The SPD interface of GSM (Windows) Configurations

Serial Port Driver (SPD) and Global System Manager (Windows)

1. Introduction

This section describes some special factors that must be considered when using the Serial Port Driver (SPD) on Global System Manager (Windows).

For GSM (BOS), GSM (DOS) and GSM (Novell) computers, the "SPD software" consists of a single component:

%.amSnn
Assembler SPD handler (interfaces directly to the hardware)

am = Machine-code (e.g. J5 for the GSM (BOS), JW for GSM (DOS)).

nn = Unique number (e.g. 03 for TTY)

For GSM (Windows) computers, the "SPD software" consists of two components:

%.W1S

Dummy SPD handler;

GLOBAL.EXE
Real SPD handler (uses Windows system calls) within the GLOBAL.EXE module. Note that GLOBAL.EXE is distributed on the BACNAT diskette/CD.

The end-user Cobol program loads the relevant SPD handler onto the Global Cobol User Stack within the Cobol User Area. On GSM (BOS) etc. it is perfectly permissible to execute assembler code loaded within a Cobol User Area (i.e. on the Cobol stack). However, on GSM (Windows) the Windows kernel treats the Cobol User Area as a "data segment" so that it is not possible for an SPS application to invoke the C SPD handler on the Cobol User Stack. To circumvent this problem, the dummy %.W1S module supplied with GSM (Windows) contains a Cobol ESCAPE instruction followed by a data area that redirects the C version of the Commercial Code Interpreter (CCI) to the real SPD handler within GLOBAL.EXE (via a jump-table, also in GLOBAL.EXE). This technique is used for the other C "assembler assist modules" (e.g. %.W1D).

If the entry-point to the real SPD controller is missing from the jump-table the CCI will return a "STOP with 772". This will be displayed as either:

$91 TERMINATED - STOP 772

or:

SORRY - YOU ARE ATTEMPTING TO USE A SERVICE THAT IS NOT PART

OF YOUR OPERATING SYSTEM.

Early versions of the GSM (Windows) BACNAT software did not include a real SPD handler. If an attempt is made to use SPD with an early BACNAT the above STOP CODE will result.

Because of the special nature of the GSM (Windows) SPD handler (e.g. it does not access the serial port directly but uses Windows ReadFile and WriteFile system calls to perform all i/o) several factors must be considered when using SPD on a GSM (Windows) computer.

2.
Use of SP-block fields by the GSM (Windows) SPD handler

The GSM (Windows) version of the SPD handler does not require all the fields in the SP-block to be established. The following table describes the use of the SP-block (as described in section 5.1.2 (page 5-1) of the Global Cobol Assembler Interface Manual V6.1):

SPRES

Result code. The following result codes are returned by the

GSM (Windows) SPD handler:

0
Successful operation

1
Unable to open port

2
Port in use

3
Illegal baud-rate (not used)

4
Illegal number of stop bits (not used)

5
Illegal number of data bits (not used)

6
Illegal parity (not used)

7
Illegal buffer length (not used)

8
Illegal timeout value

9
Time-out elapsed

10
Incorrect number of parameters

11
Illegal op-code

12
RX/TX terminated by modem (not used)

13
Transmit buffer not empty (not used)

14
Illegal XON/XOFF limits (not used)

15
Serial i/o module not found (not used)

16
Completely bad Port Number

17
Port Number not in the registry

18
Error writing to serial port

19
Error reading from serial port

20
Cannot set Rx/Tx timeouts

21
Cannot get port settings

22
Cannot set port settings

23
Port already in use (logically) - Open operation only

24
Port not in use (logically) - All other operations

-1
Awaiting completion

SPOPC
Operation code. See sections below.

SPRBLN
Length of receive buffer. Not used (see below).

SPTBLN
Length of transmit buffer. Not used (see below).

SPRTO
Receive time-out. Used as described in section 5.2.2 of the Global Cobol Assembler Interface Manual V6.1 (see below)

SPTTO

Transmit time-out. Not used (see below).

SPRTER
Up to 9 receive terminators. Used as described in section 5.2.2 of the

Global Cobol Assembler Interface Manual V6.1 (see below)

SPEOF

Terminating character. Used as described in section 5.2.2 of the Global

Cobol Assembler Interface Manual V6.1 (see below)

SPLENG
Length of Tx/Rx operation. Used as described in section 5.2.2 of the

Global Cobol Assembler Interface Manual V6.1 (see below)

SPMRTS
Set RTS modem control. Not used (see below).

SPMDTR
Set DTR modem control. Not used (see below).

SPMCTS
CTS modem control status. Not used (see below).

SPMDSR
DSR modem control status. Not used (see below).

SPMDCD
DCD modem control status. Not used (see below).

SPWORK
SPD harness work area. Must be initialised to LOW-VALUES.

SPBAUD
Required baud rate. Not used.

SPBITS

Required number of data bits. Not used.

SPSTOP
Required number of stop bits. Not used.

SPPAR

Required parity. Not used.

SPFLOW
Required flow control. Not used.

SPDEV
Hardware device address. The low-order byte is used as an index into the registry. See below. For example;

01 FILLER REDEFINES SPDEV

 02
FILLER
PIC X(3)

 02
SPINX
PIC 9(2) COMP
* Registry index

However, note that all 4 bytes of SPDEV are significant so that it not sufficient to just initialise SPINX. The PIC X(3) FILLER must also be set to LOW-VALUES. Probably the most convenient method is to include the following redefinition:

01
FILLER REDEFINES SPDEV

 02
SPDEVN PIC 9(9) COMP

and to move the registry index to SPDEVN.

SPVECT
Hardware interrupt vector. Optionally used to hold the TCP/IP Port Number when the TCP/IP interface is being used (see section 8).

SPFULL
Space left in Rx buffer when busy is signaled. Not used (see below).

SPFREE
Space left in Rx buffer when not busy is signaled. Not used (see below).

3.
SPD registry settings

The "SerialPortDriver" key of the registry contains the following keys and settings:

SerialPortDriver\NN\Name

SerialPortDriver\NN\Mode

SerialPortDriver\NN\ReceivePollDivisor

SerialPortDriver\NN\TransmitPollDivisor

The actual SPD serial port is specified indirectly using the SPDEV parameter (see below).

4.
SPD Operations

4.1
The SPD Open operation (SPOPC=0)

For versions of GLOBAL.EXE before V3.3 only a single SPD channel can be opened at any one time. Furthermore, the low-order byte of the SPDEV field must contain a Serial Port Driver Index Number between 1 and 99. This is used to identify the key within the registry under which the "Name" setting is to be found. The mandatory "Name" setting must contain the name of a Windows serial port without the terminating ":". For example:

Name=COM1:

For versions of GLOBAL.EXE V3.3, and later, up to 8 SPD channel can be opened simultaneously. This limit has been extended in newer versions of GLOBAL.EXE (see below). Furthermore, the low-order byte of the SPDEV field must contain a Serial Port Driver Index Number between 1 and 8. This is used to identify the key within the registry under which the "Name" setting is to be found. The mandatory "Name" setting must contain the name of a Windows serial port. The terminating ":" is optional. For example:

Name=COM1:

or:

Name=COM1

The optional "Mode" setting can be used to parameterise the serial port. THE Mode OPTION IS USED INSTEAD OF THE SPBAUD, SPBITS, SPSTOP, SPPAR AND SPFLOW FIELDS.

The "Mode" setting should be set to a "DOS style Mode" string. For example:

Mode=38400,N,8,1,X

The "ReceivePollDivisor" and "TransmitPollDivisor" settings are described below.

The GSM (Windows) SPD handler does not require user-supplied receive or transmit buffers (although, for compatibility with SPD on BOS, the Open operation does expect 3 parameters:

CALL entry_point USING SP receive_buffer transmit_buffer

the receive_buffer and transmit_buffer parameters are not used). Consequently, the SPRBLN, SPTBLN, SPFREE and SPFULL fields are not used.

However, a single-parameter version of the Open command is also allowed:

CALL entry_point USING SP

For GLOBAL.EXE 4.0b, the limit on the number of simultaneously open SPD channels was extended from 8 to 16. For GLOBAL.EXE 4.0d, the limit on the number of simultaneously open SPD channels was extended from 16 to 250.

4.2
The SPD Receive operation (SPOPC=1)

The Receive operation accepts bytes from the serial port using the Windows ReadFile system call. If the characters required are already in the Windows kernel receive buffer, the operation will complete immediately, otherwise it will set SPRES to -1 and signal an exception. Your program MUST wait for completion. The use of SPRTO, SPRTER, SPLENG and SPEOF are described in section 5.2.2 (page 5-5) of the Global Cobol Assembler Interface Manual V6.1.

If the Receive operation does not complete immediately, it will be completed using a poll routine which will attempt to read characters from the serial port on a regular basis. It is possible that the poll routine will affect performance on multi-user configurations. The following registry setting can be used to prioritise the polled receives:

SerialPortDriver\NN\ReceivePollDivisor

The default value is 10. Decrease this value to improve the receive response time at the expense of multi-user performance.

4.3
The SPD Transmit operation (SPOPC=2)

The Transmit operation sends a block of up to SPLENG bytes to the serial port. It does this by writing the bytes to the Windows kernel transmit buffer using the WriteFile system call. If the Transmit operation does not complete immediately, it will be completed using a poll routine which will attempt to send characters to the serial port on a regular basis. It is possible that the poll routine will affect performance on multi-user configurations. The following registry setting can be used to prioritise the polled receives:

SerialPortDriver\NN\TransmitPollDivisor

The default value is 10. Decrease this value to improve the transmit response time at the expense of multi-user performance.

A Transmit operation with SPLENG set to 0 is ignored.

4.4
The SPD Close operation (SPOPC=3)

When the SPD Close operation is issued, a Windows system call is used to reset the serial port to its original settings.

4.5
The SPD Set modem operation (SPOPC=4)

This operation is not supported by the GSM (Windows) SPD handler and will result in error 11 (illegal opcode) if attempted. It is not possible to manipulate the modem control lines using a Windows system call.

4.6
The SPD Read modem operation (SPOPC=5)

This operation is not supported by the GSM (Windows) SPD handler and will result in error 11 (illegal opcode) if attempted. It is not possible to read the modem control lines using a Windows system call.

4.7
The SPD Modem change operation (SPOPC=6)

This operation is not supported by the GSM (Windows) SPD handler and will result in error 11 (illegal opcode) if attempted. It is not possible to read the modem control lines using a Windows system call.

4.8
The SPD Check Tx operation (SPOPC=7)

This operation is not supported by the GSM (Windows) SPD handler and will result in error 11 (illegal opcode) if attempted. All Tx data is placed immediately into a Windows kernel buffer (using the Windows WriteFile system call).

4.9
The SPD Clear Tx operation (SPOPC=8)

This operation is not supported by the GSM (Windows) SPD handler and will result in error 11 (illegal opcode) if attempted. All Tx data is placed immediately into a Windows kernel buffer (using the Windows WriteFile system call).

4.10
The Return Version Number operation (SPOPC=9)

This operation returns the version of the SPD handler.

4.11
The Listen on Socket operation (SPOPC=10)

This operation is only supported by the TCP/IP interface. See section 8 for further details.

4.12
The Accept on Socket Connection (SPOPC=11)

This operation is only supported by the TCP/IP interface. See section 8 for further details.

5.
SPD restrictions

The GSM (Windows) SPD handler suffers from several restrictions. Some of these restrictions MAY be removed in future versions of the BACNAT software but others are completely intractable.

5.1
Restriction on number of SPD users

For versions of GLOBAL.EXE prior to V3.3, the GSM (Windows) SPD handler must only be loaded by one user otherwise unpredictable results will occur. This restriction has been lifted in GLOBAL.EXE V3.3, and later, which allows up to 8 different SPD ports to be opened simultaneously.

6.
Other comments

6.1 The SVC 84 Interface

The GSM (Windows) SPD handler can be called directly (i.e. without the need to load a dummy assembler assist module) by a direct call to SVC 84 using the same parameter as all the calls through $$EPT.

THE DIRECT SVC 84 INTERFACE MUST BE USED BY ALL 32-BIT APPLICATIONS.

The direct SVC 84 interface is highly recommended for 16-bit applications (because it removes the overhead of loading the dummy SPD-handler on the User Stack).

6.2 Automatic Port Close

Under normal conditions the serial port opened by an SPD application will be closed by a call using the Close operation. However, if the SPD application fails to call the Close operation (e.g. if the SPD application crashes for some reason) the port will remain open preventing another application, or the same application, from using the same serial port until the GLOBAL.EXE is unloaded. To prevent this situation all open SPD ports are automatically closed when an application terminates (for any reason).

7.
Read & Write Timeouts

The SPD interface has been extended (GLOBAL.EXE V3.4) to support Read and Write timeouts. The following new registry settings are available:

SerialPortDriver\NN\ReadIntervalTimeout

SerialPortDriver\NN\ReadTotalTimeoutMultiplier

SerialPortDriver\NN\ReadTotalTimeoutConstant

SerialPortDriver\NN\WriteTotalTimeoutMultiplier

SerialPortDriver\NN\WriteTotalTimeoutConstant

It's probably not a good idea to change the Read timeouts but the Write timeouts may have to be increased to prevent spurious error 18's on slow PC's.

8.
Extensions for TCP/IP

The Serial Port Driver has been extended to perform low-level I/O on a Windows TCP/IP socket using the WinSock interface within GLOBAL.EXE. The following extra registry settings are supported:

SerialPortDriver\NN\SerialInterface=Off

SerialPortDriver\NN\Address

SerialPortDriver\NN\Port

SerialPortDriver\NN\KeepAlive

SerialPortDriver\NN\NoDelay

The SerialInterface setting must be explicitly set to "Off" to enable the Winsock interface.

Note that the "Name", which is normally used to specify a COM device is ignored if SerialInterface=Off.

If SerialInterface=Off the "Address" number must be specified. For GLOBAL.EXE V4.0a, or later, the Serial Port Driver (SPD) has been enhanced to allow a dynamic TCP/IP address to be passed as a 2nd parameter to the SVC 84 call. This new option completely overrides the "Address" setting in the registry.

If SerialInterface=Off the "Port" number must be specified. For GLOBAL.EXE V3.8, or later, the Serial Port Driver (SPD) has been enhanced to allow a dynamic TCP/IP port number to be passed via the SPVECT field in the SP interface block. This new option is enabled by setting the SPD TCP/IP "Port" number to 0. Note that SPVECT, which is formally defined as a PIC X(4), must be redefined as a PIC 9(9) COMP field to hold the numeric Port Number.
If SerialInterface=Off and the Winsock connection is a "Client Connection" (see below) the "Address" number must be specified.

If SerialInterface=Off the "KeepAlive" and "NoDelay" settings are optional.

8.1
Operations to support Winsock

The Open operation, that formerly opened a serial device on a COMn port, has been extended to open a Winsock "Client Connection" by issuing a Winsock connect() operation to a listening server.

The Read, Write and Close operations have been extended to operate with Winsock channel.

For "Client Connections" (i.e. where the SPD application connects to a listening server) only the following operations are required:

Open

(completes immediately)

Send

(may not complete immediately)

Receive

(may not complete immediately)

Close

(completes immediately)

Two new SPD operations, Listen and Accept, have been implemented to allow an SPD application to create a "Server Connection". For a "Server Connection" (i.e. where the SPD application listens for a connection from an external application) the following operations are required:

Listen

(completes immediately)

Accept

(unlikely to complete immediately)

Receive

(may not complete immediately)

Send

(may not complete immediately)

Close

(completes immediately)

8.1.1
Listen Operation

For TCP/IP connections only, SPOPC=10 is supported to issue the combination of the bind() and listen() functions on a Winsock socket.

8.1.2
Accept Operation

For TCP/IP connections only, SPOPC=11 is supported to issue an accept() function on a Winsock socket. The SPRTO value specifies an optional time-out period. A future enhancement may, following a successful connection from a remote socket, return the IP address is returned, as a dotted decimal value, in the SP-block.

8.1.3
Open Operation

As explained above, the Open operation has been enabled to allow both the TCP/IP Address and Port number to be supplied by the SPD application instead of being fixed in the registry. This section summarizes the two different techniques for the Address and Port number parameters.

8.1.3.1
Open Operation Dynamic IP Address

To override the SerialPortDriver\NN\Address registry setting the target IP Address can be supplied as a zero-terminated string, in either dotted decimal or machine-name format, as the 2nd parameter to the SVC 84 function. For example,

SVC 84 USING SP X-IP

If the IP Address is supplied as a parameter to the SVC 84 function, the SerialPortDriver\NN\Address registry setting is completely ignored.

8.1.3.2
Open Operation Dynamic Port Number

To override the SerialPortDriver\NN\Port registry setting the target Port number can be supplied in the SPVECT field. The Port number in the SPVECT field is only recognised if the Port number in the registry (i.e. SerialPortDriver\NN\Port) is set to 0.

8.2
New result codes to support Winsock

The following new result codes may be returned by the WinSock interface.

30
No NetworkAddress defined, or blank (Open operation only)

31
Illegal port adddress (Open or Listen operations)

32
Winsock not available

33
No memory to allocate SPD channel

34
No SPD channel allocated

35
Invalid TxBufferSize setting

36
Invalid RxBufferSize setting

37
No memory to allocate TX or RX buffer

38
Unable to create Receive thread

39
Invalid serial device Handle in poll routine (internal error)

40
Receive detected connection was closed

41
Receive processing suffered an internal buffer overflow

42
No valid socket defined

43
Thread close function timed out (Close operation only)

44
Reserved for future use

45
Reserved for future use

46
Reserved for future use

47
Reserved for future use

48
Reserved for future use

49
Reserved for future use

50
Couldn't open socket (WSAError returned in SPWSAERROR)

51
Couldn't connect to socket (WSAError returned in SPWSAERROR)

52
Couldn't send to socket (WSAError returned in SPWSAERROR)

53
Receive got socket error (WSAError returned in SPWSAERROR)

54
Winsock bind() function failed (WSAError returned in SPWSAERROR)

55
Winsock listen() function failed (WSAError returned in SPWSAERROR)

56
Winsock accept() function failed (WSAError returned in SPWSAERROR)

The SPWSAERROR field is defined as follows:

77
SPWSAERROR REDEFINES SPWORK PIC 9(9) COMP

Page 10 of 10

