
Global

Assembler Interface Manual

Version 8.1

MAIMV8.1/??

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or

 transmitted, in any form or by any means,

electrical, mechanical, photocopying,

recording or otherwise, without

the prior permission of

TIS Software Limited.

Copyright 1994 - 1999 TIS Software

TABLE OF CONTENTS

1.
Introduction and Overview
 1-1

5.
Serial Port Driver (SPD)

The Serial Port Driver (SPD) interface allows Global Cobol and Global Speedbase programs access devices attached via an RS232 interface. Typical examples of such devices are a bar code readers or portable data collection devices.

SPD is only available on certain computers. The drivers are unique to each type of computer and are supplied on a diskette available when SPD is ordered. SPD is installed by copying the appropriate driver to the SYSRES unit.

SPD allows you to establish parameters such as baud rate and flow control protocol, and then receive or transmit blocks of data. These operations are completely interrupt driven, with buffering being performed by the routine. This ensures that in a multi-user environment using the port has a minimal effect on other users. You can, if necessary, access several ports at once from one program or run several programs all accessing separate ports. The SPD driver can be shared by loading it into the system stack but no more than 8 programs may share a single copy of a driver.

5.1
Using the routine

First you must call the LOAD$ routine to load SPD onto either the system or user stack. On successful return from the LOAD$ routine the entry-point of the Serial Port Driver will be established in the System Variable $$EPT. Once loaded, the Serial Port Driver must be called to perform the Open operation which will initialise the port, saving details of the port's original usage, and establish the various buffer areas.

You can then issue receive operations to accept characters from the target equipment, and transmit operations to send characters. The receive operation can, if required, check for up to 8 terminator characters; this is particularly useful when communicating with an ASCII device. Other operations are available to monitor and control modem lines.

When you have finished with SPD you should issue a close operation to restore the port to its original use. An operation is available to check that all the characters which have been given to the driver to transmit have actually been transmitted so that the close can be done safely. Finally you can unload the SPD from the stack using UNLO$.

5.1.1 The Routine Name

The serial port routine is named %.mmSxx where mm is the two-character Machine Code contained in $$MCOD and xx is an identifying number. A computer will need a different driver for each kind of serial port.

5.1.2 The SP block

Access to the port is via the SP control block. This block comprises 3 parts: fields that determine the operation to be performed; a work area for use by the assembler routine to store status and other information; and parameters used by the open operation to determine baud rate, flow protocol, etc. The SP block can be found as a copybook in the copybook library S.PK0 which is part of the porting kit. The format of the block is as follows:

03
SPRES

PIC 9 COMP

* Result code:

* 0= Success

* 1= Non-existent port

* 2= Port in use

* 3= Illegal baud rate

* 4= Illegal no./stop bits

* 5= Illegal no./data bits

* 6= Illegal parity

* 7= Illegal buffer length

* 8= Illegal timeout

* 9= Time-out elapsed

* 10= Incorrect no./params

* 11= Illegal op-code

* 12= Rx/Tx terminated by state change

* 13= Tx buffer not empty

* 14= Illegal busy/not busy limits

* -1= Awaiting completion

03
SPOPC
PIC S9(2) COMP
* Operation code:

* 0= Open

* 1= Receive

* 2= Transmit

* 3= Close

* 4= Set modem control lines

* 5= Read modem status

* 6= Wait for modem status change

* 7= Check Tx status

* 8= Clear Tx buffer

03
SPRBLN
PIC 9(4) COMP
* Length of receive buffer

03
SPTBLN
PIC 9(4) COMP
* Length of transmit buffer

03
SPRTO
PIC 9 COMP

* Receive time-out, max 60

03
SPTTO

PIC 9 COMP

* Transmit time-out,max 60

* For time-outs: 0=no wait, -1=no time out

03
SPRTER OCCURS 9 PIC X

* Receive terminators, #FF = end

03
SPEOF

PIC X

* Field term character

03
SPLENG
PIC 9(4) COMP
* Length of Tx/Rx operation

03
SPMRTS
PIC 9(2) COMP
* Set RTS modem control

03
SPMDTR
PIC 9(2) COMP
* Set DTR modem control

03
SPMCTS
PIC 9(2) COMP
* CTS modem control status

03
SPMDSR
PIC 9(2) COMP
* DSR modem control status

03
SPMDCD
PIC 9(2) COMP
* DCD modem control status

03
SPFIL1

PIC X(7)

* Reserved, set to #00

03
SPWORK
PIC X(128)

* SPD work area, set to #00

03
SPBAUD
PIC 9(4) COMP
* Required baud rate

03
SPBITS
PIC 9 COMP

* Required number of data bits:

* 0 = 5 data bits

* 1 = 7 data bits

* 2 = 6 data bits

* 3 = 8 data bits

03
SPSTOP
PIC 9 COMP

* Number of stop bits:

* 0 = Invalid

* 1 = 1 stop bit

* 2 = 1.5 stop bits

* 3 = 2 stop bits

03
SPPAR

PIC 9 COMP

* Required parity:

* 0 = No parity

* 1 = Odd parity

* 2 = No parity

* 3 = Even parity

03
SPFLOW
PIC 9 COMP

* 0= None

* 1= Auto XON/OFF on Tx

* 4= Auto DSR on Tx

* 3= Auto XON/OFF on Rx/Tx

* 12= Auto DSR on Rx and Tx

* 16 = Manual control

03
SPDEV

PIC X(4)
* Hardware device address

03
SPVECT
PIC X(4)

* Hardware interrupt vector

03
SPFULL
PIC 9(4) COMP
* Space left in Rx buffer when busy signaled

03
SPFREE
PIC 9(4) COMP
* Space left in Rx buffer when not busy signaled

03
SPFIL2

PIC X(12)

* Reserved, set to #00

The usage of the fields in the first part is described under the appropriate operations. SPFIL1, SPFIL2 and SPWORK should be set to low values when the SP block is first set up.
SPFULL and SPFREE were introduced in December 1988. SPD drivers written before 1st December 1988 do not use these fields. If the fields are set to zero, as will be the case with programs written before the fields were introduced, SPFULL will be assumed to be 10 and SPFREE will be assumed to be 20.

SPDEV and SPVECT are used to pass information specific to a particular type of computer. The information in these fields is different for each separate driver. Details on how to set up the fields can be found in the configuration notes for the computer concerned.

5.1.3 Memory Residency

It is essential that SPD, the SP block, the buffers, and the receive data area are resident in memory while the serial port is open, and hence receiving interrupts. This can be achieved in three ways: load the routine onto the system stack, and allocate the blocks on the system stack using SDATA$; or use GETX$ (or better GETXN$) to obtain exclusive control; or use RESID$ to lock your partition into memory.

5.2
Serial Port Driver Operations

This section describes the various operation codes supported by the Serial Port Driver.

5.2.1 The Open Operation

The open operation must be issued before any transmit or receive operations in order to establish transmission parameters such as the baud rate. If the operation returns an error it should be followed by a close before attempting to re-open or to exit from the program. It is invoked by a call of the form:

CALL $$EPT USING sp receive-buffer transmit-buffer
where sp is a serial port block with SPOPC set to 0, and in which the device parameters have been established, and the two buffers are as described below.

The receive-buffer is used to hold the characters received by the driver which have not yet been accepted by the program. Its length must be established in SPRBLN. It must be at least 5 bytes long. In practice, a buffer of several hundred bytes is recommended as this will give better multi-user performance, since the attached device is less likely to be delayed as the buffer becomes full and your program is swapped out and hence unable to service it immediately.

The transmit-buffer is used to hold characters sent to the driver by the program, but not yet transmitted. It must be at least 5 characters long and its length must be established in SPTBLN before the open operation is executed. The larger the buffer, the greater the number of transmissions that can be accepted before the buffer becomes full and causes your program to be swapped. On a multi-user computer you are recommended to have a buffer of several hundred bytes if you are transmitting large amounts of data.

The receive and transmit buffers are effectively work areas for SPD. You should not attempt to read from or write to these buffers at any time.

If the port cannot be initialised as requested, an exception will be signaled and SPRES set to indicate the type of error, as follows:

SPRES

Meaning

1

device not present

2

already in use (some drivers cannot detect this)

other

invalid device parameter value (see SP block)

5.2.2 The Receive Operation

The receive operation accepts bytes from the serial port. If the characters required are already in the receive buffer it will complete immediately, otherwise it will set SPRES to -1 and signal an exception. Your program must wait for completion. A typical calling sequence is:

CALL $$EPT USING sp area $$SUSP

ON EXCEPTION

DO UNTIL SPRES NOT NEGATIVE
* wait if necessary

SUSPEND 32767

ENDDO

IF SPRES NOT ZERO

* error or modem termination

Error condition handling

END

END

On the above call statement, sp represents an SP block and area is the field into which the received characters are placed. The SP block must have been previously opened, have SPOPC set to 1, SPLENG set to the number of characters to be received and SPRTO set as described below.

If SPRTER contains terminator values (i.e. the first byte is not #FF) then if any of these are received the input will terminate at this point. SPLENG will be set to the number of characters received excluding the terminator. The terminator will not be copied into the receive area, but will be placed in SPEOF. If SPLENG characters are received without finding a terminator the receive completes with SPLENG set to its original value.

If there are not sufficient characters in the input buffer then the action of SPD depends on the value of SPRTO, the receive time out. If it is set to -1 then the routine will wait until enough characters are received, and then complete. With SPRTO in the range 1-60 inclusive, SPD will signal an exception with SPLENG set to the number received and SPRES set to 9 if enough characters are not received within this number of seconds. When SPRTO is zero this means the operation completes immediately even if there are insufficient characters in the receive buffer. The number of characters received is returned in SPLENG.

5.2.3 The Transmit Operation

The transmit operation sends a block of up to SPTBLN bytes to the serial port. It does this by copying the bytes to the transmit buffer, and then returning control to the user while the bytes are sent asynchronously under interrupt control. If there is in-sufficient free space an exception will be signaled and SPRES will be set to -1. As buffer space becomes available, characters will automatically be transferred into the buffer.

Your program MUST suspend itself until the buffer space is available or until termination of the command is signaled. A typical calling sequence is:

CALL $$EPT USING sp area $$SUSP

ON EXCEPTION

DO UNTIL SPRES NOT NEGATIVE
* wait if necessary

SUSPEND 32767

ENDDO

IF SPRES NOT ZERO

* error or modem termination

Error condition handling

END

END

On the above call statement, sp represents an SP block and area the field containing the bytes to be transmitted. The SP block supplied must have been previously opened, have SPOPC set to 2, SPLENG set to the number of characters to be transmitted, and SPTTO set as described below.

SPTTO establishes a time out period. If it is set to -1 then no time out is performed, and your program will be suspended forever if the buffer is full and the port is off-line (busy). If SPTTO is set to 0 then if there is no room in the buffer for all the data to be transferred, no transfer will take place, and an exception will be signaled immediately with SPRES set to 2. If SPTTO is positive then as many characters as possible will be transferred to the transmit buffer. If there is not room for all the characters the program will suspend for the number of seconds given by SPTTO (maximum 60), transferring characters as space becomes available. If characters are still left SPTTO seconds after the last character to be transferred to the transmit buffer, the operation will be cancelled and an exception signaled with SPRES set to 9.

A transmit command with SPLENG set to zero has the effect of flushing out any characters in the buffer by transmitting them unless under automatic control (SPFLOW is 1, 3, 4 or 12) when nothing will happen.

5.2.4 The Close Operation

The close operation disables interrupts on the serial port and does any other work necessary to close it down. The calling sequence is:

CALL $$EPT USING sp
where sp must have SPOPC set to 3.

Note that if SPD is called with no parameters this has the effect of closing all the currently open ports.

If SPD has been called to open a port, it must be called to close it again, even if an error was signaled during the open. Any characters in the transmit buffer at the time that the port is closed will be discarded.

5.2.5 Automatic Flow Control

SPD supports a number of methods for governing the flow of data in and out of the serial port. The type of flow control required must be established in SPFLOW before the initial open operation. If SPFLOW is set to 0 then no flow control is performed and it is the task of the calling program to ensure that the receive buffers at either end of the link are not overrun.

If SPFLOW is set to 1 or 4, flow control is provided on transmission only. This corresponds to the XON/XOFF (1) and "busy" line (4) handling of a standard printer, where the transmission of characters to the printer is governed by incoming signals from the printer. In both modes RTS and DTR are set active as soon as the port is "opened". The input status line, DSR, is used to govern the flow of outgoing characters in mode 4.

If SPFLOW is set to 3 or 12, bi-directional flow control is provided. If option 3 is used XON and XOFF characters are used to govern the transmission and reception of characters. This method of flow control is unsuitable if the data transmitted or received is likely to contain XON's or XOFF's. When operating in mode 3 both RTS and DTR are set active. In mode 12 RTS is set active and DTR is used to control the flow of incoming characters and DSR the outgoing characters.

5.2.6 Manual Modem Control

If SPFLOW is set to 16, SPD provides facilities for the calling program to perform its own manual flow control. The 5 fields SPMRTS, SPMDTR, SPMCTS, SPMDSR and SPMDCD are used to govern the modem control lines.

The 2 fields SPMRTS and SPMDTR are used to control the two output lines RTS and DTR and have the following layout:

Bit #01
0 = set RTS or DTR active

1 = set RTS or DTR inactive

Bit #02
0 = do nothing when receive buffer is full

1 = reverse state of RTS or DTR when the receive buffer is full.

These two fields must be established before invoking the transmit, receive or set modem status commands. RTS and DTR will be set to the appropriate levels at the start of the receive or transmit commands. The bit represented by #02 is available so that SPD can make an instant response when the receive buffer is about to overrun, the response time of a Global Cobol program in such a circumstance would be too slow. Note that if SPMRTS or SPMDTR are set to the default value of binary zero, RTS and DTR will both be active and automatic state reversal will be disabled.

The three fields SPMCTS, SPMDSR and SPMDCD can be used to monitor the state of the 3 input modem control lines CTS, DSR and DCD. Following any of the 6 commands, except the close, these bytes will indicate the settings of the lines just before SPD returned control to the calling Global Cobol program. SPD also allows a change in the state of these 3 lines to terminate a suspended transmit, receive or wait for modem command. In this case SPRES will be changed from -1 to 12.

SPMCTS, SPMDSR and SPMDCD have the following layout:

Bit #01
0 = status line inactive

1 = status line active

Bit #02
0 = do nothing when status line changes state

1 = terminate transmit, receive or wait for modem status change commands

The bit represented by #02 is provided so that SPD can take immediate action if the target equipment signals a condition such as buffer overflow. Commands will be terminated when the state of the control line differs from the value established in the bit represented by #01.

For example: If a target device signals its willingness to receive characters by setting DSR active, then a calling Global Cobol program might call SPD to transmit characters, having set SPMDSR to 3. When the target device can accept no more characters it will drop DSR and SPD will stop transmitting. If the transmit command is terminated and the number of characters successfully transferred will be returned in SPLENG.

On return from SPD or when SPD has "unsuspended" a suspended program, the 3 status bytes will be set to zero, except for the bit represented by #01, which will reflect the state of control line.

5.2.7 The Wait for Modem Status Change operation

The calling program must first establish values in SPMCTS, SPMDSR and SPMDCD. At least one of these fields must have the bit represented by #02 set to one. A typical calling sequence is:

CALL $$EPT USING sp $$SUSP

ON EXCEPTION

DO UNTIL SPRES NOT NEGATIVE
* wait if necessary

SUSPEND 32767

ENDDO

IF SPRES NOT ZERO

* error or modem termination

Error condition handling

END

END

The operation of this function is also determined by the value of SPRTO. If SPRTO is set to -1 then the routine will wait indefinitely for a change in the state of the enabled control line(s). If SPRTO is in the range 1-60 inclusive then if the required change of state does not take place within this number of seconds SPD will signal an exception with SPRES set to 9. If SPRTO is zero then the operation will complete immediately and successfully, with SPCTS, SPDSR and SPDCD reflecting the current state of the control lines.

5.2.8 Read the Modem Status

This operation reads the status of the modem lines and returns the status in SPMCTS, SPMDSR and SPMDCD. These fields are set to 1 to indicate an active line or 0 for an inactive line. A typical calling sequence is:

CALL $$EPT USING sp
ON EXCEPTION

Test result in SPRES

END

Test status bytes

5.2.9 The Set Modem Control Lines Operation

This operation was introduced on 1st December 1988. SPD drivers dated earlier do not support the operation and will return an "illegal opcode" status if they are called to perform it.

The operation is used to set or clear the RTS and DTR. Before calling SPD you must establish values in SPMRTS and SPMDTR and set SPOPC to 4. SPMRTS and SPMDTR must have the following layout:

Bit #01
0 = set RTS or DTR active

1 = set RTS or DTR inactive

all other bits are ignored

A typical calling sequence is:

CALL $$EPT USING sp
ON EXCEPTION

Test result in SPRES

END

Test status bytes

The modem control lines can also be controlled as part of a receive or transmit operation if SPMDTR and SPMRTS are established before issuing the operation.

If control of the receive line is being handled automatically by the DTR line (SPFLOW - 12) SPMDTR must never be interfered with by the Global Cobol program.

5.2.10 Check Transmit Status

This operation was introduced on 1st December 1988. SPD drivers dated earlier do not support the operation and will return an "illegal opcode" status if they are called to perform it.

The operation is used to find out whether any characters have been passed to the driver for transmission but are still waiting to be transmitted. A typical calling sequence is:

CALL $$EPT USING sp $$SUSP

ON EXCEPTION

DO UNTIL SPRES NOT NEGATIVE
* wait if necessary

SUSPEND 32767

ENDDO

IF SPRES NOT ZERO

* error or modem termination

Error condition handling

END

END

Test status bytes

The number of characters found to be waiting for transmission is returned in SPLENG.

5.2.11 Clear Transmit Buffer

This routine is used to discard any characters waiting to be transmitted. A typical calling sequence is:

CALL $$EPT USING sp $$SUSP

ON EXCEPTION

DO UNTIL SPRES NOT NEGATIVE
* wait if necessary

SUSPEND 32767

ENDDO

IF SPRES NOT ZERO

* error or modem termination

Error condition handling

END

END

5.3
Special Considerations for GSM (BOS) Configurations

This section describes the special features that must be considered when developing an SPD application for GSM (BOS) configurations. The Machine Code for GSM (BOS) configurations is “J5”.

Chapter 6 of the Global Operating Manual (BOS) provides more information regarding serial devices and GSM (BOS).

The Serial Port Driver (SPD) is supported on IBM PC compatibles on TTY serial ports. The controller is distributed on the BACRES diskette. The configuration-specific information required is held in two fields, the device address and the vector address, each four bytes long.

5.3.1 Serial Port Driver and TTY Ports

The TTY Serial Port Driver (SPD) module, %.J5S03, may be used by SPD applications to access standard TTY serial ports such as COM1, COM2, the Arnet Multiport board and the various TCL multi-port cards (see section 6.9.2 of GOMB). Important note: Earlier versions of the TTY SPD module, %.J5S01 and %.J5S02, are considered obsolete and are no longer supported.

SPD application programmers should be aware that the 4-byte SPDEV field is redefined as follows:

01
FILLER REDEFINES SPDEV

* SPDEV IS USED FOR BOTH

* THE IRQ LEVEL AND THE

* PORT ADDRESS

 02
FILLER

PIC X

* 1ST BYTE IS UNUSED

VALUE
LOW-VALUES

 02
SPIRQ

PIC 9(2) COMP
* IRQ LEVEL

 02
SPPORT
PIC 9(4) COMP
* PORT ADDRESS

The 4-byte SPVECT field is unused and should be set to LOW-VALUES.

The SPIRQ field must contain the interrupt level corresponding to the serial port established in SPPORT (e.g. 4 for COM1; 3 for COM2). THE VALUE OF SPIRQ MUST BE NONZERO. The potentially hazardous technique of specifying an interrupt level of 0 to allow the Serial Port Driver to dynamically determine the interrupt level is no longer supported.

The SPPORT field must contain the port address of the base-address of the UART device (e.g. #03F8 for COM1; #02F8 for COM2).

At high baud rates incoming characters may be lost if there is a lot of other activity on the computer. This can sometimes be prevented by setting the interrupt level of the serial port being used by the SPD application to the highest priority in the nucleus section of the configuration file (see section 6.15.1).

Another technique that may be used, instead of, or in conjunction with, altering the interrupt priority is to enable the FIFO buffering option available with the NS16550A UART (or compatible) device. If the SPPORT field contains an odd number (i.e. a value that is strictly illegal for a UART base-address which must be divisible by 8) the Serial Port Driver uses the low-order bit as a flag to enable the FIFO on a NS16550A device. For example:

SPPORT value
Comments

#03F8

Use UART at address #03F8 in standard mode;

#03F9

Use UART at address #03F8 in buffered mode;

#03FA - #03FF
Invalid.

DO NOT ATTEMPT TO ENABLE THE FIFO OPTION UNLESS YOU ARE SURE THE

UART IS AN NS16550A DEVICE (OR COMPATIBLE).

5.3.2 Serial Port Driver and Arnet Smartport Ports

The SPD modules for serial ports on the Arnet Smartport cards, %.J5S06 and %.J5S07, are considered obsolete and are no longer supported.

5.4
Special Considerations for GSM (DOS and Novell) Configurations

This section describes the special features that must be considered when developing an SPD application for GSM (BOS) configurations. The Machine Code for GSM (DOS) and GSM (Novell) configurations is “JW”.

Chapter ?? of the Global Operating Manual (DOS) and chapter ?? of the Global Operating Manual (Novell) provide more information regarding serial devices and GSM (DOS) and GSM (Novell).

The special considerations for GSM (BOS) also apply to GSM (DOS) and GSM (Novell), replacing “J5” by “JW”, where necessary.

5.5
Special Considerations for GSM (Unix) Configurations

This section describes the special features that must be considered when developing an SPD application for GSM (Unix) configurations. The Machine Code for GSM (DOS) and GSM (Novell) configurations is “C2”.

Chapter ?? of the Global Operating Manual (Unix) provides more information regarding serial devices and GSM (Unix).

[EXTRACT INFO FROM GOMU-G HERE]

5.6
Special Considerations for GSM (Windows NT) Configurations

This section describes the special features that must be considered when developing an SPD application for GSM (Windows NT) configurations. The Machine Code for GSM (DOS) and GSM (Novell) configurations is “W1”.

Chapter ?? of the Global Operating Manual (Windows NT) provides more information regarding serial devices and GSM (Windows NT).

[EXTRACT INFO FROM GOMW-G HERE AND MENTION NEW SVC INTERFACE]

Global Assembler Interface Manual V8.1

Page 13 of 14

