only
contains items which themselves are of 0 length.

30 REDEFINITION IS TOO LONG

A redefinition is longer than the group it redefines. Valid code will
be generated, but this is likely to be a programming error.

31 QUALIFIER ILLEGAL FOR PTR OR D

PIC, PTR or PIC D item is followed by an opening bracket "(".

32 COMMA (,) EXPECTED

A comma is missing from a statement.

33 "FRAME" OR "PROGRAM" EXPECTED

The first statement for all programs must be the FRAME or PROGRAM
statement.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 154 of 241

34 FRAME ID EXPECTED

A Frame ID has not been found after the FRAME or PROGRAM statement.
Alternatively the ID is an invalid symbol name.

36 "ENDFRAME" EXPECTED

An ENDFRAME or ENDPROG statement has not been coded as the last
instruction in the current program.

39 INVALID LINE OR COL NUMBER

The line or column number coded in a WINDOW statement would result in
the display of characters beyond permitted limits.

41 UNDEFINED RECORD ID

When this error is produced when processing the ACCESS statement, the
coded record ID has not been found in the dictionary. When produced
while processing the WINDOW statement, the record ID has not been
earlier defined by an ACCESS statement.

45 DICTIONARY DRA/RCB LOAD FAILURE

A dictionary ACCESS'ed during compilation is corrupt. Try recreating
the dictionary and then re-compile. If the error does not disappear,
an internal compiler error is indicated.

48 COMPILER INTERNAL ERROR

An internal error has arisen within the compiler causing it to abort.

51 INVALID RECORD ID

The record ID is either shorter than 2 characters or does not start
with an alphabetic character.

64 OPTION NOT RECOGNISED

A Window construct option has been spelt incorrectly.

67 INCONSISTENT OPTION USAGE

An option is inconsistent with the items picture clause, or a number
of options have been combined illegally. For example, a protected
field coded with option NUL.

68 "DIVISION" EXPECTED

The keyword DIVISION has been omitted or spelt incorrectly.

69 RECORD TYPE EXPECTED

A record type code has been omitted or is invalid.

72 DUPLICATE ACCESS FOR RECORD TYPE

The same record type has been coded twice in an ACCESS statement.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 155 of 241

83 "ENDFORMAT" EXPECTED

The ENDFORMAT statement has been omitted.

85 INCONSISTENT PICTURE CLAUSE

A picture clause has been coded for a data item in the Window
construct. This picture clause is not the same as that of the
referenced field. Either change it so it is correct, or omit it.

100 STATEMENT OUT OF CONTEXT

A statement has been misplaced. For example, Data Division statement
within the Procedure Division.

103 COMPILER INTERNAL ERROR

An internal compiler malfunction has been detected and the compilation
will normally be aborted. Keep copies of the compilation source code
and dictionaries (if any) and contact your support team.

106 COMPILATION ABORTED

The compilation has been aborted due to a serious error. This message
will be preceded by another explaining the cause of the problem.

107 FEATURE NOT SUPPORTED

The statement or option coded is not supported in this version of the
compiler.

108 NEGATIVE WRNXT/OBJ LEN REQUEST

 Internal compiler error. Refer to error 103.

 111 ILLEGAL OPCODE/OPERAND/QUAL

An illegal operation code, operand or qualifier has been detected.
Internal compiler error, refer to error 103. Compiler versions 2.0 and
earlier only.

112 OPERAND EXPECTED

A symbol or literal string was expected in the source program but not
found.

113 INVALID NUMERIC STRING

A numeric literal has been coded incorrectly or omitted altogether.

114 HEX STRING EXPECTED

A hexadecimal string literal was expected, but not found.

115 HEX STRING MUST BE EVEN

A hexadecimal string has been found but has an odd number of
characters. The last character will be ignored to make the string
even.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 156 of 241

116 INVALID HEX STRING

A hexadecimal string is invalid in that it contains characters outside
the range 0 - 9, A - F.

117 OPERAND IS NOT INDEXED

An attempt has been made to code an index for a data item which is not
part of an occurring group, or is not an occurring item.

118 INDEX EXPECTED, 1 ASSUMED

An index has been omitted from a data item which is part of an
occurring group or is an occurring item. An index of 1 will be
assumed.

119 COMP VARIABLE OR INTEGER EXPECTED

A numeric variable or integer was expected but not found.

120 OPERAND CAN NOT BE INDEXED

An attempt has been made to index an item with a variable which is
itself indexed. This is illegal.

121 UNDEFINED SYMBOL

A coded symbol is undefined.

122 INVALID NUMERIC STRING

A numeric string literal has been coded incorrectly.

123 "TO" EXPECTED

Self-explanatory.

124 INVALID OPERAND TYPE

A symbol of an incorrect type required for the specified operation has
been coded. For example, moving an entry name to a data-item, or a
numeric field to a pointer item.

125 "GIVING" EXPECTED

Self-explanatory.

126 "ROUNDED" EXPECTED

Self-explanatory.

127 COMP OR DISP NUMERIC VARIABLE REQUIRED

A non-numeric variable or literal has been coded as the target of an
arithmetic statement.

128 INVALID ARITHMETIC CONSTRUCT

An arithmetic statement has not been coded with a correct link Word
(i.e. "FROM", "TO", "INTO" or "BY"). Alternatively, an incorrect link

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 157 of 241

word has been used for the particular statement. For example, ADD A
FROM B.

129 32 "IF" LEVELS EXCEEDED

IF statements may not be nested to a greater depth than 32. This limit
has been exceeded.

130 NO MATCHING "IF"

An END statement has been found which does not correspond to a
preceding IF statement. Too many END statements have been coded.

131 "EXCEPTION" OR "OVERFLOW" REQUIRED

The ON statement must be followed by "OVERFLOW" or "EXCEPTION".

132 16 "DO" LEVELS EXCEEDED

"DO" statements may be nested to a maximum of 16 levels. This limit
has been exceeded.

133 NO MATCHING "DO"/"ENDDO"

An ENDDO or FINISH statement has been found which does not correspond
to a matching "DO" statement. The FINISH statement may only be
executed from within a DO loop.

134 DO "UNTIL" OR "WHILE" EXPECTED

If any program code follows the DO statement, then this must either be
"UNTIL" or "WHILE". Probably misspelling.

135 "AND"/"OR" MAY NOT BE MIXED

A compound IF or DO condition must be composed only of OR or AND
relations. The compiler has detected the use of both relations.

136 INVALID RELATIONAL OPERATOR

A relational operator is one of:

"=", "<", ">", "LESS", "EQUAL", "GREATER", "SPACE", "SPACES",
"HIGH-VALUES", "LOW-VALUES", "ZERO", "POSITIVE", "NEGATIVE" or
"NUMERIC".

137 COND OPERANDS BOTH LITERALS

Both operands in an expression are literals, which of course means
that the statement is not really conditional. The statement will
therefore always or never be "true".

138 INVALID CONDITIONAL ACTION

Valid actions that may be coded following an IF statement are:

GO TO, PERFORM, FINISH, EXIT or STOP.

The DEPENDING clause may only be used in an unconditional GO TO
statement.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 158 of 241

139 "ON" EXPECTED

The word ON was expected but not found.

140 "DEPENDING" VALID WITH GOTO ONLY

The DEPENDING clause may only be used within the GOTO statement. It
has been incorrectly used with the PERFORM statement.

141 "WITH" EXPECTED

Self-explanatory.

142 "WITH" OR "RUN" EXPECTED

Self-explanatory.

143 INCONSISTENT CALL/GOTO/PERFORM

A symbol has been the target of a GOTO, PERFORM and CALL instruction.
Since the GOTO and PERFORM statements require a label or section name,
whereas the CALL statement requires an ENTRY name, this is
inconsistent. One of the preceding calls must be incorrect.

145 "USING" EXPECTED

Self-explanatory.

146 SYSTEM GLOBAL USED IN COMPILE

A symbol has been defined in the program which contains a "$"
character. This clashes with a symbol that the compiler requires for
internal purposes. The compilation will therefore fail.

147 "INTO" EXPECTED

Self-explanatory.

148 EDIT TARGET > 30 BYTES

The target of an EDIT statement exceeds 30 bytes. This is not
permitted.

149 MAX EDIT SIZE IS 9(12,6)

The source operand in an EDIT statement has a picture clause larger
than PIC 9(12,6) and cannot therefore be processed.

150 9(4) COMP OPERAND EXPECTED

A statement has been coded which requires that the indicated operand
has a PIC 9(4) COMP picture clause. For example, EXIT with name.

151 IF LEVEL NOT ZERO

A section or entry statement was found while an IF statement was still
outstanding. One or more END statements have presumably been omitted.

152 DO LEVEL NOT ZERO

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 159 of 241

A section or entry statement was found while a DO statement was still
outstanding. One or more ENDDO statements have presumably been
omitted.

153 LVL 01/77 BASED ITEM REQUIRED

Operands as targets of the ENTRY USING clause must be BASED and must
be level 01 or level 77 data items.

154 "PROCEDURE DIVISION" ASSUMED

The PROCEDURE DIVISION Header Statement has been omitted.

155 DUPLICATE DIVISION DECLARATION

The same Division Header Statement (e.g. PROCEDURE DIVISION) has been
coded more than once within the current program.

156 UNDECLARED ENTRY/SECTION/LABEL

The target of a GOTO, PERFORM, or CALL statement is not defined in the
program. The offending symbol name is displayed in the error message.

157 "LINE"/"COL" EXPECTED

A DISPLAY or ACCEPT statement has omitted or incorrectly spelt the key
word LINE or COL.

158 DISPLAY ITEM EXCEEDS 127 BYTES

The target of a DISPLAY or ACCEPT statement is longer than 127 bytes.
This is not permitted.

159 "LINE" EXPECTED IN DISPLAY

The key word "LINE" is missing from DISPLAY or ACCEPT statement.

160 "COL" EXPECTED IN DISPLAY

The key word "COL" is missing from DISPLAY or ACCEPT statement.

161 UNDEFINED RECORD TYPE CODE

The record ID for a WRITE, REWRITE, DELETE or GET statement is not
defined in an ACCESS or RF statement.

162 RECORD TYPE CODE EXPECTED

The target coded for WRITE, REWRITE, DELETE or GET statement is not a
valid record ID code, but some other symbol.

163 ALL MASTER RECORDS REQUIRED FOR UPDATE

A WRITE, REWRITE or DELETE statement has been coded. All master
records associated with this record must previously have been
referenced in an ACCESS statement.

164 "KEY" EXPECTED

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 160 of 241

Characters were found after the record ID in a GET statement, but this
was not the "KEY" clause. If an RRN is coded, it must be preceded by
this key word.

165 KEY MUST BE 9(6) COMP

The key supplied as part of a GET statement must be 9(6) COMP.

166 "NOLOCK", "PROTECT" OR "RETRY" REQUIRED

Characters were found at the end of a READ, FETCH or GET statement,
but these were not the NOLOCK or RETRY options.

167 RETRY RANGE IS -1 TO 127

The retry option requires an argument in the range of -1 to 127. This
value must be a numeric literal.

168 DATABASE INDEX OR FD NAME EXPECTED

The READ and FETCH statement must be followed by an FD name or an
index name associated with an record declared by an ACCESS statement.
All other I/O statements require a record ID or FD name to be coded.

169 PF NAME EXPECTED

The PRINT statement must be followed by a PF construct record ID. The
ID was either not coded or not present in the current program.

170 POINT "AT" EXPECTED

Self-explanatory.

171 BASE "ON" OR "AT" EXPECTED

The BASE verb requires the key-word ON or AT. This was not coded for
the instruction.

172 UNDECLARED DATA-ITEM

A routine has been defined in the Routines Section for a variable
which has not been declared within the window.

173 DUPLICATE ROUTINE DECLARATION

Two or more routines of the same type have been coded for the same
field. This is not permitted.

176 "LENGTH" EXPECTED

The LENGTH key word has been omitted or spelt incorrectly within the
MOUNT statement.

177 MAX 16 PRINT LINES PER PF

The maximum number of print lines that may be created by a PF
construct is 16. This limitation has been exceeded.

178 PF LINES DEFINED OUT OF SEQUENCE

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 161 of 241

Print lines must be declared in order within a PF construct. See
Chapter 5 for further details.

179 ITEM EXCEEDS COLUMN 132

A data or text item has been coded with a column number that would
cause it to be printed past column 132. This is not permitted.

180 PF RECORD ID EXPECTED

The record ID specified in a PF statement HEADER or TRAILER clause is
not a previously defined PF record ID. These options can only refer to
PF constructs coded previously within the same Data Division.

181 START "AT" OR "FROM" EXPECTED

The PF construct START verb requires the key word AT or FROM. This has
been omitted or spelt incorrectly.

182 END LINE # PRECEDES START LINE #

The end line number in a PF construct START statements precedes the
start line number. This is not permitted.

183 NO PRINT LINES IN PF CONSTRUCT

A PF construct has been defined which contains no print lines. This
will produce unpredictable results.

184 INSTRUCTION BUFFER OVERFLOW

The instruction being compiled is so complex that the compiler's
instruction buffer has overflowed. No code will be generated for the
instruction. This error should not occur and indicates a compiler
internal error. Contact your support team.

185 "FORMAT" EXPECTED

The key word FORMAT has been spelt incorrectly or omitted from the
EDIT statement.

186 "ORGANISATION" EXPECTED

The ORGANISATION clause has been spelt incorrectly or omitted from the
FD statement.

187 FD ITEM TOO LARGE/LONG

A parameter coded for an FD construct is either too long or has too
great a value. For example, a record length exceeding 32767 bytes.

188 INVALID FD ITEM

A parameter coded for an FD construct is invalid or omitted. For
example, coding "ABC" as record length.

189 INVALID ORGANISATION

The ORGANISATION IS statement in the FD was not followed by INDEXED-
SEQUENTIAL, RELATIVE-SEQUENTIAL or UNDEFINED.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 162 of 241

190 "ASSIGN TO UNIT" EXPECTED

Self-explanatory.

191 "FILE" EXPECTED

The FILE clause has been incorrectly spelt or omitted from the FD
construct ASSIGN statement.

192 INVALID FD OPTION

An FD option has been coded which is invalid for the access method.
For example, a KEY statement with an UNDEFINED access method.

193 "KEY IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD
construct.

194 "LENGTH IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD
construct.

195 "SIZE IS" EXPECTED

The key word IS has been omitted or spelt incorrectly in an FD
construct.

196 DUPLICATE FD OPTION

The same option has been specified twice within an FD. For example,
two OPTION ERROR statements.

197 "ERROR", "RESET", OR "IGNORE" REQUIRED

The FD OPTION statement is not followed by the key word ERROR or RESET
or IGNORE.

198 "ON ERROR" EXPECTED

The FD ON statement is not followed by the key word ERROR.

199 INVALID ACTION FOR ORGANISATION

A FETCH statement or a READ PRIOR, READ FIRST or READ LAST statement
has been coded to access an FD. This is invalid.

200 (RE)WRITE FD "FROM" EXPECTED

A WRITE or REWRITE instruction has had the FROM key word spelt
incorrectly or omitted.

201 LOCK FD "WAIT" EXPECTED

A LOCK statement contains characters after the area specification
which is not the WAIT option. Probably spelt incorrectly.

202 FD NAME EXPECTED

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 163 of 241

An FD name defined in the Data Division was expected, but not found.

203 OPEN "OLD", "NEW", OR "SHARED" EXPECTED

An OPEN statement does not contain one of the options OLD, NEW or
SHARED.

204 "TRUNCATE" OR "DELETE" EXPECTED

A CLOSE statement has characters at the end of the instruction which
is not one of TRUNCATE or DELETE.

205 BASED ITEM INVALID IN WINDOW

BASED variables, which includes most systems variables, may not be
referenced within a window.

206 INVALID/ILLEGAL VALUE ASSIGNMENT

A value assignment made for an item in the Data Division is invalid or
illegal. For example, attempting to add the value "ABC" to a numeric
field.

207 VALUE ASSIGNMENT IS TOO LONG

A value assignment made to a character variable is longer than that
character variable. Any excess characters will be ignored.

208 COPYBOOK NOT FOUND

The book ID coded for a copy statement was not found in the copy
libraries specified in the initial compiler dialogue.

209 TOO MANY NESTED COPY STATEMENTS

A copy book may itself copy further copy books and so forth up to a
maximum of eight nested copies.

210 ".END" WITHOUT COPYBOOK

A .END statement has been found within the program source.

211 COPYBOOK NAME EXPECTED

The copybook name is missing from the COPY statement.

212 INVALID SUBSTITUTION VALUE

The target of the SUBSTITUTING clause in the COPY statement is
invalid. The name must be enclosed in quotes and no longer than eight
characters.

213 OPERAND TOO SHORT

The region code operand in the LOCK or UNLOCK statement is smaller
than four bytes.

214 RECURSIVE CALLS ARE ILLEGAL

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 164 of 241

A CALL statement has passed the called entry-point as a parameter.
This is illegal.

219 TOO MANY SYSTEM ROUTINES REQUIRED

The frame requires more than 127 compilation modules to be linked into
the current frame.

220 TOO MANY GLOBAL SYMBOLS IN LINK

The frame requires more than 512 global symbols, which has exceeded
the compiler global table capacity.

221 DUPLICATE GLOBAL SYMBOL DETECTED

A global symbol is defined in two or more places within the current
frame, and/or linked compilation modules.

222 COMPILATION LIBRARY IS CORRUPT

One or more of the compilation files specified in the initial compiler
dialogue is corrupt, and must be replaced prior to re-compilation.

223 COMPILER INTERNAL LINKING ERROR

An internal error has arisen during the linkage edit phase of
compilation. Contact your support team.

224 PROGRAM SIZE EXCEEDS 32K

The current frame exceeds the 32K compiler limitation. The program
must be reduced in size or segmented into an overlay structure.

225 EQ/GT/GE/LT/LE/NE/8/16/EX OR NX EXPECTED

A conditional intermediate code instruction, such as $JUMP, has been
coded with an invalid or missing condition.

226 OPERAND IS WRONG FORMAT OR LENGTH

The indicated operand has a picture clause that is inconsistent with
the coded statement, for example coding a 9(6) COMP variable in an
EXIT WITH statement.

227 UNSUPPORTED INTERMEDIATE CODE INSTRUCTION

The coded intermediate code instruction is invalid or unsupported by
the compiler (e.g. $CC 31).

228 INVALID SVC CALL

The System Service number coded with the SVC statement is invalid.

229 KEYWORD "MAP" EXPECTED

This keyword has been spelt incorrectly or omitted.

230 INVALID DISPLAY MAPPING FUNCTION

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 165 of 241

The coded function is not recognised, or is invalid with other options
coded in the statement.

231 TOO MANY ACCESS STATEMENTS

More than 64 I/O channels have been declared using the ACCESS
statement. The program must be segmented in order to allow access to
more than 64 record types.

232 NO DICTIONARY OPEN

The dictionary ID coded in the ACCESS statement has not been opened
during initial compiler dialogue.

233 "DEPENDENT ON" EXPECTED

One or both of the above key-words has been spelt incorrectly or
omitted.

234 DUPLICATE WINDOW DIVISION STATEMENT

The WINDOW DIVISION statement has been coded twice within the current
frame.

235 "ENDWINDOW" EXPECTED

The ENDWINDOW statement has been spelt incorrectly or omitted

236 WINDOW ID EXPECTED

The window ID has been omitted or miscoded in the Window Statement.
This ID must be 2 characters long.

237 "USING" EXPECTED

The USING clause has been omitted from the Window Statement.

238 RECORD OR INDEX NAME EXPECTED

A record ID or index name must be coded following the USING clause in
the Window Statement.

239 UNDECLARED RECORD OR INDEX NAME

The ID coded following the USING clause in a Window Statement is not a
record type code or an index name. The ID has either been miscoded, or
the record type has not been coded in an ACCESS statement.

240 "DEPENDENT ON" EXPECTED

One or both of the above key-words is spelt incorrectly or omitted.

241 UNDECLARED MASTER RECORD ID

One of the master record types coded in the window statement is
undefined. It has probably not been coded in an ACCESS statement.

242 RECORD IS NOT A LINKED MASTER

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 166 of 241

The coded master record type is not directly linked from the target
record type, and therefore may not be used.

243 CONTROLLING RECORD ID EXPECTED

The ID coded following the DEPENDENT ON Clause is not a valid record
ID.

244 UNDECLARED CONTROLLING RECORD ID

The controlling record ID coded following the DEPENDENT ON Clause Is
undefined. It has probably been omitted from the ACCESS statement.

245 RECORD HAS NO PRIMARY INDEX

The controlling record type coded following the DEPENDENT ON clause
has no primary index, and may not therefore be used.

246 NO INDEX MATCHES CONTROLLING RECORD

The target index does not have an index which starts with the same
fields as the controlling record's primary index key.

247 DEFAULT IDX CANNOT BE USED

The default index specified in the USING clause does not start with
the same fields as the controlling record's primary index key, and
cannot therefore be selected.

248 "POP-UP" INVALID WITH "QREM"

These two options are mutually exclusive.

249 CAN'T SEQUENCE TO SAME WINDOW

The target of the Window construct's SEQUENCE statement must differ
from the current window ID. It is not possible for a window to go
forwards or back to itself.

250 UNTIL "NXT" OR "CURRENT REC" EXPECTED

The repeat clause has been coded with an invalid option. One of the
above two options must be used.

251 NOLOCK INVALID WITH UPDATES

The NOLOCK option has been specified in a window that is to perform
updates. The mode-enabling clauses should be coded before the unlock
statement.

252 OPTION REQUIRES TARGET RECORD

The option coded requires a target record type (as specified by the
USING clause). For example, the ENQ, enable enquiries clause requires
that the window has a target record type on which to enquire.

253 SPLIT n OFFSET n EXPECTED

One of the above keywords has been omitted or spelt incorrectly.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 167 of 241

254 INVALID WINDOW DIMENSIONS

The line or column number coded, when combined with the effect of the
data-item or text-item length, the BASE statement and the SCROLL
statement, has exceeded the permitted window dimension. The permitted
dimensions are columns 2 to 127 inclusive, and lines 2 to 46
inclusive.

255 BASE "AT" EXPECTED

The keyword "AT" has been omitted from the Window Construct BASE
statement.

256 OPTION INVALID WITH TARGET RECORD

The indicated option is invalid for windows coded with the Window
Statement's USING clause.

257 RECORD ACCESSED WITH SUBSTITUTION

The master record type coded after the USING clause in the Window
Statement has a substituted name (i.e. was declared in an ACCESS
statement coded with the SUBSTITUTING clause). This is not permitted.

258 SEL AND MNT ARE MUTUALLY EXCLUSIVE

Self-explanatory.

259 MUST BE CODED BEFORE LOCKING OPTION

The mode enabling clauses, ADD, ENQ, etc., must be coded before the
LOCK and NOLOCK window options.

260 MORE THAN 127 FIELDS IN WINDOW

More than 127 data items have been coded for a given window, thus
exceeding this compiler limitation. The window should be broken into a
number of smaller windows.

261 NO DATA ITEMS IN WINDOW

The window contains no data-items, and can therefore only be
displayed. Unpredictable result will occur if the window is entered.

262 NO INDEX AVAILABLE IN WINDOW

The target record type has no index by which it can be retrieved.

263 DEFAULT INDEX FIELDS MISSING

A default index was coded in the window construct's USING clause, but
none of the index fields are coded as data-items.

264 TEXT ITEMS EXCEED 2K BYTES

Text items coded for the current window exceed the compiler buffer
limitation of 2K. The amount of text displayed in the window must be
reduced.

265 UNDECLARED WINDOW ID

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 168 of 241

A window ID coded in a SEQUENCE, ENTER CLEAR or DISPLAY statement is
undefined.

266 ROUTINES SECTION MISPLACED

The Routines Section has been coded outside of the Window Division.

267 "SECTION" EXPECTED

The keyword "SECTION" is required.

268 INVALID ROUTINE NAME

An invalid routine name has been coded in the Routines Section.

269 "WINDOW" EXPECTED

The keyword "WINDOW" has been omitted from the CLEAR, DISPLAY or ENTER
statement.

270 INVALID ACCEPT STATEMENT OPTION

An invalid accept statement option has been coded.

273 HELP COMMENTS ARE MISPLACED

Help text comments (i.e. help text preceded by a "\") may only be
coded between the WINDOW Statement and the first Window Construct
Detail Line.

274 HELP COMMENTS MAY NOT BE BROKEN

Only one group of help text comments may be coded for each window,
which may not be interrupted by any intervening statements, including
comment lines.

275 CONTROLLING "FRAME" EXPECTED

The key-word FRAME has been omitted or spelt incorrectly.

276 OBJECT FILE IS FULL

This limitation has been exceeded while writing the symbol table of a
controlling frame to the frame's object file.

277 CONTROLLING FRAME NOT FOUND OR IN USE

The controlling frame specified within the FRAME statement was not
found or in use by another partition.

278 PROGRAM IS NOT A CONTROLLING FRAME

The frame specified as a controlling frame was not compiled using the
CONTROLLING FRAME statement.

279 CONTROLLING FRAME IS CORRUPT

The symbol table stored in the controlling frame could not be
retrieved because of corruption. It should be recompiled.

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 169 of 241

280 DEPENDENT FRAMES SVCS MODULE DIFFERS

The controlling frame has been compiled using a different version of
the compiler. It should be recompiled.

281 DISABLE "SKP", "CLR", "HME" EXPECTED

The Window Construct's DISABLE clause has not been followed by one of
the above function mnemonics.

282 ENABLE "ABO" OR "NXT" EXPECTED

The window construct's ENABLE clause has not been followed by one of
the above function mnemonics.

283 DEP FRAME'S DICTIONARIES DIFFER

The dictionary(s) used to compile the controlling frame differ, or
have been specified in a different order, from the dictionary(s) now
being used to compile the dependent frame

284 FIELDS MUST BE CONTIGUOUS

The field list specified as a controlling key within a dependent
window is not located in contiguous memory. Furthermore, the fields
must be defined in the same order within the Data Division as coded
within the field list.

285 INVALID DISPLAY FORMAT

The display formats coded in a FMT clause are either invalid, or
incorrectly combined.

286 VALID ONLY WITH NUMERIC FIELDS

The FMT option may only be used to re-format numeric fields.

287 INVALID WITH CHANGED PICTURE

The FMT option may not be used when a picture clause has been coded
which differs from the variable's defined picture clause.

288 "TXT" ONLY VALID WITH PIC X

The TXT Window option may only be coded for PIC X variables.

289 BASE ADDRESS CORRUPTS SVCS MODULE

The explicit base address entered at compile time would conflict with
memory space occupied by the services module. The base address has
been increased to avoid corruption of this module.

290 BASE ADDRESS CORRUPTS CONTROLLING FRAME

The explicit base address entered at compile time would conflict with
memory space occupied by the controlling frame. The base address has
been increased to avoid corruption.

291 HIGH ADDRESS LIMIT EXCEEDED

Appendix B - Compiler Error and Warning Messages

Global Speedbase Development Manual V8.1 Page 170 of 241

The high address limit entered at compile time has been exceeded by
the frame.

292 PRV8 REQUIRES DEPENDENT FRAME

Compiler option Privilege level 8 can only be assigned to Dependent
Frames.

293 INVALID FOR DEPENDENT FRAME

The SWAP-FILE instruction may only be coded in non-dependent frames.
When coded in the root frame of an overlay structure this instruction
automatically applies to all dependent frames and it may not therefore
be coded in them.

294 INVALID SWAP-FILE SIZE

A swap-file size has been coded that is not a valid numeric, or is not
in the range 1 to 65535.

295 SWAP-FILE SIZE EXCEEDED

The indicated pop-up would exceed the allocated size of the swap-file
and the pop-up's screen image will be stored in memory instead. To
overcome this you should increase the size of the swap file. This
message will also result if you attempt to store a pop-up wider than
85 bytes in the swap-file.

296 OPT "NSW" EXPECTED

The NSW clause has been omitted or spelt incorrectly.

297 UNBALANCED DO/IF STRUCTURE

The compiler has detected a DO.. ENDDO structure which is partly
subject to an IF ... END Structure. The IF ... END structure must
either wholly enclose an DO ... ENDDO structure or vice-versa.

298 COLON (:) EXPECTED

A colon is missing in the indicated position.

299 INVALID FOR LOCAL PF VARIABLE

The FMT and ADD options may only be used with referenced fields.

300 SOURCE FOR ADD MUST BE COMP

The source field for the ADD option must be a COMP variable. Note that
the COMP specification should only be on the original declaration of
the variable not in the PF construct.

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 171 of 241

Appendix C - Sample Application

FRAME TERR "Sales Territory Entry & Maintenance" **********************
** **

*
ACCESS TR
*
WINDOW W1 USING TR **
** **

** S A L E S T E R R I T O R Y W I N D O W **
** **

*
\This window is used for the entry and maintenance of sales territory
\records. Information may be displayed in order of territory number,
\territory name or account manager. Also displayed is a reference
\and, in protected fields, the outstanding orders and cash.
*
REPEAT
AUTOPGE

*
LINE 4 13
BASE AT 5 16
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"
03 02 "Nmbr/Name"
 05 02 TRTRNO X(4) CHK NOE
 05 07 TRNAME X(20)
*
02 29 "__Total-Outstanding__"
03 29 "Order-Amnt"

 05 29 TROSOR S9(6,2) C PRO
03 40 " Cash-Amnt"
 05 40 TROSCH S9(6,2) C PRO
14 02 "Account Manager" NSC
 14 18 TRACMG X(15) NSC
15 02 "Reference" NSC
 15 18 TRREFN X(11) NSC
*
ENDWINDOW
ENDFRAME
PAGE "CUST CUST MAINTENANCE"

FRAME CUST "Customer Entry & Maintenance" *****************************
** **

*
ACCESS CU
*
WINDOW W1 USING CU **
** **
** C U S T O M E R W I N D O W **
** **

*
\This window is used for entry and maintenance of customer records.
\Information may be displayed in the order of customer number, name
\or contact. Also displayed is the customer address, telephone
\number and, in protected fields, the outstanding orders and cash.
*
REPEAT
AUTOPGE
LINE 4 13
BASE AT 5 15
SCROLL 8 BY 1 SPLIT 1 OFFSET 1

02 02 "Customer"
03 02 "Number/Name"
 05 02 CUCSNO X(6) CHK NOE
 05 09 CUNAME X(20)
02 31 "__Total-Outstanding__"
03 31 "Order-Amnt"

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 172 of 241

 05 31 CUOSOR S9(6,2) C PRO
03 42 " Cash-Amnt"
 05 42 CUOSCH S9(6,2) C PRO
14 02 "Address" NSC
 14 10 CUADD1 X(20) NSC
 15 10 CUADD2 X(20) NSC
14 32 "Contact" NSC
 14 40 CUCONT X(12) NSC
15 32 "Phone" NSC
 15 40 CUPHON X(12) NSC
*

ENDWINDOW
ENDFRAME
PAGE "STCK STOCK MAINTENANCE"
FRAME STCK "Stock Entry & Maintenance " *******************************
** **

*
ACCESS ST
*
WINDOW W1 USING ST
*

\This window is used for the entry and maintenance of stock records.
\Records may also be retrieved, in three different sequences:
\
\ stock number
\ stock description
\ primary supplier number.
\
\Also displayed is the retail price, quantity in-hand and reserved,
\stock levels 1,2,3 and, in protected fields, the outstanding
\quantities from sales and purchase orders.
*

AUTOPGE REPEAT
LINE 4 13
BASE AT 4 7
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
*
02 02 "Stock"
03 02 "Number"
 05 02 STSTNO X(6) CHK NOE
 05 10 STDESC X(20)
02 31 "Primary"
03 31 "Supplier"

 05 32 STSUP1 X(6)
02 43 "Retail"
03 43 "Price"
 05 40 STRCRP 9(6,2) C
02 51 "_____ Units ____"
03 51 "On-hand"
 05 51 STOHND S9(6) C
03 60 "reservd"
 05 60 STRSVD S9(6) C
14 02 "Outstanding Orders....."
15 02 "Purchase Orders" NSC

 15 18 STPORD S9(6) C NSC PRO
16 02 "Sales Orders" NSC
 16 18 STSORD S9(6) C NSC PRO
14 32 "Bin-No"
 15 32 STBINO X(6) NSC
14 44 "Price Level-1"
 14 58 STLVL1 9(6,2) C NSC
15 50 "Level-2" NSC
 15 58 STLVL2 9(6,2) C NSC
16 50 "Level-3" NSC
 16 58 STLVL3 9(6,2) C NSC

*
03 10 "Description"
ENDWINDOW
ENDFRAME
PAGE "INVC INVOICE ENTRY"
FRAME INVC "Sales Invoice Entry & Maintenance" ************************

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 173 of 241

** **

*
ACCESS CU TR IN
*
WINDOW W1 USING IN CU TR **
** **
** S A L E S I N V O I C E W I N D O W **
** **

*

\This window is used for the entry and maintenance of sales invoices.
\Records may be displayed in four different sequences:
\
\Invoice number, Invoice-Date, Customer number, and Territory number.
\
\When a new invoice record is created, you must enter the appropriate
\customer and territory numbers. If you are not sure of these numbers
\you may key $TR-UF1 at the customer number or territory number field
\to display a pop-up enquiry window.
*
REPEAT

LINE 4 13
BASE AT 4 11
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Customer"
03 03 "Number"
 05 03 INCSNO X(6) UF1 NOE
15 02 "Customer's Name :" NSC
 15 21 CUNAME X(20) NSC DIS
02 12 "Invoice"
03 12 "Number"
 05 12 ININVC X(6) CHK NOE

03 22 "Date"
 05 20 INDATE D
03 29 "Territory"
 05 31 INTRNO X(4) UF1
16 02 "Territory's Name :" NSC
 16 21 TRNAME X(20) NSC DIS
03 40 "GL-Code"
 05 40 INGLCD X(6)
02 51 "Invoice"
03 52 "Amount"
 05 49 INIAMT S9(5,2) C NOE

14 02 "Invoice Narrative:" NSC
 14 21 INDESC X(28) NSC NUL
*
PAGE
ROUTINES SECTION ***
** **
**
*
V-INCSNO. * VALIDATE CUSTOMER NUMBER...
 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W2 * - ENTER CUSTOMER POP-UP

 ON EXCEPTION EXIT WITH 1 * EXCEPTION MEANS <BCK> KEYED
 MOVE CUCSNO TO INCSNO * ELSE SAVE SELECTED CUST #
 EXIT * ALL DONE
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH CUCSN KEY INCSNO PROTECT RETRY 3 * FETCH CUST REC & PROTECT IT
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Customer Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*
V-INTRNO. * VALIDATE TERRITORY NUMBER...

 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W3 * - ENTER TERRITORY POP-UP
 ON EXCEPTION EXIT WITH 1 * EXCEPTION MEANS <BCK> KEYED
 MOVE TRTRNO TO INTRNO * ELSE SAVE SELECTED TERR #
 EXIT * ALL DONE
 END

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 174 of 241

 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH TRTRN KEY INTRNO PROTECT RETRY 3 * FETCH TERRITORY RECORD
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Territory Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*
D-INDATE. * DEFAULT INVOICE DATE
 MOVE $$DATE TO INDATE * TO TODAYS DATE
 EXIT *
*
ENDWINDOW

*
PAGE
WINDOW W2 USING CUNAM ********** C U S T O M E R P O P - U P *******
* **
*
\This optional window is used to select a customer during invoice
\entry. You may display customer records using the usual enquiry
\facilities, and select one from the displayed list.
*
POP-UP SEL
AUTOPGE

SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
LINE 4 10
BASE AT 10 45
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
*
02 02 "Customer"
 05 02 CUCSNO X(6)
03 02 "Number/Name"
 05 09 CUNAME X(20)
 11 02 CUADD1 X(20) NSC

 12 02 CUADD2 X(20) NSC
*
ENDWINDOW
*
*
WINDOW W3 USING TRNAM ********** T E R R I T O R Y P O P - U P ****
* **
*
\This optional window is used to select a territory during invoice
\entry. You may display territory records using the usual enquiry
\facilities, and select one from the displayed list.

*
POP-UP SEL
AUTOPGE
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
*
LINE 4 10
BASE AT 10 45
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"
 05 02 TRTRNO X(4)

03 02 "Number/Name"
 05 09 TRNAME X(20)
11 02 "Account Manager" NSC
 12 02 TRACMG X(15) NSC
11 18 "Reference" NSC
 12 18 TRREFN X(11) NSC
*
ENDWINDOW
ENDFRAME
PAGE "CENQ CUSTOMER/INVOICE ENQUIRY"
FRAME CENQ "Customer Invoice Enquiry" ********************************

** **
**
*
ACCESS IN CU
*
WINDOW W1 USING CU **

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 175 of 241

** **
** CUSTOMER SELECTION WINDOW.. **
** **

*
\This window is used to select a customer using the usual enquiry
\facilities. Once a customer has been selected, the next window
\is used to display that customer's invoices.
*
SEL
SEQUENCE EXIT W2

REPEAT UNTIL CURRENT RECORD
*
LINE 3
BASE AT 4 6
02 02 "Customer Number"
 02 19 CUCSNO X(6)
02 30 "Name"
 02 36 CUNAME X(20)
04 02 "Contact"
 04 11 CUCONT X(12)
05 02 "Address"

 05 11 CUADD1 X(20)
 06 11 CUADD2 X(20)
04 33 "Telephone"
 04 44 CUPHON X(12)
05 33 "O/S-Order"
 05 46 CUOSOR S9(6,2) C
06 33 "O/S-Cash"
 06 46 CUOSCH S9(6,2) C
*
ENDWINDOW
PAGE

WINDOW W2 USING IN DEPENDENT ON CU ***********************************
** **
** INVOICE DISPLAY WINDOW.. **
** **
**
*
\This window is used to display invoices for the selected customer.
\Invoices are displayed in invoice number order.
*
SEQUENCE W1 CLW
REPEAT

ENQ POP-UP AUTOPGE
*
LINE 4
BASE AT 8 11
SCROLL 10 BY 1 SPLIT 1 OFFSET 1
02 02 "Invoice"
03 02 "Number"
 05 02 ININVC X(6)
03 11 "Date"
 05 09 INDATE D
03 18 "Description"

 05 18 INDESC X(28)
03 46 "GL-Code"
 05 47 INGLCD X(6)
03 57 "Amount"
 05 54 INIAMT S9(5,2) C
*
ENDWINDOW
ENDFRAME
PAGE "ORDER ORDER ENTRY "
FRAME ORDER "Order Entry and Maintenance" ******************************
** **

**
*
ACCESS CU TR OR OL ST
*
DATA DIVISION
*

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 176 of 241

77 STLVL REDEFINES STLVL1 OCCURS 3 PIC 9(6,2) C * TO INDEX PRICE LEVELS.
*
WINDOW W1 USING ORORD CU TR
*
\This frame is used for entry and maintenance of orders. The initial Order
\Header window may be used to select an existing order for modification or
\to create a new order. When a new order is created, you must enter the
\appropriate customer and territory numbers. If you are not sure of these
\numbers, you may key $TR-UF1 at the customer Number or territory Number
\field to display an enquiry window.
\

\The initial Order Header window is then followed by the Order Line window
\where lines belonging to the order may be created or displayed.
*
ADD MNT * ENABLE ADD,ENQ/SEL & MNT MODES
REPEAT UNTIL CURRENT RECORD * FWD EXIT ONLY WITH LOCKED RECORD
ENABLE NXT * ALLOW <NXT> FOR QUICK SELECTION
LINE 3 6
BASE AT 3 3
02 02 "Order Number"
 02 20 ORORDN X(6) CHK NOE
02 42 "Order Total"

 02 55 ORTOTL 9(6,2) C PRO
04 02 "Customer Number"
 04 20 ORCSNO X(6) UF1 NOE
 04 42 CUNAME X(20) DIS
05 02 "Territory Number"
 05 20 ORTRNO X(4) UF1 NOE
 05 42 TRNAME X(20) DIS
07 02 "Delivery Address"
 07 20 ORDAD1 X(20) TAB NUL
 08 20 ORDAD2 X(20) NUL
09 02 "Contact"

 09 20 ORCONT X(12) NUL
10 02 "Telephone"
 10 20 ORPHON X(12) NUL
07 42 "Order Date"
 07 56 ORORDT D NUL
08 42 "Required Date"
 08 56 ORRQDT D
09 42 "Price Code"
 09 63 ORPRCD 9 C NOE
10 42 "Notes"
 10 54 ORDLNO X(10) NUL

*
PAGE
ROUTINES SECTION **
** **

*
V-ORCSNO. * VALIDATE CUSTOMER NUMBER...
 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W3 * - ENTER THE CUST POP-UP
 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED
 MOVE CUCSNO TO ORCSNO * - ELSE SAVE SELECTED CUSTOMER #

 EXIT * - ALL DONE.
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH CUCSN KEY ORCSNO PROTECT RETRY 3 * FETCH CUST REC & PROTECT IT
 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Customer Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
*
V-ORTRNO. * VALIDATE TERRITORY NUMBER...
 IF $FUNC = 1 * IF UF1
 ENTER WINDOW W4 * - ENTER THE TERRITORY POP-UP

 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED
 MOVE TRTRNO TO ORTRNO * - ELSE SAVE SELECTED CUSTOMER #
 EXIT * - ALL DONE.
 END
 IF $MODE = 1 EXIT * NO VALIDATION IN ENQ MODE
 FETCH TRTRN KEY ORTRNO PROTECT RETRY 3 * FETCH THE TERITORY RECORD

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 177 of 241

 ON NO EXCEPTION EXIT * IF THERE ALL DONE
 ERROR " Territory Locked or Not Found "* ELSE AN ERROR
 EXIT WITH 1
*
D-ORORDT. * DEFAULT ORDER DATE
 MOVE $$DATE TO ORORDT * TO TODAYS DATE
 EXIT
*
V-ORPRCD. * VALIDATE THE PRICE-CODE
 IF ORPRCD POSITIVE * MUST BE > 0
 IF ORPRCD < 4 EXIT * .. AND < 5

 END
 ERROR " Price Code must be in range 1 TO 3 "
 EXIT WITH 1
*
ENDWINDOW
PAGE
WINDOW W2 USING OL$SQ DEPENDANT ON OR ***************************************
** **
** O R D E R L I N E I T E M W I N D O W . . . **
** **

*
\This window is used to add line items to the current order, or to amend
\existing order lines. When a new order line is added, the stock number
\of the order line must be entered. If you do not know the appropriate
\stock number key $TR-UF1 at the Stock Number field to display the stock
\selection window.
\
\Keying $TR-NXT at any stage completes the order, and another order may
\then be entered or amended.
*
POP-UP * THIS WINDOW POPS UP

SEQUENCE EXIT CLW, EXIT CLW * EXIT TO PROCEDURE DIVISION
AUTOPGE * DISPLAY 1ST PAGE ON ENTRY
REPEAT UNTIL NXT * LOOP TILL <NXT> KEYED.
*
LINE 4
BASE AT 8 8
SCROLL 8 BY 1 SPLIT 1 OFFSET 1
02 02 "Stock"
03 10 "Description"
 05 02 OLSTNO X(6) UF1 CHK NOE
03 02 "Number"

 05 10 OLDESC X(20) DIS
02 33 "Date"
03 33 "Reqd"
 05 31 OLDTRQ D
02 45 "Unit"
03 44 "Price"
 05 41 OLPRCE 9(5,2) C NOE
02 51 "Order"
03 52 "Qty"
 05 51 OLORQT 9(5) C NOE
02 62 "Line"

03 61 "Amount"
 05 58 OLLAMT S9(5,2) C DIS
PAGE
ROUTINES SECTION ***
** **
**
*
V-OLSTNO. * VALIDATE STOCK #
 MOVE ORORDN TO OLORDN * INITIALISE THE ORDER NUMBER
 MOVE ORTRNO TO OLTRNO * THE TERRITORY NUMBER
 MOVE ORCSNO TO OLCSNO * THE CUSTOMER NUMBER

 IF $FUNC = 1 * IF 1 KEYED..
 ENTER WINDOW W5 * - ENTER THE STOCK POP-UP
 ON EXCEPTION EXIT WITH 1 * - EXCEPTION MEANS <BCK> KEYED
 MOVE STSTNO TO OLSTNO * - ELSE SAVE STOCK#
 EXIT * - ALL DONE.
 END *

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 178 of 241

 IF $MODE = 1 EXIT * SUPPRESS VALID'N IN ENQ MODE
 FETCH STSTN KEY OLSTNO PROTECT RETRY 3 * FETCH THE STOCK RECORD
 ON EXCEPTION * EXCEPTION MEANS...
 ERROR " Stock record Locked or Not Found " * ELSE AN ERROR
 EXIT WITH 1
 END
 MOVE STDESC TO OLDESC * MOVE DESCRIPTION TO O/L RECORD
 EXIT
*
D-OLDTRQ. * DEFAULT DATE REQUIRED
 MOVE ORRQDT TO OLDTRQ * SET LINE DATE TO HEADER DATE.

 EXIT
*
D-OLPRCE. * DEFAULT UNIT PRICE
 MOVE STLVL(ORPRCD) TO OLPRCE * SELECT PRICE AS PER PRICE LEVEL
 EXIT * AND EXIT
*
V-OLORQT. * VALIDATE ORDER QUANTITY
 MULTIPLY OLORQT BY OLPRCE GIVING OLLAMT
 ON EXCEPTION * MAKE SURE NOT TOO BIG!!
 OR OLLAMT NOT POSITIVE * VALIDATE OUTSTANDING QTY AND
 OR OLLAMT > 99999 * CALCULATE LINE VALUE.

 ERROR " Invalid Qty or Price "
 EXIT WITH 1 * EXIT WITH 1 INDICATES INVALID
 END *
 EXIT * NORMAL EXIT MEANS ALL OK.
*
R-WRITE. * INITIALISE PRIOR TO WRITE
 MOVE OLORQT TO OLOSQT * O/S QTY = ORIGINAL QTY
 EXIT
*
ENDWINDOW
PAGE

**
** **
** MISC POP-UPS.... **
** **
**
*
WINDOW W3 USING CUNAM * C U S T O M E R P O P - U P
*
\This optional window is used to select a customer during entry of the
\Order Header window. You can display customer records using the usual
\Enquiry facilities, and select one from the displayed list.

*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
AUTOPGE
*
LINE 4 10
BASE AT 11 43
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Customer"
 05 02 CUCSNO X(6)

03 02 "Number/Name"
 05 09 CUNAME X(20)
 11 02 CUADD1 X(20) NSC
 12 02 CUADD2 X(20) NSC
ENDWINDOW
*
WINDOW W4 USING TRNAM * T E R R I T O R Y P O P - U P
*
\This optional window is used to select a Territory during entry of the
\Order Header window. You can display Territory records using the usual
\Enquiry facilities, and select one from the displayed list.

*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD
AUTOPGE
*

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 179 of 241

LINE 4 10
BASE AT 11 42
SCROLL 5 BY 1 SPLIT 1 OFFSET 1
02 02 "Territory"
 05 02 TRTRNO X(4)
03 02 "Number/Name"
 05 09 TRNAME X(20)
11 02 "Account Manager"
 12 02 TRACMG X(15) NSC
11 18 "Reference"
 12 18 TRREFN X(11) NSC

ENDWINDOW
PAGE
WINDOW W5 USING STDES * S T O C K P O P - U P
*
\This optional window is used to select a Stock record during entry of
\order line items. You can display stock records using the usual
\Enquiry facilities, and select the required stock item from the list.
*
POP-UP SEL
SEQUENCE EXIT CLW, EXIT CLW
REPEAT UNTIL CURRENT RECORD

AUTOPGE
*
LINE 4 8
BASE AT 12 40
SCROLL 3 BY 1 SPLIT 1 OFFSET 1
02 02 "Stock"
03 02 "Number/Description"
 05 02 STSTNO X(6)
 05 09 STDESC X(20)
09 02 "Quantity on Hand" NSC
 09 22 STOHND S9(6)C NSC

10 02 "On-hand/Reserved" NSC
 10 22 STRSVD S9(6)C NSC
11 02 "Retail Price" NSC
 11 20 STRCRP 9(6,2)C NSC
*
ENDWINDOW
*
PROCEDURE DIVISION ***
** **
** ALL THE WINDOWS ARE CONTROLLED HERE! **
** **

**
*
AA-000. ENTER WINDOW W1 * ENTER ORDER HEADER WINDOW
 ON EXCEPTION EXIT WITH 1 * <BCK> EXIT..
*
 ENTER WINDOW W2 * ENTER LINE-ITEM WINDOW
 ON EXCEPTION * IGNORE <BCK>
 END *
 DISPLAY WINDOW W1 * REDISPLAY HEADER TO UPDATE
 GOTO AA-000 * THE ORDER TOTAL & RE-ENTER.
*

ENDFRAME
PAGE "REP01 STOCK STATUS REPORT"
FRAME REP01 "Stock Status/ Forward Orders Report" *********************
** **

*
ACCESS CU ST OL * CUST/STOCK/ORDER LINE RECS.
*
DATA DIVISION
*
77 Z-ORQT PIC S9(9) COMP * TOTAL # ON ORDER

77 Z-OSQT PIC S9(9) COMP * TOTAL O/S QTY
77 Z-LAMT PIC S9(9,2)COMP * TOTAL VALUE OF ORDERS
*
PF H1 * PRINT FORMAT FOR HEADER
START AT 1 * PRINT AT LINE 1 ONLY
*

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 180 of 241

01 01 "SPEEDBASE V3 DEMONSTRATION SYSTEM"
01 52 "STOCK STATUS - FORWARD ORDERS"
01 107 "DATE:" 01 113 $$DATE
01 123 "PAGE:" 01 128 $PGNO
03 10 "STOCK# DESCRIPTION"
03 40 "REQ-DATE ORDER# CUST# CUSTOMER NAME"
03 86 "ORDER-QTY O/S-QTY VALUE"
ENDFORMAT
*
PF D1 HEADER H1 * PRINT FORMAT FOR DETAIL LINE
START FROM 5 * PRINT FROM LINE 5 ONWARDS

*
01 10 OLSTNO * STOCK#
01 19 OLDESC * DESCRIPTION
01 40 OLDTRQ * DATE REQ'D
01 19 OLDTRQ * DATE REQ'D
01 50 OLORDN * ORDER NUMBER
01 58 OLCSNO * CUSTOMER NUMBER
01 65 CUNAME * CUSTOMER NAME
01 90 OLORQT ADD(Z-ORQT) * ORDER QUANTITY
01 100 OLOSQT ADD(Z-OSQT) * OUTSTANDING QTY
01 109 OLLAMT ADD(Z-LAMT) * LINE TOTAL

ENDFORMAT
*
PF T1 HEADER H1 * FORMAT FOR TOTAL LINES
START FROM 5 * PRINT FROM LINE 5 ONWARDS
*
01 40 "ON-HAND:-" 01 49 STOHND
02 40 "RESERVD:-" 02 49 STRSVD
01 58 "P-ORDRS:-" 01 67 STPORD
02 58 "S-ORDRS:-" 02 67 STSORD
02 87 "========" 01 87 Z-ORQT S9(7)
02 97 "========" 01 97 Z-OSQT S9(7)

02 107 "===========" 01 107 Z-LAMT S9(7,2)
03 01 ""
ENDFORMAT
PAGE
WINDOW S1 * A C C E P T O P T I O N S
*
\This frame produces the Stock Status Forward Orders report. It gives
\an example of the use of the PF construct in developing report pro-
\grams.
*
LINE 4

BASE AT 10 21
02 02 "First Stock# Required"
 02 32 S1STK1 X(6) NUL
03 02 "Last Stock# Required"
 03 32 S1STK2 X(6)
05 02 "Restart from page No"
 05 32 S1RSPG 9(4) C NUL
*
ROUTINES SECTION
*
V-S1STK1. * VALIDATE FIRST STOCK#

 FETCH FIRST OLSTN KEY S1STK1 NOLOCK* SEE IF ANY AT ALL..
 ON EXCEPTION * IF STOCK # DOES NOT EXISTS
 AND $$COND = 4 * AND IT'S END OF FILE
 ERROR " Invalid Stock Number " * - MUST BE INVALID
 EXIT WITH 1 *
 END
 EXIT
*
D-S1STK2. * DEFAULT SECOND STOCK#
 MOVE "ZZZZZZ" TO S1STK2 * CAN'T BE HIGHER THAN THAT.
 EXIT

*
V-S1STK2. * VALIDATE SECOND STOCK #
 IF S1STK2 NOT < OLSTNO EXIT * OK IF >= TO 1ST ITEM FOUND
 ERROR " No Items to Print " * ELSE NOTHING TO PRINT
 EXIT WITH 1
*

Appendix C - Sample Application

Global Speedbase Development Manual V8.1 Page 181 of 241

R-PROCESS.
*
 MOVE S1RSPG TO $RSPG * SET UP START FROM PAGE
 DO UNTIL OLSTNO > S1STK2 * PRINT EACH STOCK#
 MOVE 0 TO Z-ORQT Z-OSQT Z-LAMT * CLEAR TOTALS
 FETCH STSTN KEY OLSTNO NOLOCK * FETCH THE STOCK RECORD
 DO * NOW PROCESS EACH LINE
 FETCH CUCSN KEY OLCSNO NOLOCK * FETCH CUST RECORD
 PRINT D1 * PRINT THE LINE ITEM
 FETCH NEXT OLSTN KEY OLSTNO NOLOCK * GET NEXT LINE ITEM
 ON EXCEPTION FINISH * NO MORE FOR THIS ITEM

 ENDDO * ALL ORDER LINES DONE
 PRINT T1 * SO PRINT THE TOTALS
 ENDDO * DO THE NEXT STOCK#
 EXIT * REPORT FINISHED.
*
ENDWINDOW
ENDFRAME
ENDSOURCE

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 182 of 241

Appendix D - EXIT and STOP Codes

This appendix documents the EXIT and STOP errors that may occur during
the running of a Speedbase application. When the Speedbase
Presentation Manager detects an error of this type, the EXIT or STOP
code is displayed at the baseline. Please report these error messages
to your software supplier.

D.1 EXIT Codes
This sections describes EXIT codes generated by the Speedbase
Presentation Manager. EXIT codes occur when an exception condition
arises within your Speedbase application program and the exception has
not been trapped by an ON EXCEPTION or ON OVERFLOW statement. This
causes the following error message to be displayed:

$91 TERMINATED - EXIT nnnnn

The number nnnnn is the exit code, the meanings of which are described
later in this section. It should be noted that only exit conditions
that are produced by the Speedbase Presentation Manager are documented
here. Those produced by the GSM and various system routines are
described in detail in the GSM Utilities Manual.

EXIT 25301 A window was terminated by the <BCK> function.

EXIT 25302 A window (or series of windows) was terminated by the

use of the <ABO> function.

EXIT 253nn An exception condition was returned by a window Process

Routine in order to terminate the window.

EXIT 254nn An accept operation was terminated using a function
other than <RET>.

EXIT 25501 A record locked exception was returned following a GET,

READ, or FETCH statement coded without the NOLOCK clause.

EXIT 25502 Requested record key not found. The index key specified

in a READ or FETCH statement was not found. In sequential
operations in V8.1 and later the next or prior record is
returned unlocked.

EXIT 25503 Exception conditions 25501 and 25502 have occurred

simultaneously using the READ or FETCH FIRST, NEXT, LAST or
PRIOR statements.

EXIT 25504 An end-of-file or start-of-file condition has occurred

when using a READ or FETCH FIRST, NEXT, LAST or PRIOR
statement. This condition can also occur with the GET
statement, when the requested RRN key is beyond the logical
end-of-file of the target record type.

EXIT 25505 An attempt has been made to DELETE a record with an

active (i.e. non-zero) servant record group.

EXIT 25506 The target of a WRITE statement contained a primary

index key which already existed on the database.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 183 of 241

EXIT 25507 A WRITE statement could not be completed because no
free data records remain in the database for the target
record type.

EXIT 25508 The RRN key coded for a GET statement specified a
deleted record.

EXIT 25511 A date conversion from display to computational format

using a MOVE statement failed because the display format
date was invalid.

EXIT 25513 A MOUNT statement could not be fulfilled by the
operator.

EXIT 25520 The routine B$CHK has detected that the Speedbase
system area $BASYS is loaded.

EXIT 25521 An attempt was made to open the same database twice

using database open routine B$OPN.

EXIT 25522 The database open routine B$OPN was unable to open the

specified database either because it was not present on the
specified unit, or the file-type was incorrect.

EXIT 25523 The data-file(s) belonging to a database could not be

opened by the database open routine B$OPN. This problem is
usually caused by incorrect unit assignment.

EXIT 25524 A database could not be opened because it was already

exclusively opened by another partition.

EXIT 25525 An I/O error occurred during database open.

EXIT 25526 Insufficient memory on user stack to open database.

EXIT 25527 A call on B$OPN could not complete because the DB index

file could not be opened within the UNIX directory, and the
resulting error was not trapped.

EXIT 25528 A call on B$OPN could not complete because a C-ISAM

channel could not be initialised, and the resulting error
was not trapped. This may occur when insufficient memory is
available.

EXIT 25529 A duplicate key condition has been detected within a C-

ISAM file and the resulting exception was not trapped. The
database should be rebuilt.

EXIT 25530 The system area $BASYS could not be loaded prior to

executing a frame. This occurs if the program $BASYS is not
found, an I/O error occurs, or if there is insufficient room
on the user stack to load this module.

EXIT 25531 Invalid display formatting codes passed to qualifier
definition routine B$QLN.

EXIT 25532 The display format codes passed to B$QLN specify

positive or negative value highlighting (<>DC+-) although
the target operand's format is un-signed.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 184 of 241

EXIT 25542 An attempt has been made to run a frame compiled using
the V4.0 development system within the V3.0 Speedbase
Presentation Manager.

EXIT 25543 An attempt has been made to execute a frame which is

not at the anticipated depth in an overlay structure. For
example, this will happen when using the SEQUENCE statement
to transfer control between frames at different levels in an
overlay structure.

EXIT 25544 An attempt has been made to execute a dependent frame

which was not compiled with the currently loaded controlling
frame.

EXIT 25546 The system area $BASYS could not be loaded prior to

executing a frame. This occurs if the program $BASYS is not
found, an I/O error occurs, or if there is insufficient room
on the user stack to load this module.

EXIT 25547 A frame load has failed because the required program

was not found, or was too large to fit into the available
memory. This exit condition will also result if an I/O error
occurs during loading.

EXIT 25548 The field name coded in a call on the B$WRJ right

justification routine was not found in the coded window-id.

EXIT 25549 A call on B$XCL failed because the routine could not

provide exclusive access, and the resulting exception was
not trapped.

EXIT 25550 A call on B$STA or B$ST2 failed because the required

database was not open, and the resulting exception was not
trapped.

EXIT 25551 XA$FAM exception condition caused by unusual UNIX file

processing condition. $$RES holds corresponding result code.
This error will not occur in application programs.

D.2 STOP Codes
This section describes STOP codes generated by the Speedbase
Presentation Manager. STOP codes occur when a serious processing
condition arises within your application program, from which recovery
is not possible. This causes the following error message to be
displayed:

$91 TERMINATED - STOP nnnnn

The number nnnnn is the stop code as listed and described in detail
later in this section. Note that only stop codes produced by the
Speedbase Presentation Manager are documented here. The GSM and
various system routines also produce stop codes. These are described
in detail in the GSM Utilities Manual.

Note that certain STOP codes can arise during error checking performed
by the Speedbase Presentation Manager, and indicate that the database
is corrupt. In this event the database should be restored or rebuilt
before any further processing is performed.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 185 of 241

STOP 25301 An I/O operation has been performed on the I/O channel
of a window's target record type during execution of the
window.

STOP 25302 An unsupported I/O operation has been attempted by the

window processor. This error indicates a system software
malfunction.

STOP 25303 A clear operation has been attempted on a window that
has not yet been displayed.

STOP 25304 A DISPLAY WINDOW . . TEXT statement has been executed

when the text of the window was already displayed.

STOP 25305 An attempt has been made to display a window using the

DISPLAY WINDOW statement while the I/O channel of the
window's target record type did not contain a record.

STOP 25306 A recursive call has been made on a window that is

executing. For example, this error will occur if a window is
cleared from the routines section while still executing as a
result of a prior entry to the window.

STOP 25307 The index key length coded within a window does not

match the key-length of the target record type. This error
should not occur when processing records stored on the
database.

STOP 25308 A CLEAR statement has been performed while windows are

executing. This error can also occur if a dependent frame
without the NOCLEAR option has been EXECed while windows are
still active in the controlling frame.

STOP 25501 Database not open or generation number mismatch. This

condition arises when a database required by the loaded
program is not open, or the open data-base has a generation
number different from that expected by the program. This
error occurs if old, superseded versions of programs are
run.

STOP 25502 Rewrite or delete without current record. An

application program has attempted to REWRITE or DELETE a
record which was not locked at the time the instruction was
executed.

STOP 25503 I/O area outside current partition. A database access

verb has specified a data record area which is not within
the current program partition. Suspect program file
corruption or a compiler malfunction.

STOP 25504 Primary index key modification. A REWRITE instruction

has attempted to modify the target record's primary index
key. This is illegal.

STOP 25505 Data record not locked. This stop code indicates an

internal error within the Speedbase DBMS. The M$DW I/O
routine has detected a data re-write without the presence of
a record level lock.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 186 of 241

STOP 25506 Master record not locked. A WRITE or REWRITE
Instruction has taken place in which master records to be
linked to the target record were not locked. The DBMS has
recovered from this error and completed the I/O request
correctly before terminating the program with this code.

STOP 25507 GET key is negative. The RRN specified in the GET

verb's KEY clause was negative. This is invalid. This error
can also arise if a GET statement is coded without KEY
clause. This occurs when no I/O has so far taken place, or
the last retrieval returned an end-of-file or start-of-file
condition.

STOP 25513 Illegal line or col. The line or column number coded as

a variable in a DISPLAY or ACCEPT... LINE statement is
invalid. The number was either not positive or else exceeded
the boundaries of the screen.

STOP 25514 PF structure exceeds 16 levels. An attempt has been

made to execute a PF construct with more than 16 levels of
headers or trailers using the PRINT statement. The PF
statement may specify a PF as a header or trailer, and this
PF may itself specify a further PF as a header or trailer.
However, this is limited to a maximum of 16 levels of PFs.

STOP 25515 An internal error has been detected within the database

rebuild utility, and it is likely that this is caused by an
programming problem within this program. This problem could
alternatively be caused by extremely serious corruption
within the database or database dictionary files.

STOP 25530 An attempt has been made to run a frame directly,

rather than using the $BA command.

STOP 25540 An unsupported ACCEPT or DISPLAY statement call has

been made by a Global Cobol module linked into a Speedbase
frame.

STOP 25541 An indexing error has occurred within a copy-library

specified during a compilation using $SDL. The copy-library
is probably corrupt.

STOP 25550 An internal system error has occurred. You should write

down the details from the screen and note in detail what you
were doing just before the stop code occurred. This
information should be forwarded to your software supplier
for analysis.

STOP 25551 Speedquery was unable to find the database dictionary

(or it was in use) on the same volume as the database
itself. Make sure that the dictionary is available to
Speedquery.

STOP 25552 An irrecoverable I/O error occurred while reading the

database dictionary. This probably means that the dictionary
has become corrupted and should be restored from backup.
Care should be taken to ensure that the correct version is
recovered.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 187 of 241

STOP 25553 Speedquery has exhausted the available memory during
the execution of a critical part of the query and was unable
to recover. You should simplify the query or increase the
user partition size to obtain more memory.

STOP 25554 An irrecoverable I/O error has occurred while trying to

read or write the query work file. This could be caused by a
bad track on the $P subvolume. You should verify the volume
before continuing.

STOP 25555 Speedquery was unable to create a work file large

enough for the current query. You should allocate more file
space on the current $P volume before restarting the query.

STOP 25556 Speedquery has detected a corrupt database index. You

should perform a rebuild or a restore to recover the index
file.

STOP 25557 Speedquery has detected that the database data files

are corrupt. You should perform a rebuild or a restore to
recover the database.

STOP 25558 Speedquery has detected that the saved query file

requested is corrupt. You should perform a restore to
recover the query from backup.

STOP 25559 Speedquery was unable to find the saved query
requested.

STOP 25560 Incompatible saved query. Speedquery has detected that

the database dictionary has been modified since the query
was saved. You must re-develop the query.

STOP 25561 Speedquery was unable to open the print file. This

could be caused by a system error, no room on the spool
unit, or no room available on the $PR volume. Please check
before continuing.

STOP 25562 An irrecoverable I/O error occurred while trying to

write to the print file. This could be caused by a system
corruption, lack of space on the spool unit, lack of space
on the allocated $PR subvolume, or a hardware error..

STOP 25563 The DX file created to hold the database structure is

too small. This is caused by an excessively complex
database. Contact your software supplier with the details.

STOP 25564 A bad header was found in the dictionary. This may mean

that the dictionary has somehow become corrupted and will
have to be restored from backup. Care should be taken to
ensure that the correct version is recovered.

STOP 25565 Speedquery was unable to read the dictionary. This may

mean that the dictionary has somehow become corrupted and
will have to be restored from backup. Care should be taken
to ensure that the correct version is recovered. This error
may also be caused by a bad disk track, in which case you
should verify the dictionary.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 188 of 241

STOP 25566 An irrecoverable I/O error occurred while opening or
closing the DX file. This could be caused by a system
corruption, a corrupt DX file, or a bad disk track. Verify
the subvolume, then delete the existing DX file. When re-
started, Speedquery automatically recreates the DX file.

STOP 25567 An irrecoverable I/O error occurred while reading or

writing the DX file. This could be caused by a system
corruption, a corrupt structure file, or a bad disk track.
You should verify the subvolume then delete the existing DX
file. When restarted Speedquery will recreate the DX file.

STOP 25568 Insufficient room for the DX file on the database

subvolume. Speedquery needs 4.5 Kbytes of spare space to
create the DX file. You should allocate the space then
restart Speedquery.

STOP 25569 An I/O error occurred while trying to read the list of

available files on the $P subvolume. This is usually caused
by a corrupt directory. Please check and rectify before
continuing.

STOP 25570 An I/O error occurred while reading or writing the sort

work file on the SQW subvolume. Verify the subvolume before
continuing.

STOP 25571 An internal system error has occurred while trying to

perform a sort. You should write down the details from the
screen and note in detail what you were doing just before
the STOP code occurred. This information should be forwarded
to your software supplier for analysis.

STOP 25580 Speedbase was unable to open the pop-up image swap file

required by the last loaded frame. This will occur if there
is insufficient free space on logical unit "BAW", or if an
I/O error occurs during opening of the swap-file.

STOP 25581 An I/O error has occurred during swap-file processing.

This may be due to a disk error.

STOP 25582 Using the BCDB, BXCL or B$XSH routines, an attempt

was made to access a database which was not open at the time
of the call.

STOP 25583 I/O error in B$XFAM. The UNIX error result code will

have been displayed immediately before this stop code. This
error will not occur in application programs.

STOP 25584 Unsupported I/O Request in XA$FAM. Internal Systems
Software error.

STOP 25586 The next free data-record slot was permanently locked

during a WRITE operation. The database should be restored or
rebuilt before any further processing is performed.

STOP 25587 Find exceeds 16 IDX Levels. A random index search has

exceeded 16 levels of index. The database should be restored
or rebuilt before any further processing is performed.

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 189 of 241

STOP 25588 Dummy high not found in IDB scan. The HIGH-VALUES index
terminator was not found during an index scan. The database
should be restored or rebuilt before any further processing
is performed.

STOP 25589 GVA over/underflow. A WRITE, REWRITE or DELETE

statement has caused a GVA field to overflow on one of the
associated Master records. GVA over-flow will occur if the
computational capacity of the field is exceeded. The
database should be restored or rebuilt before any further
processing is performed.

STOP 25590 Link fails by permanent lock. A WRITE or REWRITE

Instruction failed because one of the master records to be
linked was not locked. The DBMS recovery procedure was then
unable to recover from this error because the master record
to be linked was permanently locked by another partition.
The database should be restored or rebuilt before any
further processing is performed.

STOP 25591 Link fails by non-existent master. A WRITE or REWRITE

instruction failed because one of the master records to be
linked was not locked. The DBMS recovery procedure was then
unable to recover from this error because the master record
specified by the master access key did not exist. The
database should be restored or rebuilt before any further
processing is performed.

STOP 25592 Index key not found in delete. During the DELETE verb

processing, all index key entries referencing the record to
be deleted are normally removed. The DELETE verb was unable
to find one of these index keys during processing. See Note
1. The database should be restored or rebuilt before any
further processing is performed.

STOP 25593 Illegal index key. A WRITE or REWRITE verb has

attempted to create an index entry starting with a high-
values byte (#FF). This is illegal. The database should be
restored or rebuilt before any further processing is
performed.

STOP 25594 Free IDB pool exhausted. A WRITE or REWRITE instruction

required a free index block to complete an index key
addition. The free index pool was however empty. The
database should be restored or rebuilt before any further
processing is performed.

STOP 25595 Link to unused or deleted IDB. An error has been

detected where an index block is incorrectly linked to a
deleted or unused IDB. The database should be restored or
rebuilt before any further processing is performed.

STOP 25596 Irrecoverable I/O error has taken place during an IDB

or data transfer. The database should be restored or rebuilt
before any further processing is performed.

STOP 25597 Negative IDB or data record. The IDB/data transfer

routine within the DBMS has detected a request for a
negative record number. Internal error. The database should

Appendix D - EXIT and STOP codes

Global Speedbase Development Manual V8.1 Page 190 of 241

be restored or rebuilt before any further processing is
performed.

STOP 25598 File condition. A file condition has arisen during a

data transfer to or from disk, such as an attempt to
transfer data to or from an area out-side the database file
extents. The database should be restored or rebuilt before
any further processing is performed.

STOP 25599 IDB and record key mismatch. An index entry has been

read which does not match the index key held on the record
as stored on the database. The database should be restored
or rebuilt before any further processing is performed.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 191 of 241

Appendix E - The Speedbase Editor

The Speedbase editor utility $SDE, described in this appendix has two
main functions. The first is the traditional manipulation of text in a
new or pre-existing text file. The other main function is a specialist
one and concerns the creation and modification of the window displays
used in all Speedbase applications. In other words, it is a text
editor and a window editor.

$SDE is a full screen editor and allows you to add, delete, insert or
modify text in any position on the screen. The cursor is moved around
the screen using the cursor keys, up, down, left, right and the tab,
back-tab and <RET> keys.

The editor allows the simultaneous manipulation of up to three text
files, using the main text buffer and two hold buffers. It provides
facilities for you to copy and move blocks of text from one buffer to
another, and to delete blocks of text from a buffer. Buffers may be
merged into one another and may be copied to an external text file.
Text from an external text file may be merged into a buffer. You may
swap to any buffer at any time, to inspect or edit its contents, then
move on to another buffer, using these buffer facilities to perform
powerful and complex editing functions.

The editor allows you to move forwards or backwards through the entire
file without restriction and has no requirement, as some editors do,
for you to exit and restart the edit session. The complexity
associated with switching between modes (e.g. insert mode to
overstrike mode) common to most editors, has been eliminated. $SDE is
always in overstrike mode, with function keys used to insert
characters, lines, or blocks of text anywhere in the file. The editor
provides a full backup of the original input file on completion of an
edit session to ensure that in the event of a system failure you may
always return to the previous version of the text file.

Text searches are performed across the entire buffer from the current
position, eliminating the need to move to the top of the file to start
a full search. All text searches may be terminated on command, in the
case of an incorrectly initiated search for example. The editor also
provides a very powerful global replace function with single or
multiple replacements, in silent or full display mode, with or without
replacement validation. You may recover the last deleted line or block
of text, using the undelete and void block functions. A line may be
duplicated, split, appended to another line or centred on the screen.

This appendix is divided into seven sections. The introduction
describes the major functionality, benefits and restrictions of the
editor. Section E.2 describes how to run the utility and enter or exit
its amendment phase. Section E.3 describes the direct commands of the
editor in detail and Section E.4 the executable commands. Sections E.5
and E.6 describe window editing in detail and Section E.7 lists the
error and warning messages which may appear during the amendment
phase.

E.1 Editor Facilities
The editor makes extensive use of the keyboard's cursor and function
keys. These are set up using the Speedbase Presentation Manager
customisation utility. At any point in the operation of the editor you
may see which keys are available to carry out editing commands by

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 192 of 241

keying <HLP> to display the Speedbase help window. The commands
recognised by the editor fall naturally into two main groups, known as
direct and executable commands.

Direct commands are carried out directly a key is pressed. To see
which keys are assigned to each direct command simply key <HLP> while
editing. A standard Speedbase help window is displayed listing the
commands available and the associated keytop names. Figure E.1a shows
the screen that results from keying <HLP> while editing the sample
program S.V3DEMO, including typical key-top names:

Figure E.1a - Direct Command Help Window

If you use the key labelled Execute a command, F9 in the above
example, the editor enters executable command mode. The cursor moves
to the baseline and the command prompt is displayed:

C:

You may reply with any of the executable commands listed in Table
E.4a. A response of <RET> or <BCK> returns the cursor to its original
screen position.

E.1.1 Buffers
The editor has three buffers for the manipulation of text. Buffer 0 is
the main text buffer into which the input file is read on entry and
must be the buffer in use at the end of the edit session. Otherwise

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 193 of 241

the buffers are identical and you may use any of the direct or
executable commands, except commands A and E, in any buffer. Commands
allow you to move, delete, copy, save, read and merge text into
buffers and external files.

E.1.2 Backup
The editor keeps a backup of the file you are editing on the same
direct access volume as the input file. At the end of the editing
session the new version of the text file is given the name of the
input file which itself has the prefix of its file-id changed to B.
For example, if you edit the text file S.V3DEMO, at the end of the
edit session the modified file is named S.V3DEMO and the old version
of it is named B.V3DEMO.

E.1.3 Automatic Insert
As you add text at the end of file, EOF for short, the editor extends
the file automatically. This eliminates the need for you to insert new
lines in order to extend the file.

E.1.4 Restrictions
The editor assumes you are using a display terminal of 24 lines by 79
characters. If it finds a line of greater than 79 characters it will
automatically truncate it. Note that the Speedbase compiler compiles
79 character lines but that the Global Cobol compiler truncates all
lines longer than 72 characters. The editor assumes that the terminal
you are using has a TAP set up using the Speedbase customisation
utility.

You may only increase the size of your text file by 32K characters per
editing session. When you get to within 2% of this limit the editor
issues the following warning:

Less than 2% available space - Please save

You should then use one of the instructions:

Save text Performs the same function as command E, end edit, but
you remain in the same edit window.

New file As above but allows you to edit a new input file.

End edit See Section E.3.18. and Section E.4.9.

Abandon See Section E.4.5.

If you fail to take the appropriate action, the editor will terminate
the edit session once the available space has been exhausted with the
following message:

Edit output file exhausted

If you receive the above message during an important editing session,
you could attempt to recover the editor work file. The editor work
file is named as follows:

$SDE nnb

where nn is the number of the user partition in which you are running
the editor and b is the buffer number. It occupies the same volume as
the source file, and contains that part of the file which has been

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 194 of 241

correctly updated. You may use the $INSPECT command to merge this with
the remainder of the original source file, so that you can continue
working from the point at which the file space became exhausted. You
should be aware of the difficulty of recovering the work file and take
heed of the warning message when issued.

E.2 Edit Phase
To run the editor use the menu entry you have set up or key $SDE At
the option prompt. The initial screen is displayed and you enter the
filename and unit:

Figure E.2a - The Initial Editor Screen

In response to the filename prompt you should enter the name of the
required input file. Unless you explicitly supply a prefix when you
key the file-id, the editor assumes you are working with a program
source file and appends the S prefix by default. If, for example you
reply V3DEMO, the editor assumes you wish to create or modify source
file S.V3DEMO. Note that you may not edit a file with a B prefix
because this is reserved by the editor for backup versions of edited
files.

You then reply to the Unit Id prompt with the unit holding the input
file. Logical or physical unit-id's may be entered.

E.2.1 To Quit

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 195 of 241

To quit at this stage and return control to the monitor simply key
<BCK> to either the Filename or Unit Id prompt.

E.2.2 Creating a New File
When the input file you specify does not exist you are prompted to
create a new file or reply N to return to the filename prompt. If a
new file is required, the editor creates it with a size of 32K
characters using the name specified, then enters the amendment phase.
A blank screen is displayed with the cursor in the top left hand
corner and the message "Reached EOF" displayed at the baseline. You
may start entering text anywhere on the screen. Note that when the
cursor is at EOF the editor automatically appends lines to the file as
you enter text.

E.2.3 Updating an Existing File
When the file specified on the initial screen is found, is valid and
is not in use, details are displayed of the old and new file size and
the date the file was last changed. At the baseline the following
message is displayed:

Details OK (Y/N/Q) ?

Reply Y or <RET> to accept the details and enter the amendment phase,
N to go back to the filename prompt or Q to exit. If the details are
accepted, the editor displays the first screen of text from the input
file. If the file does not contain a full screen of text the "Reached
EOF" message is displayed. The cursor is placed in the top left hand
corner of the screen.

E.2.4 The Amendment Phase
After input of the required file details, the text screen is
displayed. The first 23 lines of this screen are used as a window into
the input file, displaying those lines that can currently be edited.
The baseline, line 24, is a multiple purpose line used for the entry
of editor commands and the display of prompts, information, warning
and error messages.

At any moment, the only text lines that may be changed by editing
instructions are those that appear on the current screen, referred to
as a page. However the current screen may be moved forward or backward
within the file to make other lines available for modification.

E.2.5 Quitting the Amendment Phase
Two special editing instructions cause the editor to quit the
amendment phase. Command E, end edit, is used when you have
satisfactorily completed an edit session. It causes the remainder of
the input file, if any, to be copied to the output file, and the input
file, if present, to be renamed with prefix B as the new backup file.
Any previous backup file is deleted.

The output file is then given the same file-id as the original input
file. For example, suppose you reply V3DEMO in response to the
filename prompt in order to modify source file S.V3DEMO. Then, as a
result of keying command E, the following happens:

● If a file named B.V3DEMO already exists on the volume containing

S.V3DEMO it is deleted

● Then the existing S.V3DEMO is renamed B.V3DEMO

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 196 of 241

● Next, the new file containing the result of the edit session is

itself renamed S.V3DEMO

Note that if on issuing this command there are active buffers (i.e.
buffers that are in use) the editor issues the following warning:

Buffers active - Are you sure (Y/N) ?

If you reply Y to this prompt the editing session is terminated. Any
other reply causes the editor to ignore the request and return to the
amendment phase. Command A, abandon edit, may be used if you decide
not to keep the changes made during the current edit session and wish
to retain the original input file. The editor does not delete the
original backup file or rename the input file as it does for command
E. You are prompted:

Are you sure (Y/N) ?

unless there are buffers active (i.e. in use) in which case you are
prompted:

Buffers active - Are you sure (Y/N) ?

If you reply Y to these prompts the session is abandoned. Any other
reply causes the editor to ignore the request and return to the
amendment phase.

E.3 Direct Commands
The editor recognises two types of commands, direct and executable
commands, see Tables E.3a and E.4a. Direct commands are executed using
predefined function keys on the keyboard. The key-tops shown in Table
E.3a are typical examples, yours will probably be different and are
displayed when you key <HLP>.

Direct command

Example key-
top

Appendix
section

Insert character Insert E.3.1
Delete character Delete E.3.2
Change case Control-C E.3.3
Clear to end of line Control-F E.3.4
Restore original line Control-R E.3.5
Save current buffer & continue End E.3.6
Next page Page Down E.3.7
Previous page Page Up E.3.8
Tab right Tab E.3.9
Tab left ^Tab E.3.10
Start/End of screen Home E.3.11
Insert line F5 E.3.12
Enter silent insert mode F4 E.3.13
Delete line F7 E.3.14
Undelete last deleted line Control-D E.3.15
Repeat last search F6 E.3.16
Execute a command F9 E.3.17
Save buffer & terminate editor Escape E.3.18

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 197 of 241

Table E.3a - $SDE Direct Commands

E.3.1 Insert character
Inserts a blank space at the current cursor position, which may be
anywhere on the screen. On insert, the text string to the right of the
cursor is shifted across by one character without affecting the rest
of the line. A text string is defined to be a string of text delimited
by two spaces. Only the current line is affected.

E.3.2 Delete character
Deletes the character at the current cursor position.

E.3.3 Change case
Lower case a - z are changed to upper case A - Z and vice versa, at
the current cursor position.

E.3.4 Clear to end of line
Clears the line from the current cursor position to the end of the
line, leaving the cursor in the same position.

E.3.5 Restore original line
If having edited a line you would prefer to restore its original
contents use this command before moving from the line or executing a
command.

E.3.6 Save current buffer & continue
This command causes the contents of the current buffer to be saved on
disk. Its use prevents the loss of editing work in the event of a
computer failure.

E.3.7 Next page
Fetches the next screen of 23 lines and displays it. If the end of the
input file is reached, the last page of the file is displayed with the
message "Reached EOF" at the baseline.

E.3.8 Previous page
Fetches the previous screen and displays it. If the start of the input
file is reached, the first page of the file is displayed and the
message "Reached TOF" is displayed at the baseline.

E.3.9 Tab right
Move the cursor to the next tab position. Tab positions are at columns
1, 9, 17 ... etc. If the cursor reaches the end of line, a warning is
sounded and the cursor left unchanged. If line wrap around has been
switched on, using command J, the cursor is moved to column 1, the
first column of the current line.

E.3.10 Tab left
Move the cursor to the previous tab position. If the cursor reaches
the start of line, a warning is sounded and the cursor position left
unchanged. If line wrap around has been switched on, using command J,
the cursor will be moved to the last tab position of the current line.

E.3.11 Start/End of screen
Moves the cursor to column 79 of line 23 of the current screen or to
column 1 of line 1 if already there. This command therefore causes the

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 198 of 241

cursor to toggle between the bottom right-hand and top left-hand
corners of the screen.

E.3.12 Insert line
Inserts a blank line before the current line and makes the inserted
line the new current line. The new line may now be edited as normal.

E.3.13 Enter silent insert mode
The screen is cleared from the current line to the end of the screen
so that you can insert text without the existing text scrolling down.
To exit silent insert mode, key <ABO> and the following text is
redisplayed.

 E.3.14 Delete line
Deletes the current line. The rest of the screen is scrolled to take
up the blank space.

E.3.15 Undelete last deleted line
Inserts before the current line a copy of the last line deleted. If
the cursor has moved since the deletion, the line is inserted before
the new current line. This command may therefore be used, in
conjunction with the delete command, to move a line from one position
to another or to make several copies of a line.

E.3.16 Repeat last search
Repeats the last search performed, starting at the current column plus
one. If no previous search was performed by either command F, find
string, or command R, replace string, a warning is sounded and the
command ignored.

E.3.17 Execute a command
Causes the editor to enter command mode. The command prompt, C: is
displayed at the baseline. Reply with one of the commands listed in
Table E.4a or key <RET> to cancel the command prompt.

E.3.18 Save buffer & terminate editor
The contents of the buffer are saved on disk and the editor
terminates. The initial editor screen is redisplayed as in Figure
E.2a.

E.4 Executable Commands

Command

Description

Appendix
section

! Display ruler E.4.1
+ Move forward nnnnn lines E.4.2
- Move backward nnnnn lines E.4.3
. Display information line E.4.4
A Abandon edit session E.4.5
B Swap to buffer N E.4.6
C Centre the current line E.4.7
D Delete block text E.4.8
E Save & end current edit E.4.9
F Find string E.4.10
G Go to the end of line E.4.11

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 199 of 241

H Copy text to buffer N E.4.12
I Enter silent insert mode E.4.13
J Switch wrap around on/off E.4.14
K Case insensitive Find String E.4.31
L Goto line nnnnn E.4.15
M Move text to buffer N E.4.16
N Save current file & fetch new E.4.17
O Output buffer N E.4.18
P Goto first (T) or last (B) page E.4.19
Q Enter window generation mode E.4.20
R Global replace E.4.21
S Display current buffer status E.4.22
T Split line into two E.4.23
U Define user keys F1, F2, F3 E.4.24
V Void the last delete block E.4.25
W Duplicate previous line E.4.26
X Merge new file into text E.4.27
Y Rename current buffer file E.4.28
Z Flush buffer N E.4.29
& Append characters prior to cursor to previous

line
E.4.30

Table E.4a - Executable Commands

To execute one of the commands listed above, key the direct command
"Execute a command" and reply to the baseline prompt:

C:

with the appropriate command. Certain commands prompt for further
details. Some require a number (e.g. command L; List Line) and others
require a text string (e.g. command R; Global Replace). For multiple
character responses, key <RET> to terminate the input, but for single
character responses the editor automatically starts execution of the
command as soon as it is entered (e.g. command J; Wrap Around on/off).

E.4.1 Command !, Display ruler
The ruler is displayed at the baseline to show column numbers.

E.4.2 Command +, Move forward nnnnn lines
The display window is moved forward nnnnn lines. For example, command
+1 causes the display to move up one line so that the second line
becomes the top line etc.

E.4.3 Command -, Move backward nnnnn lines
The display window is moved backward nnnnn lines. For example, command
-1 causes the display to move down one line so that the top line
becomes the second line etc.

E.4.4 Command ., Display information line
Displays on the baseline the current line number, the number of
characters in the file and the space available for expansion, in
characters.

E.4.5 Command A, Abandon edit session
Providing you are in buffer 0, the editor displays on the baseline the
prompt:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 200 of 241

Are you sure (Y/N) ?

unless there are buffers in use, in which case the prompt is:

Buffers active - Are you sure (Y/N) ?

In case you keyed command A in error. You must reply Y to complete the
abandon operation. The editor terminates and the initial screen is
displayed as in Figure E.2a. Note that none of the changes made in the
editing session are saved when you abandon the session. If you reply
with any other character the command is ignored and the editor returns
to the window for further editing.

E.4.6 Command B, Swap to buffer N
Swaps the editing session to buffer N. You may then proceed to edit
the text in this buffer. The buffer is displayed at the point at which
you last left it.

E.4.7 Command C, Centre the current line
The current line is moved to line 12 of the screen and redisplayed
with the surrounding lines. If the editor is unable to centre the
line, due to being near TOF or EOF, it attempts to centre the line as
close as possible and displays the message:

Reached EOF

or:
Reached TOF

E.4.8 Command D, Delete block text
The following message is displayed at the baseline:

Delete Block mode

Move the cursor to the start line and key <UF1>, usually F1. The start
line number is displayed at the baseline. Move the cursor to the last
line to be deleted and key <UF1> again. The end line number is
displayed, the text block deleted and the baseline message "Delete
Block - Finished" is displayed. If the marked end line precedes the
start line the baseline message "End line before start line - Delete
Block - Aborted" is displayed and the command ignored. The delete
block operation may be abandoned by keying <BCK> before marking the
end line, and its effect reversed by use of command V, Void the last
delete block.

E.4.9 Command E, Save & End current edit
This command may only be used while in buffer 0, the main text buffer.
The contents of the buffer are saved on disk and the session is
terminated. If other buffers are in use, the prompt:

Buffers active - Are you sure (Y/N) ?

is displayed in case you keyed command E in error. Reply Y to complete
the end edit operation. If you reply with any other character the
command is ignored and the editor returns to the window for further
editing.

At the end of the session the input source file, if any, becomes the
backup file, and the new file becomes the current source file. The
initial screen is displayed as shown in Figure E.2a.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 201 of 241

E.4.10 Command F, Find string
You are prompted for the required search string, terminated with
<RET>. The length of the string is restricted to a maximum of 50
characters. A null response to the string prompt causes the editor to
repeat a search for the last entered string. If no previous search has
been performed, the command is ignored.

The baseline message "Searching" is displayed and the search commences
at the current cursor position. The search cycles through the entire
file. On reaching EOF it continues from the beginning of the file
until reaching the original start, before deciding that the string
cannot be found.

If the string is found on the current screen, the cursor is moved to
the start of the string. If found on a new page, a new screen is
displayed with the line containing the string centred, and the cursor
placed at the start of the string. If the string is not found, the
baseline message:

String not found

is displayed and editing recommences at the original cursor position.
The search may be terminated prematurely by keying any key.

E.4.11 Command G, Go to the end of line
The cursor moves to the last non-blank character on the line.

E.4.12 Command H, Copy text to buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline
prompt. The default is buffer 1. Mark the start line by moving the
cursor to it and keying <UF1>, usually F1. The line number of the
start line is displayed at the baseline. Move the cursor to the
required end line and key <UF1> again. The line number of the end line
is displayed, the block of text is copied to the buffer specified and
the baseline message "Hold Block - Finished" is displayed. If the
marked end line precedes the start line the baseline message "End line
before start line - Hold Block - Aborted" is displayed and the command
ignored. If the buffer already contains text, the editor displays the
baseline message:

Buffer in use - Text will be appended

and any text copied is appended to the existing text in the output
buffer. If you key <BCK> before marking the end line, the copy text
operation is abandoned and the baseline message "Hold - aborted" is
displayed. If you attempt to copy text to the current buffer the
baseline message "Invalid - Currently in buffer N" is displayed and
the command ignored.

E.4.13 Command I, Enter silent insert mode
The screen is cleared from and including the current line to the end
of the screen. You may commence editing at the start of the cleared
area. The use of this command avoids the necessity manually to insert
blank lines for text to be inserted. To terminate silent insert mode,
key <ABO> and the screen is redisplayed from the current line onwards.

E.4.14 Command J, Switch wrap around ON/OFF
Allows the cursor to move past column 79, and move to the left of
column 1. Entry of this command toggles the switch on/off. The default

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 202 of 241

on entry to the editor is wrap around off and the cursor is stopped
from moving right of column 79, and left of column 1. When on, moving
to the right of column 79 places the cursor at the start of the next
line and moving to the left of column 1 places the cursor at the end
of the previous line.

E.4.15 Command L, Goto line nnnnn
Reply with the required line number to the baseline prompt. If the
required line is found on the current screen, the cursor is moved to
that line. If found on a new screen, the new screen is displayed with
the required line centred. If EOF is reached before finding the
required line, the last page of the file is displayed, and the
baseline message "Reached EOF" is displayed. The cursor is then placed
on the last line of the file.

E.4.16 Command M, Move text to buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline
prompt. The default is buffer 1. Mark the start line by moving the
cursor to it and keying <UF1>, usually F1. The line number of the
start line is displayed at the baseline. Move the cursor to the
required end line and key <UF1> again. The line number of the end line
is displayed, the block of text is moved to the buffer specified and
the baseline message "Move Block - Finished" is displayed. If the
marked end line precedes the start line the baseline message "End line
before start line - Move Block - Aborted" is displayed and the command
ignored. If the buffer already contains text, the editor displays the
baseline message:

Buffer in use - Text will be appended

and any text copied is appended to the existing text in the output
buffer. On completion of the move the screen is redisplayed with the
block removed, with the cursor on the line before the block. If you
key <BCK> before marking the end line, the move text operation is
abandoned and the baseline message "Move - aborted" is displayed. If
you attempt to move text to the current buffer the baseline message
"Invalid - Currently in buffer N" is displayed and the command
ignored.

E.4.17 Command N, Save current file & fetch new
The baseline message:

Saving buffer

is displayed. Once the file has been saved, reply to the baseline
prompt:

New filename:

with the name of the new file. If it does not exist on the disk volume
holding the input file the editor prompts you to create it. The editor
then displays the first page of the file which may itself be edited.

E.4.18 Command O, Output buffer N
Reply with the required buffer number, 0, 1 or 2, to the baseline
prompt. The default is buffer 1. The contents of the required buffer
are inserted before the current line. The screen is redisplayed to
show the new contents. If the buffer is empty, the baseline message
"Buffer empty" is displayed, and the command ignored. If you attempt

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 203 of 241

to output text from the current buffer the baseline message "Invalid -
Currently in buffer N" is displayed and the command ignored.

E.4.19 Command P, Go to first or last page
Reply to the baseline prompt with T for the top page, or B for the
bottom page.

E.4.20 Command Q, Enter window generation mode
Used to create and modify the windows used extensively in Speedbase
applications. If the cursor is on the WINDOW statement line when
command Q is keyed, a representation of the window defined by the
WINDOW construct is displayed. If the WINDOW construct contains syntax
errors the editor places the cursor on the line in error and displays
a baseline error message - see Appendix B for details. If the cursor
is on any other line you are prompted for details of the new window -
see Section E.6.

E.4.21 Command R, Global replace
Reply to the baseline prompt with the search string. Then reply to the
prompt "Wth:" with the replacement string, terminated by <RET>. The
length of the string is restricted to a maximum of 50 characters. The
baseline prompt:

All Occurrences (Y/N)

is displayed next. If you reply N, only the first occurrence is
replaced. Otherwise the editor displays the baseline prompt:

Display On (Y/N)

If you reply N, the editor replaces all occurrences of the search
string found without displaying them as they are replaced. Otherwise
the editor displays the baseline prompt:

Validate (Y/N)

If you reply N, the editor replaces all occurrences of the search
string found. Otherwise the editor pauses at each occurrence found,
and displays the baseline prompt "Validate (Y/N/Q)". Reply Q to
terminate the replace command. Reply N to skip the occurrence found
and search for the next occurrence. Reply Y to replace the text string
with the replacement string and search for the next occurrence.

E.4.22 Command S, Display current buffer status
The baseline display shows the name and unit-id of the file being
edited and the number, 0, 1 or 2, of the current buffer in use.

E.4.23 Command T, Split line into two
All characters from the current cursor position to the end of the line
are moved to a new line before the next line.

E.4.24 Command U, Define user keys, <UF1>, <UF2>, <UF3>
The three user function keys, <UF1>, <UF2>, <UF3>, may be assigned to
any executable command. For example, to assign the key <UF1>, usually
F1, to command Q, reply 1 and then Q to the baseline prompts. Note
that key assignments remain in force only until the end of the editing
session. They apply to all buffers.

E.4.25 Command V, Void the last delete block

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 204 of 241

The last text block deleted is inserted before the current line. It
may be restored any number of times, anywhere in the buffer, not
necessarily in its original position. If no text block has been
deleted during this edit session the editor displays the baseline
message "Buffer empty" and the command is ignored.

E.4.26 Command W, Duplicate previous line
A copy of the line preceding the current line is inserted before it.
The duplicated line becomes the current line.

E.4.27 Command X, Merge new file into text
Reply to the baseline prompts:

Merge filename: Unit Id:

with the filename and unit-id of the file holding the text to be
merged. The editor reads the entire contents of the merge file and
inserts the text before the current line. The screen is then
redisplayed with the cursor at the first line of the merged text. If
the size of the merge file exceeds certain size constraints, the
baseline message:

No room to read file

is displayed and the command is ignored.

E.4.28 Command Y, Rename current buffer file
Reply to the baseline prompt:

New filename:

with the filename you wish to use for the output file of the editing
session. The original input file to the editor remains unchanged on
exit from the editing session instead of being renamed as the backup
file.

E.4.29 Command Z - Flush buffer N
Reply to the baseline prompt with the number, 0, 1 or 2, of the buffer
you wish to flush. Reply to the prompt:

Flush buffer N - Are you sure (Y/N) ?

with Y to cause the buffer to be flushed, or N to abort the command.
On completion the editor displays the message "Buffer flushed" and
clears the screen if it is the current buffer. If the buffer is
already empty the editor displays the baseline message "Buffer empty"
and the command is ignored.

E.4.30 Command &, Append characters prior to cursor to
previous line
The characters to the left of the current cursor position are moved to
the end of the previous line. Note that characters to the right of
column 79 after the move are lost.

E.4.31 Command K, Case insensitive find operation
This operation allows you to perform a case insensitive search. The
operation is identical to the Find command (See section E.4.10),
excepting that upper and lower case characters are treated identically
during the search.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 205 of 241

E.5 Regenerating a Window
This section of the appendix deals with the modification of a window
described by a WINDOW construct in your source file. If you key
command Q when the cursor is on a WINDOW statement line, the editor
enters window generation mode and displays a representation, or
template, of the window based on the statements in the window
construct. For example, if you key command Q when the cursor is on the
line WINDOW W1 of FRAME CUST of the file S.V3DEMO, a template of the
customer window of the sample application is displayed:

Figure E.5a - The Customer Window Template

To see what functions are available, key <HLP> to display the usual
Speedbase help window. Table E.5b lists them and gives an example key-
top for each. The editor keeps track of each field in the template
separately. If you move a field so that it partially or completely
overlaps another, the editor retains information about both. If the
fields are subsequently moved so that they do not overlap, they are
correctly displayed. It is helpful to refresh the display in these
circumstances, which you can do by using the command "Draw
boxes/lines" for example.

Note that the first scrolled line in the template of a scrolled window
is highlighted. The subsequent scrolled lines are for display purposes
only and cannot be manipulated. If the WINDOW construct contains
syntax errors the editor places the cursor on the line in error and

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 206 of 241

displays a baseline error message - see Appendix B for details. Syntax
errors must be corrected before the window template can be displayed.

Window mode command

Example key-
top

Appendix
section

Start/End of screen Home E.5.1
Move to next field/text item Tab E.5.2
Move to previous field/text item ^Tab E.5.3
Shift current item right Insert E.5.4
Shift current item left Delete E.5.5
Insert line F5 E.5.6
Delete line F7 E.5.7
Move current item Control-D E.5.8
Delete current item F4 E.5.9
Modify/Enter text items F2 E.5.10
Draw boxes/lines F1 E.5.11
Modify scroll details F3 E.5.12
Generate window source End E.5.13
Move entire window Page Down E.5.14
Select more fields Escape E.5.15
Insert selected fields F6 E.5.16
Abandon window & return to editor F9 E.5.17

Table E.5b - Window Mode Commands

E.5.1 Start/End of screen
Moves the cursor to column 1 of line 1 of the current screen or to
column 79 of line 23 if already there. This command therefore causes
the cursor to toggle between the bottom right-hand and top left-hand
corners of the screen.

E.5.2 Move to next field/text item
The cursor moves to the beginning of the next field. The editor
displays a baseline message showing the line and column position of
the field, "TEXT" if it is a text field, the field name, picture and
"SCR" if a scrolled data field and "NSC" if a non- scrolled data
field.

E.5.3 Move to previous field/text item
The cursor moves to the beginning of the previous field. The editor
displays a baseline message showing the line and column position of
the field, "TEXT" if it is a text field, the field name, picture and
"SCR" if a scrolled data field and "NSC" if a non-scrolled data field.

E.5.4 Shift current item right
The text or data item at or following the current cursor position is
shifted one place to the right. Note that the position of the item is
defined by its first character. If this command is keyed with the
cursor positioned for example at the second character of an item, the
next item is moved. After the move the cursor is positioned on the
first character of the moved item.

E.5.5 Shift current item left
The text or data item at or following the current cursor position is
shifted one place to the left. Note that the position of the item is
defined by its first character. If this command is keyed with the

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 207 of 241

cursor positioned for example at the second character of an item, the
next item is moved. After the move the cursor is positioned on the
first character of the moved item.

E.5.6 Insert line
Inserts a blank line at the current line. If the cursor is on or above
the first line of the window template the entire window moves down one
line. If the insert would move any part of the window off the screen
the baseline message "Outside window boundary" is displayed and the
command ignored. Note that the editor reserves a blank line above and
below the window template for the box lines.

E.5.7 Delete line
Deletes the current line. If the line contains a text or data field
the editor displays the baseline message "Non blank line - Can't
delete" and the command is ignored.

E.5.8 Move current item
The editor displays a baseline message showing the line and column
position of the field, "TEXT" if it is a text field, the field name,
picture and "SCR" if a scrolled data field and "NSC" if a non-scrolled
data field. Move the cursor to the new field position and key "Move
current item" again. Reply to the baseline prompt:

Scrolled or Non-scrolled ?

with S for a scrolled item or N for a non-scrolled item. The default
is S for a previously scrolled field and N for a previously non-
scrolled field.

E.5.9 Delete current item
Deletes the item beginning at the current cursor position. If no item
begins at the cursor position the baseline message "No item at this
location" is displayed and the command is ignored.

E.5.10 Modify/Enter text items
If this command is keyed with the cursor placed anywhere within a text
item, the editor highlights the item and extends it to the beginning
of the next field. It displays a baseline message showing the line and
column position of the field and "TEXT". Enter the new text and
terminate it by keying <RET>.

If this command is keyed with the cursor on an unoccupied character
position the editor highlights the available space, up to sixty
characters. Enter the text and terminate it by keying <RET>.

Having entered the new or modified text, reply to the baseline prompt:

Scrolled or Non-scrolled ?

with S for a scrolled item or N for a non-scrolled item. The default
is S for a previously scrolled field and N for a previously non-
scrolled field. If you attempt to enter or modify text at a position
occupied by a data item the editor displays the baseline message "No
room for text field" and the command is ignored.

E.5.11 Draw boxes/lines
The window template is redisplayed with a box and the appropriate
window background. Unless the template is positioned at the edge of

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 208 of 241

the screen the editor leaves a one-character border between the
template and the box. If there is insufficient space for this border
it generates a window with the SBOX statement.

Reply to the baseline prompt:

Line:

with the line number of a line to be drawn in the box. Key <RET> to
the default of line zero when you wish to return to the template
display. Note that the top line of the screen is line 1 and that the
editor calculates the correct line number for the LINE statement
taking into account the box position. To erase a line, overtype its
line number with zero.

E.5.12 Modify scroll details
The window template is replaced by the prompt:

If you reply Y, the editor displays the prompts:

The defaults for these parameters are the existing values in the
template. Having replied to these prompts, or having replied N to the
scrolled window prompt, the editor redisplays the template using the
new parameters.

E.5.13 Generate window source
The editor generates the appropriate WINDOW construct source code from
the window template as modified. The current text buffer is
redisplayed with the new WINDOW construct in place of the old and the
new WINDOW statement line centred on the screen.

E.5.14 Move entire window
The baseline message "Move cursor to top left corner for window - key
<BASE>" is displayed. Move the cursor and key "Move entire window"
again. The window template is redisplayed at the new position. If the
move would place any of the window off the screen the baseline message
"Window will not fit on screen - Aborted" is displayed and the command
is ignored.

E.5.15 Select more fields
The window template is replaced by the prompt:

Reply with the name and unit-id of the Speedbase data dictionary from
which you wish to select more fields for the window. The editor
displays a window listing the records in the dictionary from which
fields may be selected. The process of selecting fields is described
in detail in section E.6.

E.5.16 Insert selected fields
The editor displays a baseline message "Insert - " then the name of
the first field available and its description. Reply Y to insert the
field, or N to display the next available. The fields available for

Generate scrolled window:

Scroll by spilt offset

Dictionary: Unit:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 209 of 241

insertion must previously have been selected using the command "Select
more fields". Reply to the baseline prompt:

Scrolled on Non-scrolled:

with S for a scrolled item or N for a non-scrolled item. The default
is S if the field was selected as a scrolled field and N if it was
selected as a non-scrolled field. The field is inserted at the
position occupied by the cursor when the command was keyed. If this
would place part of the field outside the screen area the baseline
message "Outside window boundary" is displayed and the command is
ignored. If no fields are available the baseline message "No more
selected fields" is displayed and the command ignored.

E.5.17 Abandon window & return to editor
The current edit buffer is redisplayed with the cursor located where
it was when you keyed command Q. No window source code has been
generated and the text is as it was when you keyed command Q.

E.6 Generating New Windows
This section of the appendix deals with the creation of a new window
and the addition to your source file of its WINDOW construct. The use
of command Q puts the editor into window generation mode. If you do so
when the cursor is not on a WINDOW statement, the editor displays the
prompt:

If you reply Y, the editor displays the prompts:

The default for the number of records is 8 and for the latter three
parameters is 1. Having replied to these prompts, or having replied N
to the scrolled window prompt, the editor prompts for the name and
unit of the dictionary from which you wish to extract details.

 E.6.1 Selecting a Record
The editor then displays details of the records available:

Generate scrolled window:

Scroll by spilt offset

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 210 of 241

Figure E.6.1a - Record Selection Window

If, for example, you select record CU, and give it the new ID C1, the
list of fields available for selection is displayed:

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 211 of 241

Figure E.6.1b - Field Selection Window

Key <RET> to select a field for inclusion in the window. If the window
is scrolled, reply S or N to the baseline prompt:

Place in scrolled or nonscrolled area (S/N) ?

The editor places * to indicate your selection. Note that the order in
which you select fields from this list is the order they will appear
in the WINDOW construct source code when the editor generates it.
Using the cursor keys you may select fields in any order. When you
have done so, key <NXT>. The window template is then displayed and may
be modified as described in section E.5. If you key <NXT> before
selecting any fields a default template is generated using all the
available fields. When you are satisfied with your window template,
key <NXT> and the editor creates the appropriate source code and
inserts it in the current buffer at the point at which you keyed
command Q.

If, when prompted for a dictionary name, either when first setting up
the window, or when selecting more fields for inclusion in the window,
you key <RET> to the dictionary name prompt, you get an opportunity to
define local fields. The editor displays a window into which you enter
the field name, picture clause and description. These fields may be
inserted in the window in the usual way.

E.7 Error and Warning Messages

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 212 of 241

The error and warning messages described in this section are displayed
at the baseline at various stages in the editing session. They are
erased on the next cursor movement.

Edit output file exhausted

There is no space in the buffer work file on disk to save the
last change made. The editor terminates automatically. You may
attempt to recover the work file, see Section E.1.4.

End line before start line - Aborted

The end line specified in a command D, H, or M precedes the start
line, which is invalid.

File already exists

When saving a buffer, this message informs you that the file
already exists on the work volume. Enter a new filename.

File in use or Invalid type - Reenter

The file entered is currently being accessed by another user, or
it is not a valid text file. Check and reenter a valid filename.

File not found or in use

The file required was not found on the requested volume, or is
being accessed by another user. Check and reenter.

Invalid key
Invalid command
Invalid function

The key, command or function used is invalid. Key <HLP> to
display a Speedbase help window listing the valid responses.

Invalid picture clause

See Section 5.3 for valid picture clauses.

Invalid scroll dimensions

The window will not fit within the screen dimensions with the
scroll statement parameters as specified.

Less than 2% available space - Please save

This warns that the main output file is short on available space.
You still have at least 600 characters expansion left but you
should save the current edit session and start again as soon as
possible.

No item at this location

There is no item to move at this cursor position. Move the cursor
to the beginning of the required field and try again.

No more selected fields

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 213 of 241

Either no fields have been selected for insertion, or all those
selected have already been inserted.

No room for text field

There is no room to specify a text item at the current cursor
location.

Non-blank line - Can't delete

The editor only deletes blank lines. To delete individual fields,
use the delete field function.

Outside window boundary

Inserting a line at the current cursor location would cause part
of the window to move off the screen, which is invalid.

Return to Buffer 0

You may not end or abandon the edit session when in buffers 1 or
2.

No room for workfile - Press Return
Not enough space in directory

The editor does not have enough space in the current volume to
create the workfile. It requires space enough for the current
input file size plus 32K. Check before continuing.

No room to read file
No room to output buffer

The editor has discovered that the available space in the buffer
is insufficient to continue. Use command . to check available
space.

Unable to determine end of window

The window construct must be terminated by an ENDWINDOW, ROUTINES
SECTION or ENDFRAME statement.

Unable to fit in fixed area

The current field does not fit in the available non-scrolled
area. Try placing it in the scrolled area.

Unable to fit in scrolled area

The current field does not fit in the available scrolled area.
Try placing it in the non-scrolled area.

Unable to open dictionary

The editor has failed to open the specified dictionary file.

Unable to read dictionary

The dictionary file DIxxxxx specified is unreadable.

Appendix E - The Speedbase Editor

Global Speedbase Development Manual V8.1 Page 214 of 241

Unable to read work file

Suspect system corruption.

Window will not fit on screen

The window dimensions are outside the current screen range.

Work file in use - Try again later

The workfile the editor is trying to create already exists and is
still in use. Check and correct before continuing.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 215 of 241

Appendix F - Dictionary Maintenance Utility

The information about the structure of a Speedbase database is stored
in a file called a data dictionary. For example, the Speedbase V3.0
sample application database has a dictionary file called DIDEMON. The
dictionary is used by the Speedbase Presentation Manager utility
programs to control their access to your database. The dictionary is
also used in the compilation of your Speedbase application frames, see
Appendix A.

Before you can compile your application you must therefore generate a
dictionary and to do this you use the dictionary maintenance utility
$SDM, as described in this appendix. The structure of the dictionary
itself is unsuitable for the purposes of manipulation by a utility
program, so for this purpose the dictionary information is maintained
in a structure called a meta-dictionary. Once you have used the $SDM
utility to establish the database structure you require, the meta-
dictionary is used to generate the dictionary itself, see Section F.5.

This paragraph should probably be ignored if you are reading this
appendix for the first time. The meta-dictionary is actually a special
Speedbase database, and the dictionary maintenance utility $SDM is
itself therefore a Speedbase application. It therefore has its own
dictionary, DI$DICT, which is supplied with the Speedbase Development
System, which you will use to create your meta-dictionaries, see
Section F.7. If you use $SDM to examine the special DI$DICT dictionary
you will see that it itself was generated using $SDM, from its own
meta-dictionary DI$dict.

F.1 Running the Utility
To run the dictionary maintenance utility, use the menu entry you have
set up, or key $SDM at the option prompt. Reply to the prompt:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 216 of 241

Figure F.1a - The Meta-dictionary Prompt

with the name and unit-id of the meta-dictionary you wish to maintain.
Note that you must create the meta-dictionary before running $SDM, by
using the generation utility as described in Section F.7. We suggest
you adopt the convention that the name of the meta-dictionary defining
the dictionary DIXXXXX is DIxxxxx. For example, the meta-dictionary
for the sample application DIDEMON should be called DIdemon. The
following sections describe how to create a new meta-dictionary and
how to amend an existing one.

F.2 Establishing a New Meta-dictionary
A new, empty meta-dictionary is created by using the generation
utility as described in Section F.7. Run $SDM and reply to the meta-
dictionary prompts with the name and unit-id you used in creating it.
For example, if you have created an empty meta-dictionary called
DItest on unit FLS in order to define the details of a new Speedbase
dictionary DITEST, the utility will display a menu window as follows:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 217 of 241

Figure F.2a - Establishing the Meta-dictionary

If you wish to enter the details of the meta-dictionary reply 1, and
the utility prompts for the dictionary name and title. Since you are
defining the details of dictionary DITEST on FLS you should make these
replies to the prompts, enter some text to describe the database and
the screen should look as follows, in Figure F.2b.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 218 of 241

Figure F.2b - Entering the Database ID and Title

Key <NXT> to display the window listing the database record types. You
then proceed as described in Section F.3, except that you will enter
the various details rather than amending existing details.

If, instead of entering the details by hand, you wish to load the
meta-dictionary with details from an existing dictionary, reply 2 at
the establish meta-dictionary prompt. Enter the name and unit-id of
the dictionary from which you wish to load details. For example, you
could create the meta-dictionary DIdemon of the sample application by
loading the dictionary DIDEMON provided. Having created an empty meta-
dictionary for the purpose, see Section F.7, reply with the dictionary
name DIDEMON and its unit- id to the prompts in Figure F.2c.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 219 of 241

Figure F.2c - Loading the Meta-dictionary

Key <RET> to continue and load the Didemon meta-dictionary from the
DIDEMON dictionary. Note that if you load a meta-dictionary from a
dictionary produced prior to version three of Speedbase, some fields
will be blank (e.g. the record description field). You may of course
amend these blank fields. Once the meta-dictionary has been loaded in
this way you may amend it, as described in Section F.3.

F.3 Amending the Meta-dictionary
Once you have created your meta-dictionary its details may be amended.
The examples in this section make use of the sample application meta-
dictionary, DIdemon. This is deliberately not provided and before
proceeding you should create it, if you have not yet done so, using
the steps documented in Section F.2.

To amend the sample meta-dictionary, run the dictionary maintenance
utility, reply with DIdemon and its unit-id to the initial prompts,
and the utility displays the options window:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 220 of 241

Figure F.3a - Amending the Sample Meta-dictionary

Enter <RET> to amend the sample meta-dictionary. You may amend the
database ID and title, and the descriptive text. Key <NXT> and the
utility displays a window listing the record types defined in the
sample application, see Figure F.3b.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 221 of 241

Figure F.3b - The Record-type Window

As with any Speedbase utility or application, you may key <HLP> to
display a list of options and key <HLP> again to display the Speedbase
help window. If you key <HLP> after displaying the record-type window
the list of options is displayed:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 222 of 241

Figure F.3c - Help in the Record-type Window

Note the last option, move record. This is a special option which
allows you to change the order in which the record-types are stored
and displayed. It makes use of a specialised feature of Speedbase
called an auto-sequence index, explained in Section F.8. If you make
regular use of the dictionary maintenance utility, you should assign a
key to the move record function, using the Speedbase Presentation
Manager customisation utility.

You may now amend the record name, title and the description which is
displayed in the non-scrolled area of the window. To see the effect of
the move record function, place the cursor on the customer record and
key <MOV>. Move the cursor to where you wish to insert the customer
record, above the territory record for example, and key <INS> (i.e.
insert record). If you should wish to abort the move after keying
<MOV>, key <HLP>, move the cursor to the last line of the help window,
"Abort move", and key <RET>. Note that the order in which the records
are displayed is the order they are written to the dictionary, DIDEMON
in this case, and therefore also the order in which they are processed
by the Speedbase compiler.

Move the cursor to the order header record and key <NXT>.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 223 of 241

Figure F.3d - The Linked Masters Pop-up

This pop-up window shows which records act as masters to the current
record (i.e. the customer and sales territory records in the case of
the order header record). If you add a new master in this window and
the appropriate master access key fields are not present on the
record, when you key <NXT> to continue the utility displays the
baseline prompt "Link fields are needed for these masters. Create
them? Y". If you reply Y it adds the appropriate fields to the record.
Otherwise you must delete the master relationship before continuing.
Key <NXT> and the fields on the order header record are displayed.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 224 of 241

Figure F.3e - Field Details

The fields which make up the primary index of the record are marked P
in the Idx Seg column (e.g. the order number field on the order header
record). The order of the segments of the primary index is therefore
defined by the order in which the fields themselves are listed. To
change the order of the segments of the primary index you should make
use of the move function to change the order of the fields themselves.

If the field is part of any secondary index it is marked S in the next
column. Fields are often used in more than one record type and these
are known as global fields. For example, the order number, customer
and territory fields on the order header record are used on the order
line, customer and sales territory records respectively. Global fields
are marked G in the Typ (i.e. type column).

The parameters of a global field (i.e. its name, title and picture)
are maintained across the meta-dictionary. Any change you make to one
of these parameters is applied everywhere it is used. For example, if
you change the title of the customer field on the order header record
from "Customer" to "Customer number", the utility displays the
baseline message "Warning: Field title will be changed DB-wide from
Customer" before doing so.

Global fields provide the links between a record and its masters and
comprise the master access key, see Section 2.6. If a field is part of
any master access key it is marked Gl in the Typ column. On the order

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 225 of 241

header record, for example, the customer field is the master access
key to the customer record and therefore provides a link to it. Move
the cursor to the last field on the order header record, ORTOTL, the
order amount field. Because this field is a GVA it is marked A in the
GVF/GVA column. Move the cursor to the GVA column and key <UF1>. The
GVA pop-up is displayed, see Figure F.3f.

Figure F.3f - The GVA Pop-up

The GVA pop-up shows which fields make up the GVA, in this case the
single field OLLAMT from the order line record. If you display the
fields of the order line record you will see that the field OLLAMT is
marked F in the GVF/GVA column. If you select the field, by placing
the cursor on it and keying <RET>, then <SKP>, usually tab, the GVF
pop-up is displayed:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 226 of 241

Figure F.3g - The GVF Pop-up

The GVF pop-up shows to which GVA fields the GVF field is added, in
this case the order amount field and the outstanding orders field on
both the territory and customer records. Key <NXT> to return to the
field window and <NXT> to display the index pop-up:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 227 of 241

Figure F.3h - The Index Window

The index window lists the secondary indexes and the primary index, if
any. Place the cursor on the first secondary index, OLTRN and key
<RET> to select it. Key <NXT> to display the list of segments making
up the index. When adding index segments you may key <UF1>, usually
F1, when prompted for the field name. This displays a pop-up window
showing the fields available. To select a field, place the cursor on
it, key <RET> and its name is used automatically as the index segment.
Note that the primary index segments are displayed in the field window
instead, Figure F.3e.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 228 of 241

Figure F.3i - The Index Segment Pop-up

F.4 Printing the Dictionary Report
To print the dictionary report, run the dictionary maintenance
utility, reply to the meta-dictionary name and unit prompts and key
<NXT> to display the maintenance options:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 229 of 241

Figure F.4a - Dictionary Maintenance Options

When you reply 2 to print the dictionary report, the utility displays
the confirmation window:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 230 of 241

Figure F.4b - Confirming the Dictionary Report Print

Figure F.4c shows the beginning of the report on the sample meta-
dictionary, DIdemon. The database description and list of record-types
is printed on the first page. This is followed by information on each
record-type in turn. In our example the first record-type is the
territory record.

The indexes are listed with their descriptions and a list of their
index segments. For the territory record the first index is the
primary index TRTRN, with the single segment TRTRNO. Following the
list of indexes is a list of master and servant records. These are
identified by the index which provides access to them. For example, on
the territory record, the invoice record is a servant and access to it
is by the index INTRN, which has segments INTRNO and INDATE. In the
case of a servant record it is possible that there is no index
providing access to it, and this is indicated by an ID of the form
rt***, where rt is the servant record-type.

The index, master and servant list is followed by a list of the fields
on the record, together with the field attributes (i.e. name, index
segment, type, title, picture, GVF/GVA and description). For a GVF the
names of its associated GVAs are printed after "To". For a GVA the
names of its associated GVFs are printed after "Fm", short for from.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 231 of 241

Once you reply to the confirmation prompt, the report is printed. It
may be interrupted, and printed on a different printer or cancelled,
in the normal way.

DICTIONARY ID: DEMON Speedbase Sample Application GEN: 22 DATE:18/08/89 PAGE 1

===
 R E C O R D S U M M A R Y

===

 Record Record
 ID Name Record Title

 TR TERR Sales Territory

 CU CUST Customer
 IN INVC Sales Invoice
 ST STCK Stock Master
 OR ORDR Order Header
 OL ORDL Order Line

===
 T R T E R R Sales Territory

===

 This is the record which stores information about sales in
 each territory. The value of outstanding sales orders and
 cash is accumulated.

 Index IDX-Typ Index-Decription Index-Segments..

 TRTRN Primary Primary index, territory code TRTRNO
 TRNAM Secndry Territory name (sales area) TRNAME
 TRACM Secndry Account manager TRACMG

 INTRN Servant Territory code, Invoice date INTRNO/INDATE
 OLTRN Servant Territory, Order number OLTRNO/OLORDN
 ORTRN Servant Territory code, required date ORTRNO/ORRQDT

 Field Idx Ty Field-Title.. Picture GVF / GVA Field-Description

 TRTRNO P G Territory X(4) Territory code
 TRNAME S Sales Area X(20) Territory name
 TRACMG S Account Manager X(15) Account manager
 TRREFN Reference X(11) Reference
 TROSOR O/S Orders S9(6,2) Fm OLLAMT Accumulated orders
 TROSCH O/S Cash S9(6,2) Fm INIAMT Accumulated cash

Figure F.4c - The Dictionary Report

F.5 Generating the Dictionary

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 232 of 241

Once you have completed the amendments to the meta-dictionary you may
generate the dictionary itself. Run the utility, reply to the meta-
dictionary name and unit prompts:

Figure F.5a - Dictionary Maintenance Options

Reply 3 and reply to the database name, unit and size prompts to
generate the dictionary:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 233 of 241

Figure F5b - Generating the Dictionary

The default size of the dictionary file is 150 Kbytes, which will be
sufficient unless you have an unusually large number of text records.
Note that the dictionary file is truncated when closed so that no disk
space is wasted by using the default size. The utility displays the
name and title of the record type it is processing. Note that
processing is terminated if any of the errors listed in Section F.5.1
is detected. When the generation process is complete the utility
displays the report print window.

F.5.1 Dictionary Generation Error Messages
The error messages described in this section are displayed at the
baseline when encountered by the dictionary generation program. The
generation process is terminated on detection of the first error,
which you must correct before trying again.

Dictionary file is full or I/O error

You have specified too small a dictionary file. Execute the
generation option again using a larger dictionary file size. Note
that the default is 150 Kbytes which is usually enough.

Field must be numeric - See field field2

GVF/GVA field2 must be numeric.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 234 of 241

GVA fields not all placed at end of record

Move the GVA fields so that they form a contiguous set at the end
of the list of fields.

GVF field declared after 125th field

You have more than 125 fields in the record. Move the GVF fields
so that they occur before the 125th position in the list of
fields.

Inconsistent global field definition - See fields field1 field2

The picture clause of global field1 in the record being processed
is different from that of the same global field2 as defined
elsewhere in the meta-dictionary.

Index key length exceeds 47 bytes

The fields which make up the segments of the index being
processed exceed 47 bytes, which is invalid.

Index key is composed of more than 8 segments

The index being processed has more than 8 segments, which is
invalid.

Index key segment occurs past 125th field in record

You have more than 125 fields in the record. Move the fields used
as index segments so that they occur before the 125th position in
the list of fields.

Invalid GVA field - also a GVF/index segment - See field field2

GVA field2 may not also be a GVF field or be used as an index
segment.

Invalid GVF relation - See field field2

The GVA/GVF field corresponding to GVF/GVA field2 is either
missing or has an inconsistent picture clause.

Invalid linkage - Masters must be declared before all servants

The record currently being processed is linked to a master that
follows it in the meta-dictionary, which is invalid.

Invalid primary index key definition

Move the fields making up the segments of the primary key so that
they form a contiguous set at the beginning of the field list.

Key extract area exceeds 256 bytes

The GVF, master access key and index key fields exceed 256 bytes,
which is invalid. See Section 2.10.3.

Linked master is missing or has invalid primary index

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 235 of 241

Check that the masters linked to the record currently being
processed are present and have a valid primary index.

Link field is missing or defined after 125th field

A master access key field is either missing or does not occur
within the first 125 fields in the field list, which is invalid.

Meta-dictionary contains more than 36 record definitions

No Speedbase database may have more than 36 record types.

Meta-dictionary is corrupt - Please rebuild using $BARBL

Use the Speedbase Presentation Manager rebuild utility $BARBL to
rebuild the meta-dictionary.

More than 90 indexes defined in the database

No Speedbase database may have more than 90 indexes.

No records specified in Meta-dictionary

You must define at least one record type.

Record definition contains no fields

Each record type must have defined at least one field.

Record has more than 16 indexes

No record type may have defined more than 16 indexes.

Record has more than 16 linked masters

No record may be linked to more than 16 masters.

Record has more than 32 GVF relations

A record may have no more than 32 GVF-GVA relations.

Record requires more than 64 index/MAK/GVF segments

The fields making up the segments of the key extract area must
not exceed 64 in number. See Section 2.10.3.

Sequence field $SEQ may not also have GVF relations

Do not define a sequence field to be a GVF.

Sequence field $SEQ may only occur in 1 index on each record

The sequence field $SEQ may be used in only one index in each
record type.

System area fields (GVAs) exceed max length of 127 bytes

The sum of the lengths of the GVA fields on the record being
processed plus 4 bytes exceeds 127 bytes, which is invalid.

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 236 of 241

Zero length index key detected

One of the indexes on the record type being processed has a
length of zero, which is invalid.

$SQ index requires $SEQ field [9(9) COMP] as last segment

You must specify the index $SQ so that its last segment is the
field $SEQ.

F.6 Clearing the Meta-dictionary
If you wish to clear the meta-dictionary you have been using, as an
alternative to creating a new one using the generation utility as
described in Section F.7, run the utility, reply with the meta-
dictionary name and unit and key <NXT>:

Figure F.6a - Dictionary Maintenance Options

Reply 4 to clear the meta-dictionary. Reply to the baseline prompt
"Clear the Meta-dictionary - Are you sure? N" with Y to continue or N
to return to the option prompt. If you continue, the utility displays
the baseline message "Clearing Meta-dictionary, Please wait...".

When complete the utility displays the baseline prompt "Meta-
dictionary cleared. ,". Key <RET> to continue. The utility displays
the baseline message "Please now re-organise it using $BARBL". We
recommend you do re-organise the meta-dictionary, using the Speedbase

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 237 of 241

rebuild utility $BARBL, in order to obtain the best performance when
the meta-dictionary is re-used.

F.7 Creating a Meta-dictionary
The meta-dictionary is stored in the form of a Speedbase database and
you may therefore use any of the Speedbase Presentation Manager
utilities with it. The meta-dictionary therefore has its own
dictionary which is supplied with the Speedbase Development System.
This dictionary has the special name DI$DICT.

To create a new, empty meta-dictionary, run the Speedbase Presentation
Manager generation utility $BADGN and reply to the source prompt with
the special dictionary name DI$DICT, and its unit:

Figure F.7a - Creating the Meta-dictionary

The record numbers are initially set to the default of fifty and you
should change them to those shown in Figure F.7a, or to other suitable
numbers. When you have done so, key <NXT> and the file allocation
window is displayed, as shown in Figure F.7b. Reply to the name prompt
with the name you wish to use for the meta-dictionary.

 For example, if you are creating the meta-dictionary for the sample
application, as suggested in Section F.2, you should reply "demon", to
create the meta-dictionary DIdemon. Once the generation process is
complete the rebuild utility runs automatically to create the index

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 238 of 241

file required. Once the rebuild is complete the meta-dictionary is
ready for use.

Figure F.7b - Allocating the Meta-dictionary Files

F.8 Auto-Sequence Indexes
There are circumstances in which the sequence of records in a database
is important. In the meta-dictionary database, for example, the order
of the record-type records is important. In the field record, the
actual position of a field relative to other fields is important, if
for example the field is a primary index segment. In an invoicing
application the order of the detail lines within a particular invoice
is likely to be of significance.

To ensure that records are kept in a particular order you can make use
of a special index known as an auto-sequence index. This feature
operates using a 9(9) COMP sequence number field, which is optionally
incremented by the database manager when a new record is written. The
sequence number field must reside on the data-record, and must
therefore be declared when defining the database dictionary. The field
name must be of the form:

rt$SEQ

where rt is the record-type. $SEQ must be appended to a special index
which is also defined using the database dictionary. The index name
assigned to this index must be:

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 239 of 241

rt$SQ

It is important to note that $SEQ must be the last segment defined for
the index. Furthermore, $SEQ may only be used within this particular
index, and may not be a GVF or GVA field. The index is otherwise a
normal Speedbase index, and may therefore be used with the usual I/O
operations. When a record is written to the database, the database
manager examines the $SEQ field. If it is negative, it searches for
the highest sequence number so far allocated. It adds 65536 (i.e.
2^16) to this sequence number before the record is written. Important
Note: $SEQ must be set negative prior to the I/O operation.

If $SEQ contains any positive value, no special processing takes
place, and the record is written unchanged. Note that $SEQ is also
examined during REWRITE as well as WRITE operations. Setting $SEQ
negative prior to a rewrite operation causes the next sequence number
to be assigned as before. Note that the window manager maintains the
rt$SEQ field automatically for I/O operations resulting from a window
process.

A record may be inserted into a sequence by initialising $SEQ to an
appropriate value prior to writing or re-writing it. This facility is
made use of by the Speedbase Presentation Manager window manager move
function, <MOV>. When you key <MOV>, to move a field in the meta-
dictionary for example, the record to be moved is first removed from
the window and may then be inserted in its new position, using the
<INS> function. When you key <INS>, the window manager examines the
sequence number of the records before and after the insertion point
and allocates the moved record a sequence number between them. To do
so it uses an algorithm which optimises the number of insertions that
may be made after a particular point at the expense of the number that
may be made before it.

F.8.1 Programming Note
Sequence numbers are allocated sequentially, and can run out. Where
$SEQ is the only segment of the $SQ index, it will be possible to
write only 32767 records to the database before the range of available
sequence numbers is exhausted.

If the index contains segments before the $SEQ field, it will be
possible to write 32767 records for each occurrence of these preceding
segments. For example, if the index for a invoice line record is
composed of both invoice number and $SEQ, it will be possible to write
32767 invoice line records on each invoice.

If a write or re-write operation would exceed the available range,
then processing depends on whether $SQ is a primary or secondary
index. If $SQ is the primary index, a duplicate primary key condition
results, and the I/O operation will have been suppressed.

If $SQ is a secondary index, the record will have been written to the
database re-using the highest possible sequence number (i.e.
#7FFFFFFF) thus creating a duplicate key. No exception condition
results, but the order of the records sequenced by these duplicate
keys will be undefined.

If record deletions have occurred, "lost" sequence numbers can be
reclaimed by providing an application program to do so, provided that

Appendix F - Dictionary Maintenance Utility

Global Speedbase Development Manual V8.1 Page 240 of 241

$SQ is not a primary index. It is better, however, to design the
application in such a way that the need for this does not arise.

Appendix G - Speedbase Memory Allocation

Global Speedbase Development Manual V8.1 Page 241 of 241

Appendix G - Speedbase Memory Allocation

#0000 to #0500

 Debug Area used by $DEBUG

#0500 to #0600

Index Key Extraction Area

#0600 - #3000

Services Module, $BASVC
Frame Controller
Basic Screen I/O and Help
Window Manager
Database Manager

#3000 onwards

Application Root Frame

Application Dependent Frame(s)

Free Memory

User Stack

Database Control Block(s)
 %BAdbid1
 %Badbidn

High memory
address

Speedbase System Area $BASYS

Figure Ga - Speedbase Memory Map

